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Abstract

Diffusion models (DMs) excel in image generation but suffer from slow inference
and training-inference discrepancies. Although gradient-based solvers for DMs
accelerate denoising inference, they often lack theoretical foundations in informa-
tion transmission efficiency. In this work, we introduce an information-theoretic
perspective on the inference processes of DMs, revealing that successful denoising
fundamentally reduces conditional entropy in reverse transitions. This principle
leads to our key insights into the inference processes: (1) data prediction parameter-
ization outperforms its noise counterpart, and (2) optimizing conditional variance
offers a reference-free way to minimize both transition and reconstruction errors.
Based on these insights, we propose an entropy-aware variance optimized method
for the generative process of DMs, called EVODiff, which systematically reduces
uncertainty by optimizing conditional entropy during denoising. Extensive experi-
ments on DMs validate our insights and demonstrate that our method significantly
and consistently outperforms state-of-the-art (SOTA) gradient-based solvers. For
example, compared to the DPM-Solver++, EVODiff reduces the reconstruction
error by up to 45.5% (FID improves from 5.10 to 2.78) at 10 function evaluations
(NFE) on CIFAR-10, cuts the NFE cost by 25% (from 20 to 15 NFE) for high-
quality samples on ImageNet-256, and improves text-to-image generation while
reducing artifacts. Code is available at https://github.com/ShiguiLi/EVODiff.

1 Introduction

Diffusion models (DMs) [1–3] have emerged as powerful generative models, achieving success in
tasks such as image synthesis and editing [4, 5], text-to-image generation [6], voice synthesis [7],
and video generation [8]. DMs generate high-fidelity samples by simulating a denoising process that
iteratively refines noisy inputs through diffusion inference guided by a trained model. The model is
trained via a forward process that corrupts data with Gaussian noise across multiple scales.

Despite their impressive performance, DMs face the challenge of a slow refinement process and a
discrepancy between training and inference [2, 9, 10]. To address this, training-free inference methods
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Figure 1: Illustration of conditional entropy reduction during diffusion model inference. Our EVODiff
(blue) achieves lower conditional entropy in reverse transitions compared to DDIM (gray).

reformulate the denoising process as the solution to an ODE using numerical techniques. Such
examples include PNDM [11], EDM [12], DPM-Solver [13], DEIS [14], SciRE-Solver [15], UniPC
[16], and DPM-Solver-v3 [17]. Despite their empirical success, these ODE-focused methods lack an
information-theoretic foundation. A central limitation is their neglect of information transmission
efficiency. This theoretical gap suggests that the principles governing inference remain underexplored.

Our work addresses this gap by developing an information-theoretic framework for diffusion inference
centered on conditional entropy dynamics. In this view, the forward diffusion process systematically
increases conditional entropy as noise is added, while the reverse process seeks to recover lost
information through denoising. Unlike gradient-based ODE solvers that primarily focus on numerical
approximation, our framework reveals that effective denoising fundamentally operates by reducing
conditional entropy during reverse transitions, a principle largely overlooked by existing methods.
This insight not only guides algorithm design, but also offers a unified theoretical explanation of the
varying inference efficiency across successful strategies, rooted in their entropy reduction efficiency.

Building on this framework, we propose EVODiff, an entropy-aware method that reduces conditional
entropy by optimizing the conditional variance of each denoising iteration. Our approach provides
three key technical advantages: (1) it enhances information transmission between successive denoising
steps through entropy-reduction optimization; (2) it accelerates convergence by steering samples
towards high-probability regions of the data distribution, drawing on principles from statistical physics
[18, 19]; (3) it minimizes both transition errors and reconstruction errors through reference-free
variance optimization (detailed in Section 3). These advantages lead to our main contributions:

• We introduce an information-theoretic framework for diffusion inference, demonstrating that
gradient-based methods enhance inference by reducing conditional entropy. Our analysis
provides the first theoretical evidence for why data prediction parameterization outperforms
its noise counterpart, theoretically grounding previous empirical findings [13, 20].

• Guided by our insights, we propose EVODiff, an entropy-aware variance optimized diffusion
inference method. Fundamentally, it differs from existing ODE-based approaches by directly
targeting information recovery, not just approximating an ODE trajectory. This approach
reduces both transition and reconstruction errors via principled variance optimization.

• Extensive experiments validate our insights and demonstrate significant improvements in
inference. EVODiff reduces FID by 45.5% on CIFAR-10 (from 5.10 to 2.78 at 10 NFE)
and 43.4% on LSUN-Bedrooms (from 13.97 to 7.91 at 5 NFE) over strong solvers like
DPM-Solver++ and UniPC, while also mitigating visual artifacts in text-to-image generation.

2 Background

Let d denote the dimension of the data. The forward process of DMs defines a Markov sequence
{xt, t ∈ [0, T ]}, where x0 ∈ Rd is the starting state drawn from the data distribution q(x0) [1, 2].
This sequence is pushed forward with the transition kernel: q (xt | x0) = N (xt;αtx0, σ

2
t I), where

αt and σt are the noise schedules and α2
t /σ

2
t is the signal-to-noise ratio (SNR). This transition kernel

2



DDIM DPM-Solver UniPC DPM-Solver-v3 EVODiff (Ours)

Gradient-based ✗ ✓ ✓ ✓ ✓
Bias term (need x̃0) ✗ ✗ ✗ ✓ ✗

Variance term ✓ ✓ ✓ ✓ ✓
Entropy-aware ✗ ✗ ✗ ✗ ✓
Table 1: Strategies employed for optimizing reconstruction error in different methods.

is reformulated as the stochastic differential equation (SDE) [3]: dxt = f(t)xt dt+ g(t)dωt, x0 ∼
q (x0), where ωt denotes a Wiener process, f(t) := d logαt

dt , g2(t) :=
dσ2
t

dt − 2d logαt
dt σ2

t [21]. In the
denoising inference process, the reverse-time SDE of the forward diffusion process takes the form:

dxt =
[
f(t)xt − g2(t)∇x log q (xt)

]
dt+ g(t)dωt, (1)

where ωt represents a Wiener process. The inference generative process based on diffusion (or
probability flow) ordinary differential equation (ODE) [3] is governed by dxt =

(
f(t)xt −

1
2g

2(t)∇x log q (xt)
)
dt, where the marginal distribution q (xt) of xt is equivalent to that of xt in

the SDE of Eq. (1). The model is generally trained by minimizing the mean squared error (MSE) [2]:

Ex0, ϵ, t[w(t) ∥ϵθ (αtx0 + σtϵ, t)− ϵ∥22], (2)

where α2
t + σ2

t = 1, x0 ∼ q (x0), ϵ ∼ N (0, I), t ∼ U(0, T ), and w(t) is a weight function w.r.t. t.

Diffusion ODE. Based on the relationship of ϵθ (xt, t) = −σt∇x log q (xt) [3], samples can be
generated by the diffusion inference process from T to 0 defined diffusion ODE:

dxt
dt

= f(t)xt +
g2(t)

2σt
ϵθ (xt, t) , xT ∼ N

(
0, σ̂2I

)
. (3)

By xθ (xt, t) := (xt − σtϵθ (xt, t))/αt [21], the data prediction ODE can be expressed as follows

dxt
dt

=
(
f(t) +

g2(t)

2σ2
t

)
xt − αt

g2(t)

2σ2
t

xθ (xt, t) . (4)

Remark 2.1. A unified solution formula for both ODE formulations in (3) and (4) can be expressed as

f(xt)− f(xs) =

∫ κ(t)

κ(s)

dθ
(
xψ(τ), ψ(τ)

)
dτ. (5)

where ψ (κ(t)) = t. When using noise prediction, we have dθ = ϵθ, f(xt) := xt
αt

and κ(t) := σt
αt

;
when using data prediction, we have dθ = xθ, f(xt) := xt

σt
and κ(t) := αt

σt
[22, 15].

Gradient-based Inference. Denote hti := κ(ti−1)− κ(ti) and ι(xti−1
) := f(xti−1

)− f(xti). By
substituting the Taylor expansion of dθ

(
xti−1

, ti−1

)
at τti into Eq. (5), we can obtain ι(xti−1

) =∑n
k=0

hk+1
ti

(k+1)!d
(k)
θ (xti , ti) +O(hn+2

ti ), where d
(k)
θ

(
xψ(τ), ψ(τ)

)
:=

dkdθ(xψ(τ),ψ(τ))
d τk

as k-th order
total derivative of dθ

(
xψ(τ), ψ(τ)

)
w.r.t. τ . When n = 1, this iteration is equivalent to DDIM [9]:

f(x̃ti−1
) = f(x̃ti) + htidθ (x̃ti , ti) . (6)

where x̃t depends on the type of dθ. For gradient-based inference, a widely used technique is the finite
difference (FD) method [23] as follows: d(k+1)

θ (xt, t) =
1
ĥt

(
d
(k)
θ (xl, l)− d

(k)
θ (xt, t)

)
+O(ĥt).

Then, a gradient-based diffusion inference can be derived by using the FD method as follows:

f(x̃ti−1
) = f(x̃ti) + htidθ (x̃ti , ti) +

1

2
h2tiFθ(si, ti), (7)

where Fθ(si, ti) := (dθ (x̃si , si)− dθ (x̃ti , ti)) /ĥti denotes the forward FD, ĥti := κ(si)− κ(ti).

3 Conditional Entropy Reduction in Diffusion Inference

Conditional Entropy in Information Transfer. During DM inference, each iteration reduces
uncertainty in intermediate representations via structured denoising. From an information-theoretic
view, the information gain between successive states is quantified by the mutual information [24]:

Ip(xti ;xti+1
) = Hp(xti)−Hp(xti |xti+1

), (8)
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Figure 2: Quantitative results of FID ↓ show that efficient entropy reduction (RE) method consistently
improves image quality compared to FD-based method in Eq.(7) across various ablation scenarios.

where Hp(xti) is the entropy of state xti and Hp(xti |xti+1
) is the conditional entropy of xti given

xti+1
. A lower Hp(xti |xti+1

) results in a higher Ip(xti ;xti+1
), which suggests that a well-designed

method effectively utilizes the information from xti+1
to refine the estimate of xti .

Conditional Variance and Conditional Entropy. We denote p(xti |xti+1
,x0) as p(xti |xti+1

), and
Var(xti |xti+1

) as the conditional variance Var(xti |xti+1
,x0) for brevity. In DMs [2, 3], the reverse

transition p(xti |xti+1
,x0) is commonly approximated as a Gaussian distribution under the Markov

assumption, i.e., p(xti |xti+1
) ≈ N (µti ,Σti), simplifying both model training and theoretical

analysis [21, 25, 26, 12]. Accordingly, the conditional entropy Hp(xti |xti+1
) simplifies to:

Hp(xti |xti+1) ≈ C + 1/2 · log det(Var(xti |xti+1)), (9)

where C = 1/2 · d(log 2π + 1). Thus, Hp(xti |xti+1
) is intrinsically tied to its conditional variance:

Hp(xti |xti+1
) ∝ log det(Var(xti |xti+1

)). (10)

This indicates that minimizing conditional variance directly reduces conditional entropy.

Reconstruction Error and Conditional Variance. In the forward process, q(xt) approaches a
standard Gaussian as t increases, but q(xt|x0) remains structured around scaled versions of x0.
Since Hq(xt|x0) ≤ Hq(xt), information about x0 persists in the modeled xt, and the inference
process seeks to recover it. Let µti|ti+1

= Eq[xti |xti+1
]. The MSE between the inference states and

its posterior mean is Eq[∥xti − µti|ti+1
∥2] = Tr(Varq(xti |xti+1

)). Leveraging the connection with
conditional variance, under the isotropic assumption commonly used in DMs, we obtain:

minHq(xti |xti+1
)⇔ minEq[∥xti − µti|ti+1

∥2]. (11)

We now decompose the reconstruction error between xti and x0 using the law of total expectation.
Proposition 3.1. Note that xti − x0 = (xti − µti|ti+1

) + (µti|ti+1
− x0), we have

Eq
[
∥xti − x0∥2

]
= Eq

[
∥xti − µti|ti+1

∥2
]

︸ ︷︷ ︸
Variance term

+Eq
[
∥µti|ti+1

− x0∥2
]

︸ ︷︷ ︸
Bias term

. (12)

where details of this reconstruction error decomposition are provided in Appendix C.1.

This decomposition reveals two distinct inference approaches for reducing the reconstruction error: (1)
minimizing the conditional variance term directly; and (2) optimizing the bias error term with the prior
x0, which is often approximated by deterministic DM samplers. Although the total reconstruction
error includes both the variance and bias terms, optimizing conditional variance becomes the main
actionable mechanism, since we do not often have access to the desired x0 during inference. Thus,
optimizing conditional variance is central to inference; various methods are summarized in Table 1.

Variance-Driven Conditional Entropy Analysis. We demonstrate how entropy reduction effectively
steers samples toward the target distribution, supported by both theory and empirical evidence.
Theoretically, DM denoising functions as an entropy reduction mechanism grounded in Langevin
dynamics [19] and non-equilibrium thermodynamics [18]. This principle dictates that more efficient
entropy reduction will accelerate convergence by steering samples toward high-probability regions
of the target distribution. Figure 1 visually illustrates this, showing the trajectories of DDIM versus
our gradient-based inference. Further empirical evidence is presented in Figure 2, which details an
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Algorithm 1 EVODiff: Optimizing Denoising Variance of Diffusion Model Inference.

Require: initial xT , time schedule {ti}Ni=0, model xθ.
1: xtN ← xT , hti := κ(ti−1)− κ(ti), rlogSNR(i) :=

log κ(ti)−log κ(ti+1)
log κ(ti−1)−log κ(ti)

.

2: Denote g(xti) :=
σti−1

σti
xti + σti−1htixθ (xti , ti). # Euler’s or DDIM’s iteration.

3: for i← N to 1 do
4: xti ← g(xti+1

).

5: xti−1
← g(xti) + σti−1

h2
ti

2 Bθ(ti, li).
6: Bθ(ti)←

(
1− ηi

2

)
Bθ(si, ti) +

ηi
2 Bθ(ti, li), where ηi is refined by Eq. (25).

7: xti−1
← g(xti) + σti−1

h2
ti

2ζi
Bθ(ti), where ζi is refined by Eq. (25).

8: end for
Ensure: x0.

ablation study on CIFAR-10 and CelebA-64 comparing our entropy reduction-focused (RE) method
with traditional FD-based gradients.

Our analysis reveals that gradient-based methods excel at driving entropy reduction by optimizing
conditional variance, which efficiently guides noisy states toward the desired distribution. For
theoretical tractability, we assume independence between estimated noise at different timesteps,
in line with DDPM’s training objective of independent MSE minimization. While neural network
parameter-sharing during training could introduce dependencies, prior works like [2, 9] justify this
surrogate by showing that these dependencies have a negligible performance impact.

We identify two sources of conditional entropy in the reverse transition of DMs: the inference path
uncertainty (e.g., from ODE/SDE solvers) and the model’s own intrinsic uncertainty. While simple
ODE-solver paths address the former, they may not effectively reduce the entropy contributed by the
model. We therefore propose an approach that moves beyond these simple paths to target the total
conditional entropy. From this perspective, we first derive Proposition 3.2 (Proof in Appendix C.2).

Proposition 3.2. The gradient-based inference in Eq. (7) can reduce conditional entropy more
efficiently than the first-order inference in Eq. (6) when hti

ĥti
∈
[
1,

4·Var(ϵθ(x̃ti ,ti)

Var(ϵθ(x̃si ,si)+Var(ϵθ(x̃ti ,ti)

]
.

This shows that gradient-based inference can achieve larger reductions in uncertainty when the step
size ratio is appropriately chosen. A practical interval for Proposition 3.2 is discussed in Remark C.1.

Furthermore, we identify that solvers like DPM-Solver [13] and the Heun iterations in EDM [12] can
be understood through conditional entropy reduction, with details in the Appendix C.3.

Proposition 3.3. The acceleration mechanisms of DPM-Solver and the Heun iterations in EDM can
be unified and explained as specific implementations of the conditional entropy reduction framework.

Finally, we theoretically establish why denoising iterations using data prediction perform better than
those using noise prediction. The proof is provided in Appendix C.5.

Theorem 3.4. Data prediction parameterization reduces reconstruction errors more effectively than
its noise counterpart. Under independence assumptions, it also reduces conditional entropy.

In summary, we provide a variance-driven conditional entropy analysis for diffusion inference, which
theoretically explains the superior performance of gradient-based inference and data prediction
parameterization. In particular, Theorem 3.4 demonstrates that data parameterization, by directly
targeting the data distribution, avoids the error-prone chain of ϵt 7→ xt 7→ x0.

4 Optimizing Diffusion Model Inference via Entropy-aware Variance Control

4.1 Denoising Variance Analysis for Gradient-based Inference

Our focus is on multi-step iterations using data parameterization, which has shown superiority through
the theoretical result in Theorem 3.4 and prior empirical evidence from [13, 20].
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Figure 3: Sample comparison of our method vs. baseline using the pre-trained EDM on CIFAR-10.

Note that f(xt) = xt
σt

for the ODE for data prediction defined in Eq. (5), ι(xti−1
) =

xti−1

σti−1
− xti

σti
.

Formally, the multi-step iteration can be written as:
xti−1

σti−1

− xti
σti

= htixθ (xti , ti) +
1

2
h2tiBθ(ti, ti+1), (13)

where Bθ(ti, ti+1) := (xθ(xti , ti) − xθ(xti+1
, ti+1))/hti+1

denotes the backward FD. In this
iteration, the smaller step size |hti | compared to |hti − hti+1

| in the single-step case (Appendix C.6)
reduces the conditional entropy, offering greater potential to improve the denoising process.

Denote ζ̄i = (1− ζi). A straightforward improvement for Eq. (13) can be formulated as follows:
xti−1

σti−1

− xti
σti

= htixθ (xti , ti) +
1

2
h2tiBθ(ti, li), (14)

where xθ(xli , li) := ζixθ(xti , ti) + ζ̄ixθ(xti+1
, ti+1) represents a linear interpolation. Similarly,

the implicit approach is:
xti−1

σti−1
− xti

σti
= htixθ(xti , ti) +

1
2h

2
tiBθ(si, ti), where xθ(xsi , si) :=

ζixθ(xti−1
, ti−1) + ζ̄ixθ(xti , ti). Note that these two improvement approaches can be unified as

xti−1

σti−1

− xti
σti

= htixθ (xti , ti) +
1

2
h2tiζiB̄θ(ti;ui), (15)

where B̄θ(ti;ui) = Bθ(si, ti) when ui = si, and B̄θ(ti;ui) = Bθ(ti, li) when ui = li.
Remark 4.1. The RE-based multi-step iterations in Eq. (15) reduce the conditional entropy of iteration
in Eq. (13) by leveraging model parameters from low-variance regions.

We provide the convergence guarantees for the RE-based multi-step iteration described in Eq. (15).
Theorem 4.2. If xθ (xt, t) satisfies Assumption D.1, the RE-based multi-step iteration constitutes a
globally convergent second-order iterative algorithm. The proof is provided in Appendix D.2.

However, a key question arises: how should ζi and ĥti be determined? As xθ (xti , ti) is predict the
clean data x0 from the noisy data xti , we present a remark for ideal cases.
Remark 4.3. If Var (xθ (xti , ti)) ∝ σ2

ti , the variance minimization can be achieved by setting
ζi = σ2

ti−1
/(σ2

ti + σ2
ti−1

) for xθ (xsi , si) and ζi = σ2
ti/(σ

2
ti + σ2

ti+1
) for xθ (xli , li).

Furthermore, we can improve the iteration of Eq. (13) by incorporating Bθ(ti, si) and Bθ(si, ti):
xti−1

σti−1

− xti
σti

= htixθ (xti , ti) +
1

2
h2ti ((1− ηi)Bθ(si, ti) + ηiBθ(ti, li)) , (16)

where ηi determines the gradient term variance. Therefore, from the lens of conditional entropy
reduction, we can establish an optimization objective to directly minimize this variance.

4.2 Optimizing Denoising Variance with Evolution State Differences

We observe that the conditional variance in gradient-based iterations can be composed of two critical
components: the variance of the gradient estimation term itself and the variance between the gradient

6



5 10 15 20 25 35
NFE

2.0

2.5

3.03.1

4.0

5.0

6.0

8.0

FI
D

FID > 8 clipped
ImageNet 64×64

Heun
DPM-Solver++
UniPC_bh1
UniPC_bh2
EvoDiff

810
20
30
40
50
60

5 10 15 20 25 35
NFE

2.0

3.0

4.0

5.0

6.0

7.0
7.5

FI
D

15 20 25 35
2.4

2.6

2.8

3.0 Detail View (2.4-3.0 FID)

FFHQ-64×64
Heun
DPM-Solver++
UniPC_bh1
UniPC_bh2
EvoDiff

Figure 4: FID ↓ scores for gradient-based inference methods on ImageNet-64 and FFHQ-64.

term and the first-order term. Specifically, the unified iteration in Eq. (15) can be rewritten as:

xti−1

σti−1

− xti
σti

= hti

((
1∓ ζi

2

hti
hµi

)
xθ (xti , ti)±

ζi
2

hti
hµi

xθ (xµi , µi)

)
. (17)

As xθ (xµi , µi) and xθ (xti , ti) are known in multi-step iterative mechanisms, the Var(xti−1 |xti) is
controlled by the value of ζi. Inspired by Eq. (17), we observe that ζi balances the variance between
the gradient term and the first-order term. By harmonizing their statistical characteristics, we can
efficiently reduce the conditional variance. To achieve this, we define G(ζi) = (1− ζi)xθ (xti , ti) +
ζixθ (xµi , µi) to balance the variance between two terms. Moreover, the variance of the gradient
term itself should be balanced by ηi, as we should optimize ηi in Eq. (16).

Refining ζi with Evolution State Differences. Our goal is to refine ζi using the available information
at current step. As discussed above, we can optimize ζi to control the conditional variance by
formulating an objective involving G(ζi). On the one hand, we can rewrite the iteration in Eq. (17) as

x̂1,ti =
σti
σti−1

xti−1 − σtihtiG(ζi). (18)

Notice that x̃ti in Eq. (18) is determined by ζi. On the other hand, we can consider xti−1 as a starting
point and perform an inverse iterative from ti−1 to ti to approximate xti as follows:

xti
σti
−

xti−1

σti−1

=

∫ κ(ti)

κ(ti−1)

xθ
(
xψ(τ), ψ(τ)

)
dτ. (19)

Similar to the Eq. (13), this inverse estimation of Eq. (19) is as follow:

x̂2,ti =
σti
σti−1

xti−1 − σtihtixθ
(
xti−1 , ti−1

)
+ σti

1

2
h2tiBθ(si, ti). (20)

Drawing from equations (18) and (20), we can determine ζi by minimizing the differences between
two estimations. Then, the optimization objective for ζi is defined as follows:

min
ζi>0

L1(ζi) := ∥(x̂1,ti − xti) + (x̂2,ti − xti)∥ , (21)

Directly solving this objective is challenging, as the optimal xti is unknown. Fortunately, as
L1(ζi) ≤ ∥x̂1,ti + x̂2,ti∥+ ∥2xti∥, we observe that ∥2xti∥ is independent of the ζi. Then, we can
use x̃ti to replace xti as when optimizing L1(ζi). Denote P (xti−1

) := x̂2,ti +
σti
σti−1

xti−1
− 2x̃ti

for brevity. Then, L1(ζi) can be rewritten as: L1(ζi) = ∥P (xti−1)− σtihtiG(ζi)∥.
Lemma 4.4. When the constraint on ζi is relaxed, min

ζi
L2
1(ζi) possesses the closed-form solution:

ζ∗i = −(vecT (Di)vec(P̃i))
/
(σtihtivecT (Di)vec(Di)), (22)

where P̃i := P (xti−1
)−σtihtixθ (x̃ti , ti),Di := xθ

(
x̃ti−1

, ti−1

)
−xθ (x̃ti , ti), and vec(·) denotes

the vectorization operation. The proof is provided in Appendix D.3.
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Table 2: Quantitative results of FID ↓ and IS ↑ scores for gradient-based methods on ImageNet-256,
FFHQ-64, and CIFAR-10. The results are evaluated on 10k and 50k samples for various NFEs. The
DPM-Solver++ is our baseline. Error optimization strategies across methods are shown in Table 1.

Model Method/NFE Entropy-aware? 5 8 10 12
FID↓ IS↑ FID↓ IS↑ FID↓ IS↑ FID↓ IS↑

CIFAR-10
EDM, 50k

logSNR-time

Heun × 270.75 1.87 52.84 6.93 22.82 8.72 10.74 9.37
DPM-Solver++ × 27.96 7.47 8.40 8.80 5.10 9.14 3.70 9.36

UniPC × 27.03 7.69 7.67 9.07 3.98 9.40 2.76 9.62
EVODiff (our) ✓ 17.84 7.89 3.98 9.37 2.78 9.64 2.30 9.80

Model Method/NFE Entropy-aware? 5 10 15 20
FID↓ IS↑ FID↓ IS↑ FID↓ IS↑ FID↓ IS↑

FFHQ-64
EDM, 50k
edm-time

Heun × 347.09 2.29 29.92 3.03 9.95 3.19 4.58 3.34
DPM-Solver++ × 25.08 2.99 6.81 3.27 3.80 3.29 3.00 3.35

UniPC × 28.87 3.20 6.65 3.25 3.40 3.28 2.69 3.37
EVODiff (our) ✓ 19.65 3.18 5.31 3.32 3.04 3.35 2.66 3.38

Model Method/NFE Reference-based? 5 10 15 20
FID↓ IS↑ FID↓ IS↑ FID↓ IS↑ FID↓ IS↑

ImageNet-256
ADM, 10k

uniform-time

DPM-Solver++ × 16.62 98.07 8.68 143.59 7.80 152.01 7.51 153.89
UniPC × 15.37 104.41 8.40 146.95 7.71 152.16 7.47 154.30

DPM-Solver-v3 ✓ 14.92 105.85 8.14 146.82 7.70 153.79 7.42 154.35
EVODiff (our) × 13.98 110.79 8.14 147.53 7.48 154.78 7.25 157.79

Refining ηi by Balancing Gradient Errors. Our goal is to refine ηi using the available information at
current step. Denote ∆̃g

ti = (1−ηi)Bθ(si, ti)+ηiBθ(ti, li),E(ti−1, ti) := Bθ(si, ti)−x(1)
θ (xti , ti)

as gradient error. For balancing this errors, we formulate the following optimization objective:

min
ηi∈(0,1]

L2(ηi) := ∥(1− ηi)E(ti−1, ti) + ηiE(ti, ti+1)∥ . (23)

We can rewrite L2(ηi) as L2(ηi) = ∥∆̃g
ti − x

(1)
θ (xti , ti) ∥. Denote L2s(ηi) := ∥∆̃g

ti∥. Then,
L2(ηi) ≤ L2s(ηi) + ∥x(1)

θ (xti , ti) ∥, where x(1)
θ (xti , ti) can be regarded as a specific constant term

independent of the target ηi. Thus, the ηi can be obtained by optimizing the tractable L2s(ηi).

Lemma 4.5. When the constraint on ηi is relaxed, min
ηi
L2
2s(ηi) possesses the closed-form solution:

η∗i = −(vecT (B̃i)vec(Bθ(ti, li)))
/
(vecT (B̃i)vec(B̃i)), (24)

where B̃i := Bθ(si, ti)−Bθ(ti, li). The proof is similar to that of Lemma 4.4.

From Lemmas 4.4 and 4.5, L1s(ζi) and L2s(ηi) have closed-form solutions when the constraints are
relaxed. Then, the parameters in Algorithm 1 are derived by mapping these solutions as follows:

ηi = Sigmoid (|η∗i |) , ζi = Sigmoid (−(|ζ∗i | − µ)) , (25)

where ζ∗i and η∗i are defined in Eqs. (22) and (24), respectively, and µ is the shift parameter.
This optimization-driven approach captures the state differences during iteration while avoiding the
computational cost of constrained optimization problems [27]. Additional details are provided in
Appendix E.7. Ablation studies on µ are provided in Table 9 of Appendix E.7.1.

Finally, we prove the global convergence of the proposed inference method for data parameterization.

Theorem 4.6. The diffusion inference method in Algorithm 1 exhibits second-order global conver-
gence with a local error of O(h3ti). The proof is provided in Appendix D.4.

5 Experiments

We experimentally validate our method on a diverse suite of DMs and datasets, including CIFAR-10,
CelebA-64, FFHQ-64, ImageNet-64, ImageNet-256, and LSUN-Bedrooms. Our evaluation uses
standard metrics such as Fréchet Inception Distance (FID) and Inception Score (IS) across a varying
number of function evaluations (NFEs). We also compare our method on Stable Diffusion v1.4 and
v1.5 using CLIP and Aesthetic scores. Our evaluation focuses on the data prediction parameterization
on different diffusion-based generative models including pixel-space diffusion and latent-space
diffusion. Additional experimental details and results are provided in Appendix E.
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Solver
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[20]
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[16]

EVOD-
iff 1

Figure 5: Random samples from the Stable-Diffusion-v1.5 model [28] with a guidance scale of 7.5,
using varying NFEs and the prompt “Giant caterpillar riding a bicycle". Even at a low 25 NFE,
EVODiff produces high-fidelity, semantically correct images while competing methods fail with
severe artifacts, demonstrating the superiority of our entropy-aware variance optimized method.

Table 3: Ablation study of our variance-driven gradient-based approach applied to DMs with data
parameterization on ImageNet-256 and CIFAR-10. The DPM-Solver++ is our baseline method.

Method Model NFE
5 6 8 10 12 15 20

Baseline
CIFAR-10

27.96 16.87 8.40 5.10 3.70 2.83 2.33
RE-based in Eq. (15) 21.39 12.14 4.81 2.98 2.44 2.15 2.08
EVODiff 17.83 9.17 3.98 2.78 2.30 2.12 2.06
Baseline

ImageNet-256

16.62 12.86 9.73 8.68 8.17 7.80 7.51
Eq. (15) with balanced ζi 15.31 12.14 9.46 8.57 8.07 7.76 7.48
Eq. (16) with refined ζi 13.80 10.91 8.91 8.23 7.89 7.58 7.36
EVODiff (rlogSNR) 13.98 10.98 8.84 8.16 7.81 7.52 7.32
EVODiff (rrefined) 14.33 11.16 8.95 8.14 7.79 7.48 7.25

To validate the contributions of each component of EVODiff, we performed a constructive ablation
study (Table 3), which builds upon our initial finding that entropy-reduction (RE) based methods
consistently outperform traditional FD-based approaches (Figure 2). Starting from a baseline second-
order solver, we incrementally introduced our entropy-reduction (RE-based) formulation and the final
evolution-state-driven parameter optimization. Each step demonstrates a clear improvement in FID,
culminating in the full EVODiff algorithm which consistently achieves the best performance. Further
detailed ablations on hyperparameters such as the step-size ratio ri and the shift parameter µ can be
found in Appendix E.7.1 (Tables 11 and 9 in of Appendix E.7.1), confirming the robustness of our
method. Additionally, we demonstrate the generalizability of our core principles by applying them to
enhance other frameworks like DPM-Solver-v3, with results shown in Table 14 and Figure 8.

We evaluate our method against advanced gradient-based solvers, including DPM-Solver++ [20],
DEIS [14], UniPC [16], and DPM-Solver-v3 [17] on CIFAR-10, FFHQ-64, ImageNet-64, and
ImageNet-256 datasets. The results in Tables 2 and 11 and Figure 4 consistently demonstrate the
superior performance of EVODiff. Furthermore, we evaluate our method with available logSNR and
EDM noise schedules, further validating its consistently robust performance. The results are shown in
Tables 12, 18, 19, 17, 16. We also evaluate our method on the text-to-image generation task, as shown
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Table 4: FID score (↓) and generation time comparison between EVODiff, DPM-Solver++ (DPM++
for short), and UniPC. All methods were evaluated on a latent diffusion model [28] trained on the
LSUN-Bedrooms dataset with 50k samples.

FID Score (↓) Generation Time (s)

NFE DPM++(2m) DPM++(3m) UniPC(3m) EVODiff Gain DPM++ EVODiff Gain

5 21.286 18.611 13.969 7.912 43.4% 3577.6 3488.4 -89.2 (2.5%)
6 10.966 8.519 6.556 4.909 25.1% 3800.6 3719.4 -81.2 (2.1%)
8 5.127 4.148 3.963 3.756 5.2% 4273.3 4046.9 -226.4 (5.3%)
10 3.881 3.607 3.563 3.332 6.5% 4746.7 4699.6 -47.1 (1.0%)
12 3.516 3.429 3.357 3.084 8.1% 4703.8 4678.1 -25.7 (0.5%)
15 3.341 3.284 3.182 2.918 8.3% 5973.1 5913.5 -59.6 (1.0%)
20 3.251 3.167 3.075 2.853 7.2% 7238.4 7154.2 -84.2 (1.2%)

Table 5: Single-batch sample quality comparison for text-to-image generation, measured by CLIP
score (↑) and Aesthetic score (↑) using Stable Diffusion v1.4 and v1.5 under identical settings.

model method
NFN=10 NFN=25

CLIP Aesthetic CLIP Aesthetic
Average maximum Average maximum Average maximum Average maximum

sd-v1.4 DPM-Solver++ 33.07 34.12 5.71 5.83 32.66 36.12 5.74 5.92
EVODiff 33.79 35.00 5.77 5.87 32.83 34.50 5.79 5.97

sd-v1.5 DPM-Solver++ 32.98 35.84 5.74 5.99 32.54 34.70 5.79 5.92
EVODiff 33.07 36.62 5.75 5.98 32.53 34.72 5.81 5.99

in Table 5. Figures 3 and 5 provide a visual comparison of a generated sample. Finally, Table 15
compares the inference time at various NFEs on ImageNet-256 between our method and the baseline.

Finally, beyond pixel-space DMs, we evaluate EVODiff against advanced gradient-based solvers on
popular latent-space DMs. On the LSUN-Bedrooms dataset (Table 4), EVODiff consistently achieves
the best FID scores across all NFE settings, with particularly significant improvements at low NFE
counts (43.4% reduction at 5 NFE, from 13.969 to 7.912 compared to UniPC). Notably, EVODiff
also reduces generation time by up to 5.3% while maintaining superior quality. For text-to-image
generation using Stable Diffusion v1.4 and v1.5 (Table 5), EVODiff achieves competitive CLIP
scores and the best Aesthetic scores compared to the strong DPM-Solver++ baseline, demonstrating
its effectiveness in preserving both semantic alignment and visual quality.

Conclusions

In this work, we propose EVODiff, a novel inference-time refinement method based on entropy-aware
variance optimization. It significantly improves both efficiency and generative quality without relying
on reference trajectories. Specifically, our work first establishes a principled, information-theoretic
foundation that explains why data-prediction parameterization outperforms its noisy counterpart
and demonstrates how optimizing conditional variance reduces transition and reconstruction errors
without relying on reference trajectories. Building on these insights, EVODiff systematically reduces
uncertainty in each denoising step, thereby accelerating convergence and significantly improving
sample quality. Extensive experiments demonstrate EVODiff’s effectiveness across diverse settings
with SOTA performance: on CIFAR-10, it outperforms the DPM-Solver++ baseline by 45.5% at
10 NFE (from 5.10 to 2.78 FID); on ImageNet-256, it reduces NFE cost by 25% (from 20 to 15
NFE) while maintaining high-fidelity generation; on LSUN-Bedrooms, it achieves up to 43.4%
FID improvement over UniPC with 5.3% faster generation; and for text-to-image generation with
Stable-Diffusion models, it produces superior visual quality while preserving semantic alignment.
Our method achieves SOTA results and establishes a reference-free, variance-controlled inference
framework, effectively addressing the trade-off between sampling efficiency and generative quality.

Limitations and Broader Impacts A limitation of EVODiff is that it currently relies on the
data-prediction parameterization for diffusion model inference. Additionally, leveraging information-
theoretic principles to enhance inference efficiency and optimize information flow during the sampling
process remains a promising direction for future research. While EVODiff improves both generation
quality and efficiency, we acknowledge its dual-use nature, similar to that of other generative models.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction list the novel algorithm, theoretical guarantees,
and empirical improvements.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer:[Yes]
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Justification: We have added a dedicated "Limitations and Broader Impacts" paragraph
following the paper’s conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions for our theoretical results are explicitly stated in the main text,
and full, rigorous proofs are provided in our Appendix
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully describe the experimental setup, dataset splits, and evaluation metrics.
Pseudocode is given in Algorithm 1, and links plus instructions for baselines and datasets
are provided in the Appendix. These details suffice to reproduce the main results.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide links and instructions for baselines and datasets. The implementa-
tion code will be made publicly available at https://github.com/ShiguiLi/EVODiff.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are fully described in the main text and Appendix for
reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report FID and IS metrics for generative models, and CLIP and Aesthetic
scores for text-to-image generation, along with standard deviations over multiple runs to
reflect statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the compute resources used, including NVIDIA GeForce RTX 3090
GPUs (24GB) and NVIDIA TITAN X (Pascal) GPUs (12GB).
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We comply with the NeurIPS Code of Ethics in all aspects of this research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive and negative societal impacts in a dedicated
“Limitations and Broader Impacts” paragraph.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: Our work does not involve releasing models or datasets that pose significant
risks of misuse or dual-use; thus, no specific safeguards are required.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all creators of the assets used, cite original works, specify
versions and URLs where applicable, and respect all licenses and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release any new assets such as datasets or models.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve any crowdsourcing experiments or research
involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
Justification: This work does not involve research with human subjects and thus does not
require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs are used as core components in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A List of Notations

Symbol Description
t, s, l, T Time variables and endpoint in the diffusion process, t ∈

[0, T ].
i, j, k Indices for discrete time steps.
λ(t) Log-Signal-to-Noise Ratio (log-SNR) time, defined as

log(αt/σt).
xt,xti , x̃t State vector at time t (continuous, discrete, or approximate).
x0,xT Endpoints: x0 ∼ q(x0), xT ∼ N (0, σ̂2I).
αt, σt Noise schedule parameters (signal preservation αt, noise

level σt).
ϵ Random noise sampled from N (0, I).
ωt,ωt Forward and reverse Wiener processes.
SNR Signal-to-noise ratio: α2

t /σ
2
t .

θ Parameters of the neural network model.
ϵθ(·),xθ(·),dθ(·) Network predictions: noise, clean data, unified noise and

data.
d
(k)
θ (·) k-th order derivative of dθ w.r.t. τ .
q(·) Forward process distributions, e.g., q(x0), q(xt), q(xt|x0).
p(xti |xti+1) Reverse transition distribution.
N (µ,Σ),U(a, b) Gaussian distribution with mean µ, covariance Σ; uniform

distribution on [a, b].
f(t), g(t) Drift and diffusion coefficients, f(t) = d logαt

dt , g(t) satisfies

g2(t) =
dσ2
t

dt − 2d logαt
dt σ2

t .
f(xt) Transformation: xt

αt
(noise-prediction) or xt

σt
(data-

prediction).
κ(t), ψ(τ) Time reparameterization κ(t) and its inverse ψ(τ) with

ψ(κ(t)) = t.
ι(xti−1

) Difference term: f(xti−1
)− f(xti).

hti , ĥti Step sizes: κ(ti−1)− κ(ti), auxiliary κ(si)− κ(ti).
hλi Step size in the log-SNR space: λ(ti−1)− λ(ti).
ri, rlogSNR(i) Ratio of consecutive step sizes in log-SNR space, used for

gradient estimation.
Fθ, Bθ, B̄θ Finite difference terms for gradient approximation (Forward,

Backward, and unified).
Var(·|·), Hp(·|·),µti|ti+1

,Σti Conditional variance, entropy, mean, and covariance matrix.
ζi, ζ̄i, ηi, µ Optimization parameters (interpolation, complement, bal-

ance, shift).
L(θ),L1,L2, w(t) General training objective (e.g., Eq. (3)), specific optimiza-

tion objectives (L1,L2), and training weight w(t).
G(ζi), P (xti−1

) Auxiliary interpolation and optimization terms.
Di, E(ti−1, ti), ∆̃

g
ti Difference, gradient error, and weighted gradient terms.

∇x,E[·] Gradient, expectation.
Tr(·),det(·), ∥ · ∥ Trace, determinant, and norm operators.
vec(·) Vectorization operator.
Rd, I,0, C d-dimensional real space, identity matrix, zero vector, Gaus-

sian entropy constant C = 1
2d(log 2π + 1).

B Related Work

B.1 Diffusion Models

Diffusion Models (DMs) represent a powerful class of generative models rooted in stochastic ther-
modynamics and statistical physics [29, 30]. The foundational work by Sohl-Dickstein et al. [1]
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adapted these principles to deep generative modeling through a Markov chain approach based on
non-equilibrium thermodynamics. This pioneering research addressed the critical challenge of
balancing tractability and flexibility in probabilistic models. The field of diffusion modeling was
substantially extended by Song and Ermon [31, 32], who introduced score-based generative models
with noise conditional score networks. Their methodology enabled efficient estimation of score
functions ∇x log pσ(x) across multiple noise scales, coupled with annealed Langevin dynamics for
sample generation. Subsequently, Ho et al. [2] proposed Denoising Diffusion Probabilistic Models
(DDPMs), which offered a significant methodological refinement by parameterizing the reverse
process. Their contribution included a well-formulated training objective: L = Et,ϵ∥ϵ− ϵθ(xt, t)∥2,
where ϵ represents the original noise and ϵθ denotes the predicted noise by the model at time step t.
This formulation facilitated high-quality sample generation with remarkable stability. In a landmark
contribution, Song et al. [3] established a comprehensive theoretical unification by formulating score-
based models and DMs within a continuous-time stochastic differential equation (SDE) framework.
This theoretical advancement provided a unified mathematical foundation that elegantly bridged
previously disparate approaches in diffusion modeling research.

Building upon this theoretical framework, DMs have demonstrated exceptional capabilities across a
wide range of domains. In image synthesis, they have achieved SOTA performance [4] and established
new benchmarks in photorealism [12]. Their success has extended to multimodal generation tasks,
including text-to-image synthesis [6, 33], speech generation [7], video synthesis [8], 3D content
generation [34]. Moreover, DMs have also advanced related areas, including deep Gaussian processes
[35], diffusion bridges, and density ratio estimation [36, 37]. Furthermore, DMs have shown
remarkable capabilities in controllable generation tasks [38], such as image editing, style transfer,
and inpainting [5, 39]. In theory, Despite these significant advances, DMs continue to face a critical
challenge: the inherently slow sequential generation process, which limits their real-time applicability
in certain domains.

B.2 Training-based Inference for DMs

Training-based models or methods accelerate DMs through novel training strategies and architectures.
Knowledge distillation techniques, such as Progressive Distillation [40], enable efficient sampling
by allowing student models to learn compressed sampling processes from teacher models. Recent
advances have further explored innovative approaches to diffusion model inference. Meng et al.
[41] investigated knowledge distillation in guided DMs, addressing model efficiency challenges.
Complementing these efforts, Karras et al. [42, 43] conducted a comprehensive analysis of training
dynamics for DMs, offering critical insights into the underlying mechanisms of model performance
and generation quality. Consistency-based methods, exemplified by Consistency Models [44–46]
and Latent Consistency Models [47], achieve parallel generation by learning score functions through
consistency training, grounded in probability flow ODE frameworks. Reflow [48] further optimizes
the generation paths by reformulating rectified flow ODEs with paired retraining strategies. Architec-
tural innovations have also played an important role in improving efficiency. Latent DMs [28] reduce
computational complexity by operating in lower-dimensional spaces using an auto-encoder frame-
work [49]. EDM [12] introduces σ-parameterization and principled weighting schemes, allowing
fewer sampling steps without compromising the generation quality. Shortcut models [50] and Mean
Flows [51] achieve efficiency by step-aware network learning and mean field modeling. In addition,
there are some other approaches that exploit architectural characteristics and learning-based solvers
to improve the efficiency of DMs [52–59].

Despite these advancements, training-based methods often require specialized training procedures and
a careful balance between quality and speed trade-offs [4, 60, 50, 51], making them computationally
expensive. Additionally, their training data are typically obtained through iterative sampling from pre-
trained DMs using deterministic, training-free samplers such as DDIM [9] or DPM-Solver [13, 20],
which introduces further computational overhead and sampling dependencies. These factors limit
their practicality in resource-constrained environments. Furthermore, while some methods achieve
generation through a single neural network pass (referred to as one-step generation), similar to GANs
[61], they often sacrifice the iterative refinement process that is a hallmark of traditional DMs. This
process, which involves progressive noise reduction and iterative refinement, is a core strength of
DMs, and its absence may adversely affect the quality and controllability of the generated outputs.
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B.3 Training-free Inference for DMs

In contrast, training-free inference methods focus on denoising strategies for DMs without requiring
any additional training, making them more adaptable and practical for use with open-source DMs.
Early sampling methods in DMs primarily relied on ancestral sampling [2]. Score-based models [3]
used predictor-corrector methods to refine samples and introduced PF ODEs as a faster sampling
alternative. DDIM [9] advanced sampling methods by introducing a non-Markovian deterministic
process that enables deterministic sampling through a variance-minimizing path, significantly re-
ducing the number of required steps. PNDM [11] demonstrated the adaptability of ODE solvers to
diffusion sampling by effectively utilizing linear multistep methods. EDM [12] explored the design
space of DMs with a σ-parameterization linked to the signal-to-noise ratio (SNR), analyzed noise
dynamics to optimize time steps, and achieved high-quality samples using the Heun solver.

DPM-Solver [13] introduced an exponential integrator-based (EI) sampling framework that discretizes
PF ODEs in the semi-log-SNR space with high-order solvers for accelerated sampling. DEIS [14]
investigated the effectiveness of EI in addressing the stiffness of diffusion ODEs. DPM-Solver++
[20] extended DPM-Solver to guided sampling by using data-based parameterization. Based on DPM-
Solver, UniPC [16] designed high-order predictor-corrector schemes within a unified framework
and demonstrated strong empirical performance. These methods effectively focus on optimizing the
variance term of reconstruction error, as formulated in our proposed decomposition in Eq. (3.1).

Beyond these solvers, another approach reformulates ODE solvers by treating the solutions at
multiple steps as ground truth. Leveraging prior information about the target distribution, this
strategy simultaneously optimizes both the variance and bias terms in the reconstruction error, as
decomposed in Eq. (3.1). For instance, DPM-Solver-v3 [17] accelerates the sampling inference
in DMs by optimizing the ODE solver using empirical model statistics (EMS), where the EMS
coefficients are learned from the sampling results of DPM-Solver++ with 200 function evaluations
(NFEs). In addition, other studies have explored discretization techniques and noise schedule tuning
[62, 63, 12, 64–74].

Although various numerical discretization techniques and approaches have been proposed for training-
free methods, the underlying mechanisms driving their acceleration are not adequately understood.
Despite their empirical success, these ODE-based methods lack an information-theoretic foundation.
A central limitation is their neglect of information transmission efficiency during the reverse process.
This theoretical gap suggests that the principles governing diffusion inference remain underexplored.
Our work addresses this limitation by introducing a framework that unifies efficient numerical
iterations, such as DPM-Solver and EDM, through the lens of conditional entropy reduction. We
demonstrate that by explicitly optimizing for conditional entropy dynamics rather than focusing
solely on optimizing the numerical error of ODE solvers, we can achieve better sample quality across
inference steps. EVODiff is designed to fill this gap by introducing an explicit and optimizable
information-theoretic objective.

C Analysis and Proofs of Variance-Driven Conditional Entropy Reduction

C.1 The Proof of Proposition 3.1

Proof. We prove the decomposition of the reconstruction error using the orthogonality property
of conditional expectations in Proposition 3.1. First, we express the squared norm as a sum of
components:

∥xti − x0∥2 = ∥(xti − µti|ti+1
) + (µti|ti+1

− x0)∥2 (26)

= ∥xti − µti|ti+1
∥2 + ∥µti|ti+1

− x0∥2

+ 2⟨xti − µti|ti+1
,µti|ti+1

− x0⟩ (27)

Taking the expectation of both sides, we obtain

Eq[∥xti − x0∥2] = Eq[∥xti − µti|ti+1
∥2] + Eq[∥µti|ti+1

− x0∥2] + 2C (28)
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where C = Eq[⟨xti − µti|ti+1
,µti|ti+1

− x0⟩]. Next, we show that the cross-term C vanishes:

C = Eq
[
Eq
[
⟨xti − µti|ti+1

,µti|ti+1
− x0⟩ | xti+1

]]
(29)

= Eq
[
⟨Eq[xti − µti|ti+1

| xti+1
],µti|ti+1

− x0⟩
]

(30)

Since µti|ti+1
= Eq[xti | xti+1

] by definition, we have Eq[xti −µti|ti+1
| xti+1

] = 0, and therefore
C = 0. Therefore, we obtain the final decomposition:

Eq[∥xti − x0∥2] = Eq[∥xti − µti|ti+1
∥2]︸ ︷︷ ︸

Variance term

+Eq[∥µti|ti+1
− x0∥2]︸ ︷︷ ︸

Bias term

. (31)

The proof is complete.

C.2 Proof of Proposition 3.2

Proof. Denote the Gaussian transition distributions governed by the iterative equations (6) and (7) as
p1
(
f(x̃ti−1)|f(x̃ti)

)
and p2

(
f(x̃ti−1)|f(x̃ti)

)
, respectively. Without loss of generality, we use the

common part f(x̃ti) of the two iterative equations as the mean of both distributions. The remaining
components represent the perturbation terms associated with each transition distribution, respectively.
Since the noise prediction model is specifically trained to predict the noise, we can interpret ϵθ(x̃t, t)
as representing the noise perturbation term. Since the estimated noise by the model at different time
steps can be considered mutually independent, the conditional variances of the remaining terms for
the two different iterations are, respectively, expressed as follows:

Varp1 = h2ti ·Var(ϵθ(x̃ti , ti)), Varp2 = h2ti

(
1− hti

2ĥti

)2

·Var(ϵθ(x̃ti , ti))+
h4ti
4ĥ2ti
·Var(ϵθ(x̃si , si)).

(32)
Denote ∆H(p) = Hp2(x̃ti−1

|x̃ti)−Hp1(x̃ti−1
|x̃ti). Then, by equations (32) and (9), we have:

∆H(p) =
d

2
log

∣∣∣∣∣1− hti

ĥti
+

h2ti
4ĥ2ti

+
h2ti
4ĥ2ti

· Var(ϵθ(x̃si , si))
Var(ϵθ(x̃ti , ti))

∣∣∣∣∣ . (33)

Therefore, ∆H(p) ≤ 0 if and only if
h2
ti

4ĥ2
ti

+
h2
ti

4ĥ2
ti

· Var(ϵθ(x̃si ,si))

Var(ϵθ(x̃ti ,ti))
≤ hti

ĥti
. By solving this inequality

and note that ĥti ≤ hti , the proof is complete.

As the reverse process in DMs aims to estimate p(xt|xt+1,x0) [2, 25], we examine Var(ϵθ(x̃t, t) |
x0) to capture the model’s uncertainty in noise prediction conditioned on the clean data. For brevity,
we denote this variance as Var(xθ(x̃t, t)). Based on this consideration, we can establish the practical
interval for Proposition 3.2 using the prior-like conditional variance from the forward diffusion
process.
Remark C.1. In the forward process of DMs, the clean data at each step can be expressed by
x0 = xt/αt−σt/αtϵ. If we assume that Var(ϵθ(x̃t, t)) ∝ σ2

t /α
2
t to quantify the extent of deviation

from the clean data. Under this prior-like assumption, we obtain Var(ϵθ(x̃si ,si))

Var(ϵθ(x̃ti ,ti))
= SNR(ti)

SNR(si)
. Then,

the conditional entropy reduction condition in Propostion 3.2 is hti/ĥti ∈
[
1, 4 SNR(si)

SNR(ti)+SNR(si)

]
.

C.3 The Perspective of Conditional Entropy Reduction for Some Accelerated Iterations

As an application of conditional entropy analysis, we deepen our understanding of the iterations in
accelerated denoising diffusion solvers, such as DPM-Solver [13] and EDM [12], by elucidating the
associated changes in conditional entropy. We then demonstrate that the iterations of both well-known
solvers are denoising iterations grounded in conditional entropy reduction and represent two special
cases of RE-based iterations.

Firstly, let us revisit the accelerated iteration introduced by EDM [12]. Formally, the iteration formula
of EDM can be written as follows:

f(x̃ti−1
) = f(x̃ti) + hti

ϵθ (x̃ti , ti) + ϵθ
(
x̃ti−1

, ti−1

)
2

, (34)
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which can be equivalently rewritten as the following gradient estimation-based iteration:

f(x̃ti−1
) = f(x̃ti) + htiϵθ (x̃ti , ti) +

h2ti
2

ϵθ
(
x̃ti−1 , ti−1

)
− ϵθ (x̃ti , ti)

hti
. (35)

As ĥti = hti in the iteration of EDM described by Eq. (35), based on Remark C.1, we obtain the
following conclusion:
Remark C.2. The EDM iteration in Eq. (34) can reduce conditional entropy more effectively than the
DDIM iteration in Eq. (6). Thus, the iteration of EDM can be interpreted as an iterative scheme for
reducing conditional entropy.

Next, we revisit the accelerated iteration framework established by DPM-Solver [13] with exponential
integrator. Specifically, the sampling algorithm of DPM-Solver decouples the semi-linear structure
of the diffusion ODE, with its iterations formulated by solving the integral driven by half of the
log-SNR. The exponentially weighted score integral in DPM-Solver can be written as follows:

f(xt)− f(xs) = −
∫ λ(t)

λ(s)

e−τϵθ
(
xψ(τ), ψ(τ)

)
dτ. (36)

where λ(t) := log αt
σt

. It follows that Eq. (36) and Eq. (5) can be mutually transformed through
the function relation λ(t) = − log(κ(t)). Denote hλi := λ(ti−1)− λ(ti) and ĥλi := λ(si)− λ(ti).
Formally, the second-order iteration of DPM-Solver can be written as follows:

f(x̃ti−1) = f(x̃ti)−
σti−1

αti−1

(
ehλi − 1

)
ϵθ (x̃ti , ti)−

σti−1

αti−1

(
ehλi − 1

) ϵθ (x̃si , si)− ϵθ (x̃ti , ti)

2r1
,

(37)

where si = ψ (λ(ti) + r1hλi). Note that r1 =
ĥλi
hλi

, κ(ti−1) =
σti−1

αti−1
and hti = κ(ti−1)− κ(ti). As

ehλi = κ(ti)
κ(ti−1)

, then
σti−1

αti−1

(
ehλi − 1

)
= −hti . Thus, this second-order iteration can be equivalently

rewritten as:

f(x̃ti−1) = f(x̃ti) + htiϵθ (x̃ti , ti) +
htihλi

2

ϵθ (x̃si , si)− ϵθ (x̃ti , ti)

ĥλi
. (38)

Note that the si here in DPM-Solver differs from the one in Eq. (7), due to the variations arising from
the function space. Based on conditional analysis, similarly, we have the following conclusion.

Remark C.3. Based on Remark C.1, when hλi
ĥλi
∈
[
1, 4 SNR(si)

SNR(ti)+SNR(si)

]
, the DPM-Solver’s iteration

in Eq. (37) can reduce conditional entropy more effectively than the DDIM iteration in Eq. (6). Note
that hλi

ĥλi
= 2 in the practical implementation of DPM-Solver. Thus, as SNR(si) > SNR(ti), the

DPM-Solver’s iteration can be interpreted as an iterative scheme for reducing conditional entropy.

Finally, we summarize the relationship between these two iterations and RE-based iterations. In fact,
the iteration described in Eq. (34) is an RE-based iteration within the EDM iteration framework.
Clearly, the RE-based iteration within the DPM-Solver iteration framework can be formulated as:

f(x̃ti−1
) = f(x̃ti) + hti (γϵθ (x̃si , si) + (1− γ)ϵθ (x̃ti , ti)) +

htihλi
2

ϵθ (x̃si , si)− ϵθ (x̃ti , ti)

ĥλi
.

(39)
Therefore, the iterations in both EDM and DPM-Solver can be interpreted as specific instances of
RE-based denoising iterations from the perspective of the conditional entropy.

This analysis reveals that methods like DPM-Solver and EDM have implicitly leveraged principles of
conditional entropy reduction. Our work, EVODiff, makes this process explicit, optimizable, and
adaptive for the first time, which is the key to its superior performance.
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C.4 Difference Analysis of Gradient-based Iterations in Multi-step Framework

On one hand, let us revisit the multi-step accelerated framework established by DPM-Solver++ [20].
Formally, the second-order iteration of DPM-Solver++ can be written as follows:

f(x̃ti−1
) = f(x̃ti)−

αti−1

σti−1

(
e−hλi − 1

)
xθ (x̃ti , ti)

−
αti−1

σti−1

(
e−hλi − 1

) xθ (x̃ti , ti)− xθ
(
x̃ti+1

, ti+1

)
2ri

,

(40)

where xθ (x̃ti , ti) denotes the data-prediction prediction model and ri =
hλi+1

hλi
. Since

αti−1

σti−1

(
e−hλi − 1

)
=

αti
σti
− αti−1

σti−1
= −hti in data-prediction prediction models, Eq. (40) can

be rewritten as

f(x̃ti−1
) = f(x̃ti) + htixθ (x̃ti , ti) +

htihλi
2

xθ (x̃ti , ti)− xθ
(
x̃ti+1 , ti+1

)
hλi+1

. (41)

On the other hand, we can rewrite the iteration presented in Eq. (13) as follows:

f(x̃ti−1
) = f(x̃ti) + htixθ (x̃ti , ti) +

h2ti
2

xθ (x̃ti , ti)− xθ
(
x̃ti+1

, ti+1

)
hti+1

. (42)

It has been observed that the differences in the multi-step iterations presented in Eq. (41) and Eq.
(42) are still caused by the variations in ri. Therefore, in gradient estimation-based iterations, the
core characteristic of the DPM-Solver++ iteration is the determination of ri in the half-logarithmic
SNR space. For convenience, we will hereafter refer to half-logarithmic SNR simply as ‘logSNR’.

Without loss of generality, the core differences between various gradient estimation-based iterations
can be generalized as variations in the determination of ri. Then, a natural question arises: how
can ri be determined better or systematically? Therefore, a principle for determining ri is of great
importance. This inquiry drives our investigation from the perspective of conditional entropy within
the context of multi-step iterations.

C.5 Proof of Theorem 3.4: Conditional Entropy Comparison Between
Data Prediction and Noise Prediction parameterizations

Before presenting the formal proof, we provide the core intuition. This theorem aims to show that
data-prediction parameterization is more efficient because it directly estimates the target x0, thereby
minimizing reconstruction error more directly. In contrast, noise prediction follows a more indirect
path (xt → ϵθ → x0), which can accumulate more variance. The following steps formalize this
variance reduction and its connection to conditional entropy.

Proof. Without loss of generality, we only need to prove that the conditional entropy of the first-order
iteration using data-prediction parameterization is lower than that of the first-order iteration using
noise-prediction parameterization. Let us revisit both first-order denoising iterations. Clearly, based
on Eqs. (6) and (5), the first-order iteration of data-prediction parameterization as follows:

x̃ti−1 =
σti−1

σti
x̃ti︸ ︷︷ ︸

Ldata: linear

+σti−1

(
αti−1

σti−1

− αti
σti

)
xθ (x̃ti , ti)︸ ︷︷ ︸

Ndata: non-linear

, (43)

where xθ (x̃ti , ti) =
x̃ti−σtiϵθ(x̃ti ,ti)

αti
. The first-order iteration of noise-prediction parameterization

as follows:

x̃ti−1
=
αti−1

αti
x̃ti︸ ︷︷ ︸

Lnoise: linear

+αti−1

(
σti−1

αti−1

− σti
αti

)
ϵθ (x̃ti , ti)︸ ︷︷ ︸

Nnoise: non-linear

. (44)

Denote the Gaussian transition kernels governed by the iterative equations (43) and (44) as
p1
(
x̃ti−1

|x0

)
and p2

(
x̃ti−1

|x0

)
, respectively. In both iterations of equations (43) and (44), the
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randomness of the linear term is solely related to the noise introduced in the iterations preceding
time step ti, whereas the randomness of the nonlinear term depends entirely on the noise at the
current time step ti. Since the noise introduced at each time step in DMs is independent, under this
assumption, the randomness of the linear term is independent of the randomness of the nonlinear term
in both iterations. Therefore, we will consider the variances of the linear and nonlinear components
separately. Formally, the variances of the linear terms for the two different iterations are, respectively,
as follows:

Var(Ldata | x0) =
σ2
ti−1

σ2
ti

Var(x̃ti | x0), Var(Lnoise | x0) =
α2
ti−1

α2
ti

Var(x̃ti | x0). (45)

For simplicity, we denote Var (x̃ti | x0) as Var (x̃ti) where appropriate. Based on monotonicity,
σti−1

σti
<

αti−1

αti
, as αt is monotonically decreasing with respect to time t and σt is monotonically

increasing with respect to time t. Therefore, Var (Ldata) < Var (Lnoise). Subsequently, we consider
the variance of the non-linear terms for both iterations. For clarity, we denote c(ti, ti−1) := αtiσti−1

−
αti−1

σti . Then,

σti−1

(
αti−1

σti−1

− αti
σti

)
=
−1
σti

c(ti, ti−1), αti−1

(
σti−1

αti−1

− σti
αti

)
=

1

αti
c(ti, ti−1). (46)

Thus, the variances of the nonlinear terms for the two different iterations are, respectively, as follows:

Var(Nnoise) =
c2(ti, ti−1)

α2
ti

·Var (ϵθ (x̃ti , ti)) , Var(Ndata) =
(−c(ti, ti−1))

2

σ2
ti

·Var (xθ (x̃ti , ti)) .

(47)
Note that

Var (xθ (x̃ti , ti)) = Var

(
x̃ti − σtiϵθ (x̃ti , ti)

αti

)
=
σ2
ti

α2
ti

Var (ϵti − ϵθ (x̃ti , ti)) . (48)

as x̃ti = αtix0 + σtiϵti . Then,

Var(Ndata) =
(−c(ti, ti−1))

2

σ2
ti

·
σ2
ti

α2
ti

Var (ϵti − ϵθ (x̃ti , ti)) =
c2(ti, ti−1)

α2
ti

Var (ϵθ (x̃ti , ti)− ϵti) .

(49)
Clearly, since ϵθ (x̃ti , ti) is designed to predict the injected noise into the clean data at time step ti,
and based on Eq. (2), the variance Var (ϵθ (x̃ti , ti)− ϵti) can theoretically approach arbitrarily small
values as the accuracy of the model’s estimation improves. Therefore, as Var (ϵθ (x̃ti , ti)− ϵti) <
Var (ϵθ (x̃ti , ti)), we have Var(Ndata) < Var(Nniose). Since the randomness of the linear term is
independent of that of the nonlinear term in both iterations, and given that Var (Ldata) < Var (Lnoise)
and Var(Ndata) < Var(Nniose), we have

0 ≤ Var(p1(x̃ti−1 | x0)) = Var(Ldata) + Var(Ndata)

< Var(Lnoise) + Var(Nnoise) = Var(p2(x̃ti−1
| x0)).

(50)

Consequently, based on Eq. (9), which provides the conditional entropy formula for a Gaussian
distribution, we have Hp1(x̃ti−1

| x0) < Hp2(x̃ti−1
| x0). The proof is complete.

C.6 Single-step Analysis

For single-step iteration, one insight is that the model parameter ϵθ (x̃si , si) can be used further to
improve the iteration governed by Eq. (7), without additional model parameters. Formally, we can
formulate the iteration as

f(x̃ti−1) = f(x̃ti) + htiG(γi) +
h2ti
2
Fθ(si, ti), (51)

where G(γi) = γiϵθ (x̃si , si) + γ̄iϵθ (x̃ti , ti), γ̄i = 1 − γi, γi ∈ (0, 1]. This improved iteration
shares the same limit state as the vanilla iteration in Eq. (7) when si → ti. For convenience, we refer
to the vanilla iteration as the FD-based single iteration. For clarity, we identify the denoising iteration
by reducing conditional entropy as the RE-based single iteration.
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In the analysis of conditional entropy, we can compare the different components of Eq. (7) and Eq.
(51). Then, the variance of the key distinct components in each conditional distribution is as follows:

Varp1 = h2ti ·Var(ϵθ(x̃ti , ti)),
Varp2(γi) = γ2i h

2
tiVar(ϵθ(x̃si , si)) + γ̄2iVarp1 ,

(52)

where γ̄i = 1−γi. Then, the difference in conditional entropy between two gradient estimation-based
iterations is

∆H(p) =
1

2
log

Varp2(γi)

Varp1
=

1

2
log (1 + v(γi)) . (53)

where v(γi) = −2γi + γ2i + γ2i
Var(ϵθ(x̃si ,si))

Var(ϵθ(x̃ti ,ti))
. Due to γi ∈ (0, 1] and SNR(ti) ≤ SNR(si),

∆H(p) ≤ 0 consistently holds under the assumption that Var(ϵθ(x̃t, t)) ∝ σ2
t /α

2
t . Therefore, this

improved iteration can more efficiently reduce conditional entropy compared to the vanilla iteration
by using subsequent model parameters in lower-variance regions as guidance. Consequently, based
on ∆H(p) ≤ 0, we have the following Remark.
Remark C.4. The RE-based single-step iteration specified in Eq. (51) consistently achieves a more
efficient reduction in conditional entropy than the FD-based iteration.

Accordingly, Remark C.4 show that the RE-based iteration can consistently surpass the FD-based
iteration in reducing conditional entropy.

D Proofs for the EVODiff Optimization Framework in Section 4.2

D.1 Assumption

Assumption 1: The total derivative d
(k)
θ

(
xψ(τ), ψ(τ)

)
:=

dkdθ(xψ(τ),ψ(τ))
d τk

exists and is continuous
if necessary, where k is determined by the specific context.

Assumption 2: The function dθ
(
xψ(τ), ψ(τ)

)
is Lipschitz w.r.t. to its first parameter xψ(τ).

D.2 Proof of Theorem 4.2

Proof. Denotes x̂t = f(x̃t) for short. Without loss of generality, the RE-based multi-step iteration
described in Eq. (15) can be decomposed into:

x̂µ = x̂ti + htidθ (x̃ti , ti) +
h2ti
2
Bθ(si, ti),

and
x̂ti−1

= x̂µ + γhti (dθ (x̃si , si)− dθ (x̃ti , ti)) .

Clearly, x̂µ = x̂ti +O(h3ti) based on the Taylor expansion. Since the model dθ (x̃t, t) satisfies the
Lipschitz assumption with respect to x̃t, then

∥x̂ti−1
− x̂µ∥ = ∥γhti (dθ (x̃si , si)− dθ (x̃ti , ti)) ∥

= L1ĥti∥dθ (x̃si , si)− dθ (x̃ti , ti) ∥
≤ L2ĥti∥x̃si − x̃ti∥ = O(|ĥti |3).

(54)

Subsequently, by the triangle inequality, we have

∥x̂ti−1 − x̂ti∥ = ∥x̂ti−1 − x̂µ + x̂µ − x̂ti∥ ≤ ∥x̂ti−1 − x̂µ∥+ ∥x̂µ − x̂ti∥ = O(|hti |3), (55)

where the last equality holds because |hti | ≥ |ĥti |.
Therefore, we prove that the local error of the RD-based iteration is of the same order as the
corresponding Taylor expansion. Consequently, the RE-based iteration in Eq. 51 is a second-order
convergence algorithm. The proof is complete.
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D.3 Proofs of Lemma 4.4 and Lemma 4.5

Proof. Without loss of generality,

∂ ∥A− σh (λF1 + (1− λ)F2)∥2F
∂λ

=
∂
(
vec⊤ (A− σh (λF1 + (1− λ)F2)) vec (A− σh (λF1 + (1− λ)F2))

)
∂λ

=2vec⊤
(
∂ (A− σh (λF1 + (1− λ)F2))

∂λ

)
vec (A− σh (λF1 + (1− λ)F2))

=2 vec⊤ (−σh (F1 − F2)) vec (A− σh (λF1 + (1− λ)F2))

Let ∂∥A−σh(λF1+(1−λ)F2)∥2
F

∂λ = 0, we have

vec⊤ (F1 − F2) vec (σhλ (F1 − F2)− (A− σhF2)) = 0. (56)
Therefore,

λ =
vec⊤ (F1 − F2) vec (A− σhF2)

σh vec⊤ (F1 − F2)Vec (F1 − F2)
. (57)

The proof is complete.

D.4 Proof of Theorem 4.6

Let us review the EVODiff iteration, without loss of generality, in Algorithm 1 as follows:

f(x̃ti−1
) = f(x̃ti) + htixθ (x̃ti , ti) +

h2ti
2
ζiBθ(ti)

= f(x̃ti) + htixθ (x̃ti , ti) +
h2ti
2
ζi

(ηi
2
Bθ(si, ti) +

(
1− ηi

2

)
Bθ(ti, li)

)
= f(x̃ti) + hti

(ηi
2
xθ (x̃ti , ti) +

(
1− ηi

2

)
xθ (x̃ti , ti)

)
+
h2ti
2
ζi

(ηi
2
Bθ(si, ti) +

(
1− ηi

2

)
Bθ(ti, li)

)
,

where Bθ(ti, ti+1) =
xθ(x̃ti ,ti)−xθ(x̃ti+1

,ti+1)
hti+1

.

In the following, we now proof the convergence properties of this EVODiff iteration scheme and
establish its convergence order.

Proof. Denote x̂t = f(x̃t) for short. The RE-based iteration in EVODiff 1 can be decomposed as:

x̂ti−1
= x̂ti +

ηi
2
x̂µ1

+
(
1− ηi

2

)
x̂µ2

=
ηi
2
(x̂ti + x̂µ1

) +
(
1− ηi

2

)
(x̂ti + x̂µ2

) ,

where

x̂µ1
= htixθ(x̃ti , ti) +

h2ti
2
ζiBθ(si, ti), x̂µ2

= htixθ(x̃ti , ti) +
h2ti
2
ζiBθ(ti, li).

Let us now consider the case of x̂ti + x̂µ1
. Denote

x̂1,ti−1
= x̂ti + x̂µ1

, x̂µ3
= x̂ti + htixθ(x̃ti , ti) +

h2ti
2
Bθ(si, ti).

Then x̂1,ti−1
= x̂µ3

+(ζi−1)
h2
ti

2 Bθ(si, ti). Note that x̂µ3
= x̂ti+O(h3ti) and Bθ(si, ti) = O(hti)

based on the Taylor expansion. Therefore, we have

∥x̂1,ti−1 − x̂ti∥ =
∥∥∥∥x̂µ3 − x̂ti +

ζi − 1

2
h2tiBθ(si, ti)

∥∥∥∥
≤ ∥x̂µ3

− x̂ti∥+
∥∥∥∥ζi − 1

2
h2tiBθ(si, ti)

∥∥∥∥
= O(h3ti) + L1O(h3ti) = O(h

3
ti),

(58)
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where L1 is a constant because ζi can be bounded by 1. Denote x̂2,ti−1 = x̂ti + x̂µ2 . Symmetrically,
we obtain

∥x̂2,ti−1 − x̂ti∥ = O(h3ti). (59)
Now, combining the results, we obtain

∥x̂ti−1
− x̂ti∥ =

∥∥∥ηi
2

(
x̂1,ti−1

− x̂ti
)
+
(
1− ηi

2

) (
x̂2,ti−1

− x̂ti
)∥∥∥

≤ ηi
2
∥x̂1,ti−1

− x̂ti∥+
(
1− ηi

2

)
∥x̂2,ti−1

− x̂ti∥

=
ηi
2
O(h3ti) +

(
1− ηi

2

)
O(h3ti) = O(h

3
ti).

(60)

Thus, we have shown that the local error of the RE-based iteration in EVODiff 1 is O(h3ti). Conse-
quently, the RE-based iteration in EVODiff 1 achieves second-order global convergence. The proof is
complete.

E Experiment Details

In our experiments, we utilize several standard pre-trained models. Specifically, we employ the
discrete denoising diffusion probabilistic model [2], the continuous score-based model [3], and
the uncond EDM model [12], all trained on CIFAR-10 [75]. For larger-scale evaluations on high-
dimensional data, we adopt the pre-trained models trained on the ImageNet dataset [76] from the
baseline method [4]. Additionally, we use the pre-trained Latent Diffusion Model and Stable Diffusion
model [28], where the latter is trained on the LAION-5B dataset [77] using CLIP [78] text embeddings
as conditioning signals.

E.1 Experimental Computational Resources and Data

All experiments were conducted on NVIDIA GPUs. For high-dimensional datasets like ImageNet,
we utilized the NVIDIA GeForce RTX 3090 GPU with 24GB VRAM. For other cases like CIFAR-10,
experiments were performed on NVIDIA TITAN X (Pascal) with 12GB VRAM. To ensure a fair
comparison with prior work, we maintained consistent pre-trained models and experimental settings
across both scenarios. We list some of the datasets and codes used in Table 7.

Table 7: Some of the datasets and codes used.
Name URL
CIFAR10 https://www.cs.toronto.edu/ kriz/cifar.html
LSUN-Bedroom https://www.yf.io/p/lsun
ImageNet-256×256 https://www.image-net.org
ScoreSDE https://github.com/yang-song/score_sde_pytorch
EDM https://github.com/NVlabs/edm
Guided-Diffusion https://github.com/openai/guided-diffusion
Latent-Diffusion https://github.com/CompVis/latent-diffusion
Stable-Diffusion https://github.com/CompVis/stable-diffusion
DPM-Solver https://github.com/LuChengTHU/dpm-solver
DPM-Solver++ https://github.com/LuChengTHU/dpm-solver
SciRE-Solver https://github.com/ShiguiLi/SciRE-Solver
UniPC https://github.com/wl-zhao/UniPC
DPM-Solver-v3 https://github.com/thu-ml/DPM-Solver-v3

E.2 Sampling Schedules

Sampling schedules in DMs define how the noise scale evolves during inference and play a crucial
role in balancing sample quality and computational efficiency. Several widely used schedules include
the Time-uniform schedule [2, 3], the LogSNR schedule [13], and the EDM schedule [12]. Although
optimized schedules have been proposed [68, 69], they typically require significant computational
resources for optimization. In our experiments, we follow the default schedule of the baseline
methods.
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E.3 Parameterization Settings of the Sampling Process

In the sampling process of DMs, various parameterization settings are used to define the target
prediction at each iteration step. Below, we list the adopted parameterizations:

Noise prediction parameterization [2]: This parameterization directly predicts the noise injected
during the forward diffusion process. The connection to the score function is formalized as:

ϵθ (xt, t) = −σt∇x log q (xt) , (61)

where∇x log q (xt) denotes the score function [3].

Data prediction parameterization [21]: This parameterization estimates the clean data x0 from the
noisy input xt at a given time step t. The predicted data satisfies:

xθ(xt, t) =
xt − σtϵθ(xt, t)

αt
. (62)

Although these parameterizations have practical predictive value, they may insufficiently minimize
discretization errors. Building upon earlier DPM-Solver versions [13, 20], DPM-Solver-v3 [17]
extends the parameterization strategy by incorporating empirical model statistics (EMS). This is an
approach that requires a reference solution. Essentially, leveraging prior information about the target
distribution optimizes both the variance and bias terms in the reconstruction error, as decomposed in
Eq. (3.1). Specifically, they formulated the continuous-time ODE as follows:

dxλ
dλ

=

(
α̇λ
αλ
− lλ

)
xλ − (σλϵθ(xλ, λ)− lλxλ) , (63)

where λ represents the continuous-time parameter, and lλ is an optimized prior statistics term.

In our ablation study, we employ the default parameterization of the baseline method in all of our
experiments. It is important to note that our main baseline is DPM-Solver++ [20], while the other
parameterizations are only auxiliary setups intended to validate the effectiveness of the variance-driven
optimization.

E.4 Evaluating Sampling Efficiency and Image Quality in Generative Models

The Fréchet Inception Distance (FID) [79] evaluates the quality and diversity of generated images
by comparing the statistical distributions of generated and real images in a feature space. It uses a
pre-trained Inception-v3 network to extract features [80], computing the mean µ and covariance Σ
for both distributions. Specifically, µg and Σg represent the mean and covariance of features from
generated images, while µr and Σr correspond to real images. Specifically, FID is calculated as:

FID = ∥µg − µr∥2 + Tr
(
Σg +Σr − 2(Σg · Σr)1/2

)
. (64)

Lower FID values indicate higher similarity between generated and real distributions, reflecting better
image quality [2–4].

The Number of Function Evaluations (NFE) measures computational efficiency by counting neural
network function calls during sampling [3, 9, 26, 13, 12]. Lower NFE values indicate faster sampling.

Balancing FID and NFE is crucial for practical applications where both high-quality outputs and
computational efficiency are required. Joint evaluation of these metrics provides a comprehensive
perspective: FID assesses distribution fidelity, while NFE evaluates algorithmic efficiency.

In this paper, we adopt the evaluation framework used in prior studies [13, 20], combining FID
and NFE to jointly assess the quality of generated images and the computational efficiency of
sampling algorithms. This comprehensive approach, validated in several studies [4, 3, 13, 12],
offers a standardized benchmark for comparing different generative models and sampling methods.
Moreover, we adopt CLIP-Score [78], aesthetics score such as PickScore [81] and ImageReward [82]
to estimate the quality of generated images using method on Stable-Diffusion [28].

E.5 Conditional Sampling in DMs

Conditional sampling in DMs enables controlled generation by incorporating conditioning information
(e.g., class labels or text) into the sampling process. This is achieved by modifying the noise predictor
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ϵθ(xt, t, c) to guide generation toward satisfying condition c. Two main approaches exist: classifier-
free guidance [83] and classifier guidance [4]. Classifier-free guidance (CFG) combines conditional
and unconditional predictions:

ϵCFG
θ (xt, t, c) := (1 + w)ϵθ(xt, t, c)− wϵθ(xt, t, ∅), (65)

where ∅ denotes the unconditional case and w > 0 is the guidance scale. This method is simple and
efficient as it requires no additional models.

Classifier guidance (CG) uses an auxiliary classifier pϕ(c | xt, t):
ϵCG
θ (xt, t, c) := ϵθ(xt, t)− sσt∇xt log pϕ(c | xt, t), (66)

where s controls guidance strength and σt is the noise level at time t. While computationally more
expensive, this approach can provide finer control over the conditioning process.

In our experiments, we adopt the default guidance approach of the baseline method.

E.6 Single-step Iteration Details

Our goal is to validate that variance-driven conditional entropy reduction can improve the denoising
diffusion process. Compared to iterations based on traditional truncated Taylor expansions, RE-
based iterations achieve better sampling performance, as demonstrated in DPM-Solver. This is
because DPM-Solver iterations represent a specific instantiation of RE-based iterations, as shown in
Proposition 3.3. Nevertheless, through extensive experiments on CIFAR-10 [75], CelebA 64 [84], and
ImageNet-256 [76], we validated that RE-based iterations can further improve the denoising diffusion
process by minimizing conditional variance. In this validation experiment, we adopt DPM-Solver
[13] as our baseline. Since the single-step iteration mechanism only requires the information from the
starting point to the information before the endpoint, RE-based iterations depend on prior variance
assumptions to reduce the conditional variance between iterations. Below, based on the principle of
minimizing conditional variance, we demonstrate how to select parameters under the assumption of
prior variance.

For clarity, we simplify the RE-based single-step iteration in Eq. (51) as follows:

f(x̃ti−1
) = f(x̃ti) + hti

((
γi +

ri
2

)
ϵθ (x̃si , si) +

(
1− γi −

ri
2

)
ϵθ (x̃ti , ti)

)
, (67)

where ri =
hti
ĥti

. To reduce variance of iteration (67) in each step, we configure the parameter γi
in accordance with the effective variance reduction interval prescribed in Remark C.4. Based on
Remark C.4, since γi ∈

[
SNR(ti)

SNR(ti)+SNR(si)
, max{2·SNR(ti), SNR(si)}

SNR(ti)+SNR(si)

]
, when considering only γi in

isolation, we recommend three specific selections of prior parameter γi: γi = SNR(ti)
SNR(ti)+SNR(si)

and γi = 1
2 . Due to ri ∈

[
1, 4 SNR(si)

SNR(ti)+SNR(si)

]
based on Remark C.1. Based on the proof

in C.2, when considering only ri in isolation, a ponential optimal value for ri is given by
2 SNR(si)

SNR(ti)+SNR(si)
. We recommend three specific selections of prior parameter ri: ri = 1 and

ri =
√

2 SNR(si)
SNR(ti)+SNR(si)

. Based on empirical performance, we recommend the combinations(
ri = 1, γi =

1
2

)
or
(
ri =

√
2 SNR(si)

SNR(ti)+SNR(si)
, γi =

SNR(ti)
SNR(ti)+SNR(si)

)
for balanced inference.

We compare the performance of RE-based iterations against several established solvers, including
DDPM [2], Analytic-DDPM [26], DDIM [9], DPM-Solver [13], F-PNDM [11], and ERA-Solver
[64]. The comparative results are presented in Figures 2 and Table 8. Remarkably, this consistent
improvement in the conditional variance enhances image quality across various scenarios, as demon-
strated by the ablation study with γi = 1/2 and ri = 1 in Figures 2. Notably, compared to the 3.17
FID achieved by DDPM with 1000 NFEs [2] on CIFAR-10, our RE-based iteration achieves a 3.15
FID with only 84 NFE, establishing a new SOTA FID for this discrete-time pre-trained model while
realizing approximately 10× acceleration. A visual comparison is shown in Figure 6.

E.7 Multi-step Iteration Details

In this section, we explore the potential of variance-based conditional entropy reduction to further
enhance the denoising diffusion process. Unlike single-step mechanisms, multi-step iterations can
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Table 8: The performance comparison of sampling methods on CIFAR-10 [75] suggests that RE-
based iterations can further improve the denoising diffusion process with enhanced equality.

Discrete Continuous Cond. EDM
3.17 2.55 1.79

DDPM Hybrid PC EDM
3.26 2.64 1.79

F-PNDM DPM-Solver-v3 Heun’s 2nd
3.15 2.41 1.76

RE-based RE-based RE-based

12 15 20 5050 66 84 100 200 1000
NFE

2.7

3.15

4
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FI
D

DDPM
Analytic-DDPM
DDIM
Analytic-DDIM
DPM-solver-2
DPM-so1ver-3
F-PNDM
ERA-Solver
RE-based-2 (ours)
RE-based-3 (ours)

Figure 6: Comparisons of FID ↓ for different iterations on discrete DMs in CIFAR-10.

leverage information from previous steps, providing additional context. Building on this advantage,
we propose a training-free and efficient denoising iteration framework aimed at improving the
denoising diffusion process through variance-driven conditional entropy reduction. Specifically, the
framework minimizes conditional variance by reducing the discrepancies between actual states during
the denoising iterations.

Challenge. Formulating the optimization objective to achieve this goal presents a significant
challenge, requiring a mechanism that can effectively capture subtle state variations across iterations.
The key lies in developing an algorithm that can identify meaningful features from state differences
and transform these insights into signals that improve the denoising process. This involves not only
quantifying state differences but also understanding the underlying deep information patterns in these
variations, enabling more precise control over the denoising diffusion process.

Our optimization objective is formulated by considering both the discrepancy between the actual
data states and the variation in the gradient states. Building upon these foundations, we outline
this efficient conditional entropy reduction iteration mechanism driven by variance minimization in
EVODiff 1, which offers an effective means to integrate variance-driven conditional entropy reduction
into the denoising diffusion process by minimizing actual state differences.

Practical Considerations. Our goal is to develop an iterative denoising sampling algorithm for
pre-trained DMs that requires neither additional training nor costly optimization procedures. However,
in the iterative scheme aimed at minimizing the variance-driven conditional entropy reduction, we
need to optimize the key parameters ζi and ηi that control the conditional variance of the denoising
iteration. As discussed in the main text, to balance optimality and computational efficiency, we
adopt an optimization-guided streamlined approach to obtain optimized variance-reduction control
parameters ζi and ηi. Specifically, the original optimization problem was a standard constrained
mathematical programming problem. We observed that the problem possesses a closed-form solution
when constraints are removed. Therefore, to directly obtain the optimized parameters in one step,
we choose to apply a nonlinear nonnegative mapping to this closed-form solution, using the mapped
non-negative substitute as our final parameters. Since this nonnegative substitute solution has
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Table 9: We conducted ablation experiments with different shift parameters in EVODiff 1, using the
pre-trained model [4] on ImageNet-256×256 [76]. We report the FID ↓ evaluated on 10k samples for
various NFEs and and guidance scales.

Method Guidence Shift Parameter NFE
5 6 8 10 12 15 20

EVODiff s=2
µ = 0.25 13.96 10.97 8.85 8.18 7.82 7.51 7.27
µ = 0.50 13.98 10.98 8.84 8.14 7.79 7.48 7.25
µ = 0.75 14.01 11.00 8.83 8.10 7.80 7.54 7.32

EVODiff s=3
µ = 0.25 14.43 11.08 8.90 8.30 7.92 7.58 7.53
µ = 0.50 14.37 11.04 8.87 8.31 7.89 7.56 7.51
µ = 0.75 14.32 10.99 8.85 8.23 7.87 7.56 7.50

EVODiff s=4
µ = 0.25 17.80 12.91 9.73 8.75 8.51 8.01 7.92
µ = 0.50 17.57 12.73 9.61 8.66 8.35 8.01 7.93
µ = 0.75 17.39 12.57 9.55 8.61 8.41 8.01 7.94

already achieved the objective of quantifying the differences between states, it can serve as an
effective alternative for parameter optimization, simultaneously ensuring computational efficiency
and preserving the capability to capture critical state variations.

E.7.1 Ablation Study

Parameter settings. In our implementation, we primarily employ the sigmoid activation function,
which is one of the most prevalent activation functions in neural networks [85]. Its mathematical
expression is Sigmoid(x) = 1

1+e−x . In our experiments, the following improved version often yields
better results, particularly for high-dimensional datasets: ζi = Sigmoid(− σti

σti+1
(|ζ∗i | − µ)), where

ζ∗i is computed using Eq. (22) and µ is a shift parameter introduced to fine-tune the solution space.

Conceptually, µ serves as a dynamic sensitivity regulator, allowing for nuanced control over the
transformation of the activation function. By adjusting µ, the inflection point of the sigmoid function
can be shifted, effectively modulating the model’s responsiveness to input variations across different
regions of the input space. For high-dimensional datasets, this provides a principled mechanism for
adaptive sensitivity calibration. The shift parameter enables more precise capturing of subtle state
variations by expanding or contracting the function’s most sensitive transformation region.

Empirical results show that this approach achieves a judicious balance between computational effi-
ciency and the model’s ability to discern critical state transitions. Table 9 systematically examines the
impact of shift parameters on image generation performance in pre-trained DMs, using comprehensive
ablation experiments on the ImageNet-256×256 dataset. Key findings include:

• Global Performance Characteristics: A consistent downward trend is observed in FID
scores as NFE increases, indicating a progressive refinement of sample quality. Performance
differences among the tested shift parameters µ ∈ {0.25, 0.50, 0.75} remain marginal,
reflecting the robustness of the sampling process across configurations.

• Shift Parameter Behavior Across NFE Stages: Performance variations exhibit nuanced
characteristics:

– At lower NFE stages, performance differences between µ values are more pronounced.
– As NFE increases, the performance of different µ values converges.
– Different µ values exhibit unique progression patterns at various guidance scales,

despite only marginal differences.
• Impact of Guidance Scale: The sensitivity to shift parameters varies with guidance scales:

– Lower guidance scales (e.g., s=2) slightly more pronounced performance variations
with µ, with a change magnitude of 0.05 FID at 20 NFE.

– As guidance scale increases (to s=3 and s=4), the influence of shift parameters becomes
subtler and more stable, with a change magnitude of 0.02 ∼ 0.03 FID at 20 NFE.

Beyond pixel-space DMs, we also conducted an ablation study on µ within latent-space DMs to
verify its efficacy and robustness in more computationally efficient frameworks. Specifically, we
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Table 10: Ablation Study: Effect of the µ Shift Parameter on EVODiff Performance for the latent-
space diffusion model [28] (LSUN-Bedrooms dataset [86]).

Method Model Dataset NFE µ FID Relative to µ = 0.5

EVODiff Latent
Diffusion LSUN-Bedrooms

5
0.25 7.6328 +3.5%
0.50 7.912 baseline
0.75 8.1845 -3.4%

10
0.25 3.3357 -0.1%
0.50 3.3318 baseline
0.75 3.3409 -0.3%

20
0.25 2.8369 +0.6%
0.50 2.8534 baseline
0.75 2.8728 -0.7%

used a latent diffusion model trained on the LSUN-Bedrooms dataset. As presented in Table 10, the
observations across NFE stages remain largely consistent with the ImageNet findings, but reveal
specific trends for latent space:

• Low-NFE Sensitivity: At the lowest 5 NFE, the shift parameter µ exhibits the largest
influence. µ = 0.25 yields the best FID score of 7.6328 (+3.5% relative to the baseline).
This supports the notion that µ is most critical during the early, high-variance sampling
phase.

• Robust Convergence: As NFE increases (from 5 to 10 and 20), performance differences
across µ values shrink significantly, confirming the robustness of EVODiff across parameter
settings. The µ = 0.50 baseline performs optimally at NFE=10, while µ = 0.25 is
marginally best at 20 NFE, with the total variation across all µ being minimal (≈ 0.7%).

• Conclusion: The LSUN-Bedrooms results validate the role of µ as an effective fine-tuning
mechanism that introduces negligible instability, even when applied to the complex latent
space of high-resolution image generation.

In summary, the extensive ablation studies on both pixel-space (ImageNet-256×256) and latent-space
(LSUN-Bedrooms) diffusion models validate the function of the µ shift parameter. The results demon-
strate the fundamental robustness of EVODiff across diverse configurations, showing only marginal
performance variations across µ values in high-NFE scenarios. Critically, µ functions as an effective
adaptive fine-tuning mechanism, providing the most significant benefit in the low-NFE, high-entropy
sampling phase (e.g., µ = 0.25 leading the performance at 5 NFE in the LSUN-Bedrooms study).
This confirms that µ introduces negligible instability while offering a refined tool for sensitivity
calibration in both high-dimensional pixel and latent spaces. Moreover, the properties of the aforemen-
tioned shift parameters collectively ensure the convergence and distinctiveness of our variance-driven
conditional entropy reduction iterative scheme during the sampling process. Specifically, although
these subtle variations are negligible on ImageNet-256×256, their distinctiveness is substantiated
through experimental validation on the stable diffusion model, as shown in Figure 11.

Reducing Conditional Variance with Prior ri. In multi-step iterations, we require a probing
step (an iteration step of Single-step Iteration Framework) to obtain the model value at the next
state. Reducing conditional variance is crucial for improving the stability and accuracy of iterative
algorithms; thus, we need to balance the conditional variance of the gradient term and the first-order
term (see the above Conditional Variance Analysis part). We found that while logSNR typically
performs well with larger step sizes, its advantages diminish as the NFE increases, as illustrated in
Figure 2 and Table 11. For clarity, we revisit the logSNR as follows:

rlogSNR(t) =
log αt

σt
− log αt+1

σt+1

log αt−1

σt−1
− log αt

σt

. (68)

This balance concept of logSNR leads to two potentially useful types of substitutions.

From the perspective of balancing variances, one might consider the following form:

rnormvar(t) =

(
Vart+1 −Vart

Vart+1

) / (
Vart −Vart−1

Vart

)
, (69)
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where Vart can represent any assumed variance, and satisfies Vart > Vart−1. If Vart < Vart−1,
then simply swapping the roles of Vart and Vart−1 in Eq. (69) will suffice. Another substitution idea
is to change the function space of the step size, for example, to the arctangent space:

rarctan(t) =
arctan(ht)

arctan(ht−1)
, (70)

where ht denotes the step size from t+ 1 to t.

In our experiments, we observed that a nonlinear combination of these two substitutions leads to
improvements in certain scenarios. We define this nonlinear combination as refined ri, and the
ablation study of both logSNR and refined ri in the context of EVODiff 1 can be found in Table
11. Table 11 shows that even when using the same ri as the baseline, our mathematically principled
construction of EVODiff consistently outperforms state-of-the-art ODE solvers. Moreover, Table
11 also demonstrates that employing a more effective ri within our EVODiff framework further
improves performance. Beyond this, we investigate a variance-driven approach that adheres more
closely to theoretical principles. Specifically, ri = rlogSNR(t) ∗ wconfidence, where wconfidence is a
function of the cosine similarity between Bθ(ti, li) and x̃ti at time step ti. This strategy demonstrates
strong performance on both CIFAR-10 and ImageNet-256. As shown in Table 2, it yields significant
improvements on CIFAR-10.

In summary, the ablation study on the shift parameter µ demonstrates the robustness of EVODiff.
While different µ values show minor performance variations in specific NFE ranges, the overall
results are consistently state-of-the-art, indicating that our method is not highly sensitive to this
parameter and can achieve excellent performance with a default setting (e.g., µ = 0.5).

E.8 Comparison of Reference-Free EVODiff and Learning-Based Methods with Reference
Trajectories

A significant advantage of EVODiff is its reference-free nature, enabling it to achieve state-of-the-art
performance without the overhead required by methods that rely on pre-computed or learned reference
trajectories. This section substantiates this claim by presenting comprehensive comparisons against
major classes of reference-based methods, followed by analyses of computational efficiency and the
generalizability of our core principles.

Superiority over Reference-Based Solvers and Learning-Based Methods. Our advantage is
particularly pronounced when benchmarked against advanced ODE solvers that explicitly incorporate
reference information. As noted in our main results in Table 2, DPM-Solver-v3 leverages Empirical
Model Statistics (EMS), which is a technique requiring prior knowledge from a high-NFE reference
solution to optimize its steps. This essentially provides the solver with a “cheat sheet" on the data
distribution. Despite this additional optimization information, EVODiff, with its on-the-fly adaptive
strategy, consistently demonstrates superior performance. On CIFAR-10, it achieves a remarkable
FID of 3.98 at 8 NFE and 2.78 at 10 NFE, decisively outperforming DPM-Solver-v3’s scores of 4.95
and 3.52, respectively. This trend is not limited to low-dimensional data; on ImageNet-256, EVODiff
also maintains a competitive edge, further underscoring the robustness of our approach (Table 2).

Furthermore, EVODiff also excels when compared to another class of reference-based techniques:
learning-based methods that distill knowledge from prior trajectories. As shown in Table 13, while
specialized methods like UniPC [LD3, [59]] are highly effective, EVODiff surpasses them at 10 NFE
with a leading FID of 2.74. It is crucial to note that this result is achieved without the need for an
expensive offline distillation or training phase, highlighting a significant practical advantage in terms
of flexibility and resource efficiency. Collectively, these results furnish compelling evidence that the
reference-free paradigm of EVODiff is not a compromise but a fundamental strength.

Computational Efficiency. A critical consideration is whether these performance gains come at
the expense of computational efficiency. The end-to-end generation time comparison in Table 15 and
Table 4 confirms that EVODiff introduces negligible or even reduced computational overhead/cost
compared to the highly optimized DPM-Solver++ baseline. This is because our algorithm is a
second-order method, yet the adaptive optimization of parameters ζi and ηi relies on closed-form
solutions involving lightweight vector operations (as shown in Lemmas 4.4 and 4.5). Consequently,
these steps add minimal latency relative to the computationally intensive forward pass of the neural
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Table 11: We conducted ablation experiments under different guidance scales and different random
seeds. Quantitative results of the gradient estimation-based denoising iterations using the pre-trained
model [4] on ImageNet-256×256 [76]. We report the FID↓ for 10k samples evaluated under various
NFEs. Bold values indicate the best FID in each iteration step column, while italicized values
represent the second best.

Method Model NFE
5 6 8 10 12 15 20

DPM-Solver++-2 16.39 12.77 9.92 8.88 8.31 8.03 7.76

DPM-Solver++-3 15.64 11.64 9.21 8.51 8.12 7.97 7.69

UniPC-2
Guided-Diffusion

15.15 11.79 9.41 8.63 8.16 7.93 7.71

UniPC-3
(s=2, seed=1234)

14.93 11.22 9.21 8.55 8.19 7.98 7.70

DPM-Solver-v3-2 14.88 11.21 9.17 8.51 8.12 7.90 7.67

DPM-Solver-v3-3 15.62 11.73 9.57 8.89 8.37 8.01 7.65

EVODiff (rlogSNR) 13.94 10.96 9.02 8.38 8.01 7.83 7.54
EVODiff (rrefined) 14.21 11.21 9.05 8.34 7.97 7.80 7.48

DPM-Solver++-2 16.62 12.86 9.73 8.68 8.17 7.80 7.51

DPM-Solver++-3 15.69 11.65 9.06 8.29 7.94 7.70 7.48

UniPC-2
Guided-Diffusion

15.37 11.78 9.22 8.40 8.01 7.71 7.47

UniPC-3
(s=2, seed=3407)

15.05 11.30 9.07 8.36 8.01 7.72 7.47

DPM-Solver-v3-2 14.92 11.13 8.98 8.14 7.93 7.70 7.42

DPM-Solver-v3-3 15.51 11.77 9.37 8.67 8.18 7.73 7.52

EVODiff (rlogSNR) 13.98 10.98 8.84 8.16 7.81 7.52 7.32
EVODiff (rrefined) 14.33 11.16 8.95 8.14 7.79 7.48 7.25

DPM-Solver++-2 16.27 12.40 9.55 8.66 8.18 7.84 7.61

DPM-Solver++-3 15.93 11.49 8.98 8.39 8.11 7.74 7.63

UniPC-2
Guided-Diffusion

15.44 11.64 9.11 8.46 8.17 7.75 7.62

UniPC-3
(s=3, seed=3407)

16.11 11.88 9.25 8.58 8.14 7.77 7.72

DPM-Solver-v3-2 17.97 12.04 9.17 8.40 8.11 7.76 7.67

DPM-Solver-v3-3 20.87 14.94 10.68 9.29 8.57 7.92 7.77

EVODiff (rlogSNR) 14.37 11.04 8.87 8.37 7.89 7.56 7.51

EVODiff (rrefined) 15.93 11.94 9.21 8.31 7.89 7.58 7.54

network. In many low-NFE scenarios, our method is even marginally faster. This finding is crucial,
as it establishes that EVODiff offers a Pareto improvement, achieving superior sample quality at no
additional computational cost.

Generalizability of the Core Principles. Finally, to demonstrate the fundamental nature of our
proposed principles, we tested whether our variance-control concept could enhance other state-of-the-
art frameworks. We integrated our entropy-aware approach into the EMS-parameterized structure of
DPM-Solver-v3. As evidenced in Table 14 (labeled “RE-based") and Figure 8, this hybrid method
surpasses the already formidable performance of the original DPM-Solver-v3 (e.g., achieving 10.61
FID vs. 12.21 at 5 NFE on EDM). This result provides the strongest validation, elevating entropy-
aware variance optimization from a mere algorithmic heuristic to a powerful and universal principle
for diffusion model inference. Moreover, it suggests that the improvements from our entropy-aware
optimization and the EMS-based approach may be orthogonal, opening promising avenues for future
work in combining these principles for even greater performance gains.

E.9 More Experiments for EVODiff

We conducted additional experiments to assess the robustness and versatility of EVODiff. These
tests span various pre-trained models, datasets, noise schedules, and complex conditional generation
tasks, aiming to demonstrate that EVODiff’s superior performance arises from its entropy-aware,
reference-free design, rather than being limited to specific conditions.
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Table 12: Comparison of FID scores for different sampling methods on CIFAR-10 with the uncondi-
tional EDM model.

Method Model Reference-based? Entropy-aware? NFE
5 6 8 10 12 15

DPM-Solver++

EDM

× × 27.96 16.87 8.40 5.10 3.70 2.83
UniPC × × 27.03 17.32 7.67 3.97 2.76 2.23
DPM-Solver-v3 ✓ × 11.60 8.22 4.94 3.52 2.81 2.40
EVODiff × ✓ 17.84 9.17 3.98 2.78 2.30 2.12

Table 13: Comparison on CIFAR10 with recent learning-based and learning-free methods under 6, 8,
10 NFEs. Bold indicates the best FID in each column, italicized indicates the second best.

Dataset Method Type Method NFE

6 8 10

CIFAR10

UniPC (3M) 13.12 4.41 3.16

Learning-based with prior trajectories GITS [70] (UniPC prior) 11.19 5.67 3.70
LD3 [59] (UniPC prior) 5.92 3.42 2.87

Learning-free and reference-free EVODiff (2m) 9.07 3.88 2.74

A key indicator of a sampler’s utility is its consistent performance across diverse settings. We
first demonstrate this quantitative consistency on standard benchmarks. As shown in Table 14, on
CIFAR-10, EVODiff excels with both the ScoreSDE and EDM pre-trained models, achieving a
state-of-the-art FID of 10.61 at just 5 NFE on EDM. Furthermore, its superiority is maintained under
different noise schedules; Tables 16 through 19 show that EVODiff consistently secures the leading
FID scores on high-resolution datasets like FFHQ-64 and ImageNet-64, regardless of whether a
“logSNR" or “EDM" schedule is employed. This consistent dominance across varied models and
schedules strongly indicates that EVODiff’s performance gains are intrinsic to its algorithmic design
rather than an artifact of a specific setup.

Moving beyond numerical metrics, we evaluated EVODiff’s qualitative performance on the highly
demanding task of text-to-image synthesis with Stable Diffusion v1.4 and v1.5. This setting tests a
sampler’s ability to handle complex semantic guidance and generate coherent, high-fidelity images.
As visualized in Figures 10 and 12, our method produces images with significantly fewer artifacts
and greater structural integrity. Most compellingly, Figure 13 highlights a crucial advantage in
semantic consistency: for the prompt "an astronaut riding a horse," competing methods generated an
anatomically incorrect horse with five legs, a common failure mode in DMs. In contrast, EVODiff
correctly rendered a four-legged animal, demonstrating its superior ability to preserve semantic and
anatomical plausibility. This suggests that our entropy-aware optimization leads to a more stable and
accurate information flow from text prompt to pixel space.

A critical consideration for any practical sampler is whether performance gains are achieved at
the expense of computational efficiency. We explicitly address this by comparing the end-to-end
generation time of EVODiff with the highly optimized DPM-Solver++ baseline. The results, presented
in Table 15, confirm that EVODiff introduces negligible computational overhead. In many low-NFE
scenarios, it is even marginally faster. This finding is crucial, as it establishes that EVODiff offers a
Pareto improvement: superior sample quality at no additional computational cost. This makes it a
highly practical reference-free solution for real-world deployment.

Finally, to demonstrate the fundamental and generalizable nature of our proposed principles, we
tested whether our variance-control concept could enhance other SOTA frameworks. We integrated
our entropy-aware approach into the EMS-parameterized structure of DPM-Solver-v3. As evidenced
in Table 14 and Figure 8, this hybrid method (labeled “RE-based") surpasses the already formidable
performance of the original DPM-Solver-v3. This result provides the strongest validation that entropy-
aware variance optimization is not merely a set of heuristics for a single algorithm, but a powerful,
universal principle for improving diffusion model inference.
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Table 14: Quantitative results of FID ↓ scores for gradient-based methods on CIFAR-10. The
results are evaluated on 50k samples for various NFEs, some results are borrowed from the original
papers. The “RE-based (our)" row demonstrates the application of our entropy-aware principles to
the DPM-Solver-v3 framework.

Method Model NFE
5 6 8 10 12 15 20

DEIS [14] 15.37 \ \ 4.17 \ 3.37 2.86
DPM-Solver++ [20]

ScoreSDE
28.53 13.48 5.34 4.01 4.04 3.32 2.90

UniPC [16] 23.71 10.41 5.16 3.93 3.88 3.05 2.73
DPM-Solver-v3 [17] 12.76 7.40 3.94 3.40 3.24 2.91 2.71
RE-based (our) 13.54 8.56 4.11 3.38 3.22 2.76 2.42
Heun’s 2nd [12] 320.80 103.86 39.66 16.57 7.59 4.76 2.51
DPM-Solver++ [20]

EDM
24.54 11.85 4.36 2.91 2.45 2.17 2.05

UniPC [16] 23.52 11.10 3.86 2.85 2.38 2.08 2.01
DPM-Solver-v3 [17] 12.21 8.56 3.50 2.51 2.24 2.10 2.02
RE-based (our) 10.61 8.22 3.37 2.43 2.21 2.07 2.01

Table 15: Comparison of Computational Overhead between EVODiff and DPM-Solver++ on
ImageNet-256 with 10k samples on a 3090 GPU.

NFE DPM-Solver-2m Total Time EVODiff Total Time
5 9.56s/it 1:03:24 (h:m:s) 9.45s/it 1:02:15 (h:m:s)
10 18.40s/it 2:02:39 (h:m:s) 18.39s/it 2:00:39 (h:m:s)
15 27.24s/it 3:01:34 (h:m:s) 27.25s/it 3:01:47 (h:m:s)
20 36.07s/it 4:00:28 (h:m:s) 36.11s/it 4:00:48 (h:m:s)

Table 16: Comparison of FID scores for different sampling methods on FFHQ-64×64 using the
logSNR schedule.

Method Model
NFE

logSNR schedule
5 10 15 20 25

Heun

FFHQ-64, EDM

342.28 45.46 7.60 3.25 2.71
DPM-Solver++ 28.96 6.87 4.07 3.29 2.97
UniPC_bh1 35.78 4.00 2.81 2.60 2.52
UniPC_bh2 27.00 5.44 3.38 2.87 2.67
EVODiff 20.04 3.93 2.72 2.55 2.46

Table 17: Comparison of FID scores for different sampling methods on FFHQ-64×64 using the EDM
schedule.

Method Model
NFE

EDM schedule
5 10 15 20 25 35

Heun

FFHQ-64, EDM

347.09 29.92 9.95 4.58 3.41 2.71
DPM-Solver++ 25.08 6.81 3.80 3.00 2.75 2.59
UniPC_bh1 28.87 6.66 3.40 2.69 2.58 2.50
UniPC_bh2 24.09 6.17 3.35 2.73 2.58 2.50
EVODiff 19.65 5.31 3.02 2.64 2.56 2.48
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Table 18: Comparison of FID scores for different sampling methods on ImageNet 64×64 using the
logSNR schedule.

Method Model
NFE

logSNR schedule
5 10 15 20 25 35

Heun

ImageNet 64, EDM

231.754 23.269 7.413 3.597 3.020 2.513
DPM-Solver++ 32.529 7.052 3.922 3.077 2.738 2.465
UniPC_bh1 41.366 5.453 3.041 2.578 2.415 2.286
UniPC_bh2 31.063 5.795 3.312 2.714 2.490 2.319
EVODiff 23.979 4.289 2.688 2.384 2.242 2.143

Table 19: Comparison of FID scores for different sampling methods on ImageNet 64×64 using the
edm schedule.

Method Model
NFE

EDM schedule
5 10 15 20 25 35

Heun

ImageNet 64, EDM

248.402 15.129 5.301 3.136 2.739 2.424
DPM-Solver++ 27.243 5.785 3.480 2.866 2.606 2.393
UniPC_bh1 39.158 5.649 3.456 2.701 2.424 2.268
UniPC_bh2 26.354 5.042 3.118 2.639 2.434 2.284
EVODiff 21.894 4.734 3.316 2.594 2.308 2.167

DPM-Solver++ UniPC DPM-Solver-v3 EVODiff (our)

5
NFE

(a) UniPC, 25 NFE. (b) DPM-Solver-v3, 25 NFE. (c) EVODiff (our), 25 NFE.

Figure 7: Random samples from Stable-Diffusion-v1.4 [28] with a classifier-free guidance scale 7.5,
using the text prompt “environment living room interior, mid century modern, indoor garden with
fountain, retro, m vintage, designer furniture made of wood and plastic, concrete table, wood walls,
indoor potted tree, large window, outdoor forest landscape, beautiful sunset, cinematic, concept art,
sunstainable architecture, octane render, utopia, ethereal, cinematic light". Our EVODiff method
demonstrates consistent improvements across both low (5 NFE) and higher (25 NFE) inference steps.
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(a) DPM-Solver-v3, 12.22 FID. (b) RE-based, 10.61 FID.

Figure 8: Random samples of EDM [12] on the CIFAR-10 dataset with only 5 NFEs. Within
the EMS-parameterized iterative framework provided by DPM-Solver-v3, the RE-based iterative
approach improves FID by explicitly balancing the conditional variance of the gradient term itself.

DPM-Solver++ UniPC DPM-Solver-v3 EVODiff 1
7.76 FID 7.71 FID 7.67 FID 7.48 FID

Figure 9: Random samples from the pretrained Guided-Diffusion model [4] with 20 NFE on the
ImageNet-256 dataset [76]. Our EVODiff method reduces reconstruction error without relying on
a reference solution, while can retain the sample quality benefits of methods like DPM-Solver-v3,
which relies on EMS-based statistics optimized using a reference solution.

DPM-Solver++ DPM-Solver-v3 EVODiff 1

Figure 10: Random samples from Stable-Diffusion-v1.4 [28] with a classifier-free guidance scale 7.5,
using 10 NFE and the prompt “A beautiful castle beside a waterfall in the woods, by Josef Thoma,
matte painting, trending on artstation HQ". Images generated by our EVODiff method exhibit greater
clarity and naturalness, along with more coherent and complete structural content.
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(a) EVODiff 1 ( µ=0.75).

(b) EVODiff 1 ( µ=0.5).

(c) EVODiff 1 ( µ=0.1).

Figure 11: Random samples from Stable-Diffusion-v1.4 [28] with a CFG scale 7.5, different shift
parameters, using 10 NFE and the text prompt “A beautiful castle beside a waterfall in the woods,
by Josef Thoma, matte painting, trending on artstation HQ". Our EVODiff inference consistently
generates clear and complete content across different shift parameters.
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NFE=5 NFE=10 NFE=15 NFE=25

DPM-
Solver
++

[20]

UniPC
[16]

DPM-
Solver-
v3

[17]

EVOD-
iff 1

Figure 12: Random samples from Stable-Diffusion [28] with a guidance scale 7.5, using varying NFEs
and the prompt “tree house in the forest, atmospheric, hyper realistic, epic composition, cinematic,
landscape vista photography by Carr Clifton & Galen Rowell, 16K resolution, Landscape veduta
photo by Dustin Lefevre & tdraw, detailed landscape painting by Ivan Shishkin, DeviantArt, Flickr,
rendered in Enscape, Miyazaki, Nausicaa Ghibli, Breath of The Wild, 4k detailed post processing,
artstation, unreal engine". Our EVODiff inference improves content clarity, coherence, and overall
completeness. In contrast, other methods exhibit partial content collapse at 25 NFEs, whereas ours
preserves structural integrity.
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DPM-
Solver++

[20]

UniPC [16]

EVODiff
1

Figure 13: Random samples from Stable-Diffusion-v1.4 [28] with a classifier-free guidance scale
7.5, using 50 NFE and the text prompt “a photograph of an astronaut riding a horse". In the images
at position (2,2), other methods produced anatomically incorrect horses with five legs, whereas our
EVODiff inference correctly generated anatomically accurate horses with four legs.
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NFE=10 NFE=25

DPM-
Solver++

[20]

UniPC
[16]

EVODiff 1

Figure 14: Random samples from Stable-Diffusion-v1.5 with a guidance scale 7.5, using varying
NFEs and the prompt “A robot chef cooking a meal in a futuristic kitchen, with glowing utensils and
a holographic recipe book, highly detailed, sci-fi atmosphere". Our EVODiff inference improves
content continuity and consistency, and effectively reduces visual artifacts.
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