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Differentiating Nonsmooth Solutions to Parametric Monotone

Inclusion Problems

Jérôme Bolte∗ Edouard Pauwels† Antonio Silveti-Falls‡

Abstract. We leverage path differentiability and a recent result on nonsmooth implicit differentiation calculus to give

sufficient conditions ensuring that the solution to a monotone inclusion problem will be path differentiable, with for-

mulas for computing its generalized gradient. A direct consequence of our result is that these solutions happen to

be differentiable almost everywhere. Our approach is fully compatible with automatic differentiation and comes with

assumptions which are easy to check, roughly speaking: semialgebraicity and strong monotonicity. We illustrate the

scope of our results by considering three fundamental composite problem settings: strongly convex problems, dual

solutions to convex minimization problems and primal-dual solutions to min-max problems.
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1 Introduction

Consider the following parametric maximal monotone inclusion problem

0 ∈ Aθ(x) + Bθ(x) (1.1)

where θ is some parameter and, for each θ, Aθ : R
n
⇒ R

n is maximal monotone (possibly set-valued) and

Bθ : R
n → R

n is maximal monotone and Lipschitz continuous. For a fixed θ, a problem of this form is called

a generalized equation [65] or variational inequality, and it models a wide range of optimization problems

[8]. In fact, designing algorithms to find solution to maximal monotone inclusions is at the heart of convex

optimization [7, 29, 30, 22, 21, 57, 53] and consequently has received a lot of attention in the last decades

[5, 6, 20, 4].

Assuming that the solution x⋆(θ) is unique for each θ, our main objective in this paper is to investigate the

regularity and differentiability of x⋆ with respect to θ as well as to develop calculus rules for computing a

generalized derivative associated to it. In general, the solution x⋆ is not a function of θ because there can be

several solutions for a given θ and, even under the assumption that x⋆ is unique, it is not guaranteed that x⋆

will be differentiable with respect to θ, therefore motivating further study. Understanding the regularity of
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x⋆ as a function of θ has important applications in several areas: in deep learning for neural networks with

implicit layers defined through monotone inclusions (e.g., monotone operator deep equilibrium networks

[78], OptNet [3]), in machine learning (hyperparameter tuning [16], meta-learning [36], dataset distillation

[13], adversarial examples [50]), signal processing ([29, 30, 35]), and general nonsmooth bilevel optimization

[44, 76], without being exhaustive. For this reason, many other works have studied regularity properties of

solutions to various forms of (1.1), using a myriad of different techniques that we will now discuss.

Variational analytic methods The study of solution mappings to parametric generalized equations can

be traced back to variational analysis in the 1980s [65, 67]; [66] examined the Lipschitz continuity of the

solution mapping when the single-valued monotone operator in the generalized equation is parametrized.

This continued with results in [46, 47, 71] showing further the stability of the solution mapping but again

avoiding parametrizing the nonsmooth/set-valued monotone operator. Another variational analytic approach

is to use the notion of protodifferentiability developed in [68], which is used in [2] to analyze the stability

of solutions to parametric monotone inclusions. This approach was extended in [75] to show that the di-

rectional differentiability of the solution map under the assumption that the Lipschitz continuous operator is

strongly monotone. Both of these works consider generalized equations and allow for both the Lipschitz and

set-valued monotone operators to be parametrized, the same as the current work. In the language of sensi-

tivity analysis, all data in the problem (1.1) can be perturbed. A similar approach to [2] is used in [10] to

analyze the Lipschitz constant of the solution mapping to the lasso problem as a function of the penalization

parameter. Finally, we mention that similar methods have also been applied to study the differentiability of

the prox operator in [62], which is a special case of a generalized equation in which the Lipschitz operator

is identically 0.

Nonsmooth implicit differentiation As was already discussed, implicit differentiation is an important tool

for characterizing properties of the solution to monotone inclusion problems, yet its application to nonsmooth

problems remains a challenge. Specific cases involving the lasso and partial smoothness have been analyzed

in [11] using the weak derivative and in [64, 74] using the Riemannian gradient. Other specific cases have

been worked out for projections onto the cone of positive semidefinite matrices [52], or solutions of semidef-

inite programming problems [73], both of which use the Clarke implicit function theorem [28] to deduce

Lipschitz continuity of the solution. From a computational perspective, a software library has been devel-

oped in [13] that can be used for automatic differentiation of implicitly defined functions. As we shall see,

our approach is strongly based on the path differentiable implicit function theorem of [16] which comes with

a calculus compatible with the Python library presented in [13].

Iterative differentiation/Unrolling Another growing field in which differentiation of solutions is funda-

mental is unrolling. In that case one wishes to find a solution of an optimization problem together with its

derivative by differentiating some optimization algorithm with respect to external parameters. Pioneering

works are [39, 9] and also [40]. In a machine learning context, research has been done for smooth algorithms

setting in [60, 51, 54] and in the nonsmooth setting in [19] for path differentiability, [55] for partial smooth-

ness, and [56] using a specific Bregman divergence. This is generally treated through ad hoc techniques,

using for instance the smooth implicit function theorem approach. In [19], the approach is different and

closer to ours as it uses the theory of conservative gradients. To understand the deep link this unrolling topic

has with our present concerns, one needs to remind that iterates of algorithms are generally defined as solu-

tions to a parametrized optimization problem. So unrolling offers a wide field of applications for solution’s
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differentiation techniques. Although we illustrate our results on general parametrized problems, let us em-

phasize that our results could also provide results for “unrolling", in the spirit of the iterative differentiation

analysis of [19].

Each approach has its benefits, e.g., the variational analytic methods exploiting protodifferentiability are

more adapted to giving information about the Lipschitz constant of the solution mapping than what we will

propose. The most salient point of our contribution is that we are able to guarantee the path differentiability

of the solution, which legitimates, in turn, the use of formal derivatives of the solution. In contrast to nearly

all of these works and many others on this subject, this means our approach is compatible with modern

differential tools like automatic differentiation and the backpropagation algorithm. This compatibility is

achieved by way of a flexible calculus that allows all the usual operations of smooth calculus, in particular,

the chain rule for differentiation. In the language of the optimization community, our differential results

are qualification-free, and, in terms of differential regularity, everything will boil down to checking that the

problem is semialgebraic (or definable).

Our approach and its advantages The general method we propose is to study the solution mapping x⋆ by

first rewriting (1.1) as a locally Lipschitz fixed-point equation, using ideas from operator splitting methods for

nonsmooth optimization [30]. For generalized equations of the form given in (1.1), we can use the resolvent

RAθ
to write the forward-backward map H , which a solution must be a fixed point of:

x⋆ = H(x⋆, θ) := RAθ
(x⋆ − B(x⋆)).

With this equation, we can continue by applying the nonsmooth implicit function theorem of [16] to deduce

regularity properties and an expression for the generalized derivative (i.e., the conservative mapping) of the

solution mapping x⋆(θ).

As has been discussed, the rise in popularity of modern automatic differentiation libraries [1, 23, 59] and

their widespread use in machine learning calls for a flexible calculus at the crossroads of mathematics and

computer science. For instance, almost the entire field of deep learning crucially relies on using the renowned

backpropagation algorithm to do training. In spite of this, most prior work on this subject has either only

considered the smooth case or has ignored non-differentiability issues. Thus a major advantage of the present

approach, in contrast to other works, is to provide results that are broadly applicable (e.g., for nonsmooth

solutions) but which are also compatible with automatic differentiation.

Besides compatibility with automatic differentiation, another advantage of our work is that the formula

given by [16, Corollary 1] to compute an implicit conservative gradient is formally the same as the formula

used in the smooth case. More specifically, a key feature of [16, Corollary 1] that our results will inherit is its

coherence with the smooth implicit function theorem - that is to say, elements of the conservative Jacobian

associated to the solution mapping x⋆ can be rigorously computed by formal differentiation just as in the

smooth implicit function theorem.

Main results Our key technical result is an implicit function theorem for families of contractive Lipschitz

continuous equations under path-differentiability assumptions. The simplicity of the contractivity assump-

tion allows us to derive a wealth of regularity results for parametric strongly monotone problems. Our core

result (Theorem 3.5) asserts that if Aθ or Bθ is strongly monotone, then x⋆ is path differentiable and there is

a formula to compute a conservative Jacobian for it, based on the Clarke Jacobians of RγAθ
and Bθ. Let us

insist on the fact that path differentiability easily follows from semi-algebraic or definable assumptions.
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As a consequence, many fundamental parametrized optimization problems can be studied, we provide

three important classes of examples. Theorem 4.2 deals with sum composite strongly convex optimiza-

tion problems, which are ubiquitous in many fields from signal processing [30, 33, 77] to machine learning

[12, 45]. In the framework of generalized convex duality, in the spirit of the Fenchel-Rockafellar theorem,

we provide in Theorem 5.1 a regularity result for dual solutions to primal together with a calculus. In the

min-max setting, under classical assumptions, we study the regularity of parametrize saddle points, this is

Theorem 5.4. To be clear, the reach of our results extends beyond just these selected problems; our results

represent a way to analyze solutions to any problem, which can be represented as a parametric monotone

inclusion having this additive composite structure, encompassing a significant portion of the convex opti-

mization problems in the literature.

Let us conclude by mentioning the fact the contractivity assumption which is behind our analysis in

Lemma 3.4 is sharp in the sense that we are able to provide several counterexamples having apparently similar

properties –as semialgebraic problems enjoying quadratic Łojasiewicz inequalities– which are not amenable

to our optimization framework.

1.1 Organization of the Paper

In Section 2, we review the necessary background material and notation, mostly regarding convex analysis,

conservative calculus, and the nonsmooth implicit function theorem for path differentiable functions. In Sec-

tion 3, we develop results for path differentiability of the solution to parametric monotone inclusion problems,

formally stating the monotone inclusion problem we consider and the assumptions needed to ensure path dif-

ferentiability of the solution mapping. In Section 4, we turn to convex optimization and explore sufficient

conditions in terms of properties of the objective function to ensure the solution to a convex optimization

problem is path differentiable. In Section 5, we consider some general convex optimization problems and

show how to apply the results of Section 3 and Section 4 to find expressions for implicit conservative Ja-

cobians associated to the solution mappings. Finally, in Section 6, we conclude by noting some alternative

formulations of the problem, its fixed point equations, and some other details that could have been chosen

differently.

2 Background

Notation The set of real numbers will be written as R and the extended real numbers as R̄ := R∪ {+∞}.

We denote the set of p-times continuously differentiable functions on a given connected open subset X ⊂ R
n

by Cp(X) and denote the set of C1(X) functions whose gradient is Lipschitz continuous by C1,1(X). We

will use Idn to denote the identity matrix in R
n×n and Id to denote the identity mapping. A set-valued map

A : Rn
⇒ R

m, is a function from R
n to subsets of Rm (including the empty set). The graph of a set-valued

mapping A : Rn
⇒ R

m will be denoted gphA := {(x, u) ∈ R
n × R

m : u ∈ A(x)}. We denote the operator

norm of a linear operator K : Rn → R
m as

‖K‖op := sup
v∈Rn

‖Kv‖
‖v‖

and extend this to sets of linear operators K = {Kω}ω∈Ω in the following way

‖K‖op := sup
K∈K

sup
v∈Rn

‖Kv‖
‖v‖ .
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2.1 Convex Analysis

The following definitions and notations coming from convex analysis are well-known and can be found, for

instance, in [7].

Definition 2.1 (Monotone Operator). A set-valued mapping A : Rn
⇒ R

n is called monotone if there

exists α ≥ 0 such that for all (x, u) ∈ gph (A) and (y, v) ∈ gph (A),

〈u− v, x− y〉 ≥ α ‖x− y‖2 .

If α > 0 then A is called α-strongly monotone.

A monotone operator A is said to be maximal if its graph is not contained in any other monotone operator.

Recall that the resolvent of a maximal monotone operator Aθ : R
n
⇒ R

n is the function RAθ
: Rn → R

n

defined to be RAθ
:= (Id +Aθ)

−1. There is a special relationship between closed convex proper functions

and maximal monotone operators, which we summarize in the next example.

Example 2.2. Let f : Rn → R̄ be a closed convex proper function, then the subdifferential of f , ∂f(x) :=
{u : ∀y ∈ R

n, f(y) ≥ f(x) + 〈u, y − x〉}, is a maximal monotone operator [70] and the resolvent R∂f is

the prox operator [7, Example 23.3] given by proxf (x) := argmin
u∈Rn

f(u)+ 1
2 ‖x− u‖2. Additionally, if f is

α-strongly convex, then ∂f is α-strongly monotone [7, Example 22.3(iv)].

2.2 Conservative calculus and path differentiability

The following notions generalize the concept of differentiability to locally Lipschitz functions, from Clarke

Jacobians to conservative Jacobians. In contrast with Clarke Jacobians, conservative Jacobians [18] offer

a way to extend differentiation to locally Lipschitz functions in a way that is compatible with differential

calculus.

Definition 2.3 (Clarke Jacobian). The Clarke Jacobian of a locally Lipschitz function f : Rn → R
m at a

point x is defined to be

Jaccf (x) := conv

{

lim
k→+∞

Jacf (xk) : xk ∈ difff, lim
k→+∞

xk = x

}

,

where difff ⊂ R
n is the set of full measure where f is differentiable in the classical sense.

The following lemma comes from [28, Proposition 2.1.2(a)], it is a nonsmooth generalization of the clas-

sical result that a β-Lipschitz continuous differentiable function has gradient bounded by β in norm.

Lemma 2.4 ([28]). Let U ⊂ R
n be an open set and consider a Lipschitz continuous function f : U → R

m.

Then f is Lipschitz continuous with constant β, if and only if, for all x ∈ U ,
∥
∥Jaccf (x)

∥
∥
op

≤ β.

Definition 2.5 (Conservative Jacobian [18]). A conservative Jacobian for a locally Lipschitz function f :
R
n → R

m is a set-valued mapping Jf : R
n
⇒ R

m×n which is nonempty, locally bounded, graph closed,

and satisfies, for any absolutely continuous curve γ : [0, 1] → R
n,

∀u ∈ Jf (γ(t)),
d

dt
f(γ(t)) = 〈u, γ̇(t)〉 for almost all t ∈ [0, 1]
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A function f : Rn → R
m is called path differentiable if it is locally Lipschitz and admits a conservative

Jacobian Jf . This is equivalent to the Clarke Jacobian Jaccf being conservative for f .

Path differentiable functions are ubiquitous among locally Lipschitz functions. The most prominent class

of examples is that of semialgebraic functions. For an introduction to the subject of semialgebraic functions,

we refer the interested reader to [32]. We simply recall here that a function f : Rn → R
n is said to be

semialgebraic if gph f is a semialgebraic set, i.e., it can be written as the finite union and-or intersection of

polynomial equations and inequalities. Let us also mention that all locally Lipschitz definable functions are

path differentiable, see [15] and [18].

Given a path differentiable function f : R
p+n → R

n, we will write Jaccx,f(θ, x) := {V : [U V ] ∈
Jaccf (θ, x)} ⊂ R

n×n and refer to this object as the Clarke Jacobian of f with respect to x (and the analog

for when a conservative Jacobian has been specified). Similarly, we will write Jaccθ,f (θ, x) := {U : [U V ] ∈
Jaccf (θ, x)} ⊂ R

n×p for the Clarke Jacobian of f with respect to θ. A very important but subtle point is that

these sets are the projections of the joint Clarke Jacobians, which are possibly distinct from the sets given by

fixing θ and computing the conservative Jacobian or the Clarke Jacobian with respect to x alone.

The following nonsmooth implicit differentiation theorem from [16, Corollary 1] is the main tool with

which we can prove path differentiability and calculate elements of conservative Jacobians of solutions to

monotone inclusions. Its main requirements are a path differentiable defining equation f and an invertibility

condition on the elements of a conservative Jacobian associated with f .

Theorem 2.6 (Conservative implicit function theorem [16]). Let f : Rn×R
m → R

m be path differentiable

with conservative Jacobian Jf . Let (x̂, ŷ) ∈ R
n × R

m be such that f(x̂, ŷ) = 0. Assume that Jf (x̂, ŷ)
is convex and that, for each [U V ] ∈ Jf (x̂, ŷ), the matrix V is invertible. Then, there exists an open

neighborhood C×D ⊂ R
n×R

m of (x̂, ŷ) and a path differentiable function g : C → D such that, for each

x ∈ C ,

f(x, g(x)) = 0

and g admits a conservative Jacobian given, for each x ∈ C , by

Jg : x ⇒ {−V −1U : [U V ] ∈ Jf (x, g(x))}.

In contrast to the accessibility of the formulas involved, the invertibility condition needed to apply Theo-

rem 2.6 is more difficult to verify than its smooth counterpart due to the fact that the ordinary gradient is a

singleton while the conservative gradient is set-valued. Indeed, for smooth implicit differentiation, it suffices

to check the invertibility of a single matrix, while in the nonsmooth setting, one is tasked with showing the

invertibility of every element of a set of matrices. Additionally, the invertibility of the matrix computed in

the smooth setting can be checked during runtime while, in the nonsmooth setting, checking the matrix com-

puted at runtime will not be sufficient to ensure that the invertibility condition is holding (see [16, Section

5]). For these reasons, it is imperative to have general sufficient conditions outlined which guarantee that the

invertibility condition is satisfied, which is what we develop in the following sections.

Analogy with the Smooth Case One way to frame our work is as a study of how the calculus for solutions

to smooth convex parametric optimization persists in nonsmooth convex parametric optimization thanks to

conservative Jacobians. To explain this further, let us describe first a typical application of the smooth implicit

function theorem to study convex parametric problems. Consider

min
x∈Rn

f(θ, x)
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where f : Rp × R
n is continuously differentiable jointly in (θ, x), twice-differentiable in x, and convex

in x for all θ ∈ R
p. To examine the existence and regularity of a solution mapping x⋆ as a function of

θ, one can use the smooth implicit function theorem on the optimality condition ∇xf(θ, x
⋆) = 0 to get

∂x⋆

∂θ (θ) = −(∇2
xf(θ, x

⋆(θ)))−1 ∂
∂θ∇xf(θ, x

⋆(θ)). In addition to the differentiability assumptions we’ve

made, the application of the smooth implicit function here requires the Hessian ∇2
xf(θ, x

⋆) to be invertible.

For a twice-differentiable convex function, the invertibility of the Hessian ∇2
xf(θ, x) locally around x⋆ is

equivalent to the strong convexity of the function f locally around x⋆, which is itself equivalent to a local

quadratic growth condition f(x) − f(y) − 〈∇f(y), x− y〉 ≥ ρ
2 ‖x− y‖2 for some ρ > 0, for all x, y in

some neighborhood of x⋆. A byproduct of this paper is to investigate to what extent this trifold equivalency

fails to hold when f is no longer assumed to be twice-differentiable. To this end, we are able to show positive

and negative results in Section 4: strong convexity is sufficient to ensure the invertibility condition required

by the nonsmooth implicit function theorem of [16, Corollary 1] holds, meanwhile a local quadratic growth

condition is insufficient even when f is a semialgebraic function.

3 Solutions to monotone inclusions

3.1 Regularity assumptions and Lipschitz reformulations

A Lipschitz reformulation We begin this section by formally defining the parametric monotone inclusion

problem we are considering (whose solution we seek to differentiate) and the assumptions we impose on it.

When dealing with parametrized mappings like A : Rm × R
n → R

n, it will be convenient to use subscript

notationAθ to denote the mapping corresponding toA(θ, ·) : Rn → R
n – this notation will be used frequently

throughout the rest of the paper.

Assumption 3.1 (Path differentiability). LetΘ ⊂ R
p be a nonempty connected open set, A : Θ×R

n → R
n,

B : Θ× R
n → R

n, and γ > 0 be a stepsize. For all θ ∈ Θ, assume the following two conditions hold,

1. A(θ, ·) : Rn
⇒ R

n is maximal monotone and B(θ, ·) : Rn → R
n is maximal monotone and locally

Lipschitz. Furthermore the solution set to the following inclusion is nonempty

0 ∈ A(θ, ·) + B(θ, ·). (Pmono)

2. The resolvent RγAθ
and the map B are both locally Lipschitz and path differentiable, jointly in (θ, x),

so that the function

H(θ, x) := RγAθ
(x− γBθ(x)) (3.1)

is path differentiable jointly in (θ, x).

There are many different fixed-point reformulations of (Pmono) one can choose from, each one inducing a

function Hθ, which we discuss in Section 6. The Lipschitz mapping Hθ we have opted for is reminiscent of

the forward-backward splitting algorithm [49]. It is general enough to cover a variety of monotone inclusions

coming from both smooth and nonsmooth convex optimization problems. Similar to the choice of Hθ, the

choice of the constant γ in Assumption 3.1 is also arbitrary provided γ is positive. Note also that the solution

x⋆ does not depend on γ, although it can be defined as a fixed point of Hθ, which depends on γ. In each

theorem, this constant will be finely tuned so as to obtain the most general regularity results possible. It

is important to understand here that the regularity properties we will obtain in the following sections may

depend on the reformulation in Assumption 3.1 that we have chosen. Whether it is the case or not is a matter

for future research.
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We define the residual function res : Rp+n → R
n to be

res (θ, x) := x−Hθ(x) (Pmono−bis)

so that

res (θ, x∗(θ)) = 0, (3.2)

whenever the expression is well-defined.

An essential fact is that this equation will be automatically path differentiable if its constituents are semi-

algebraic, or more generally definable [32, 15, 18]. Classically, this will also imply that the solution mapping

is semialgebraic (as a set-valued mapping).

First-order properties of the residual equation Let us describe the key first-order objects that will en-

sure the existence of solution maps and allow us to establish their path-differentiability. We work under

Assumption 3.1.

Set T : Θ× R
n → R

n to be T (θ, x) := RγAθ
(x) and consider the two following conservative Jacobians

relative to the path differentiable mapping H:

JH(θ, x) = {
[
U − γVW V (Idn − γZ)

]
: [U V ] ∈ JaccT (θ, x− γBθ(x)), [W Z] ∈ JaccB(θ, x)}.

Jx,H(θ, x) = Jaccx,T (θ, x− γBθ(x)) × (Idn − γJaccx,B(θ, x)). (3.3)

The first set valued map JH given in (3.3) is simply obtained by a formal application of the rules of differ-

ential calculus to the composite structure of H in Assumption 3.1 using Clarke Jacobians instead of classical

Jacobians, while the second is a partial derivative version obtained by mere projection.

Indeed, define S : Θ × R
n → Θ × R

n to be S(θ, x) := (θ, x − γB(θ, x)) so that T (S(θ, x)) = H(θ, x).
One can check that JH is the following product of Clarke Jacobians for (θ, x) ∈ Θ× R

n

JH(θ, x) = JaccT (S(θ, x))× JaccS(θ, x)

= {
[
U V

]
×

[
Idp 0

−γW Idn − γZ

]

: [U V ] ∈ JaccT (θ, x− γBθ(x)), [W Z] ∈ JaccB(θ, x)}

= {
[
U − γVW V (Idn − γZ)

]
: [U V ] ∈ JaccT (θ, x− γBθ(x)), [W Z] ∈ JaccB(θ, x)}

which is a conservative Jacobian for H . Consequently we have the following conservative Jacobian with

respect to x for H , for each fixed (θ, x) ∈ Θ× R
n,

Jx,H(θ, x) = {V (Idn − γZ) : [U V ] ∈ JaccT (θ, x− γBθ(x)), [W Z] ∈ JaccB(θ, x)}
= Jaccx,T (θ, x− γBθ(x))× (Idn − γJaccx,B(θ, x)),

which concludes our explanation.

Let us now define a conservative Jacobian for the residual function res from (Pmono−bis) through:

Jres (θ, x) = {
[
γV W − U Idn − V (Idn − γZ)

]
: [U V ] ∈ JaccT (θ, x− γBθ(x)), [W Z] ∈ JaccB(θ, x)},

for each (θ, x) ∈ Θ× R
n.
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Remark 3.2. The choice of Jx,H(θ, x) in (3.3) corresponds to the set-valued object computed by applying

formal differentiation, i.e., the chain rule, to H as a composition of functions. Additionally, the particular

form of Jx,H(θ, x) we consider above allows one to control ‖Jx,H(θ, x)‖op when one of the monotone

operators Aθ or Bθ is strongly monotone, as we will expose later. In terms of the residual function res

from (Pmono−bis), the choice made in (3.3) induces a particular conservative Jacobian Jres and thus also a

particular conservative Jacobian with respect to x,

Jx,res (θ, x) = {Idn − V (Idn − γZ) : [U V ] ∈ JaccT (θ, x− γBθ(x)), [W Z] ∈ JaccB(θ, x)}
= Idn − Jaccx,T (θ, x− γBθ(x))× (Idn − γJaccx,B(θ, x)).

3.2 Contractivity implies the path differentiatiability of solutions

With this particular choice of conservative Jacobians for H and res given by (3.3), and under the additional

assumption of strong monotonicity, we show below that a simple contractivity condition holds.

Definition 3.3 (Contractivity of residual equations). Under Assumption 3.1, we shall say that the residual

equation res = 0 is contractive, or has the contractivity property, if for each θ ∈ Θ, there is a solution x⋆(θ)
to (Pmono) with

‖Jx,H(θ, x⋆(θ))‖op < 1

where we recall that H = Id− res .

Contractivity in Definition 3.3 is key to applying nonsmooth implicit path differentiation, first because

it actually warrants the well-posedness and the single-valuedness of the solution mapping ([7, Proposition

26.1], see as well [43, Theorem 11]), and also because it is closely related to the invertiblity condition required

in the conservative implicit function theorem (Theorem 2.6).

The next lemma shows that contractivity is key to our approach to solutions of monotone inclusions.

Lemma 3.4 (Path differentiability of the solution map). Under Assumption 3.1 and assuming res has the

contractivity property, then x⋆ is unique, path differentiable on Θ, and admits a conservative Jacobian of

the form

Jx⋆ : θ ⇒

{(Idn − V (Idn − γZ))−1 (U − γVW ) : [U V ] ∈ JaccT (θ, x
⋆(θ)− γBθ(x

⋆(θ))), [W Z] ∈ JaccB(θ, x
⋆(θ))}.

Proof. We begin with the uniqueness of x⋆ for each θ ∈ Θ. By convexity of the operator norm, it holds

‖conv (Jx,H(θ, x⋆(θ)))‖op ≤ ‖Jx,H(θ, x⋆(θ))‖op < 1.

However, Jaccx,H(θ, x⋆(θ)) ⊂ conv (Jx,H(θ, x⋆(θ))) and so
∥
∥Jaccx,H(θ, x⋆(θ))

∥
∥
op

< 1. From this we

conclude that H is locally a strict contraction around (θ, x⋆(θ)) and thus the solution x⋆(θ) is unique.

We will apply Theorem 2.6 to res using the pointwise convex hull (θ, x) ⇒ conv(Jres (θ, x)) as a conser-

vative Jacobian for res . Note that it is indeed conservative since Jres is and pointwise convex hulls preserves

Definition 2.5. We will use the shorthand notation conv(Jx,res ) to denote for each fixed θ ∈ Θ the set valued

map (θ, x) ⇒ conv(Jres (θ, x)), and similarly for H . Note that conv(Jx,res ) = Idn − conv(Jx,H).

9



Fix θ ∈ Θ. Let us show that the contractivity condition entails that every element of conv(Jx,res (θ, x
⋆(θ)))

is invertible. Indeed, set ρ = ‖conv(Jx,H(θ, x⋆(θ)))‖op = ‖Jx,H(θ, x⋆(θ))‖op < 1 (use triangle in-

equality), so that for any Mres ∈ conv(Jx,res (θ, x
⋆(θ))), there is MH ∈ conv(Jx,H(θ, x⋆(θ))) such that

Mres = Idn −MH , and for all v ∈ R
n, we have

‖Mres v‖ = ‖(Idn −MH)v‖
≥ ‖v‖ − ‖MHv‖
≥ ‖v‖ (1− ρ)

which shows that Mres is invertible because ρ < 1. Since res is path differentiable and all of the ele-

ments of Jx,res (θ, x
⋆(θ)) are invertible for each θ ∈ Θ, the conditions to apply Theorem 2.6 to the equation

res (θ, x⋆(θ)) = 0 hold, and thus x⋆ is path differentiable on Θ. The formula for the conservative Jacobian

follows from Theorem 2.6 because it defines a graph closed and locally bounded set valued map which is a

subset of the set valued map obtained by applying Theorem 2.6 to conv(Jres ) which satisfies the chain rule

of Definition 2.5.

The expression for the conservative Jacobian of x⋆ given in Lemma 3.4 can be more compactly expressed

in terms of the conservative Jacobian of H defined in (3.3), for each θ ∈ Θ,

Jx⋆ : θ ⇒ {(Idn − V )−1 U : [U V ] ∈ JH(θ, x⋆(θ))}.

3.3 Strongly monotone inclusions have path differentiable solutions

The following theorem is related to [7, Prop. 26.16], which provides sufficient conditions for linear conver-

gence of the forward-backward algorithm applied to finding a zero of the sum of two maximally monotone

operators A and B. It is however important to observe that linear convergence is not enough to reach the

same conclusions (see Section 4.2).

Theorem 3.5 (Path differentiability: strongly monotone case). Under Assumption 3.1, consider (Pmono)

and, for each θ ∈ Θ, assume that Bθ is β-Lipschitz continuous and that either Aθ or Bθ is α-strongly

monotone, for some α, β > 0, uniformly in θ.

Then, for γ ∈
(

0, 2α
(α+β)2

)

, the residual map res of (Pmono) is contractive, i.e., the inequality in Defini-

tion 3.3 holds. Furthermore, x⋆ is unique and path differentiable on Θ with a conservative Jacobian given

for each θ ∈ Θ by

Jx⋆ : θ ⇒

{(Idn − V (Idn − γZ))−1 (U − γVW ) : [U V ] ∈ JaccT (θ, x
⋆(θ)− γBθ(x

⋆(θ))), [W Z] ∈ JaccB(θ, x
⋆(θ))}.

Proof. Under Assumption 3.1 with the conservative Jacobians given in (3.3), the forward-backward mapping

H is path differentiable on Θ× R
n with a conservative Jacobian with respect to x given by

Jx,H(θ, x) = Jaccx,T (θ, x− γBθ(x)) × (Idn − γJaccx,B(θ, x)).

We take an arbitrary θ ∈ Θ and divide the proof into cases depending on whether Aθ or Bθ is α-strongly

monotone.

Assume that Bθ is α-strongly monotone with α ≤ β. Since α > 0 and 0 < γ < 2α
(α+β)2

< 2α
β2 , it holds that

γ(2α−γβ2) > 0, and furthermore γ(2α−γβ) ≤ γ2α < 4α2

(α+β)2
≤ 1. Setting τ =

√

1− γ(2α− γβ2), we

10



have that RγAθ
is nonexpansive [7, Proposition 23.8] and Id−γBθ is τ -Lipschitz continuous with 0 ≤ τ < 1.

Thus, by applying Lemma 2.4 for each (θ, x) ∈ Θ× R
n,

‖Jx,H(x)‖op ≤
∥
∥Jaccx,T (θ, x− γBθ(x))

∥
∥
op

∥
∥(Idn − γJaccx,B(θ, x))

∥
∥
op

≤ τ < 1.

Now we consider case where Aθ is α-strongly monotone. We have by [7, Proposition 23.13] that the resol-

vent RγAθ
is Lipschitz continuous with constant 1

1+γα and the mapping Id− γBθ is
√

1 + γ2β2-Lipschitz

continuous by Lemma A.1, giving for each (θ, x) ∈ Θ× R
n,

‖Jx,H(x)‖op =
∥
∥Jaccx,T (θ, x− γBθ(x))

∥
∥
op

∥
∥(Idn − γJaccx,B(θ, x))

∥
∥
op

≤
√

1 + γ2β2

1 + γα
.

Since γ ∈
(

0, 2α
(α+β)2

)

, it holds

1 + γ2β2 < 1 + γ(γ(α + β)2) < 1 + 2αγ < 1 + γ2α+ γ2α2 = (1 + γα)2,

so that

√
1+γ2β2

1+γα < 1. Putting everything together we find, for each (θ, x) ∈ Θ×R
n,

‖Jx,Hθ
(x)‖op =

∥
∥Jaccx,T (θ, x− γBθ(x))

∥
∥
op

‖(Idn − γJaccB(θ, x))‖op ≤
√

1 + γ2β2

1 + γα
< 1.

We have established that ‖JHθ
(x)‖op < 1 for all (θ, x) ∈ Θ × R

n in both cases of the theorem, and we

have contractivity. By Lemma 3.4, x⋆ is, therefore, path differentiable on Θ and the desired formula for the

conservative Jacobian follows.

Remark 3.6 (On the constant γ). The restriction on the values that γ can take in the different cases of

Theorem 3.5 can be relaxed if more information about the operators Aθ and Bθ is specified. For instance, if

Bθ is β-cocoercive rather than β-Lipschitz and Aθ is α-strongly monotone, then Hθ is a contraction for any

γ ∈ (0, 2β). It is important to notice that the choice of γ for implicit differentiation need not match the γ
chosen for solving the problem (indeed, the algorithm to solve the problem and the fixed point equation for

optimality need not match to begin with).

4 Path differentiation of solutions to convex optimization problems

Let Θ ⊂ R
p be a connected open set and consider, for each θ ∈ Θ, the parametric optimization problem of

finding a minimizer

x⋆ := argmin
x∈Rn

f(θ, x) + g(θ, x) (Popt)

where fθ := f(θ, ·) ∈ C1,1(Rn) is convex and gθ := g(θ, ·) is a closed convex proper function from R
n to

R̄. It is well known [7, Theorem 26.2] that this problem is equivalent to finding a zero x⋆ of the sum of two

monotone operators given by the subdifferentials of the functions,

0 ∈ ∇fθ(x
⋆) + ∂gθ(x

⋆).

In this way, the problem of differentiating a solution of (Popt) is equivalent to the problem of the previous

section - differentiating a solution to a monotone inclusion (Pmono). This equivalence motivates the following

assumptions on (Popt), which are analogous to Assumption 3.1 with the conservative Jacobians defined in

(3.3) for the case where the monotone operators Aθ and Bθ are subdifferentials of closed convex proper

functions.

11



Assumption 4.1. Let Θ be a connected open set and let γ > 0. For all θ ∈ Θ, let fθ := f(θ, ·) ∈
C1,1(Rn) and gθ := g(θ, ·) be closed convex proper functions from R

n to R̄ and assume that the prox

operator proxγgθ : Θ×R
n → R

n and the gradient ∇fθ : Θ×R
n → R

n are both path differentiable, jointly

in (θ, x).

A sufficient condition guaranteeing the path differentiability in Assumption 4.1 holds is to assume that f
and g are semialgebraic functions. Under Assumption 4.1, one can consider Aθ = ∂gθ and Bθ = ∇fθ so that

Assumption 3.1 is met and H is the forward-backward algorithm applied to (Popt). Using the conservative

Jacobians defined in (3.3), we have in this case for all (θ, x) ∈ Θ× R
n

JH(θ, x) = {
[
U − γVW V (Idn − γZ)

]
: [U V ] ∈ Jaccproxγgθ

(θ, x− γ∇fθ(x)), [W Z] ∈ Jacc∇fθ
(θ, x)}

Jx,H(θ, x) = Jaccx,proxγgθ
(θ, x− γ∇fθ(x))× (Idn − γJaccx,∇fθ

(θ, x)). (4.1)

For the moment, we do not explicitly assume that the solution x⋆ to (Popt) is unique for each θ ∈ Θ; the

results in later sections will make stronger assumptions that imply the uniqueness of x⋆ as a byproduct. We

shall also provide assumptions on gθ and fθ that will ensure the invertibility condition of Theorem 2.6 holds

at the solution x⋆(θ).

4.1 Solutions of strongly convex problems

Recall that the subdifferential of a strongly convex function is strongly monotone [7, Example 22.4]. As a

consequence of Theorem 3.5 for strong monotonicity, we can then formulate the following analgous result

for (Popt) with strong convexity of fθ or gθ.

Theorem 4.2 (Path differentiability: strongly convex case). Let Assumption 4.1 hold with the conservative

Jacobians given in (4.1) and consider (Popt) for θ ∈ Θ. Denote β > 0 a Lipschitz constant of ∇fθ which

is assumed to be uniform in θ. Assume that either fθ or gθ is α-strongly convex with α > 0 which is also

assumed to be uniform in θ. Then, for γ = α
(α+β)2 , the solution x⋆(θ) is unique for each θ ∈ Θ and path

differentiable on Θ with a conservative Jacobian given by

Jx⋆ : θ ⇒ {(Idn − V (Idn − γZ))−1 (U − γV W )}

where [U V ] range in JaccT (θ, x
⋆(θ)− γ∇fθ(x

⋆(θ))) and [W Z] in Jacc∇fθ
(θ, x⋆(θ)).

Proof. Due to Assumption 4.1, the function res (θ, x) is path differentiable on Θ × R
n; fix an arbitrary

θ ∈ Θ. Since fθ : R
n → R and gθ : R

n → R̄ are closed convex proper functions, ∇fθ and ∂gθ are maximal

monotone operators [7, Example 22.4]. Furthermore, since one of fθ or gθ is α-strongly convex, one of the

operators ∇fθ or ∂gθ is α-strongly monotone and Theorem 3.5 can be applied withAθ = ∂gθ andBθ = ∇fθ,
yielding the path differentiability of x⋆ and the formula for its conservative Jacobian on Θ.

The choice of γ can be relaxed to be any value in
(

0, 2α
(α+β)2

)

without issue, we have simply taken α
(α+β)2

for convenience. In contrast to some prior work, e.g., [34], we allow for both fθ and gθ to be parametrized

functions, rather than just one or the other.
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4.2 Beyond strong convexity?

Strong convexity may be generalized by means of quadratic growth conditions, such as global error bounds

[58] or equivalently KL inequality [17]. On the other hand, quadratic Łojasiewicz inequality, quadratic error

bound, turn out to be equivalent to linear convergence of forward-backward iterations under mild conditions;

one may consult, for instance, [37]. Since contractivity obviously implies linear convergence, it is tempting

to think that it could be somehow inserted into the equivalence chain. This would be a natural path beyond

strong convexity assumptions.

This calls, for instance, for the following question: Does the contractivity of res always hold if f and g
are such that H is linearly convergent to a unique fixed point? An element of motivation is that in the smooth

case, when f is C2 and g = 0, contractivity is indeed equivalent to (4.2) as discussed in Section 2, so that

the questions relates to extension of this equivalence to the nonsmooth setting.

Linear convergence of the forward-backward mapping can simply be formulated as follows: for a fixed

θ ∈ Θ there exists ρ ∈ (0, 1), such that, for all x,

‖H(θ, x)− x⋆(θ)‖ ≤ ρ ‖x− x⋆(θ)‖ . (4.2)

We provide below two examples having this property while being non strongly convex contradicting con-

tractivity of res . The first one has C1,1 objective (g = 0), while the second is nonsmooth Proposition 4.4

(f = 0). This answers negatively to the above question.

Let us start with the differentiable case for which H reduces to a gradient step.

Proposition 4.3 (Linear convergence does not imply contractivity I). There exists a convex semialgebraic

function h ∈ C1,1(R2) with ∇h 1-Lipschitz and ‖x − ∇h(x)‖ ≤ ρ‖x‖ for all x for some ρ ∈ (0, 1), such

that h is not strongly convex locally around 0 and Jacc∇h(0) contains singular matrices.

Proof. Let Q ⊂ R
2 be a closed convex set with 0 ∈ int(Q) and a smooth boundary so that there is a differ-

entiable outer pointing unit normal vector n̂ ∈ C1(bd(Q)). We consider the gauge function ΨQ associated

to Q

ΨQ(x) = inf{λ > 0 : x ∈ λQ}.

The gauge function ΨQ [7, Example 8.36] is the unique positively homogeneous function such that the

sublevel set of level 1 is Q [7, Corollary 14.13]. Furthermore, the sublevel sets of ΨQ of level λ ≥ 0 are

equal to λQ.

For x ∈ R
2, we extend n̂(x) to be the outer pointing normal vector to the set ΨQ(x)Q at x, it defines a

C1 function on R
2. The gradient of ΨQ for x 6= 0 has to be of the form α(x)n̂(x) for a positive function α.

By homogeneity, we have for small t

ΨQ

(

x
(

1 + t
ΨQ(x)

))

−ΨQ(x)

t
= 1 =

〈
x

ΨQ(x)
,∇ΨQ(x)

〉

= α(x)

〈
x

ΨQ(x)
, n̂(x)

〉

from which we obtain

∇ΨQ(x) =
ΨQ(x)

〈x, n̂(x)〉 n̂(x).
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Since n̂ is homogeneous of order zero, so is ∇ΨQ. We have for x 6= 0

Jac∇ΨQ(x) = Jac

(

x 7→ ∇ΨQ

(
x

ΨQ(x)

))

= Jac∇ΨQ(x/ΨQ(x))

(
Idn

ΨQ(x)
− x∇ΨQ(x)

T

ΨQ(x)2

)

.

Now set h(x) = ΨQ(x)
2/2, which is convex and C1 since

∇h(x) = ΨQ(x)∇ΨQ(x)

is a continuous function. We have for x 6= 0

Jac∇h(x) = ∇ΨQ(x)∇ΨQ(x)
T +ΨQ(x)Jac∇ΨQ(x/ΨQ(x))

(
Idn

ΨQ(x)
− x∇ΨQ(x)

T

ΨQ(x)2

)

= ∇ΨQ(x)∇ΨQ(x)
T + Jac∇ΨQ(x/ΨQ(x))

(

Idn − x∇ΨQ(x)
T

ΨQ(x)

)

.

This expression remains bounded which shows that ∇h is Lipschitz and we may assume by rescaling that its

Lipschitz constant is 1. Set for all x, x+ = x−∇h(x), we have using standard arguments in the analysis of

gradient descent on h, whose global minimum is the origin, that

2h(x+) +
∥
∥x+

∥
∥2 ≤ ‖x‖2 .

We have that h is positively homogenoeous of degree 2 so that

h(x+) =
∥
∥x+

∥
∥2

h(x+)

‖x+‖2
=

∥
∥x+

∥
∥2 h

(
x+

‖x+‖

)

≥
∥
∥x+

∥
∥2 min

‖y‖=1
h (y) ,

where the minimum is attained and is positive, call it c > 0. All in all, we have

‖x−∇h(x)‖ ≤ 1√
1 + 2c

‖x‖ ,

so that the constructed function complies with hypotheses of the Lemma, independently of Q.

By definition of the gauge function, the sublevel sets of ΨQ are of the form λQ for λ ∈ R. If h was

strongly convex locally around 0, one would have that its sublevel sets are also strongly convex (positively

curved). This is not the case, for example if Q is a square with smoothed corners. This shows that h is not

necessarily locally strongly convex. To ensure h is semialgebraic, it suffices to take Q a semialgebraic square

with smoothed corners.

We conclude with the following implication: if Jacc∇h(0) contains only nonsingular elements then h is

strongly convex locally around 0. Indeed in this case Jacc∇h(x) contains only positive definite elements

for all x in a convex compact neighborhood of 0, set λ > 0 a lower bound on the minimum eigenvalue in

this neighborhood (which exists by graph closedness and continuity of the smallest eigenvalue), we have by

(Aumann) integration in Definition 2.5 using conservativity of Jacc∇h, for all x, y in this neighborhood,

〈∇h(x)−∇h(y), x− y〉 =
〈∫ 1

0
Jacc∇h((1− t)x+ ty)(x− y)dt, x− y

〉

=

〈∫ 1

0
Jacc∇h((1− t)x+ ty)dt(x− y), x− y

〉

≥ λ ‖x− y‖2 ,
which means strong monotonicity of ∇h, equivalent to strong convexity of h. By contraposition, if h is not

locally strongly convex around 0, then, Jacc∇h(0) contains singular matrices.
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Proposition 4.3 shows that the equivalence between contractivity and (4.2) does not hold in the C1,1 case,

higlighting a gap between C1,1 and C2 functions. This actually extends to the nonsmooth setting with a

proximal point step using convex analysis and Moreau enveloppes.

Proposition 4.4 (Linear convergence does not imply contractivity II). There exists a convex semialge-

braic function g : R2 → R such that g(0) = 0, proxg is path differentiable, and, for some 0 < ρ < 1,
∥
∥proxg(x)

∥
∥ ≤ ρ ‖x‖ for all x, such that, for any convex conservative Jacobian Jproxg , not every element of

Id2 − Jproxg(0) is invertible.

Proof. Let h ∈ C1,1(R2) be a function given by Proposition 4.3, it is convex and semialgebraic with ∇h
1-Lipschitz, path differentiable, and ‖x − ∇h(x)‖ ≤ ρ‖x‖ for some ρ ∈ (0, 1) such that h is not strongly

convex locally around 0 and Jacc∇h(0) contains singular elements. The function h̃ : x 7→ ‖x‖2

2 − h(x) is

convex [7, Theorem 18.15 (vi)] with 1-Lipschitz gradient. Recall that the conjugate of h̃ is h̃∗(x) : x 7→
sup
u

〈x, u〉 − h̃(u). The function g : x 7→ h̃∗(x)− ‖x‖2

2 is convex and semialgebraic, because h̃∗ is 1-strongly

convex and semialgebraic [7, Proposition 10.8]. It satisfies proxg(x) = ∇h̃(x) = x−∇h(x) [7, Corollary

24.5], so that the gradient descent mapping for h with unit step size is equivalent to the prox operator for g.

Thus for all x, ‖proxg(x)‖ = ‖x − ∇h(x)‖ ≤ ρ‖x‖ for some ρ ∈ (0, 1), proxg is path differentiable,

and J∇h := Id2 − Jproxg is a convex conservative Jacobian for ∇h. Finally, by contraposition, Id2 −
Jproxg(0) = J∇h(0) which contains at least one singular elemen by Proposition 4.3 using the fact that

Jacc∇h(0) ⊂ J∇h(0) by convexity of J∇h(0).

Remark 4.5 (On local growth conditions). The result of this section may be refined by considering local

growth conditions, which are sufficient to ensure linear convergence of the forward-backward algorithm as

in (4.2). Most important examples include global error bounds

g(x)−min
z

g(z) ≥ λdist(x, argmin g)2

for some λ > 0 and for all x (see [58] and references therein) as well as global Kurdyka-Łojasiewicz in-

equality

min
v∈∂g(x)

‖v‖ ≥ λ′
√

g(x) −min
z

g(z)

for some λ′ > 0 and for all x (see [17] and references therein). In our setting (coercive, semialgebraic,

unique critical value), these conditions are equivalent and are sufficient for (4.2) to hold true [17]. On the

other hand, (4.2) implies a quadratic Łojasiewicz inequality (KL with exponent 1/2) or a global quadratic

error bound in our setting [37, Proposition 4.19]. Since all these conditions are equivalent the results of this

section actually hold true replacing (4.2) by a quadratic error bound or a quadratic Łojasiewicz inequality

showing a fundamental limit to the extension of Theorem 4.2 beyond strong convexity.

5 Applications to saddle point problems and duality

We demonstrate how to apply the previous sections’ results to several different parametric optimization pro-

blems in which one seeks to differentiate the solution mapping as a function of the parameters θ. In each of

the following subsections, Θ ⊂ R
p is a connected open set on which Assumption 4.1 will be required to hold

for various operators.
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5.1 Differentiating the dual solution of a convex composite problem

Consider the following composite minimization problem

min
x∈Rn

fθ(x) + gθ(Kθx) (5.1)

where, for each θ ∈ Θ, fθ ∈ C1,1(Rn) is a strongly convex function, gθ : R
m → R̄ is a proper closed convex

function, Kθ : R
n → R

m is a surjective linear operator, and x⋆(θ) is the unique solution (the objective is

proper by surjectivity).

The goal is to differentiate the solution x⋆ with respect to θ, for which we assume that ∇fθ and proxγgθ are

path differentiable, jointly in (θ, x), so that Assumption 4.1 holds here. It is then possible to directly apply

Theorem 4.2 to differentiate x⋆ since Assumption 4.1 holds and fθ is strongly convex. However, because of

the coupling between gθ and Kθ in (5.1), computing Jx⋆ through this approach would necessitate computing

proxgθ◦Kθ
, which is nontrivial even when proxgθ is known (unless Kθ is a (semi)orthogonal matrix [30,

Lemma 2.8]).

We can instead use the generalized duality of Fenchel-Rockafellar, which will decouple the linear operator

Kθ from gθ in a way that is especially useful if Kθ is surjective, which we will assume. The dual problem of

(5.1) is given, for each θ ∈ Θ, by

− min
y∈Rm

f∗
θ (−K∗

θy) + g∗θ(y) (5.2)

to which we can apply our results, with f∗
θ (−K∗

θ ·) and g∗θ taking the role of f and g in the assumptions and

theorems. Note that y 7→ f∗
θ (−K∗

θy) is indeed strongly convex. To be explicit, we take T (θ, y) = proxγg∗
θ
(y)

and S(θ, y) = (θ, y + γKθ∇f∗
θ (−K∗

θy)) with H(θ, y) = T (S(θ, y)), so that the fixed point equation we

are considering the dual solution y⋆(θ) to satisfy is

res (θ, y⋆(θ)) = y⋆(θ)− proxγg∗
θ
(y⋆(θ) + γKθ∇f∗

θ (−K∗
θy

⋆(θ))) = 0. (5.3)

Theorem 5.1 (Path differentiability of the dual solution of a composite problem). Consider (5.2) where,

for each θ ∈ Θ, fθ ∈ C1,1(Rn) is α-strongly convex with β-Lipschitz continuous gradient, gθ : R
m → R̄

is a closed convex proper function and Kθ ∈ R
m×n is surjective with singular values in [λ, λ̄] for some

0 < λ ≤ λ̄, uniformly in θ. Then y 7→ f∗
θ (−K∗

θy) is λ2/β strongly convex and has a gradient which is

λ̄2/α-Lipschitz continuous, uniformly in θ.

Assume furthermore that proxγg∗
θ
, ∇f∗

θ and Kθ are path differentiable so that Assumption 4.1 holds with

f∗
θ ◦ [−K∗

θ ] and g∗θ . Then, the unique dual solution y⋆(θ) of (5.2) is path differentiable on Θ with a conser-

vative Jacobian given for all θ ∈ Θ by

Jy⋆ : θ ⇒

{

(Idn − V (Idn − γZ))−1 (U − γV W ) : [U V ] ∈ Jacc1, [W Z] ∈ Jacc2

}

where

Jacc1 := JaccT (θ, y
⋆(θ) + γKθ∇f∗

θ (−K∗
θy

⋆(θ))) and Jacc2 := Jacc∇(fθ◦[−K∗

θ
])(θ, y

⋆(θ)).

and γ is any number in (0, 2λ2/β

(λ2/β+λ̄2/α)
).

Proof. For each θ ∈ Θ, the function g∗θ : R
m → R̄ is a closed convex proper function since gθ is, meanwhile

the function f∗
θ : R

n → R is 1
β -strongly convex and differentiable with 1

α -Lipschitz continuous gradient [7,
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Theorem 18.15(vii)]. The function f∗
θ (−K∗

θy) has gradient −Kθ ◦∇f∗
θ ◦−K∗

θ which is λ̄2

α -Lipschitz contin-

uous because ∇fθ is Lipschitz continuous with constant 1
α and both Kθ and K∗

θ are λ̄-Lipschitz continuous.

To demonstrate that f∗
θ ◦ −K∗

θ is
λ2

β -strongly convex, we have for all y

f∗
θ (−K∗

θy)−
λ2

2β
‖y‖2 =

(

f∗
θ (−K∗

θy)−
1

2β
‖K∗

θ y‖2
)

+

(
1

2β
‖K∗

θ y‖2 −
λ2

2β
‖y‖2

)

.

The first term, f∗
θ (−K∗

θy)− 1
2β‖K∗

θ y‖2, is convex as it is the composition of a convex function f(·)− 1
2β‖·‖2

and a linear map −K∗
θ . Indeed, by 1

β -strong convexity of f∗
θ , the function f∗

θ (·) − 1
2β‖ · ‖2 is necessarily

convex [7, Proposition 10.6]. The second term, 1
2β

(
‖K∗

θy‖2 − λ2‖y‖2
)
, is convex because the smallest

eigenvalue of KθK
∗
θ is λ2. Hence the claimed strong convexity modulus of

λ2

β , justifying the first part of

the theorem claiming regularity of f∗
θ ◦ −K∗

θ . Then, using the assumption that proxγgθ ,∇f∗
θ , and Kθ are

all path differentiable so that Assumption 4.1 holds, we are finally able to apply Theorem 4.2 to (5.2) and its

fixed point formulation (5.3) and the desired results follow.

Remark 5.2 (Path differentiability of the primal solution). We can recover the primal solution from the

dual solution through the equation x⋆(θ) = ∇f∗
θ (−K∗

θy
⋆(θ)), coming from the primal-dual optimality con-

ditions, since ∇f∗
θ is path differentiable. Indeed, the functions proxγg∗

θ
and ∇f∗

θ are path differentiable if

proxγgθ and ∇fθ are assumed to be path differentiable. By the Moreau decomposition [7, Theorem 14.3(ii)]

we can express proxγg∗
θ
(y) = y−proxgθ/γ(y/γ). Meanwhile for ∇f∗

θ , we can invoke the path differentiable

inverse function theorem [16, Corollary 2] with ∇f∗
θ = (∇fθ)

−1, the assumptions of which hold due to the

fact that ∇fθ is path differentiable and f∗
θ is both Lipschitz-smooth and strongly convex.

Example 5.3 (Learning sparsity priors). The problem of learning a sparsity prior can be seen as a bilevel

optimization problem [38, 61, 63] which fits the framework of this subsection. Given some set of training

data {(u1, û1), . . . , (uq, ûq)} where ui is the ground truth for some signal (e.g., an image) and ûi is a noisy

observation of ui, we seek to find an optimal linear operator Kθ ∈ R
s×n, the so-called sparsity prior. The

general form of the problem can be cast as the following bilevel optimization problem,

min
θ∈Rp

q
∑

i=1

1

2
‖ui − xi(θ)‖22 such that, ∀i ∈ {1, . . . , q} , xi(θ) ∈ argmin

xi∈Rn

1

2
‖xi − ûi‖22 + ‖Kθxi‖1

where θ ∈ R
sn with Kθ :=






θ1,1 . . . θ1,n
...

. . .
...

θs,1 . . . θs,n




. Assume that Θ ⊂ R

sn is a connected open set such that,

for all θ ∈ Θ, Kθ is surjective and its singular values are contained in [λ, λ̄] for some 0 < λ ≤ λ̄. Then the

lower level problem matches exactly that of (5.1) with fθ(x) =
q∑

i=1

1
2 ‖xi − ûi‖22 and gθ(x) =

q∑

i=1

1
2 ‖Kθxi‖1,

which we write here as sums even though they are separable in xi. Note that Kθ is obviously not surjective

for all θ ∈ R
sn because of the general parametrization chosen. Instead of fixing the required open set Θ, one

could employ a different parameterization of Kθ with constraints on parameters ensuring that Kθ remains

surjective. Regardless, by assuming surjectivity, Theorem 5.1 applies and we can continue.

The dual of the inner problem, is given, for each i ∈ {1, . . . , q}, by

yi(θ) ∈ argmin
{yi∈Rs:‖yi‖∞≤1}

1

2
‖K∗

θyi − ûi‖22
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which has a fixed point equation

y⋆i = PD(y
⋆
i + γKθ(K

∗
θ y

⋆
i − ûi)),

where PD is the projection onto the ℓ∞ unit ball in R
s, i.e., the mapping whose coordinates are given by

z 7→ sign(z)min(1, |z|) component-wise. Using the notation of Section 3, we have T (θ, yi) = PD(yi) and

S(θ, y) = y⋆i + γKθ(K
∗
θ y

⋆
i − ûi). The primal solution x⋆ can be recovered from the dual solution through

the relationship given in Remark 5.2, for each θ ∈ Θ and i ∈ {1, . . . , q},

x⋆i (θ) = ∇f∗
θ (−K∗

θy
⋆
i (θ)) =⇒ x⋆i (θ) = ûi −K∗

θy
⋆
i (θ).

We emphasize the difference in our approach to those taken in previous works [38, 61, 63]. While [61] relies

on a smoothing process for the ℓ1-norm in the lower level problem, [63] assumes that Kθ is an orthogonal

matrix in contrast to our assumption that Kθ is surjective. In [38], the authors use unrolling on the algorithm

used to solve the lower-level problem rather than implicit differentiation as we do.

5.2 Differentiating the solutions of min-max problems

Consider the following min-max problem

min
x∈X

max
y∈Y

Φθ(x, y) (5.4)

where X ⊂ R
n is closed and convex, and Y ⊂ R

m is convex compact and, for each θ ∈ Θ, Φθ : R
n×R

m →
R is continuous such that −Φθ(x, ·) : Rm → R and Φθ(·, y) : Rn → R are α-strongly convex for each x and

for each y, respectively. Assume also that Φ(·)(x, y) is Lipschitz continuous on Θ for all (x, y) ∈ R
n ×R

m.

The very general form of this problem encompasses min-max problems with nonlinear couplings of the form

considered in [41, 42]. The solution mapping for this problem incorporates the primal and dual variables

together, θ 7→ (x⋆(θ), y⋆(θ)). The optimality condition can be written for each θ ∈ Θ as

(
0
0

)

∈
(
∂xΦθ +NX 0

0 −∂yΦθ +NY

)(
x⋆(θ)
y⋆(θ)

)

where NX and NY denote respectively the normal cones to X and Y . This is a special case of (Pmono) with

Aθ =

(
∂xΦθ +NX 0

0 −∂yΦθ +NY

)

and Bθ ≡ 0. Indeed from strong convexity, for each θ ∈ Θ, Aθ is

α strongly monotone, and from closedness of X and compactness of Y it can be shown that the range of

I +Aθ is Rn × R
m so that Aθ is maximal [69, Theorem 12.12].

For the function Hθ defined in Assumption 3.1 applied to this problem, we have Hθ(x) = RAθ
(x) so that

res (θ, x) = x−RAθ
(x), leading to the following result.

Theorem 5.4 (Path differentiability of min-max solutions). Consider (5.4) where, for each θ ∈ Θ,

−Φθ(x, ·) : Rm → R̄ and Φθ(·, y) : Rn → R̄ are both closed α-strongly convex proper functions. As-

sume that RAθ
is path differentiable so that Assumption 3.1 holds with the conservative Jacobians defined

in (3.3) with γ ∈ (0, 1/α). Then, the solution mapping θ 7→ (x⋆(θ), y⋆(θ)) is unique and path differentiable

on Θ with a conservative Jacobian given for each θ ∈ Θ by

J(x⋆,y⋆) : θ ⇒ {
(
Id(n+m) − [V1 V2]

)−1
U : [U V1 V2] ∈ JaccT (θ, (x

⋆(θ), y⋆(θ)))}.
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Proof. For each θ ∈ Θ, the maximal monotone operator Aθ is α-strongly monotone by the α-strong con-

vexity and α-strong concavity of Φθ(·, y) and Φθ(x, ·) respectively. Using this fact with Assumption 3.1 and

the conservative Jacobians defined in (3.3), we can apply Theorem 3.5 with any β ∈ (0,∞) since Bθ ≡ 0.

In particular, we can take β = (
√
2 − 1)α so that applying Theorem 3.5 requires γ ∈ (0, 1/α). Therefore,

the solution (x⋆(θ), y⋆(θ)) is path differentiable with a conservative Jacobian given by

J(x⋆,y⋆) : θ ⇒ {
(
Id(n+m) − [V1 V2]

)−1
U : [U V1 V2] ∈ JaccT (θ, (x

⋆(θ), y⋆(θ)))}.

5.3 Differentiating the solutions of primal-dual problems

The min-max problem (5.4) from the previous subsection is general in that it does not assume a particular

coupling between x and y. We turn now to primal-dual optimization with linear coupling, a well-known

problem template that was studied, for instance, in [24, 25, 26, 31, 48, 72] and allows to model many differ-

ent problems coming from computer vision and machine learning. Consider the parametrized primal-dual

problem

min
x∈Rn

gθ(x) + max
y∈Rm

〈Kθx, y〉 − f∗
θ (y) (5.5)

where, for all θ ∈ Θ, Kθ ∈ R
m×n is a linear operator and both f∗

θ : R
m → R̄ and gθ : R

n → R̄ are closed

convex proper functions. In contrast to [27, 14], we allow for the functions gθ and f∗
θ to be parametrized by θ,

in addition to the linear operator Kθ. For each θ ∈ Θ, the optimality conditions for a solution (x⋆(θ), y⋆(θ))
to this problem are

Kθx
⋆(θ) ∈ ∂f∗

θ (y
⋆(θ)) and −K∗

θy
⋆(θ) ∈ ∂gθ(x

⋆(θ))

which can be equivalently written as
(
0
0

)

∈
(
∂gθ 0
0 ∂f∗

θ

)

︸ ︷︷ ︸

Aθ

(
x⋆(θ)
y⋆(θ)

)

+

(
0 K∗

θ

−Kθ 0

)

︸ ︷︷ ︸

Bθ

(
x⋆(θ)
y⋆(θ)

)

with Aθ maximal monotone and Bθ maximal monotone and β-Lipschitz for some β = ‖K∗
θ‖op > 0. Despite

the fact that the operator Bθ is not cocoercive, we can still apply the results developed in Section 3 because

it is β-Lipschitz.

Theorem 5.5 (Path differentiability for primal-dual problems). Consider (5.5) where, for each θ ∈ Θ,

gθ : R
n → R̄ and f∗

θ : R
m → R̄ are closed α-strongly convex proper functions and β ≥ ‖Kθ‖op > 0 for

some β > 0. Assume also, for each θ ∈ Θ, that proxgθ and proxfθ are path differentiable with conservative

Jacobians chosen according to (3.3) so that Assumption 3.1 holds with γ ∈ (0, 2α
(α+β)2

). Then the mapping

θ 7→ (x⋆(θ), y⋆(θ)) is unique and path differentiable onΘwith a conservative Jacobian given for each θ ∈ Θ
by

J(x⋆,y⋆) : θ ⇒
{
−[V1 V2]

−1U : U ∈ Jθ,res (θ, x
⋆(θ), y⋆(θ)), [V1 V2] ∈ J(x,y),res (θ, x

⋆(θ), y⋆(θ))
}

where

J(x,y),res : (θ, x
⋆(θ), y⋆(θ)) ⇒

[
Idm − Jaccproxγgθ

(θ, x⋆(θ)− γK∗
θ y

⋆(θ)) −Jaccproxγgθ
(θ, x⋆(θ)− γK∗

θy
⋆(θ))× (−γK∗

θ )

−Jaccproxγf∗
θ

(θ, y⋆(θ) + γKθx
⋆(θ))× (γKθ) Idn − Jaccproxγf∗

θ

(θ, y⋆(θ) + γKθx
⋆(θ))

]

.
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Proof. For each θ ∈ Θ, due to the assumed strong convexity of gθ and f∗
θ , the operator Aθ =

(
∂gθ 0
0 ∂f∗

θ

)

is strongly monotone with some constant α > 0 and, since Kθ is a linear operator, Bθ =

(
0 K∗

θ

−Kθ 0

)

is

maximal monotone and Lipschitz with constant β. Combining this with Assumption 3.1 and the conservative

Jacobians chosen in (3.3), the conditions to apply Theorem 3.5 with γ ∈ (0, 2α
(α+β)2

) are met and the function

θ 7→ (x⋆(θ), y⋆(θ)) is path differentiable. More explicitly, we have for all θ ∈ Θ, (x, y) ∈ R
n × R

m,

H(θ, x, y) =

(
proxγgθ(x− γK∗

θ y)

proxγf∗

θ
(y + γKθx)

)

so that

res (θ, x⋆(θ), y⋆(θ)) =

(
x⋆(θ)
y⋆(θ)

)

−
(
proxγgθ(x

⋆(θ)− γK∗
θy

⋆(θ))
proxγf∗

θ
(y⋆(θ) + γKθx

⋆(θ))

)

.

Using (3.3), the resulting conservative Jacobian for (x⋆(θ), y⋆(θ)) on Θ is

J(x⋆,y⋆) : θ ⇒

{(Idn+m − [V1 V2](Idn+m − γ[Z1 Z2]))
−1 (U − γ[V1 V2]W ) : [U V1 V2] ∈ Jacc1, [W Z1 Z2] ∈ Jacc2}.

where

Jacc1 = JaccT (θ, x
⋆(θ)− γK∗

θy
⋆(θ), y⋆(θ) + γKθx

⋆(θ))

and

Jacc2 = JaccB(θ, x
⋆(θ), y⋆(θ)).

Alternatively, we can write

J(x⋆,y⋆) : θ ⇒ {[V1 V2]
−1 U : U ∈ Jθ,res (θ, x

⋆(θ), y⋆(θ)), [V1 V2] ∈ J(x,y),res (θ, x
⋆(θ), y⋆(θ))}

where

J(x,y),res : (θ, x
⋆(θ), y⋆(θ)) ⇒

[
Idm − Jaccproxγgθ

(θ, x⋆(θ)− γK∗
θ y

⋆(θ)) −Jaccproxγgθ
(θ, x⋆(θ)− γK∗

θy
⋆(θ))× (−γK∗

θ )

−Jaccproxγf∗
θ

(θ, y⋆(θ) + γKθx
⋆(θ))× (γKθ) Idn − Jaccproxγf∗

θ

(θ, y⋆(θ) + γKθx
⋆(θ))

]

.

As in [14] and [27], we have assumed that both gθ and f∗
θ are strongly convex; in contrast to [14] we do

not assume that proxgθ or proxf∗

θ
are differentiable at any specific points, nor do we assume that gθ or fθ are

twice differentiable as in [27].

In [27] the authors consider using a bilevel optimization problem to learn the best discretization of the

total variation for inverse problems in imaging. The proposed bilevel problem was further studied in [14]

where the authors noted the theoretical difficulties in differentiating the solution to a nonsmooth optimization

problem with respect to some parameters. Indeed, they have no guarantees that their algorithm will avoid

the set of points where the prox operator is not differentiable, nor can they show that the solutions will be

points of differentiability. On the other hand, so long as the prox operator is path differentiable, our results

apply despite these obstacles, and one can compute implicit conservative gradients.
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5.4 Automatic differentiation of algorithms

The results of Theorem 3.5 (in particular, the fact that res is contractive) imply that the forward-backward

splitting algorithm applied to solve monotone inclusions of the form in the theorem will converge linearly

for γ ∈
(

0, 2α2

(α+β)2

)

. We illustrate our results with implicit differentiation which only requires the solution

of the inclusion problem and does not depend on the algorithm used to solve it. Yet, it is worth emphasizing

that under Assumption 3.1, the contractivity property in Definition 3.3 is sufficient to apply the convergence

result of [19] to the forward-backward algorithm in our context. More precisely, Definition 3.3 is precisely

the same as [19, Assumption 1] applied to the forward-backward algorithm to solve (1.1). Therefore, in addi-

tion to path differentiability of the solution map, assumptions of Theorem 3.5 provide a sufficient condition

to ensure that automatic differentiation of the forward-backward algorithm generates a sequence of conser-

vative jacobians such that conservativity is preserved asymptotically: the limits of iterative differentiation

conservative jacobians form a conservative jacobian for the solution of (1.1) [19, Corollary 1 and 2].

As a consequence, Theorem 3.5 implies that the iterative derivative convergence results of [19] apply to

the forward-backward algorithm in all special cases described in the paper: Theorem 4.2 for strongly convex

optimization problems, Theorem 5.1 for solutions to primal problems obtained from their dual, Theorem 5.4

for general strongly monotone saddle point problems and Theorem 5.5 for strongly monotone structured

saddle point problems.

6 Conclusion

We have presented sufficient conditions in the form of strong monotonicity, under which the path differ-

entiability of the solution to a monotone inclusion problem is satisfied. As special cases, we have derived

conditions that ensure path differentiability of solutions to a large class of nonsmooth parametric convex op-

timization problems - those which can be written as the sum of two parametric convex functions, one smooth

and one possibly nonsmooth. By expressing the monotone inclusions as equivalent fixed point equations

using the resolvent mapping, we were able to leverage path differentiability and the recently developed nons-

mooth implicit path differentiation theorem of [16, Corollary 1] to deduce regularity of x⋆. Most importantly,

we were able to characterize and give a formula for a conservative Jacobian of x⋆ with respect to θ using

only the Clarke Jacobians associated with the resolvent mapping RγAθ
and the operator Bθ.

While this work is primarily theoretical, our results also lend insight to practical applications, e.g., the de-

sign of implicit neural network layers defined using convex optimization problems. Ensuring that an implicit

layer is compatible with training is an important part of implicit layer design and, consequently, ensuring

the invertibility condition is a necessary part of guaranteeing that training will work (c.f., [16, Section 5]).

Besides this, our results highlight the relevancy of the typical strong convexity assumption made on the

lower-level problem of a bilevel optimization problem to ensure implicit conservative Jacobians will exist

when this lower-level problem is nonsmooth.

It is important also to understand the dependence of x⋆ on the step size γ taken in the definition of H . In

the smooth case, where Aθ ≡ 0 and Bθ = ∇fθ for some twice differentiable convex function fθ, there is no

dependence on γ which is to be expected since 0 = Bθ(x
⋆) can be differentiated directly without introducing

γ. We delay exploring such questions for future work.

At a few points in the paper, we encounter objects which are not canonical or which can be chosen in

multiple ways. We collect here these instances and elaborate on why we’ve chosen the way we have and the

possible consequences of choosing to formulate things differently.
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Choice of H Our selection for H in res can be attributed to the additive structure of Aθ + Bθ and the

Lipschitz continuity of Bθ. There are alternatives, for instance, considering the resolvent directly RAθ+Bθ
or

considering Douglas-Rachford, Peaceman-Rachford, etc, and extensions of this flavor are a matter for future

research.

Choice of JH We use multiplication of Clarke Jacobians in the formula for JH given in (3.3) because it

allows to obtain sufficient condition on problem data in (Pmono) to ensure the contractivity of the residual

equation. On the other hand, all the corollaries of the paper would hold similarly with arbitrary conservative

Jacobians for RγA and B combined in a similar way, provided that this is compatible with the contractivity in

Definition 3.3. However, in this case, the contractivity defined in Definition 3.3 has to be explicitly assumed,

not deduced from properties of problem data, because conservative Jacobians can be changed on a set of

measure zero.

Choice of Θ The set Θ could be the whole space Rp or possibly a subset, for example if one of the operators

Aθ or Bθ is not defined for every θ ∈ R
p, or if some of conditions (Lipschitz continuity, strong monotonicity,

etc) can only be ensured to hold on some subset. The set Θ can also be taken as a neighborhood of some

point θ̄ ∈ R
p of interest, in which case it’s possible to obtain local versions of all of our later results. For

these local versions, we need only to assume that the contractivity in Definition 3.3 holds at the single point

θ̄, from which it follows that there is some open neighborhood Θ on which the inequality must hold.
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A Appendix

The next lemma is a general result that gives a bound on the Lipschitz constant of the forward mapping Id − γB in

terms of the Lipschitz constant β of the maximal monotone operator B. This bound is slightly better than the more

obvious bound 1 + γβ, and this improvement is crucial to prove Theorem 3.5.

Lemma A.1. Let B : Rn → R
n be a β-Lipschitz continuous maximal monotone operator, then the map Id − γBθ is√

1 + γ2β2-Lipschitz continuous.

Proof. For all x, y ∈ R
n,

‖(Id− γB)(x)− (Id− γB)(y)‖2 = ‖x− y‖2 − 2γ 〈x− y,B(x)− B(y)〉 + ‖γ(B(x)− B(y))‖2

≤ ‖x− y‖2 + γ2 ‖B(x)− B(y)‖2

≤ (1 + γ2β2) ‖x− y‖2

where we have used the monotonicity of B followed by the β-Lipschitz continuity of B for the first and second inequal-

ities, respectively. Thus, taking square roots, the mapping Id− γB is
√

1 + γ2β2-Lipschitz continuous.
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