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ABSTRACT

Deep learning has led to remarkable advances when applied to problems in which
the data distribution does not change over the course of learning. In stark con-
trast, biological neural networks exhibit continual learning, solve a diversity of
tasks simultaneously, and have no clear separation between training and evalua-
tion phase. Furthermore, synapses in biological neurons are not simply real-valued
scalars, but possess complex molecular machinery that enable non-trivial learning
dynamics. In this study, we take a first step toward bringing this biological com-
plexity into artificial neural networks. We introduce intelligent synapses which
are capable of accumulating information over time, and exploiting this informa-
tion to efficiently protect old memories from being overwritten as new problems
are learned. We apply our framework to learning sequences of related classifica-
tion problems, and show that it dramatically reduces catastrophic forgetting while
maintaining computational efficiency.

1 INTRODUCTION

Deep learning has become an indispensable asset for applied machine learning that rivals human
performance in a variety of tasks (LeCun et al., 2015). However, building systems that can simul-
taneously solve many tasks and continually learn over long timescales remains a challenging open
problem. One of the major difficulties for continual learning in both biological and machine learn-
ing is acquiring knowledge needed to solve new tasks without forgetting what was learned on earlier
tasks (Fusi et al., 2005; Lahiri & Ganguli, 2013; Benna & Fusi, 2016; Goodfellow et al., 2013). In
this work, we develop an efficient online framework for regularizing neural networks that preserves
the structure that is important for solving earlier tasks. This enables networks to learn sequences of
tasks without forgetting, and improves generalization in transfer learning.

Prior approaches to alleviating forgetting in machine learning have primarily focused on architec-
tural changes and functional regularization. Architectural approaches to catastrophic forgetting alter
the architecture of the network to reduce interference between tasks without altering the objective
function. For example, freezing subsets of weights (Razavian et al., 2014), fine-tuning from old
weights (Donahue et al., 2014; Yosinski et al., 2014), altering nonlinearities (Srivastava et al., 2013;
Goodfellow et al., 2013), or copying and augmenting networks (Rusu et al., 2016). Functional
approaches alter the objective by adding a regularization term that penalizes changes in the input-
output function of the neural network. In Li & Hoiem (2016); Jung et al. (2016), the log probabilities
or hidden units are constrained to be close to their values for the old parameters. While these ap-
proaches explicitly preserve aspects of the input-output mapping for the old task, they can be costly
to compute.

The approach we take in this work is structural regularization, which adds data-independent penal-
ties to the parameters of a model. Structural approaches to catastrophic forgetting can be far more
efficient than functional approaches as they do not depend on data to be evaluated.

∗authors contributed equally

1



Workshop track - ICLR 2017

2 INTELLIGENT SYNAPSES

Core to our approach is the assumption that synapses that were important for solving previous tasks
should not be altered, while synapses that were not important can be modified. Given the importance
Ωk for each synapse k, we can add a regularization term to the loss L(θ) that penalizes changes in
synaptic strength relative to some baseline θ̃k proportional to their importance:

L̃(θ) = L(θ) + c
∑
k

Ωk

(
θk − θ̃k

)2
. (1)

While this framework supports many rules for choosing the importance of each synapse, we turned
to a local importance measure that assigns credit to each synapse for improvements in the global
objective. For small changes in parameter space, we can represent the improvement in the objective
using a linear approximation:

L(θ(t) + δ(t))− L(θ(t)) ≈
∑
k

gk(θ(t))δk(t) , (2)

where gk(θ(t)) ≡ ∂L
∂θk

∣∣
θ=θ(t)

is the gradient of the loss with respect to synapse k at time t, and
δk(t) is the change in the synapticic weight θk at time t (for gradient descent, δk(t) = −ηgk(θ(t))).
Synapses that have a large gradient and experience large changes contribute the most to decreasing
the loss, whereas synapses with a small gradient and/or small change contribute less. Integrating
these contributions over the course of training allows individual synapses to incrementally build up
an estimate of their importance, ωk. In the limit of infinitesimal updates with θ′k(t) ≡ δk(t), the
sum of the per-synapse importances, ωk, can be written as the path integral over the gradient field:∫

C

g(θ(t))dθ =

∫ t1

t0

g(θ(t)) · θ′(t)dt =
∑
k

∫ t1

t0

gk(θk(t))δk(t)dt ≡ −
∑
k

ωk. (3)

The value of the integral in Eq. 3 is given by the difference in loss between the start and end point
of the training trajectory, θ(t0) and θ(t1) respectively. Thus ωk can be interpreted as an additive
per-synapse contributions to decreasing the total training loss: L(θ(t1))− L(θ(t0)) = −

∑
k ωk.

In practice, we solve a sequence of tasks indexed by µ, and compute the importance measure Ωµk
(used in Eq. 1) by summing over a scaled version of the importances for all previous tasks, ν:

Ωµk =
∑
ν<µ

ωνk
(∆ν

k)2 + ξ
, with ∆ν

k ≡ θk(tν)− θk(tν−1) (4)

The scaling ensures consistency of units, and the dampening parameter ξ bounds the expression in
cases for which parameter changes are small (∆ν

k � ξ).

A typical training cycle in the benchmark then proceeds as follows. Initially all Ωµk are set to zero and
the network is trained on Task 1. During training ωµk is estimated as a running sum ωk =

∑
i g
i
kδ
i
k

over mini batches. For simplicity we updated the baseline variables Ωµk and θk at the end of each
task. More specifically, at the end of training on Task 1 we set θ̃k → θk and set Ωµk =

∑
ν<µ ω

ν
k .

After updating Ωµk , the synaptic variables ωk are reset to zero. The strength paramter c was tuned
manually and typically chosen in the range of 1.

The approach presented here is similar in spirit to elastic weight consolidation (EWC) (Kirkpatrick
et al., 2016) in that the form of the regularization is identical, and important parameters are pulled
back stronger towards their reference weight. However, in contrast to EWC, our method can be
computed online over the course of training with minimal overhead as it only relies on a running
sum of the products of gradients and updates. EWC relies on the Fisher information to identify the
importance of each weight which has to be computed during a separate phase after learning param-
eters for each task. Computing the Fisher can also be costly in high-dimensional output spaces, as it
requires an expectation over samples from the output of the model.

3 RESULTS

We evaluated our approach for multi-task learning on split MNIST and permuted MNIST, and trans-
fer learning from MNIST to MNIST-bg and between subsets of classes on CIFAR-10.
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Figure 1: Mean classification accuracy for the split MNIST benchmark as a function of the number
of tasks. Each task is a binary classification task between two MNIST digits. We use the same
network to jointly solve all tasks but have a separate linear class readout form the final hidden layer
for each task. The first five panels show classification accuracy on each task as a function of the
number of consecutive tasks. The rightmost panel shows the average accuracy for all seen tasks,
which is computed as the average over all previous tasks. Blue lines (c = 0) correspond to fine-
tuning with no regularization, while green lines (c = 1) correspond to intelligent synapses with a
strength of 1. Error bars correspond to SEM (n=10).

For multi-task learning, we find that intelligent synapses greatly reduce forgetting and retain strong
performance while learning up to 10 tasks (Fig. 1,2). These results were consistent across training
and validation error, and were comparable to the results reported in Kirkpatrick et al. (2016).

For transfer learning, we compared our approach to the standard feature extraction approach (freez-
ing all weights except the final readout layer), fine tuning, and training from scratch. We find that
when transferring to a task with a small amount of data, intelligent synapses improve validation
accuracy over all these approaches (Fig. 3).
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Figure 2: Intelligent synapses retain performance on
permuted MNIST task. Each task is created by ran-
domly permutating pixels. Classification accuracy on
all seen tasks as a function of number of tasks. With
no regularization, the network quickly forgets old tasks
(blue), while intelligent synapses (green) and elastic
weight consolidation (grey, extracted from Kirkpatrick
et al. (2016)) retain performance over many tasks. The
top panel is a zoom-in on the top section of the graph,
with the dotted line showing initial training accuracy on
a single task, and the black arrow showing training ac-
curacy when trained on all tasks simultaneously.
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Figure 3: Intelligent synapses improve transfer learning. Left: Validation accuracy when transfer-
ring from all data of CIFAR 10 classes 0-7 to binary classification between CIFAR-10 class 8 vs 9
using 50 examples per class. The network was a convolutional neural network. Chance performance
is 0.5. Right: Transfer from normal MNIST to MNIST-bg (background images) using only 10 la-
beled examples from each of the 10 classes of MNIST-bg. Chance performance is 0.1. Error bars
correspond to SEM (n=5).
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