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Abstract

Learning functions over Boolean variables is a fun-
damental problem in machine learning. But not
much is known about learning such functions us-
ing neural networks. Here we focus on learning
read-once disjunctive normal forms (DNFs) under
the uniform distribution with a convex neural net-
work and gradient methods. We first observe empir-
ically that gradient methods converge to compact
solutions with neurons that are aligned with the
terms of the DNF. This is despite the fact that there
are many zero training error networks that do not
have this property. Thus, the learning process has a
clear inductive bias towards such logical formulas.
Following recent results which connect the induc-
tive bias of gradient flow (GF) to Karush-Kuhn-
Tucker (KKT) points of minimum norm problems,
we study these KKT points in our setting. We prove
that zero training error solutions that memorize
training points are not KKT points and therefore
GF cannot converge to them. On the other hand, we
prove that globally optimal KKT points correspond
exactly to networks that are aligned with the DNF
terms. These results suggest a strong connection
between the inductive bias of GF and solutions that
align with the DNF. We conclude with extensive
experiments which verify our findings.

1 INTRODUCTION

The training objective of overparameterized neural networks
is non-convex and contains multiple global minima with dif-
ferent generalization properties. Therefore, just minimizing
the training objective does not guarantee good generaliza-
tion performance. Nonetheless, neural networks trained in
practice with gradient-based methods show good test per-
formance across numerous tasks [Krizhevsky et al., 2012,

Silver et al., 2016], suggesting an inductive bias towards
desirable solutions. Understanding this inductive bias and
how it depends on the algorithm, architecture and data is
one of the major open problems in machine learning [Zhang
et al., 2017, Neyshabur et al., 2018].

In recent years, there have been major efforts to tackle this
challenge. One line of works considers the Neural Tangent
Kernel (NTK) approximation of neural networks which
reduces to a convex optimization problem [Jacot et al., 2018].
However, it has been shown that the NTK approximation
is limited and does not accurately model neural networks
as they are used in practice [Yehudai and Shamir, 2019,
Daniely and Malach, 2020].

Other works tackle the non-convexity directly, usually in
very simplified settings [e.g., diagonal linear networks
Woodworth et al., 2019] or for special cases such as re-
gression with 2-layer models and Gaussian distributions [Li
et al., 2020] or infinitely wide two-layer networks [Chizat
and Bach, 2020].

Here we focus on the important problem of learning Boolean
functions with neural networks. While much is known about
this problem from a computational and statistical perspec-
tive, little is understood on how they can be learned with neu-
ral networks, and in particular on the inductive bias of gra-
dient descent in this case. In computational learning theory,
the problem of learning disjunctive normal forms (DNFs)
has a long history. Learning DNFs is hard [Pitt and Valiant,
1988] and the best known algorithms for learning DNFs
under the uniform distribution run in quasi-polynomial time
[Verbeurgt, 1990]. On the other hand, for learning read-once
DNFs under the uniform distribution there exist efficient
learning algorithms [Mansour and Schain, 2001].1 There-
fore, it is interesting to understand whether neural networks
can learn read-once DNFs under the uniform distribution
and this motivates the study of the inductive bias in this
case.

1In a read-once DNF each literal appears at most once. See
Section 3 for a formal definition.
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Figure 1: The weight vectors for two convex networks that perfectly fit 250 training samples labeled with the read-once
DNF: (x1 ∧x2 ∧x3)∨ (x4 ∧x5 ∧x6)∨ (x7 ∧x8 ∧x9). (a) A network trained with SGD using small Gaussian initialization.
The weights can be seen to be well aligned with the DNF terms, and the test accuracy is 100%. (b) A network whose weight
vectors are equal to the positive samples in the training set. This network “memorizes” the training data and fits it perfectly.
However, the test error is 81.6%.

We focus specifically on a simple neural architecture with
one-hidden layer and ReLU activations, and output weights
equal to one. We refer to it as a convex network, because
the network output is a convex function of its inputs in this
case. It is easy to see that this architecture is sufficiently
expressive for learning DNFs. We show that for learning
read-once DNFs there exist solutions that perfectly clas-
sify the training set with significantly different properties.
Specifically, solutions which memorize the training points
in their neurons, and other solutions whose neurons align
exactly with the terms of the DNF, which we call DNF re-
covery solutions. Figure 1a-b shows an example of these
solutions.2

Our first empirical finding is that SGD with small initializa-
tion converges to a DNF-recovery solution. This indicates
a strong inductive bias of gradient methods towards simple
logical forms in this case. We further observe that this bias
allows the convex network to generalize better than algo-
rithms designed specifically for learning read-once DNFs.
Together these empirical observations establish neural nets
as an attractive approach to learning read-once DNFs.

Given the above, we ask what can explain this inductive bias
of gradient methods, and what theoretical guarantees can be
obtained for its performance. We turn to recent line of works
[Soudry et al., 2018, Ji and Telgarsky, 2019a, Lyu and Li,
2020, Ji and Telgarsky, 2020, Chizat and Bach, 2020] which
study the inductive bias of gradient flow (GF) in several set-
tings. Their results suggest that the inductive bias of GF is
to Karush-Kuhn-Tucker (KKT) points or global solutions of

2 The position (j, i) in the figure represents the value of entry
j of the weight vector wi (see Eq. (1)) and the color represents its
value at the end of the learning process.

minimum norm problems (or analogously maximum margin
problems). Motivated by these results, we prove that any
norm minimizing solution in our setting is a DNF Recovery
solution, strongly suggesting why it is that GF converges to
it. We further strengthen this result by proving that memo-
rizing solutions (namely, solutions where there are neurons
that are only activated by specific inputs, as in Figure 1b)
are not KKT points of the min-norm problem. Therefore,
GF will not converge to these.

We corroborate our findings with empirical results which
show that our conclusions hold more broadly. Specifically,
we perform experiments on DNFs of higher dimension and
standard one-hidden layer neural networks. Taken together,
our results demonstrate that gradient methods can recover
simple descriptions of Boolean functions from data, which
results in good generalization performance and may have
important implications on the question of interpretability.

2 RELATED WORK

Recently, several works studied the inductive bias of neural
networks and showed connections between gradient meth-
ods and margin maximization [Chizat and Bach, 2020, Lyu
and Li, 2020, Nacson et al., 2019, Ji and Telgarsky, 2020].
These works motivate our theoretical analysis of minimum
norm solutions. In our theoretical analysis, we apply the
results of Lyu and Li [2020], Ji and Telgarsky [2020], which
show that GF is biased towards KKT points of min-norm
problems.

Other works study fully connected neural networks under
certain assumptions on the data such as linearly separable
data [Brutzkus et al., 2018, Sarussi et al., 2021, Frei et al.,



2021] or Gaussian data [Safran and Shamir, 2018, Du et al.,
2019]. Malach and Shalev-Shwartz [2020] show that certain
structured Boolean circuits can be learned with a network
architecture that is specialized for their data structure.

Fully connected networks were also analyzed via the NTK
approximation [Jacot et al., 2018, Du et al., 2019, 2018,
Arora et al., 2019, Ji and Telgarsky, 2019b, Cao and Gu,
2019, Jacot et al., 2018, Fiat et al., 2019, Allen-Zhu et al.,
2019, Li and Liang, 2018, Daniely et al., 2016]. However,
Yehudai and Shamir [2019], Daniely and Malach [2020]
have highlighted limitations of the NTK framework, sug-
gesting that it does not accurately model neural networks as
they are used in practice.

Another line of works [Saad and Solla, 1996, Goldt et al.,
2019, Tian, 2019] studies neural networks in student-teacher
regression settings and shows a “specialization” effect,
where a subset of student neurons aligns with teacher neu-
rons. The main difference from our setting is that we con-
sider classification on binary data, and they consider regres-
sion tasks on non-discrete data (e.g., Gaussian). We note that
classification settings present unique theoretical challenges
for studying inductive bias of gradient methods [Montanari
et al., 2019].

In a recent result, Phuong and Lampert [2021] provide an
end-to-end optimization analysis of a two-layer ReLU net-
work on orthogonally separable data (which is a simplified
setup of linearly separable data). They consider the cross-
entropy loss and their analysis implies that neurons special-
ize to certain directions. We focus on a significantly more
challenging setting, where the training data corresponds to
a read-once DNF, and is generally not linearly separable.

An inductive bias towards specializing solutions has also
been observed in Brutzkus and Globerson [2019] and proved
for a simple setup with nonlinear data and a convolutional
neural network. The notion of specialization is also related
to the notion of “collapse” [Papyan et al., 2020]. We note
that in our setting we do not observe the collapse phe-
nomenon since the hidden-layer representations of the posi-
tive samples are not all in one small cluster (e.g., see Figure
1a).3

Rudin [2019] argues that methods for explaining large neu-
ral networks should be avoided because networks are too
complex for humans to understand. However, we show, al-
beit in a restricted setting, that learned networks can be
rather simple, and are easily mapped to the underlying DNF.

3For the model in the figure, the representations of the positive
points create 8 different clusters which correspond to each possible
combination of the three terms.

3 PROBLEM FORMULATION

DNFs and Read-Once DNFs: In what follows, we use
[n] to denote the set {1, 2, ..., n}. Let X = {±1}D, where
D is the number of variables, and let Y = {±1}. Boolean
functions [e.g., see O’Donnell, 2014] are usually defined on
inputs with entries in {0, 1} to an output in {0, 1}. In this
work, we consider DNFs on inputs with entries in {±1} and
output in {±1}.

A DNF is a disjunction of conjunctions over one or more
literals. See the DNF in Figure 1 for an example. For con-
venience, we will use the following notation for DNFs: A
DNF with K terms will be defined via K indicator vectors
t∗1, ..., t

∗
K ∈ {0, 1}D. We refer to each t∗n as a term and de-

fine its set of active indices by An =
{
j ∈ [D] | t∗nj = 1

}
,

where t∗nj is the jth entry of t∗n. The corresponding DNF
will be given by the function f∗ : X → Y as follows:
f∗(x) = 1 if ∃n ∈ [K] s.t. x · t∗n = |An|, and otherwise
f∗(x) = −1. Notice that f∗ is monotone. We say that a
sample x ∈ X satisfies the term t∗n if x · t∗n = |An|. We
refer to |An| as the size of the term t∗n.

To compare our notation with the standard one, for example,
the DNF (x1∧x2)∨ (x3∧x4) with 4 inputs has terms t∗1 =
(1, 1, 0, 0) and t∗2 = (0, 0, 1, 1). We will use the standard
notation when convenient (e.g., as in Figure 1).

In this work we will focus on read-once DNFs where for all
i ̸= j ∈ [K], Ai ∩ Aj = ∅ and the sizes of all the terms are
greater than 1.

Learning Setup: Let D be a distribution on X × Y . We
assume that for (x, y) ∼ D, x is sampled uniformly over the
hypercube {±1}D and y = f∗(x), where f∗ is a monotone
read-once DNF. 4

We consider learning f∗ given a training set S ⊆ X × Y ,
where for each (x, y) ∈ S, x is sampled IID from D and
y = f∗(x). Denote Sx = {x | (x, y) ∈ S}, the positive
samples by S+ = {x | (x, 1) ∈ S}, the negative samples
by S− = {x | (x,−1) ∈ S} and the number of samples by
m = |S|. In some cases we will consider the population
case where Sx = X .

Neural Architecture: We consider a convex one-hidden
layer neural network (NN) with r hidden units and parame-
ters θ = (W , b, c) ∈ RrD × Rr × R which is defined by:

N(x;θ) =
∑
i∈[r]

σ(wi · x+ bi) + c (1)

4In the case of the uniform distribution and read-once DNFs,
we can assume monotone DNFs WLOG. This follows since any
negated literal can be replaced with the original literal (without
negation) and all our results still hold. Note that for non-read-
once DNFs, this will not work because a variable can appear both
positively and negatively and flipping its value will not make the
DNF monotone.



where σ(x) = max{0, x} is the ReLU function, wi is the
ith row of W and bi is the ith entry of b. We also use a scalar
trainable bias c ∈ R in the second layer to allow for negative
outputs.

The resulting network is positive homogeneous, and thus
recent results on such networks can be applied [Lyu and Li,
2020, Ji and Telgarsky, 2020]. Note that the network is a
convex function of its weights because it is a sum of convex
ReLU functions [Amos et al., 2017].

Loss Minimization: To learn f∗ we consider minimizing
the following loss:

L(θ) =
1

m

∑
(x,y)∈S

ℓ (yN(x;θ)) (2)

where ℓ(z) = log (1 + e−z) is the binary cross entropy loss.
We note that L(θ) is generally non-convex (even though
the network N is convex). For our theoretical analyses we
consider Gradient Flow (GF). We denote the initialization of
GF by θ(0) =

(
W (0), b(0), c(0)

)
and the weights at iteration

t by θ(t) =
(
W (t), b(t), c(t)

)
. If the iteration index is clear

from context we omit it and use θ = (W , b, c).

Recall that gradient flow is the infinitesimal step limit of gra-
dient descent where θ(t) changes continuously in time and
satisfies the differential inclusion dθ(t)

dt ∈ −∂◦L(θ(t)) for
a.e. t. Here ∂◦L

(
θ(t)

)
is the Clarke’s sub-differential which

is a generalization of the differential for non-differentiable
functions:

∂◦f(x) = conv
{

lim
k→∞

∇f(xk) | xk → x and (3)

f is differentiable at xk

}
The differential inclusion allows to take any vector in
−∂◦L(θ(t)) in each step of gradient flow. In our case, the
differential inclusion has multiple possible values when the
ReLU is 0 since ReLU has multiple sub-gradients at 0. For
our theoretical results, we will assume that the subgradient
of ReLU at 0 is determined in advance to a value a ∈ [0, 1].
This value of the subgradient is used for all neurons and
in all iterations. Usually a is set to be either 0 or 1. This
assumption corresponds to the common way gradient de-
scent runs in practice. We provide a formal definition of this
assumption in the supplementary.

Next, we define solutions which perfectly classify the train-
ing set. We will consider solutions with a margin constraint,
since this will be convenient when we discuss minimum
norm solutions.

Definition 3.1. We say that a solution θ is perfect if for all
(x, y) ∈ S, yN(x;θ) ≥ 1.

Norm Minimization: Multiple recent works have high-
lighted interesting connections between gradient methods

and norm minimization or margin maximization [Lyu and
Li, 2020, Neyshabur et al., 2018, Nacson et al., 2019, Ji
and Telgarsky, 2020, Chizat and Bach, 2020]. The norm
minimization problem is to minimize the norm of the model
weights subject to the correct classification with a margin
(additional background can be found at [Boyd and Vanden-
berghe, 2004]). Namely, the problem is:

min
∑

i∈[r] ||(wi, bi)||22 + c2

s.t. yN(x;θ) ≥ 1 , ∀(x, y) ∈ S (4)

It was shown [Lyu and Li, 2020, Ji and Telgarsky, 2020]
that under certain conditions, gradient flow converges to
KKT points of the optimization problem in Eq. (4).

3.1 EXPRESSIVE POWER

Here we show that the network in Eq. (1) has the expressive
power to implement any Boolean function over X . There-
fore, in terms of expressive power, the network is suitable
for learning Boolean functions and has the same expressive
power for implementing Boolean functions as a standard
one-hidden layer NN.

Theorem 3.1. Let f : X → Y . Then, there exists θ and a
network N in Eq. (1) with r ≤ 2D neurons such that for all
x ∈ X , sign (N(x;θ)) = f (x).

Proof. Let X+ = {x | f(x) = 1}. Define r = |X+|. Then,
X+ = {x1, . . . ,xr}. Define c = −1 and for each i ∈ [r]
define wi = xi and bi = −D + 2. Then ∀xi ∈ X+ it
holds that σ(wi · xi + bi) = 2 and ∀x ̸= xi it holds that
σ(wi ·x+bi) = 0. Therefore ∀x ∈ X+ we have N(x;θ) =
1 and for x ∈ X\X+ it holds that N(x;θ) = −1, from
which the claim follows.

3.2 EMPIRICAL PERFORMANCE

Thus far we described the setting where the ground truth
function is a read-once DNF that is learned by a convex
neural net. We have seen in Theorem 3.1 that the convex
network is sufficiently expressive. However, this does not
imply that the network can learn read-once DNFs in practice.
To examine this, we performed experiments for learning
read-once DNFs under the uniform distribution with the
convex network. We compared its test performance to a
standard two-layer neural network, and an algorithm based
on Statistical Queries (SQ) for learning read-once DNFs that
has polynomial sample complexity guarantees [Mansour
and Schain, 2001]. We note that the convex network was
implemented with a relatively small initialization. In Section
7 and in the Supplementary we conduct experiments with a
convex network with large initialization which is analogous
to training in the NTK regime [Chizat et al., 2019].
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Figure 2: Learning the read-once DNF: (x1 ∧x2 ∧x3)∨ (x4 ∧x5 ∧x6)∨ (x7 ∧x8 ∧x9) (a) Test accuracy for the following
models: convex neural network, standard two layer neural network and an algorithm based on statistical queries (SQ). (b)
Accuracy of the DNF recovery procedure for finding exactly the true DNF from the network weights.

Figure 2a shows the evaluation results. It can be seen that
the convex network outperforms the other algorithms across
all training set sizes.

Therefore, together with Theorem 3.1, we conclude that the
convex network we consider is a good test-bed for analyzing
the inductive bias of neural networks in the setting of read-
once DNFs and uniform distribution.

4 EMPIRICAL OBSERVATIONS ON THE
INDUCTIVE BIAS

Overparameterized networks (i.e., large r), can fit the train-
ing data with multiple different solutions. Some have good
generalization performance while others overfit. When train-
ing is performed with gradient methods, only certain solu-
tions will be found and not others. In other words, gradient
methods have an inductive bias towards certain solutions.
Understanding this inductive bias is key for understand-
ing the generalization performance of gradient methods in
practice.

Figure 1a shows an example of the weight vectors learned by
an overparameterized convex network (Eq. (1)) optimized
with SGD. It can be seen that although the network has
many weight vectors, they form tight clusters around the
terms of the true underlying DNF. This network has perfect
accuracy on both the training set and the test set.

We further devise a simple procedure to recover the DNF
terms from the neurons. The procedure removes low norm
neurons and rounds the weights, the exact details are pro-
vided in the supplementary. Figure 2b shows that the DNF
recovery procedure can accurately find the DNF terms. In
the supplementary we provide further details on this experi-
ment and show many more examples of the inductive bias
of SGD towards solutions which align with terms.

Another solution that minimizes the training error is shown
in Figure 1b. In this solution, the network memorizes in its
neurons the positive training points.5 However, this network
does not generalize well, and has 81% test accuracy. Thus,
we see that SGD converges to the true DNF and not to a
“memorization” solution, despite the latter also minimizing
the training loss.

These observations raise the following intriguing questions:

1. Why do gradient methods have an inductive bias to-
wards solutions that align with the terms of the DNF?

2. Why do gradient methods not converge to solutions that
overfit and memorize training points in their neurons?

In the next sections we provide theoretical results which
address these questions.

5 GRADIENT FLOW DOES NOT
MEMORIZE

In this section, we prove that gradient flow (GF) does not
converge to solutions that memorize training points. First we
formally define a memorizing neuron and a memorization
solution.

Definition 5.1. A neuron i ∈ [r] is a memorizing neuron, if
there exists a sample x̂ ∈ Sx such that:

wi · x̂+ bi > 0 and ∀x ∈ X\{x̂} wi · x+ bi ≤ 0 (5)

In this case, we say that neuron i memorizes x̂.

Thus, a neuron i memorizes x̂ if it is the only point in X
that has a positive dot product with the neuron. Since the
nonlinear activation of the network is ReLU, this implies
that only the point x̂ activates neuron i.

5See a formal definition of memorization in the next section.



Definition 5.2. θ is a memorization solution if θ is perfect
(Definition 3.1) and there exists i ∈ [r] and a sample x̂ ∈ Sx
such that neuron i memorizes x̂.

Note that the solution in Figure 1b is a memorization solu-
tion where all positive points in S+ are memorized. Defini-
tion 5.2 defines a broader set of solutions in which at least
one point is memorized.

We now state the assumptions that are required for our main
result. We apply recent results of Lyu and Li [2020], Ji
and Telgarsky [2020], which assume that GF is in the late
phase of training. Therefore, we will need the following
assumption.

Assumption 5.1. There exists t0 s.t. L
(
θ(t0)

)
< ln 2

n .

The next theorem shows that GF cannot converge to memo-
rization solutions.

Theorem 5.1. Assume that Assumption 5.1 holds and D >
2, K ≥ 2. Let θ be a memorization solution. Then GF does
not converge to θ.

The proof ideas is as follows. Lyu and Li [2020] and Ji
and Telgarsky [2020] show that under Assumption 5.1, GF
converges to a KKT point of Eq. (4). KKT points must
satisfy the KKT conditions: stationarity and complementary
slackness (see supplementary for details). We use this fact
together with the structure of the subgradient updates to
show that memorization solutions cannot satisfy the KKT
conditions.

To show this, we first characterize the memorizing neuron
using the following lemma:

Lemma 5.1. For D > 2. Let θ be a solution with a neuron
i ∈ [r] that memorizes a sample x̂ ∈ Sx, then θ satisfies the
following properties:

1. x̂j = sign(wij) for all 1 ≤ j ≤ D.

2. For x ∈ X if wi · x+ bi = 0 then x · x̂ = D − 2.

3. bi < 0

Then, by complementary slackness and the non-negativity of
the slack variables we show that the stationarity conditions
of the weights and biases cannot hold. Thus, memorization
solutions are not KKT points and GF cannot converge to
them.

6 DNF RECOVERY AS NORM
MINIMIZATION

In the previous section we have shown that GF does not
converge to memorization solutions. This result followed
since GF converges to KKT points of the minimum norm

problem and memorization solutions are not KKT. However,
we would like to understand what are the KKT points that
GF does converge to.

To address this question, we focus on characterizing KKT
points which are also global minimizers of the minimum
norm problem. The reason is that there is growing theoretical
evidence that GF is biased towards solutions that minimize
norms (or analogously, solutions that maximize margins).
This has been shown for logistic regression [Soudry et al.,
2018] and linear networks [Ji and Telgarsky, 2019a].

In a setting which is closest to ours, Chizat and Bach [2020]
show that GF trained on two-layer nonlinear networks con-
verges to maximum margin solutions. Their result holds
for infinite 2-homogeneous networks with squared ReLU
activations. Therefore, it cannot be applied in our setting.
Nonetheless, all of the aforementioned results provide a
strong motivation to study minimum norm solutions in our
setting, to better understand the inductive bias of GF.

Analyzing the global solutions of the optimization problem
in Eq. (4) is a major challenge since the problem is non-
convex. To make headway, in this section we analyze these
solutions under two technical assumptions (see Assumption
6.1 and Assumption 6.2). We define DNF recovery solutions
(see Definition 6.2) as solutions which are aligned with the
terms of the DNF (similar to Figure 1a). We then prove our
main result: that a network that globally optimizes Eq. (4)
is a DNF recovery solution. This means that if GF globally
optimizes Eq. (4) then it must converge to a DNF recovery
solution. Furthermore, this result is in line with our experi-
ments in Section 7 which show that GF converges to DNF
recovery solutions.

We next formally define a DNF recovery solutions. We first
define alignment of a neuron with a term.

Definition 6.1. A neuron i ∈ [r] is an aligning neuron with
respect to a DNF f∗, if there exists n ∈ [K] and λi > 0
such that wi = λit

∗
n, and bi = λi(2− ∥t∗n∥1). We refer to

the neuron i as aligning with the term n, and to λi as the
alignment coefficient of i.

Next we define a DNF recovery solution.

Definition 6.2. θ is a DNF-recovery solution if ∀n ∈ [K]
there exists a set of neurons I such that every i ∈ I aligns
with term n,

∑
i∈I λi = 1, ∀i1, i2 ∈ I λi1 = λi2 and all

other neurons are zero.

Thus, DNF recovery solutions are networks where all terms
in f∗ have corresponding neurons aligned with them. Fur-
thermore, all other neurons are zero. In other words, a re-
covery solution encodes the DNF explicitly in the weights
of the network (and thus the DNF can be easily recovered
from the weights). The conditions on the λi are required for
the global optimality results to hold. We note that any DNF
recovery solution perfectly classifies the data.
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Figure 3: (a) Accuracy Comparison for Different Models: Test performance of a convex network with small Gaussian ini-
tialization, a convex network with large Gaussian initialization, and a standard two-layer networks with Xavier initialization.
Here D = 25 and the target DNF has 4 terms of sizes 4, 5, 5 and 6. Each dot corresponds to the mean of 10 experiments
with different initializations. (b) SGD Learns a DNF recovery solution for D = 100: The last 25 dimensions are noisy
inputs whose corresponding literals do not appear in the DNF. 2 (c) SGD With large initialization doesn’t learn a DNF
recovery solution: The target function is the same as in Figure 3b. The only different is the initialization size. 2

Next, we state our technical assumptions:

Assumption 6.1. The output layer bias is fixed to c = −1,
and (W , b) are learned.

Assumption 6.2. Sx = X , i.e., we are in the population
setting.

Assumption 6.1 does not limit the expressive power of the
network (see Theorem 3.1) and in the supplementary we
show qualitatively that fixing c = −1 does not change the
inductive bias of GF.6

Many works have studied the population setting (Assump-
tion 6.2) as a proxy to understand the performance in the
empirical case [Daniely and Malach, 2020, Brutzkus and
Globerson, 2017]. The population setting is a good test-
bed to understand the inductive bias of GF since the loss
has multiple zero training error solutions in this case (e.g.,
memorization and DNF recovery solutions).

We now state the main result of this section.

Theorem 6.1. Consider the minimum norm optimization
problem Eq. (4) when learning a read-once DNF under
Assumption 6.1 and Assumption 6.2. Then, any globally op-
timal solution θ∗ = (W ∗, b∗) of Eq. (4) is a DNF-recovery
solution.

We next provide a high level sketch of the proof. The full
proof is given in the supplementary.

First we notice two key properties of any perfect solution
θ = (W , b) (Definition 3.1):7

6Surprisingly, without this assumption the theoretical analysis
becomes substantially more difficult. We leave the extension to
any c for future work.

7Note that the set of perfect solutions is exactly the set of
feasible solutions of Eq. (4).

(1) ∀x ∈ S+ there exists I ⊆ [r] such that
∑
i∈I

wi ·x+bi ≥ 2.

(2) ∀x ∈ S−, ∀i ∈ [r] wi · x+ bi ≤ 0.

These properties are together necessary and sufficient for
solutions to be perfect. Next, we show the following upper
bound on the bias of every neuron in a perfect solution,
which depends on the weights of the neuron:

Lemma 6.1. Under Assumption 6.1 and Assumption 6.2, if
θ is a perfect solution then every i ∈ [r] satisfies:

bi ≤ −||wi||1 + 2
∑

n∈[K]

max

{
min
j∈An

{wij} , 0
}

(6)

This upper bound turns out to be tight for optimal solu-
tion, as shown next. The following result characterizes the
parameters of any globally optimal solution θ∗.

Lemma 6.2. Under Assumption 6.1 and Assumption 6.2, if
θ∗ is a globally optimal solution then:

1. For every i ∈ [r]:

1.1. The bias achieves the upper bound in Lemma 6.1:

b∗i = −||w∗
i ||1+2

∑
n∈[K]

max

{
min
j∈An

{
w∗

ij

}
, 0

}

1.2. w∗
i ≥ 0

1.3. ∃n ∈ [K] such that neuron i aligns with term n
or w∗

i = 0, b∗i = 0.

2. Neurons that align with the same term have the same
alignment coefficient.

3. If I ⊆ [r] is the set of all neurons that align with term
n ∈ [K], then

∑
i∈S

λi = 1.



(a) (b)

Figure 4: (a) Evaluating the Effect of Overlap: Here we experimented with D = 100 and all DNFs had 15 terms of size
5. We considered non read-once DNFs where the number of terms that share the variable x1 varies. The x axis shows the
number of overlapping terms. The training size was 8, 500 for all DNFs. Each dot corresponds to the mean of 10 experiments
with different initializations. (b) SGD Does not Learn a DNF recovery solution: We trained a convex network to learn the
following 4-term DNF: (x1 ∧x2 ∧x3 ∧x4 ∧x5)∨ (x2 ∧x3 ∧x4 ∧x5 ∧x6)∨ (x10 ∧x11 ∧x12 ∧x13 ∧x14)∨ (x11 ∧x12 ∧
x13 ∧ x14 ∧ x15) where D = 20. The training set size has 15,000 samples and the test classification accuracy is 100%. 2

We prove the correctness of the properties one by one, where
each proof relies on the correctness of the previous proper-
ties. The structure of the proof of all properties is similar:
given a globally optimal solution, we assume by contradic-
tion that it doesn’t satisfy a specific property. Then we build
a different perfect solution that satisfies this property and
has a lower norm than the original globally optimal solution,
thus contradicting optimality. The theorem directly follows
from the aforementioned properties.

7 EMPIRICAL RESULTS

In this section we perform numerous experiments that sup-
port our analysis and show that our conclusions hold in
different settings. For each experiment we show a sample of
the empirical results due to space constraints. Further details
and results are provided in the supplementary.

Comparing convex and standard networks: Our analy-
sis focused on a convex network. Here we compare it to
a standard two-layer network with trainable output layer.
Figure 3a reports results, showing that the convex network
outperforms the standard one for a DNF with D = 25. This
shows that the convex network is a good model for studying
inductive bias in our setting.

Comparing large and small initializations: In Figure 3a
we compare a convex network with small initialization and a
convex network with large initialization which is analogous
to training in the NTK regime [Chizat et al., 2019]. The
small initialization convex network performs better. We
also show in Figure 3c that the small initialization network
converges to a solution that aligns with the terms of the DNF

while the large initialization network does not.

DNFs with large input dimension: Here we show an ex-
periment for learning a DNF with 15 terms of size 5 and
D = 100. We learned the DNF using a convex network and
SGD with small Gaussian initialization and 15,000 training
samples drawn from the uniform distribution. In Figure 3b,
we see that SGD converges to a solution that aligns with the
terms of the DNF and has 100 % test accuracy.

Non read-once DNFs: Our theoretical work is restricted
to read-once DNFs. To get a better understanding of what
happens beyond the read-once case, we perform a series
of experiments for learning DNFs with overlapping terms.
Figure 4a shows that when we increase the number of over-
lapping terms, the generalization error gets worse.

Figure 4b shows an example of the neurons when learning
a DNF with 4 overlapping terms. Here, the neurons do not
align with the terms, and therefore the inductive bias is
different from DNF recovery solutions.

The above results suggest that when the overlap is intro-
duced to the learned DNFs, it becomes harder to recover the
DNF and generalize well. This observation is in line with the
fact that the known polynomial bound for learning mono-
tone read-k DNF [Mansour and Schain, 2001] increases
with k. Indeed, k is the number of times each variable can
appear in the DNF and a larger value indicates that there
is more overlap between the terms. Furthermore, known
hardness results for learning general DNFs [Pitt and Valiant,
1988] also coincide with this empirical observation.

Experiments on Tabular Datasets: The fact that SGD re-
covers simple Boolean formulas is very attractive in the con-



text of interpretability. In Section 4 we showed that we can
reconstruct DNFs under certain idealized assumptions (e.g.,
uniform distribution, read-once). However, our reconstruc-
tion method might produce meaningless reconstructions on
datasets which are not uniform nor labeled with a read-once
DNF. We tested our reconstruction method on three tabular
UCI datasets kr-vs-kp, diabetes and Splice [Dua and Graff,
2017]. We note that these datasets do not contain personally
identifiable information or offensive content.

Learning with our convex network resulted in test accuracies
of 100%, 98% and 97% on these datasets, respectively. Our
reconstruction method obtained a small DNF (6 terms of size
less than 4) on kr-vs-kp with test accuracy 91%. For diabetes,
the reconstruction method returned a large DNF (more than
10 terms) with test accuracy 81%. On Splice we got a 2-term
DNF of sizes 2 and 3 with 95% test accuracy. The latter
is a very compact DNF with very small loss in accuracy,
illustrating the potential of recovery on interpretability.

8 CONCLUSIONS

Understanding the inductive bias of neural networks for
learning DNFs is an important and difficult theoretical chal-
lenge. In this work we focused on a setup of learning read-
once DNFs under the uniform distribution with a convex
network. We empirically observed that GF converges to so-
lutions that align with the DNF terms. We then proved that
GF cannot converge to solutions that memorize the train-
ing points, despite the fact that they minimize the training
accuracy. We additionally proved that under certain assump-
tions, solutions that minimize the norm are solutions that
align with the terms of the DNF. Together with recent re-
sults which show that GF is biased towards minimization of
norms, this corroborates our empirical findings.

Our work has several limitations which are mainly due to
the fact that analyzing nonlinear networks with nonlinear
data is a major challenge:

1. We only consider a setup of uniform distribution and
read-once DNF. We also restrict analysis to convex
networks, but our empirical results actually suggest
that convex networks may be preferable to standard
ones in our setting.

2. We do not show an end-to-end convergence of GF to
DNF recovery solutions.

3. We do not address the sample complexity of GF in our
setting (however, intuitively, an inductive bias towards
alignment will improve sample complexity, since align-
ment reduces the effective number of parameters the
network uses).

Our work opens up many interesting directions for future
work. For example, it would be interesting to understand if
DNF recovery is possible for other distributions and DNFs

that are not read-once. Another interesting direction is to
understand the sample complexity of neural networks for
learning DNFs and how it relates to DNF-recovery. Finally,
it will be interesting to understand how learning dynamics
in neural nets are related to other algorithms for learning
DNFs.
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