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Abstract

We introduce a novel kernel learning framework
toward efficiently solving nonlinear partial
differential equations (PDEs). In contrast to
the state-of-the-art kernel solver that embeds
differential operators within kernels, posing
challenges with a large number of collocation
points, our approach eliminates these operators
from the kernel. We model the solution using a
standard kernel interpolation form and differen-
tiate the interpolant to compute the derivatives.
Our framework obviates the need for complex
Gram matrix construction between solutions and
their derivatives, allowing for a straightforward
implementation and scalable computation. As an
instance, we allocate the collocation points on a
grid and adopt a product kernel, which yields a
Kronecker product structure in the interpolation.
This structure enables us to avoid computing the
full Gram matrix, reducing costs and scaling
efficiently to a large number of collocation
points. We provide a proof of the convergence
and rate analysis of our method under appro-
priate regularity assumptions. In numerical
experiments, we demonstrate the advantages
of our method in solving several benchmark
PDEs. Our implementation is released at https:
//github.com/BayesianAIGroup/
Efficient-Kernel-PDE-Solver.

1 Introduction

Solving partial differential equations (PDEs) stands as a
central task in scientific and engineering domains. Recently,
machine learning (ML)-based solvers have garnered sig-
nificant attention. Unlike traditional numerical methods,
ML-based solvers eliminate the need for complex mesh
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designs and intricate numerical techniques, enabling sim-
pler, faster, and more convenient implementation and use.
Among these solvers, kernel methods or Gaussian processes
(GPs) (Williams & Rasmussen, 2006) hold promise due to
their solid mathematical foundations, offering high expres-
siveness, robustness, and the ability to quantify and reason
under uncertainty. Recently, Chen et al. (2021) introduced a
general kernel method to approximate solutions of nonlinear
PDEs. They augmented the representation by incorporat-
ing differential operators (more generally, linear operators)
into the kernels, and jointly estimate the solution values and
their derivatives of the PDE on a set of collocation points.
The approach has shown promising performance in solving
several benchmark nonlinear PDEs, backed by a rigorous
error analysis, including both convergence and convergence
rates (Chen et al., 2021; Batlle et al., 2023).

Despite its success, the methodology requires manual con-
struction of a Gram matrix between the solution and its
derivatives that show up in the PDEs. It enumerates com-
binations between the operators on the kernel to compute
different sub-blocks. The process enlarges the size of the
Gram matrix (as compared to the number of collocation
points), and the computation becomes challenging with a
large number of collocation points, a crucial factor for cap-
turing complex PDE solutions such as those with potential
roughness (or even non-smoothness) and higher frequencies.

In response, this work proposes an alternative kernel-based
framework for solving nonlinear PDEs with several key
contributions:

• Framework: We remove the basis functions associ-
ated with the differential evaluation functionals in the
approximation and use a standard kernel interpolation
for solution modeling. To approximate solution deriva-
tives, we directly differentiate the interpolant. By min-
imizing the RKHS norm along with a boundary and
residual loss, we estimate the solution without the need
for manually constructing a complex Gram matrix. Im-
plementation is straightforward and convenient with
the aid of modern automatic differential libraries.

• Computational Method: Our framework allows an
immediate use of many existing efficient Gram matrix
computation and/or approximation techniques. As an
instance, we propose to place collocation points on
a grid and employ a product kernel over each input
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dimension. This choice induces a Kronecker product
structure within both the kernel interpolation and its
differentiation, bypassing the need for computing the
entire Gram matrix. Such modification results in a
substantial reduction in computational costs, enabling
efficient processing of tens of thousands or even mil-
lions of collocation points. This is achieved without
any sparse and/or low-rank approximations.

• Theorem: We provide a rigorous analysis of our frame-
work. We show the convergence and convergence rate
of our method under appropriate PDE stability and reg-
ularity assumptions that are similar to the assumptions
used in the prior work (Batlle et al., 2023). However,
our results are not a trivial extension of the prior work
in that while our framework uses a reduced model
space for efficient computation, our convergence re-
sults are as comparably strong as those in the prior
work (Chen et al., 2021; Batlle et al., 2023) that em-
ploys a richer model space. This is achieved through a
more sophisticated proof. We construct an interpolate
of the true solution as an intermediate bridge connect-
ing the true solution and our approximation, via which
we prove our learning objective is not only feasible,
the learned approximation also has a bounded RKHS
norm. Next, via using domain decomposition, sam-
pling inequality and mean inequality, we are able to
bound the L2 norm of the error w.r.t the PDE opera-
tors. Combined with the bounded RKHS norm of our
approximation, we establish convergence and conver-
gence rate. The results theoretically affirm the efficacy
of our method in yielding accurate solutions.

• Experiments: Evaluation on Burgers’, nonlinear ellip-
tical, Eikonal, and Allen-Cahn equations have demon-
strated our method’s practical efficacy. For less chal-
lenging scenarios where a small number of collocation
points, e.g., 1000, is sufficient, our method achieves
comparable or sometimes smaller errors than the ex-
isting methods. In more challenging scenarios, such
as Burgers’ equation with a viscosity of 0.001, our
method seamlessly scales to tens of thousands of col-
location points, yielding low errors on the order of
10−3 to 10−6, underscoring its robustness and accu-
racy across a range of problem complexities.

2 Background

Consider a PDE of the general form,

P(u) = f(x) (x ∈ Ω), B(u) = g(x) (x ∈ ∂Ω), (1)

where x = (x1, . . . , xd)
⊤, and P and B are nonlinear dif-

ferential operators in the interior Ω and boundary ∂Ω, re-
spectively. We assume P and B are composed by a series

of linear operators, namely,

P(u)(x) = P (L1(u)(x), . . . , LQΩ
(u)(x)) , x ∈ Ω,

B(u)(x) = B (LQΩ+1(u)(x), . . . , LQ(u)(x)) , x ∈ ∂Ω,

where P (·) and B(·) are nonlinear functions, each Lj (1 ≤
j ≤ Q) is a linear operator, such as ∂x1x1

u, ∂x1x2
u, a ·

∂x2x2
u+ b · u, etc.

To solve the PDE (1), Chen et al. (2021) proposed to sam-
ple a set of collocation points, M = {x1, . . . ,xMΩ

∈
Ω,xMΩ+1, . . . ,xM ∈ ∂Ω}, and estimated the solution val-
ues and all the relevant linear operators over the solution,
{Lj(u)(·)}j , evaluated at the collocation points. Specifi-
cally, a nested optimization problem was formulated as

minimize
z


minimize

u∈U
∥u∥U

s.t. Lj(u)(xm) = zjm,

1 ≤ m ≤MΩ for j = 1 . . . QΩ,

MΩ + 1 ≤ m ≤M for j = QΩ + 1 . . . Q

s.t. P (z1s , . . . , z
QΩ
s )− f(xs) = 0 (1 ≤ s ≤MΩ),

B(zQΩ+1
q , . . . , zQq )− g(xq) = 0 (MΩ + 1 ≤ q ≤M),

where U is the Reproducing Kernel Hilbert Space (RKHS)
associated with a kernel κ(·, ·). Let us denote all {zjm} as z.
With the RKHS U , the similarity (or covariance) between
any zj1m1

and zj2m2
in z is

c(zj1m1
, zj2m2

) = Lj1 ◦ Lj2(κ)(xm1
,xm2

),

where Lj1 is applied along the first argument of κ(·, ·) and
Lj2 is applied along the second argument, and then we
evaluate at xm1

and xm2
. For example, suppose L1(u) =

∂x1
u and L2(u) = ∂x2

u, then L1 ◦ L2(κ)(x,x
′) =

∂2κ(x,x′)/∂x1∂x
′
2 where x1 and x′2 are the first and sec-

ond elements of the inputs x and x′, respectively.

The true solution u∗ is assumed to reside in U , and ∥ · ∥U is
the RKHS norm associated with U . From the representation
theorem (Owhadi & Scovel, 2019), it is straightforward
to show that the optimum of the aforementioned nested
optimizatin problem, denoted by vM , takes the form

vM (x) = c(vM (x), z)C(z, z)−1z, (2)

where c(vM (x), z) is the similarity between vM (x) and
each element in z, namely, for every zjm ∈ z,

c(vM (x), zjm) = Lj(κ)(x,xm),

where Lj is applied along the second argument of κ(·, ·),
and xm is the collocation point corresponding to zjm. Here
C(z, z) is the Gram matrix of z, constructed from Q×Q
sub-blocks,

C =

 C11 . . . C1Q

...
. . .

...
CQ1 . . . CQQ

 , (3)
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where each Cij is the similarity matrix associated with a
pair of linear operators,

Cij = c(hi,hj) = Li ◦ Lj(κ)(hi,hj), (4)

where 1 ≤ i, j ≤ Q, Li and Lj are applied to the
first and second arguments of κ, respectively, hi =
{zim}m and hj = {zjm}m. Therefore, the size of the
Gram matrix C is (QΩMΩ + (Q−QΩ)(M −MΩ)) ×
(QΩMΩ + (Q−QΩ)(M −MΩ)).

This approach can be explained from a probabilistic per-
spective (Long et al., 2022). That is, we assign a GP prior
over u, and given a sufficiently smooth kernel κ, all the
linear operators over u, namely, Lj(u) also follow a GP
prior, and their projection on the collocation points M,
namely, z, follow a multi-variate Gaussian prior distribu-
tion, p(z) ∼ N (z|0,C). Softening the outer constraints in
the aforementioned nested optimization by maximizing a
likelihood, this method essentially seeks for an MAP esti-
mation of z, and the prediction (2) is the posterior mean
conditioned on z.

3 Our Framework

Despite the success of (Chen et al., 2021), it requires compu-
tation of a Gram (covariance) matrix (see (3)) with dimen-
sions typically exceeding the number of collocation points.
This can exacerbate computational challenges, particularly
when addressing complex PDEs that demand a consider-
able number of collocation points (Cho et al., 2024; Florido
et al., 2024). Moreover, the construction of the Gram matrix
relies on the particular set of linear operators present in the
PDE, rendering it cumbersome for implementation and the
adoption of efficient approximations, if needed.

We therefore propose an alternative kernel learning frame-
work for nonlinear PDE solving, which simplifies the Gram
matrix construction and computation. Specifically, we are
inspired by the standard kernel/GP regression. Suppose the
solution values at the collocation points are known, denoted
as u∗

M = (u∗(x1), . . . , u
∗(xM ))

⊤. The optimal solution
estimate within the framework of standard kernel regression
takes the interpolation form: t(x) = κ(x,M)K−1

MMu∗
M,

where KMM = κ(M,M) denotes the kernel matrix com-
puted on the collocation points (of size M ×M ). This form
is derived by minimizing the RKHS norm while aligning u∗

at M. In GP regression, t(x) serves as the mean function
of the posterior process.

For general PDE solving, as depicted in (1), one often lacks
knowledge of the solution values at arbitrary collocation
points. Therefore, we regard them as unknown, free vari-
ables denoted by η. We model the solution estimate as

u(x;η) = κ(x,M)K−1
MMη. (5)

We then apply each linear operator Lj in the PDE over
u(x;η) to approximate Lj(u

∗). Following this way, we do
not need to explicitly estimate the values of Lj(u

∗) at the
collocation points as in (Chen et al., 2021; Long et al., 2022)
(namely zjm in z). Correspondingly, the Gram matrix KMM

is substantially smaller (of size M × M ) and it is more
convenient to compute — there is no need to enumerate pairs
of linear operators and apply them to the kernel function to
compute different sub-blocks.

The learning of our model is carried out by addressing the
following constrained optimization problem:

minimize
u∈U

∥u∥U
s.t. 1

MΩ

∑MΩ

m=1 (P(u)(xm)− f(xm))
2

+ 1
M−MΩ

∑M
m=MΩ+1 (B(u)(xm)− g(xm))

2 ≤ ϵ,

u takes the kernel interpolation form (5),

(6)

where ϵ ≥ 0 is a given relaxation parameter. Note that since
our formulation (5) uses a reduced model space (there are no
basis functions associated with operators {Lj}) as opposed
to (Chen et al., 2021), we introduce ϵ to enable feasibility of
the optimization and to establish the convergence; see our
convergence analysis in Appendix Section A. In practice,
addressing (6) directly can be cumbersome. We may opt to
optimize an unconstrained objective with soft regularization
instead,

minimize
η

L(u(x;η);α, β) := ∥u∥2U

+ α

[
1

MΩ

∑MΩ

m=1
(P(u)(xm)− f(xm))2 − ϵ/2

]
(7)

+ β

[
1

M −MΩ

∑M

m=MΩ+1
(B(u)(xm)− g(xm))2 − ϵ/2

]
,

where α, β > 0 are the regularization strengths, and ϵ can
be simply set to zero.

Efficient Computation. In scenarios where PDEs are com-
plex and challenging, capturing the solution details might
necessitate using a vast array of collocation points. Since
our framework uses the standard Gram/kernel matrix to con-
struct the solution estimate (as illustrated in (5)), a wide
range of existing kernel approximation and computation
methods (Quinonero-Candela & Rasmussen, 2005; Rahimi
& Recht, 2007; Farahat et al., 2011; Lindgren et al., 2011)
can be readily employed to accelerate computation involving
K−1

MM . This facilitates the reduction of computational costs
and enables scalability to accommodate massive collocation
points.

As an instance, we propose to induce a Kronecker prod-
uct structure to accelerate computation and scale to a large
number of collocation points. Specifically, we place the col-
location points on a grid, namely, M = s1× . . .×sd, where
each sk includes a collection of locations at input dimension
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k, i.e., sk = (sk1 , . . . , s
k
mk

)⊤ ∈ Rmk . These locations can
be regular-spaced or randomly sampled. Accordingly, M
is an d-dimensional array of size m1 × . . . × md. Next,
we employ a product kernel that is decomposed as along
the input dimensions, κ(x,x′) =

∏d
j=1 κj(xj , x

′
j), where

each κj is a kernel function of two scalar variables at input
dimension j. An example is the widely-used Square Expo-
nential (SE) kernel. The product kernel corresponds to a
tensor product structure in the latent feature space, offering
rich representational power to approximate PDE solutions;
see the theoretical justification in (Wang et al., 2021).

With the product kernel, the kernel matrix on the collocation
points M becomes a Kronecker product, KMM = K1 ⊗
. . . ⊗ Kd, where each Kj = κj(s

j , sj) is a local kernel
matrix for dimension j (1 ≤ j ≤ d), of size mj ×mj . We
then leverage the Kronecker product properties to efficiently
compute the solution estimate (5) as[
κ1(x1, s

1)⊗ . . .⊗ κd(xd, s
d)
]
[K1 ⊗ . . .⊗Kd]

−1
η

=
[
κ1(x1, s

1)K−1
1 ⊗ . . .⊗ κd(xd, s

d)K−1
d

]
η (8)

= A×1

[
κ1(x1, s

1)K−1
1

]
×2 . . .×d

[
κd(xd, s

d)K−1
d

]
,

where A is the tensor view of η, namely reshaping η as a
m1 × . . .×md array, and ×k is the mode-k tensor-matrix
multiplication (Kolda, 2006). In this way, we avoid ex-
plicitly computing the full kernel matrix KMM and its in-
verse. We only need to invert each local kernel matrix Kj ,
and hence the cost is substantially reduced. For example,
considering a 100 × 100 × 100 grid, the full kernel ma-
trix is 106 × 106, rending it computationally prohibitive
and impracticable for most hardware. By using (8), we
only need to invert three 100 × 100 local kernel matrices,
which is cheap and fast. Furthermore, since the kernel is
decomposed across individual dimensions, taking deriva-
tives over the solution estimate u will maintain the structure,
e.g., ∂x1xd

u(x;η) = A×1

[
∂x1

κ1(x1, s
1)K−1

1

]
×2 . . .×d[

∂xd
κd(xd, s

d)K−1
d

]
.

We then leverage the structure (8) to efficiently minimize the
objective (6) or (7). The computation of each P(u)(xm) and
B(u)(xm) is a straightforward application of the operators
P and B to (8) and then evaluate them at the collocation
points. This can be done by automatic differential libraries,
such as JAX (Frostig et al., 2018). The RKHS norm in (6)
and (7) can be efficiently computed by

∥u∥2U = η⊤K−1
MMη = η⊤ [K1 ⊗ . . .⊗Kd]

−1
η

= η⊤vec(A×1 K
−1
1 ×2 . . .×d K

−1
d ). (9)

We can apply any gradient-based optimization algorithm.

4 Convergence Analysis

We now show the convergence of our method. We inherit
the road-map of (Batlle et al., 2023) and maintain the same

assumption about PDE stability and the regularity of the
domain and boundary (Batlle et al., 2023, Assumption 3.7) 1,
with a slight modification.

Assumption 4.1. The following conditions hold:

• (C1) (Regularity of the domain and its boundary) Ω ⊂
Rd with d > 1 is a compact set and ∂Ω is a smooth
connected Riemannian manifold of dimension d − 1
endowed with a geodesic distance ρ∂ω.

• (C2) (Stability of the PDE) ∃k, t ∈ N with k > d/2
and t > (d − 1)/2, and ∃s, l ∈ R such that for any
r > 0, it holds that ∀u1, u2 ∈ Br(H

l(Ω)),

∥u1 − u2∥Hl(Ω) ≤ C
(
∥P(u1)− P(u2)∥H0(Ω)

+ ∥B(u1)− B(u2)∥H0(∂Ω)

)
, (10)

and ∀u1, u2 ∈ Br(H
s(Ω)),

∥P(u1)− P(u2)∥Hk(Ω) + ∥B(u1)− B(u2)∥Ht(∂Ω)

≤ C∥u1 − u2∥Hs(Ω), (11)

where C = C(r) > 0 is a constant independent of u1
and u2,B(r) is an open ball with radius r,Hj =W j,2

is a Sobolev space where each element and its weak
derivatives up to the order of j have a finite L2 norm.

• (C3) The RKHS U is continuously embedded in
Hs+τ (Ω) where τ > 0.

Lemma 4.2. Let u∗ ∈ U denote the unique strong solution
of (1). Suppose Assumption 4.1 is satisfied, and a set of
collocation points M ⊂ Ω is given, where MΩ ⊂ M
denotes the collocation points in the interior Ω and M∂Ω ⊂
M the collocation points on the boundary ∂Ω. Assume
the Voronoi diagram based on the collocation points has a
uniformly bounded aspect ratio across all the cells 2. Define
the fill-distances

hΩ := sup
x∈Ω

inf
x′∈MΩ

|x− x′|,

h∂Ω := sup
x∈∂Ω

inf
x′∈M∂Ω

ρ∂Ω(x,x
′), (12)

where | · | is the Euclidean distance, and ρ∂Ω is a geodesic
distance defined on ∂Ω. Set h = max(hΩ, h∂Ω). There is

1Note that this assumption, along with its minor variants, is
considered mild and widely used in convergence analysis. For
many examples of nonlinear PDEs that satisfy this assumption,
see (Batlle et al., 2023).

2Specifically, for each cell Tm that includes xm, the aspect
ratio is defined as the ratio between the smallest radius of a ball
centered at xm containing the closure of Tm and the maximum
radius of the ball centered at xm contained in Tm. The aspect ratio
is assumed to be uniformly bounded across m and the total number
of collocation points.
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always a minimizer of (6) with the set of collocation points
M and ϵ = C0h

2τ where C0 > 0 is a sufficiently large
constant independent of h. Let u† denote such a minimizer.
When h is sufficiently small, at least h ≤ C1M

− 1
d where

C1 > 0 is a constant, then

∥u† − u∗∥Hl(Ω) ≤ Chρ∥u∗∥U , (13)

where ρ = min(k, t, τ), and C > 0 is independent of u†

and h.

Proposition 4.3. Given the set of collocation points M and
ϵ = C0h

2τ where C0 > 0 is a sufficiently large constant,
there exists αM , βM > 0 such that the minimizer of (7) with
α = αM and β = βM is also the minimizer of (6). That
means, with proper choices of the regularization strengths,
the minimizer of (7) enjoys the same convergence result as
in (13).

We can see the convergence results of our framework are
as comparably strong as the results for the method of Chen
et al. (2021); see (Batlle et al., 2023, Theorem 3.8), though
the latter employs a richer model space. We leave the proof
in Section A and B of the Appendix.

5 Related Work

The prior works of Graepel (2003); Raissi et al. (2017)
propose Gaussian Process (GP) models for solving linear
PDEs in the presence of noisy measurements of source
terms. Chen et al. (2021) introduced a kernel method capa-
ble of solving both linear and nonlinear PDEs. The solution
approximation is constructed by both kernels and kernel
derivatives (more generally, the linear operators of the PDE
over the kernels). Hence, the differentiation operators need
to be embedded into the kernels to construct the Gram ma-
trix whose dimension is typically greater than the number
of collocation points. Long et al. (2022) proposed a general
framework for incorporating differential equations into GP
learning, which is conceptually equivalent to (Chen et al.,
2021). However, Long et al. (2022) formulated the method
within a probabilistic modeling framework and developed
a variational posterior inference algorithm. In (Batlle et al.,
2023), a systematic theoretical framework is established to
analyze the convergence of the method of Chen et al. (2021).
To alleviate the computational challenge for massive collo-
cation points, Chen et al. (2023) adapted the sparse inverse
Cholesky factorization (Schafer et al., 2021) to approxi-
mate the Gram matrix of (Chen et al., 2021). An alternative
approach was proposed by Meng & Yang (2023), which ad-
justs the Nyström method (Jin et al., 2013) to obtain a sparse
approximation of the Gram matrix. Despite the success of
these methods, the construction of the sparse approximation
needs to carefully handle different sub-blocks in the Gram
matrix, where each sub-block corresponds to a pair of lin-
ear operators over the kernels, and hence it is complex and

relatively inconvenient for implementation. In our work,
the solution is approximated by a standard kernel interpola-
tion, and the Gram matrix is therefore just the kernel matrix
over the collocation points. The size of the Gram matrix is
smaller. More important, the existent sparse approximation
methods can be readily applied to our model, without the
need for complex adjustments or novel development.

The computational efficiency of Kronecker product struc-
tures has been recognized in various works (Saatcci, 2012;
Wilson & Nickisch, 2015; Izmailov et al., 2018; Zhe et al.,
2019). Wilson et al. (2015) highlighted that utilizing a regu-
lar (evenly-spaced) grid results in Toeplitz-structured kernel
matrices, facilitating O(n log n) computation. However, in
typical machine learning applications, data is not observed
on a grid, limiting the utility of the Kronecker product. In
contrast, for PDE solving, estimating solution values on a
grid is natural, making Kronecker products combined with
kernels a promising avenue for efficient computation. The
recent work (Fang et al., 2024) uses a similar computational
method to solve high-frequency and multi-scale PDEs. The
major contribution is to introduce a spectral mixture kernel
in each dimension to capture the dominant frequencies in
the kernel space. This work can be viewed as an instance of
our proposed framework. We in addition give a theoretical
analysis about the convergence of our framework. Exten-
sive discussions on Bayesian learning and PDE problems
are given in (Owhadi, 2015).

Our work is related to radial basis function (RBF) meth-
ods (Hardy, 1971; Kansa, 1990; Powell, 1992; Buhmann,
2000; Tolstykh & Shirobokov, 2003), which approximate
the PDE solution as a linear combination of RBF basis
functions, such as Multiquadrics and Gaussian: u(x) ≈∑

j αjψj(x), where ψj(x)
∆
= ψ(∥x − xj∥), {xj} denote

collocation points, and ∥ · ∥ is usually chosen as the L2

norm. To estimate the coefficients α = {αj}, RBF methods
typically convert the PDE into a linear system Aα = b.
There are also methods that estimate the coefficients via
residual minimization, e.g., (Böhmer & Schaback, 2020). A
key distinction between our method and RBF methods lies
in the solution modeling. Our method uses a kernel interpo-
lation form (5) to approximate the solution. We can draw
an implicit connection via setting α = K−1

MMη, where we
directly estimate η — the solution values at the collocation
points. One might question why not optimize α instead.
Empirically, we found that, however, doing so significantly
degrades performance — often by one order of magnitude
in our test benchmarks. This degradation might stem from
the fact that each coefficient in α has a strong global influ-
ence on the entire solution approximation, making the opti-
mization process more challenging, especially for nonlinear
PDEs. Additional details and ablation studies supporting
this observation are provided in Appendix Section C.5. It
is worth noting that while local RBF methods (Fornberg
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& Flyer, 2015; Bayona et al., 2010) also approximate the
solution and its derivatives via interpolation of nodal val-
ues, they primarily rely on neighborhood points through
stencils and require repeatedly computing the interpolation
weights across different neighborhoods. In contrast, our
method employs a single kernel interpolation, offering both
convenience and computational efficiency.

6 Numerical Experiments

To evaluate our method, we considered four commonly-
used benchmark PDE families in the literature of machine
learning based solvers (Raissi et al., 2019; Chen et al., 2021).

The Burgers’ Equation. We first tested with a viscous
Burgers’ equation,

ut + uux − νuxx = 0, ∀(x, t) ∈ (−1, 1)× (0, 1],

u(x, 0) = − sin(πx), u(−1, t) = u(1, t) = 0. (14)

The solution is computed from the Cole–Hopf transforma-
tion with numerical quadrature (Chen et al., 2021). We
considered two cases: ν = 0.02, and ν = 0.001.

Nonlinear elliptic PDE. We next tested with the instance
of nonlinear elliptic PDE used in (Chen et al., 2021),

−∆u(x) + u3(x) = f(x), ∀x ∈ Ω,

u(x) = 0, ∀x ∈ ∂Ω, (15)

where Ω = [0, 1]2, the solution is crafted as u(x) =
sin(πx1) sin(πx2) + 4 sin(4πx1) sin(4πx2), and f(x) is
correspondingly computed via the equation.

Eikonal PDE. Third, we tested with a regularized Eikonal
equation as used in (Chen et al., 2021),

|∇u(x)|2 = f(x)2 + ϵ∆u(x), ∀x ∈ Ω,

u(x) = 0, ∀x ∈ ∂Ω, (16)

where Ω = [0, 1]2, f(x) = 1, and ϵ = 0.1. The solution is
computed from a highly-resolved finite difference solver as
provided by (Chen et al., 2021).

Allen-Cahn Equation. Fourth, we considered a 2D sta-
tionary Allen-Cahn equation with a source function and
Dirichlet boundary conditions.

uxx + uyy + γ(um − u) = f(x, y), (17)

where γ = 1, m = 3, and (x, y) ∈ [0, 1]2. We crafted
the solution in the form of u = sin(2πax1) cos(2πax2) +
sin(2πx1) cos(2πx2), and f is computed through the equa-
tion. We tested with a = 15 and a = 20.

Method and Settings. We implemented our method
with JAX (Frostig et al., 2018). We denote our

method as SKS (Simple Kernel-based Solver) We com-
pared with (Chen et al., 2021) that uses kernel and
kernel derivatives (more generally, linear operators)
to approximate the solution, which we denote as
DAKS (Derivative-Augmented Kernel-based Solver). We
used the original implementation from the authors3. In
addition, we compared with physics-informed neural net-
work (PINN) (Raissi et al., 2019), a mainstream machine
learning based PDE solver. The PINN is implemented with
PyTorch (Paszke et al., 2019). For SKS, we minimize (7)
(with ϵ = 0), and used ADAM optimization with learning
rate 10−3. The maximum number of epochs was set to 1M.
We stopped the optimization if the loss stopped improving
for 1K updates. For DAKS, we used the relaxed Gauss-
Newton optimization developed in the original paper. The
PINN was first trained by 10K ADAM epochs with learn-
ing rate 10−3 and then by L-BFGS with learning rate 10−1

with a maximum of 50K iterations. The tolerance level for
L-BFGS was set to 10−9. To identify the architecture for
the PINN, we varied the number of layers from {2, 3, 5, 8,
10}, and the width of each layer from {10, 20, 30, . . . , 100}.
We used tanh as the activation function. For DAKS and
SKS, we used Square Exponential (SE) kernel with dif-
ferent length-scales across the input dimensions. We se-
lected the nugget term from {5E-5, 1E-5, 5E-6, 1E-6, . . .,
1E-13}. However, for solving the nonlinear elliptic PDE
with DAKS, we used its default approach that assigns an
adaptive nugget for the two sub-blocks in the Gram matrix.
This gives the best performance for DAKS. The length-
scales were selected from a grid search, from [0.1, 0.2]2

for the nonlinear elliptic and Eikonal PDEs, [0.05, 0.01]2

for Allen-Cahn equation, and [0.003, 0.05]× [0.02, 0.3] for
Burgers’ equation. For SKS, we selected α and β in (7) from
the range {10−2, 10−1, . . . , 1010, 1012, 1014, 1015, 1020},
jointly with other hyperparameters, including the kernel
length scales and nugget terms. To efficiently tune the
hyperparameters, we first performed a random search to
identify a promising group of hyperparameters. We then
fixed all other hyperparameters and conducted a grid search
over α and β. Finally, we fixed α and β and performed
a grid search over the remaining hyperparameters. We re-
ported the best solution error of each method throughout the
running. In Section C.4 of Appendix, we further examined
the sensitivity of our method to the kernel parameters.

6.1 Solution Accuracy

Simpler Cases. We first tested all the methods on less chal-
lenging benchmarks, for which a small number of colloca-
tion points is sufficient. Specifically, we tested with Burgers’
equation with viscosity ν = 0.02, the nonlinear elliptic PDE,
and Eikonal PDE. These are the same test cases employed

3https://github.com/yifanc96/
NonLinPDEs-GPsolver
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in (Chen et al., 2021). Following (Chen et al., 2021), we
varied the number of collocation points from {600, 1200,
2400, 4800} for Burgers’ equation, and {300, 600, 1200,
2400} for nonlinear elliptic PDE and Eikonal PDE. In (Chen
et al., 2021), the collocation points are randomly sampled,
and hence we used the average L2 of DAKS from ten runs
on different sets of randomly sampled collocation points for
comparison. For SKS, we used a regularly-spaced, square
grid, for which the total number of grid points is close to
that used for DAKS. Note that the size of the Gram matrix of
DAKS is larger than SKS. We also examined running DAKS
with the same set of grid points as used by SKS, but the
performance is worse than randomly selected collocation
points. See Appendix Section C.6 for details. We ran PINN
on the same set of grid points used by SKS. The L2 error is
reported in Table 1. It can be seen that in most cases, SKS
achieves smaller solution error than DAKS, with the excep-
tion for Burgers4 and nonlinear elliptic PDE using 4800 and
2400 collocation points, respectively. This might be because
DAKS needs to explicitly estimate more variables, includ-
ing all kinds of linear operators (e.g., derivatives) over the
solution at the collocation points, which increases the opti-
mization workload. In addition, the influence of the nugget
term might vary across different heterogeneous blocks in the
Gram matrix, which complicates the optimization. In most
cases, the PINN shows worse performance than SKS, except
on Burgers’ equation with 600, 1200 and 2400 collocation
points. The results have shown that in regimes where the
computation of the Gram matrix is not a bottleneck, our
method SKS, though adopting a simpler model design, can
still achieve comparable or even better solution accuracy.

Difficult Cases. Next, we tested with more challenging
cases, for which massive collocation points are necessary.
These cases include Burgers’ equation with ν = 0.001, and
Allen-Cahn equation with a = 15 and a = 20. For Burgers’
equation, we found empirically that the spatial resolution is
more important than the time resolution, so we set the ratio
between the spatial and time resolutions to 3:1. For Allen-
Cahn, we still used a square-shaped grid. We provide a more
detailed ablation study in Appendix Section C.2. To verify
the necessity of using massive collocation points, we first ran
all the methods with the same number of collocation points
as adopted in the simpler PDEs, namely, a few hundreds
and/or thousands. As we can see from Table 2, the solution
errors of all the methods are large, typically around the
level of 10−1, indicating failures. Note that, however, when
the number of collocation points increases to 4800, SKS
can achieve an L2 error at level 10−4 for solving the 2D
Allen-Cahn equation, while the other methods still struggle

4However, if we use a 96× 50 grid (still including 4800 collo-
cation points), SKS gives L2 error 7.54E-05, which can surpass
DAKS. See the ablation study in Appendix Section C.2 for more
details.

Table 1: L2 error of solving less challenging PDEs, with a small
number of collocation points. Inside the parenthesis of each top
row indicates the grid used by SKS, which takes approximately the
same number of collocation used by DAKS. Note that the Gram
matrix of DAKS is larger than SKS.

(a) The Burgers’ equation (14) with viscosity ν = 0.02

Method 600 1200 2400 4800
(25× 25) (35× 35) (49× 49) (70× 70)

DAKS 1.75E-02 7.90E-03 8.65E-04 9.76E-05
PINN 2.68E-03 6.72E-04 3.60E-04 3.73E-04
SKS 1.44E-02 5.40E-03 7.83E-04 3.21E-04

(b) Nonlinear elliptic PDE (15)

Method 300 600 1200 2400
(18× 18) (25× 25) (35× 35) (49× 49)

DAKS 1.15E-01 1.15E-04 8.65E-04 1.68E-07
PINN 3.39E-01 1.93E-02 1.28E-03 3.20E-04
SKS 1.26E-02 6.93E-05 6.80E-06 1.83E-06

(c) Eikonal PDE (16)

Method 300 600 1200 2400
DAKS 1.01E-01 1.64E-02 2.27E-04 7.78E-05
PINN 2.95E-02 1.26E-02 4.53E-03 3.50E-03
SKS 6.23E-04 2.68E-04 1.91E-04 2.51E-05

at 10−1 error level or even bigger. Together this indicates
that a much larger number of collocation points is needed.

We then ran SKS and PINN with greatly increased colloca-
tion points, i.e., dense grids, varying from 6400 to 120K. In
such scenarios, running DAKS becomes extremely costly
or even infeasible5. We therefore only report the results of
SKS and PINN, as shown in Table 3. One can see that the
solution error of SKS is substantially reduced, achieving
10−3 for Burgers’ and 10−4 to 10−6 for Allen-Cahn. It is
worth noting that PINN using the same set of collocation
points also arrives at the 10−3 level L2 error for Burgers’
but the error on Allen-Cahn is still very large, with nearly
no improvement upon using much fewer collocation points.
This might be due to that the relatively high frequencies in
the solution (see (17)) are difficult to be captured by neu-
ral networks, due to their known “spectral bias” (Rahaman
et al., 2019). Thanks to our model design (2), we can induce
a Kronecker product structure in the Gram matrix to scale
to massive collocation points, without the need for design-
ing complex approximations. Note that if a product kernel
is used for DAKS, each block Cij in (3) will form a Kro-
necker product as well. However, the entire Gram matrix
will not exhibit this structure. Consequently, the efficient
computation method of SKS cannot be applied to DAKS.
To directly examine the influence of the fill distance h (i.e.,
mesh norm), Appendix Fig. 1a and Fig. 1b show how the

5For 6400 collocation points, the size of the Gram matrix of
DAKS is 19200×19200 for Burgers’ and 2D Allen-Cahn, because
there are three linear operators in each equation.
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Table 2: L2 error of solving more challenging PDEs with a small
number of collocation points. The grids used in SKS are the same
as in Table 1a.

(a) The Burgers’ equation (14) with viscosity ν = 0.001

Method 600 1200 2400 4800
DAKS 3.87E-01 3.12E-01 3.60E-01 2.37E-01
PINN 1.27E-01 2.59E-01 3.18E-01 2.65E-01
SKS 1.34E-01 1.11E-01 8.04E-02 1.89E-02

(b) The 2D Allen-Cahn equation (17) with a = 15

Method 600 1200 2400 4800
DAKS 6.84E-01 6.62E-01 6.28E-01 5.74E-01
PINN 4.02E0 6.20E0 4.26E0 5.39E0
SKS 6.80E-01 2.1E-01 5.15E-03 9.20E-05

(c) The 2D Allen-Cahn equation (17) with a = 20

Method 600 1200 2400 4800
DAKS 6.81E-01 6.57E-01 6.19E-01 5.64E-01
PINN 4.98E0 5.78E0 5.87E0 3.04E0
SKS 7.07E-01 6.91E-01 1.81E-01 9.83E-04

error of SKS varies with h — determined by the collocation
points — when solving Burgers’ equation with ν = 0.02
and ν = 0.001, respectively.

Point-wise Error. For a fine-grained comparison, we show-
case the point-wise error of each method in solving Burgers’
(ν = 0.001) and 2D Allen-Cahn equations. The results and
discussion are given by Appendix Section C.1.

Ablation Study on Grid Shape. We further examined
the influence of the grid shape on the solution accuracy.
We compared different choices on Burgers’ equation with
ν = 0.02 and ν = 0.001. We leave the details in Appendix
Section C.2.

Comparison with Conventional Numerical Methods. In
addition to comparing SKS with ML-based solvers, we also
compared it to a finite difference solver — a widely used
conventional numerical approach. We discretized the PDE
using numerical differences, specifically employing a cen-
tered second-order numerical difference to approximate the
derivatives. The equation was then solved using a Newton-
Krylov solver, which computes the inverse of the Jacobian
through an iterative Krylov method. We tested on solving
the nonlinear elliptic PDE (15) and the Allen-cahn equa-
tion (17), since the ground-truth solutions of these PDEs
are known and we can conduct a fair comparison. The re-
sults are presented in Table 4. Note that the L2 errors of
PINN and SKS have already been reported in Table 1b, 3b
and 3c. Our method (SKS) consistently outperforms finite
difference. In most cases, the error of SKS is several orders
of magnitudes smaller. It implies that using the same grid,
SKS is much more efficient in approximating the solution.
In addition, with the growth of the grid size, the relative

Table 3: L2 error of solving more challenging PDEs with a large
number of collocation points.

(a) The Burgers’ equation (14) with viscosity ν = 0.001.

Method 43200 67500 97200 120000
(360×120) (450×150) (540×180) (600×200)

PINN 4.05E-03 6.01E-03 3.94E-03 4.13E-03
SKS 3.90E-03 3.50E-03 2.60E-03 2.28E-03

(b) The 2D Allen-Cahn equation (17) with a = 15.0

Method 6400 8100 22500 40000
(80×80) (90×90) (150×150) (200×200)

PINN 5.03E0 5.30E0 4.21E0 5.86E0
SKS 8.27E-05 3.41E-05 4.34E-06 4.44E-06

(c) The 2D Allen-Cahn equation (17) with a = 20.0

Method 6400 8100 22500 40000
PINN 4.18E0 4.45E0 5.86E0 5.93E0
SKS 3.98E-04 1.82E-04 4.00E-05 2.98E-05

Table 4: L2 Error of a finite difference solver and SKS according
to the ground-truth solution.

(a) Nonlinear Elliptic PDE (15).

Method 18× 18 25× 25 35× 35 49× 49
FD 3.36E-02 1.78E-02 9.25E-03 4.78E-03

SKS 1.26E-02 6.93E-05 6.80E-06 1.83E-06
(b) The 2D Allen-Cahn equation (17) with a = 15.

Method 80× 80 90× 90 150× 150 200× 200
FD 8.57E-02 6.68E-02 2.33E-02 1.30E-02

SKS 8.27E-05 3.41E-05 4.34E-06 4.44E-06
(c) The 2D Allen-Cahn equation (17) with a = 20.

Method 80× 80 90× 90 150× 150 200× 200
FD 1.62E-01 1.24E-01 4.22E-02 2.34E-02

SKS 3.98E-04 1.82E-04 4.00E-05 2.98E-05

improvement of our method is often more significant, in
particular when solving the nonlinear elliptic PDE with the
grid 18×18 increasing to 25×25, and Allen-Cahn (a = 15)
with the grid 90× 90 increasing to 150× 150. Since SKS
is efficient in handling a large number of collocation points
(i.e., dense grid), it shows the potential of SKS.

Irregular-shaped Domains. While our efficient computa-
tion is performed on grids, our method can be applied to
irregular-shaped domains by introducing a (minimal) virtual
grid that encompasses such domains. This allows SKS to
be used without any modifications. To validate the effective-
ness of this strategy, we conducted additional tests, solving
the nonlinear elliptic PDE (15) on a circular domain and
the Allen-Cahn equation (17) on a triangular domain. In
both cases, our method achieved reasonably good accuracy.
Detailed results and discussions are provided in Appendix
Section C.3.
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Running Time. Finally, we examined the wall-clock run-
time of SKS. We analyzed the runtime of each method
when solving Burgers’ equation ν = 0.001 and the Allen-
Cahn equation (a = 15) with varying numbers of colloca-
tion points. We ran the experiment on a Linux workstation
equipped with an Intel(R) Xeon(R) Platinum 8360H Pro-
cessor with 24GB memory. The results are presented in
Appendix Table 9. SKS is several orders of magnitude faster
than both DAKS and PINN per iteration. However, since
DAKS employs the Gauss-Newton method, it converges
much faster than the ADAM optimizer used by SKS and
PINN. Nonetheless, the overall runtime of SKS is still less
than 25% of that of DAKS when solving Burger’s equation,
and is close to DAKS when solving Allen-Cahn equation.
Additionally, SKS can handle a much larger number of col-
location points than DAKS. Overall, the runtime of SKS is
significantly less than that of PINN.

In addition, we examined the runtime of our model using the
naive full matrix computation (i.e., without exploiting the
Kronecker product structure). As shown, the per-iteration
runtime with naive matrix operations is consistently around
100x slower compared to our method leveraging Kronecker
product properties. Furthermore, when the number of collo-
cation points increases to 22,500 for the Burgers’ equation
and 43,200 for the Allen-Cahn equation, the naive approach
exceeds available memory, resulting in out-of-memory er-
rors — rendering it infeasible to run.

7 Conclusion

We have proposed a new kernel method for nonlinear PDE
solving. We use a standard kernel interpolation to model
the solution estimate, which allows more convenient imple-
mentation and efficient computation. Our method can easily
scale to massive collocation points, which can be important
for solving challenging PDEs. The performance on a series
of benchmarks is encouraging. In the future, we plan to
develop more efficient optimization, e.g., Gaussian-Newton,
to further accelerate our method.
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Appendix

A Proof of Lemma 4.2

Since for any collocation point xm, P(u∗)(xm) = f(xm) when xm ∈ Ω and B(u∗)(xm) = g(xm) when xm ∈ ∂Ω, we
can re-write (6) as 

minimize
u∈U

∥u∥U
s.t. 1

MΩ

∑MΩ

m=1 (P(u)(xm)− P(u∗)(xm))
2

+ 1
M−MΩ

∑M
m=MΩ+1 (B(u)(xm)− B(u∗)(xm))

2 ≤ ϵ,

u takes the kernel interpolation form (5).

(18)

Step 1. In the first step, we show that for all ϵ above some threshold (depending on h), there exists a minimizer u† for (18),
and we would like also to bound the RKHS norm of u†, namely ∥u†∥U . To this end, we utilize an intermediate optimization
problem, {

minimize
u∈U

∥u∥U
s.t. u(xm) = u∗(xm), 1 ≤ m ≤M.

(19)

Denote the minimizer of (19) by u∗M . This is a standard kernel regression problem. According to the representation theorem,
u∗M takes the kernel interpolation form (5), and ∥u∗M∥U ≤ ∥u∗∥U .

Since u∗M −u∗ is zero at all the collocations points in Ω, according to the sampling inequality (see Proposition A.1 of (Batlle
et al., 2023)), when the fill-distance hΩ is sufficiently small (note that hΩ ≤ h),

∥u∗M − u∗∥Hs(Ω) ≲ hτ∥u∗M − u∗∥Hs+τ (Ω), (20)

where ≲ means the inequality holds with a positive constant factor multiplied by the right-hand side, and the constant is
independent of the terms on both sides. Combining with (C2) of Assumption 4.1, we can obtain

∥P(u∗M )− P(u∗)∥Hk(Ω) + ∥B(u∗M )− B(u∗)∥Ht(∂Ω) ≲ hτ∥u∗M − u∗∥Hs+τ (Ω). (21)

Since U is continuously embedded in Hs+τ (Ω) — (C3) of Assumption 4.1, we have

∥uM − u∗∥Hs+τ (Ω) ≲ ∥u∗M − u∗∥U . (22)

Combining (21), (22) and the fact ∥u∗M∥U ≤ ∥u∗∥U , we have

∥P(u∗M )− P(u∗)∥Hk(Ω) + ∥B(u∗M )− B(u∗)∥Ht(∂Ω) ≲ hτ∥u∗∥U . (23)

According to (C2) of Assumption 4.1, since k > d
2 and t > d−1

2 , according to Sobolev embedding theorem (Adams &
Fournier, 2003, Theorem 4.12), both Hk(Ω) and Ht(∂Ω) are continuously embedded into C0(Ω) and C0(∂Ω), respectively.
Therefore,

∥P(u∗M )− P(u∗)∥C0(Ω) ≲ ∥P(u∗M )− P(u∗)∥Hk(Ω),

∥B(u∗M )− B(u∗)∥C0(∂Ω) ≲ ∥B(u∗M )− B(u∗)∥Ht(∂Ω). (24)

At any collocation point, we obviously have

(P(u∗M )(xm)− P(u∗)(xm))
2 ≤ ∥P(u∗M )− P(u∗)∥2C0(Ω),

(B(u∗M )(xm)− B(u∗)(xm))
2 ≤ ∥B(u∗M )− B(u∗)∥2C0(∂Ω). (25)

Combining (23), (24) and (25), we can obtain that

1

MΩ

MΩ∑
m=1

(P(u∗M )(xm)− P(u∗)(xm))
2

+
1

M −MΩ

M∑
m=MΩ+1

(B(u∗M )(xm)− B(u∗)(xm))
2 ≤ Ch2τ∥u∗∥2U , (26)

12
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where C > 0 is a constant independent of h and other terms in the inequality.

The result (26) means that given the collocation points M and ϵ = Ch2τ∥u∗∥2U , the feasible region of the optimization
problem (18) is nonempty and at least includes u∗M . Therefore, the minimizer of (18) must exist and satisfy

∥u†∥U ≤ ∥u∗M∥U ≤ ∥u∗∥U . (27)

Step 2. Next, we analyzed the error of P(u†) and B(u†). For notation convenience, we define two error functions,

ξP (x) = P(u†)(x)− P(u∗)(x), x ∈ Ω,

ξB(x) = B(u†)(x)− B(u∗)(x), x ∈ ∂Ω. (28)

We would like to bound the L2 norm of the error functions, namely, ∥ξP ∥H0(Ω) and ∥ξB∥H0(∂Ω). We first consider the
case for ξP . The idea is to decompose Ω into a Voronoi diagram based on the collocation points, resulting in MΩ regular
non-overlapping regions, T1 ∪ . . . ∪ TMΩ = Ω, such that each region Ti only includes one collocation point xi, and its
filled-distance hi ≲ h (1 ≤ i ≤MΩ). We therefore can decompose the squared L2 norm as

∥ξP ∥2H0(Ω) =

MΩ∑
i=1

∫
Ti

ξP (x)
2dx =

MΩ∑
i=1

∥ξP ∥2H0(Ti)
. (29)

Since according to the mean inequality,

ξP (x)
2 = (ξP (x)− ξP (xi) + ξP (xi))

2 ≤ 2 (ξP (x)− ξP (xi))
2
+ 2ξP (xi)

2,

we immediately obtain

∥ξP ∥2H0(Ti)
≲ ∥ξP − ξP (xi)∥2H0(Ti)

+ λ(Ti)ξP (xi)
2, (30)

where λ(Ti) is the volume of Ti.

The function ξP − ξP (xi) takes zero at xi. Since the aspect ratio of Ti is bounded, we can apply the sampling inequality
(which is also called Poincaré inequality in this case),

∥ξP − ξP (xi)∥H0(Ti) ≤ Chki ∥ξP − ξP (xi)∥Hk(Ti) ≲ hk∥ξP − ξP (xi)∥Hk(Ti), (31)

where C > 0 is a constant depending on the aspect ratio of Ti. Using the mean inequality again,

∥ξP − ξP (xi)∥2H0(Ti)
≲ h2k

(
∥ξP ∥2Hk(Ti)

+ ∥ξP (xi)∥2Hk(Ti)

)
= h2k

(
∥ξP ∥2Hk(Ti)

+ λ(Ti)ξP (xi)
2
)
. (32)

Since λ(Ti) ≲ hd, combining (29), (30) and (32), we can obtain

∥ξP ∥2H0(Ω) ≲ h2k
∑
i

∥ξP ∥2Hk(Ti)
+ (hd + h2k+d)

∑
i

ξP (xi)
2

≲ h2k∥ξP ∥2Hk(Ω) + (hd + h2k+d) ·MΩ · ϵ, (33)

where ϵ comes from the constraint of (18). To ensure feasibility and to establish convergence, we set ϵ = Ch2τ∥u∗∥2U as
shown in (26). When h ≲M− 1

d and is sufficiently small, we have (hd + h2k+d)MΩ ≤ (hd + h2k+d)M ≤ 1 + h2k ≤ 2.
Therefore, we can extend the R.H.S of (33) to

∥ξP ∥2H0(Ω) ≲ h2k∥ξP ∥2Hk(Ω) + h2τ∥u∗∥2U . (34)

We can follow a similar approach to show that

∥ξB∥2H0(∂Ω) ≲ h2t∥ξB∥2Ht(∂Ω) + h2τ∥u∗∥2U . (35)

Combining (34) and (35),(
∥ξP ∥H0(Ω) + ∥ξB∥H0(∂Ω)

)2
≲ h2·min(t,k)

(
∥ξP ∥Hk(Ω) + ∥ξB∥Ht(∂Ω)

)2
+ h2τ∥u∗∥2U . (36)

13
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(a) Burgers’ equation with ν = 0.02

0.11 0.08 0.06 0.04 0.010.010.010.01
h

10 3

10 2

10 1

L2  E
rro

r
(b) Burgers’ equation with ν = 0.001

Figure 1: Fill-distance (mesh norm) h vs. L2 error of SKS.

Since U ↪→ Hs+τ — (C3) of Assumption 4.1, we have U ↪→ Hs. Leveraging (27) and (C2) of Assumption 4.1, we
immediately obtain

∥ξP ∥Hk(Ω) + ∥ξB∥Ht(∂Ω) ≲ ∥u† − u∗∥Hs(Ω) ≲ ∥u† − u∗∥U ≲ ∥u∗∥U . (37)

Combining (36) and (37), and (C1) of Assumption 4.1, we arrive at

∥u† − u∗∥Hl(Ω) ≲ hρ∥u∗∥U (38)

where ρ = min(k, t, τ). When h→ 0, u† converges to u∗.

B Proof of Proposition 4.3

The constraint optimization problem (6) is equivalent to the following mini-max optimization problem,

min
u

max
w≥0

∥u∥U + w

[
1

MΩ

MΩ∑
m=1

(P(u)(xm)− P(u∗)(xm))
2

+
1

M −MΩ

M∑
m=MΩ+1

(B(u)(xm)− B(u∗)(xm))
2 − ϵ

]
. (39)

Suppose the feasible region is non-empty. Denote the optimum of (39) by (u†, w†). Then u† is a minimizer of (6). Now if
we set α = β = w† in (7), and optimizing (7) will recover the minimizer u†.

C More Results

C.1 Point-wise Error

For a fine-grained evaluation, we examined how the point-wise error of DAKS and SKS varies along with the increase of
collocation points. To this end, we altered the number of collocation points from 600, 4800 and 120K on Burgers’ equation
with ν = 0.001, and from 600, 2400, and 40K on 2D Allen-Cahn equation with both a = 15 and a = 20. The results

14
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are shown in Fig. 2, 3 and 4. It can be seen that across all the three PDEs, the solution error of SKS decreases more and
more along with the increase of collocation points. Note that for Allen-Cahn with a = 15, the visual difference between
SKS using 2400 and 40K collocation points is little, though numerically the difference is at three orders of magnitudes
(5.15E-03 vs. 4.44E-06). For DAKS, the point-wise error decreases substantially as the number of collocation points grows
when solving Burgers’ equation (see Fig. 2), but not obviously on solving Allen-Cahn equation (see Fig. 3 and 4). This is
consistent with the global error shown in Table 2. This might be because the quantities of collocation point used are not
sufficient to lead to a qualitative boost of DAKS. However, scaling up to much more collocation points, such as 400K, incurs
a substantial increase of the computational cost.

Ground truth DASK, 600 DAKS, 4800 SKS, 600 SKS, 4800 SKS, 120000

0.5 0.0 0.5 0.00 0.25 0.50 0.75 1.00 1.25

Figure 2: Point-wise solution error for Burgers’ equation (14) with viscosity ν = 0.001.

Ground truth DAKS, 600 DAKS, 2400 SKS, 600 SKS, 2400 SKS, 40000

1 0 1 0.0 0.5 1.0 1.5

Figure 3: Point-wise solution error for 2D Allen-Cahn equation (17) with a = 15.0.

Ground truth DAKS, 600 DAKS, 2400 SKS, 600 SKS, 2400 SKS, 40000

1 0 1 0.00 0.25 0.50 0.75 1.00 1.25 1.50

Figure 4: Point-wise solution error for 2D Allen-Cahn equation (17) with a = 20.0.

C.2 Ablation Study on Grid Shape

We investigated how the grid shape can influence the performance of our method. To this end, we tested on Burgers’ equation
with ν = 0.02 and ν = 0.001. For the former case, we fixed the number of collocation points to be 4800 and varied the time
resolution from 10 to 80, and the spatial resolution is obtained by dividing 4800 by the time resolution and rounding up to
an integer. Similarly, for ν = 0.001, we fixed the number of the collocation points to 120K, and varied the time resolution
from 100 to 600. We show the L2 error of using each grid shape in Table 5. It can be seen that the grid shape does influence
the error. In particular, when ν is small, i.e., ν = 0.001, the higher the spatial resolution, the smaller the error. The smallest
error is achieved when we use the space-time resolution 1200× 100. The time resolution seems to have much less effect on
the solution accuracy. This is reasonable, because on Burgers’ equation, a smaller viscosity (ν) increases the sharpness of the
shock wave (spatial function). Naturally, the higher the spatial resolution, the more accurate the sharpness can be captured.

15
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Table 5: L2 error of SKS using different grid shapes to solve Burgers’ equation (14). The grid shape is depicted as “spatial-resolution ×
time-resolution”.

(a) Viscosity ν = 0.02, with 4800 collocation points.

Grid shape 60× 80 69× 70 96× 50 160× 30 480× 10
L2 error 2.27E-03 4.10E-04 7.54E-05 1.72E-04 5.98E-04

(b) Viscosity ν = 0.001 with 120000 collocation points.

Grid shape 200× 600 240× 500 400× 300 600× 200 1200× 100
L2 error 1.93E-02 6.68E-03 3.44E-03 2.28E-03 1.63E-03

Table 6: L2 error of solving PDEs on irregularly-shaped domains.

L2 Error SKS DAKS PINN
Nonlinear Elliptic 8.40E-04 4.86E-05 4.20E-02

Allen-Cahn (a = 15) 8.30E-02 6.06E-01 1.00E+00

In summary, we believe that in general the grid shape should be viewed as an influence factor in running our method, which
needs to be carefully selected. The appropriate choice may also connect to the intrinsic property of the PDE itself.

C.3 Irregularly-Shaped Domains

We tested on solving the nonlinear elliptic PDE (15) and the Allen-Cahn equation (17) with a = 15. For the nonlinear
elliptic PDE, the domain is an inscribed circle within [0, 1]× [0, 1]. For the Allen-Cahn equation, the domain is a triangle
with vertices at at (0, 0), (1, 0) and (0.5, 1). The solution is prescribed as in our paper, with boundary conditions derived
from the solution. For both PDEs, our method (SKS) used a virtual grid on [0, 1]× [0, 1] that covers the domain. For DAKS
and PINN, we sampled the same number of collocation points from the domain. For a fair comparison, all the methods
used the same set of 192 uniformly sampled collocation points on the boundary. The error of each method is given in Table
6. The point wise error is shown in Fig. 5. As we can see, on irregularly-shaped domains, our method SKS still obtains a
reasonably good accuracy for both cases (note that the Allen-Cahn case is much more challenging).
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Figure 5: Point-wise solution error for Nonlinear Elliptic and 2D Allen-Cahn equation (17) with a = 15.0 on irregularly-shaped domains.
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Table 7: L2 error of SKS using different length scales.

(a) Nonlinear Elliptic PDE (15).

Length-scale 0.05 0.1 0.2 0.3
L2 error 1.19E-02 6.80E-06 4.62E-05 9.14E-04

(b) Allen-Cahn Equation (17) where a = 15.

Length-scale 0.08 0.06 0.04 0.02
L2 error 4.98E-01 3.83E-01 5.15E-03 2.19E-01

Table 8: Sensitivity of PINN to the network width and depth.

(a) L2 error for depth=10 and layer width from 10 to 50.

Layer width 10 20 30 40 50
Nonlinear Elliptic 1.75E-01 7.68E-02 7.01E-02 3.00E-02 4.06E-02

Allan-cahn (a = 15) 6.31E+00 5.61E+00 7.08E+00 7.65E+00 1.03E+01

(b) L2 error for depth=10 and layer width from 60 to 100.

Layer width 60 70 80 90 100
Nonlinear Elliptic 1.66E-02 3.58E-02 2.74E-02 2.32E-02 5.01E-02

Allan-cahn (a = 15) 1.30E+01 1.26E+01 1.20E+01 1.34E+01 1.09E+01

(c) L2 error for layer width=10 and depth from 3 to 10.

Depth 3 5 8 10
Nonlinear Elliptic 3.78E-02 7.33E-02 7.01E-02 6.57E-02

Allan-cahn (a = 15) 1.13E+01 1.35E+01 7.08E+00 1.10E+01

(d) L2 error for layer width=10 and depth from 15 to 30.

Depth 15 20 25 30
Nonlinear Elliptic 9.16E-02 1.13E-01 1.50E-01 7.49E-02

Allan-cahn (a = 15) 1.14E+00 9.30E+00 1.14E+00 9.35E+00

C.4 Sensitivity to Hyper-Parameters

To examine the sensitivity to the choice of kernel parameters, we run SKS to solve nonlinear Elliptic PDE (15) and
Allen-Cahn equation (17) with a = 15, with a varying set of length-scale parameters. For the nonlinear elliptic PDE, we
employed the grid of size 35× 35 while for the Allen-Cahan equation, we used the grid of size 49× 49. The results are
given in Table 7. As we can see, different length-scale parameters results in changes of orders of magnitude in the solution
error. For example, switching the length-scale from 0.05 to 0.1, the L2 error for solving the nonlinear elliptic PDE decreases
from 1.129E-02 to 6.80E-06. Hence, our method is sensitive to the choice of the kernel parameters.

As a comparison, we also examined the sensitivity of PINN to the choice of the architectures. To this end, we fixed the
depth at 8 and varied the layer width from 10 to 100, and also fixed the width at 30 while varying the depth from 3 to 30. We
then tested PINN on solving the same PDEs. The solution error is reported in Table 8. One can see that when layer width is
greater than 50 or the depth is beyond 8, there is no significant improvement in performance. The accuracy remains within
the same magnitude with only minor variations. However, larger networks lead to substantially increased computational
costs for PDE solving.

C.5 Optimizing Basis Coefficients

To investigate the difference with RBF methods, we tested on optimizing the basis coefficients, namely α = K−1η, instead
of the solution values η, for our model. We employed the same optimization approach. We tested on solving Burger’s
equation with ν = 0.02. The results are reported in Table 10. We can see that the relative L2 error increases significantly
as compared to learning η, worsening by an order of magnitude when using 1200 or 2400 collocation points, and by over
50% when using 4800 collocation points. This suggests that optimizing the coefficients α is more challenging, as each
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Table 9: Runtime in seconds with respect to the number of collocation points. SKS-Naive means running SKS using naive full kernel
matrix computation, without leveraging the Kronecker product structure (see Section 4). Note that N/A means the method is not able to
run with the corresponding number of collocation points.

(a) The Burgers’ equation (14) with ν = 0.001.

Method 2400 4800 43200
SKS (per-iter) 4.6E-4 9.8E-4 6.8E-3

SKS-Naive (per-iter) 1.4E-02 5.4E-02 N/A
DAKS (per-iter) 7.43 38.5 N/A
PINN (per-iter) 2.7E-1 5.2E-1 4.1E-1

SKS (total) 22.15 94.25 2007.1
DAKS (total) 89.14 462.18 N/A
PINN (total) 706.24 721.94 6454.7

(b) Allen-Cahn equation (17) with a = 15.

Method 2400 4800 6400 8100 22500
SKS (per-iter) 3.6E-4 9.1E-4 1.2E-3 1.8E-3 5.9E-3

SKS-Naive (per-iter) 1.1E-2 4.3E-2 7.2E-2 1.1E-1 N/A
DAKS (per-iter) 2.1 10.5 N/A N/A N/A
PINN (per-iter) 5.6E-2 1E-1 1.3E-1 1.5E-1 4.3E-1

SKS (total) 27.1 99.56 116.8 132.57 474.34
DAKS (total) 16.44 84.18 N/A N/A N/A
PINN (total) 2821 5112 6287 7614 21375

Table 10: L2 error of learning η vs. α on solving Burgers’ equation with ν = 0.02.

Method 1200 2400 4800
Optimizing η 5.40E-03 7.83E-04 3.21E-04

Optimizing coefficients α = K−1η 2.80E-02 1.56E-03 7.14E-04

coefficient exerts a strong global influence on the entire solution approximation, including both boundary conditions and
internal regions. We empirically observed that conflicts often arise between fitting the boundary conditions and minimizing
the PDE residuals, resulting in less effective optimization outcomes.

C.6 Effectiveness of Regular Grid Points for DAKS

The original DAKS (Chen et al., 2021) utilized randomly sampled collocation points. In this study, we evaluated the
performance of DAKS using regular grid points as collocation points to solve Burgers’ equation with ν = 0.02. The
evaluation was conducted on exactly the same grids used in our method (SKS). As shown in Table 11, regular grid points
proved less effective than random collocation points for DAKS.

D Limitation and Discussion

Currently, the most effective training for SKS is fulfilled by stochastic optimization, namely ADAM. We need to run a large
number of ADAM epochs to achieve a promising solution accuracy. It means that the PDE solving procedure is slow. The
second-order optimization methods, such as L-BFGS, neither improve the solution accuracy nor accelerate the convergence.
We have also tried the relaxed Gauss-Newton approach as used in DAKS. However, this method can only achieve good
performance on the nonlinear elliptic PDE, and easily diverges on the other cases. This might stem from that we take
derivatives (or other linear operators) over the kernel interpolation form, which makes the convergence of the fixed point
iterations used in DAKS much more difficult. We plan to develop novel Gauss-Newton relaxations to ensure convergence
and stableness (at least in practice) so that we can further accelerate the PDE solving.
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Table 11: L2 error of different sampling methods of DAKS. Results are based on solving Burgers with ν = 0.02.

Sampling method 600 1200 2400 4800
Grid 4.09E-01 3.85E-01 4.27E-02 5.67E-02

Random 1.75E-02 7.90E-03 8.65E-04 9.76E-05
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