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Abstract
This work develops a novel and widely appli-
cable transferability theory for graph convolu-
tional networks; covering architectures based on
undirected- and recently introduced directed con-
volutional filters. Experiments on real-world data
validate the developed theory in practice.

1. Introduction
Graph Convolutional Networks (Kipf & Welling, 2017;
Bruna et al., 2014; Defferrard et al., 2016) are a prominent
class of machine learning architectures adapted to operating
on graph structured data. Such GCNs (also known as spec-
tral convolutional networks) continue to set the state of the
art on a diverse selection of tasks (Bianchi et al., 2019; He
et al., 2021; 2022; Wang & Zhang, 2022; Koke & Cremers,
2024). While for a long time thought to be only deployable
on undirected graphs (Bronstein et al., 2021), they were
recently successfully extended also to the directed setting
(Koke & Cremers, 2024).

A key question for GCNs is that of transferability (Levie
et al., 2019; Ruiz et al., 2023). This concept encodes the
ability to train a GCN on one set of graphs and then succes-
fully apply it to previously unseen ’similar’ graphs. Typical
examples of such similar graphs arise from coarse-graining
an original graph, re-meshing (c.f. e.g. (Botsch & Kobbelt,
2004)) if the graph discretizes an underlying object such
as manifold, or from re-sampling if the original graph in
question is drawn from a statistical distribution.

In the literature, transferability has been investigated almost
exclusively in the setting of (very) large and undirected
graphs taken to faithfully discretise a common underlying
”continuous” object such as fixed metric measure space
(Levie et al., 2019), the same graphon (Ruiz et al., 2020;
Maskey et al., 2021) or the same graphop (Le & Jegelka,
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2023). Beyond the deterministic setting, transferability in
(high) probability has also been investigated for graphs
statistically sampled from the same underlying manifold
(Wang et al., 2021; 2022) or drawn from the same statistical
distribution (Keriven et al., 2020; Gao et al., 2021).

Contributions: Here we introduce a novel approach to
transferability based on information-diffusion processes on
graphs. This new approach also covers directed graphs, al-
lows for transferability results beyond the asymptotic setting
of large graphs and applies to typical examples such as trans-
ferability between graphs arising through coarsification or
from edge-rewiring. Numerical experiments on real-world
data validate our findings in practice.

2. Preliminaries
Weighted directed graphs: A (potentially) directed graph
G :“ pG, Eq is a collection of nodes G and edges E Ď GˆG.
We assume (real) edge-weights wij ě 0 (with wij ı wji)
and allow nodes i P G to have individual node-weights
µi ą 0. In a social network, a node weight µi “ 1 might
e.g. signify that node i represents a single user, while a node
with µj ą 1 represents a group of users.

Feature spaces: Given F -dimensional node features on a
graph with N “ |G| nodes, we collect individual node-
feature vectors into a feature matrix X of dimension
N ˆ F . Taking into account our node weights, we equip
the space of such signals with an inner-product according
to xX,Y y “ TrpX˚MY q “

řN
i“1

řF
j“1pXijYijqµi with

M “ diag ptµiuq the diagonal matrix of node-weights.

Characteristic Operators: Information about the geome-
try of a graph is encapsulated into the set of edge weights,
collected into the (weighted) adjacency matrix A. Vari-
ous characteristic operators such as Laplacians (e.g. (Hein
et al., 2006; Maskey et al., 2023)) and (re-)normalized
adjacency matrices (Kipf & Welling, 2017; Rossi et al.,
2023; Koke & Cremers, 2024) may be then be derived.
Our developed theory extends to all such choices. Re-
sults below will depend on the failure of characteristic
operators to be unitarily diagonalizable, as measured via
the characteristic operator L’s departure from normality
ν2pLq “ p}L}2F ´

ř

λkPσpLq
|λk|

2q. Since in the undirected
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setting νpLq “ 0, we may think of νpLq as measuring the
’severity of the directedness’ of the underlying graph.

Spectral Convolutional Filters: A spectral graph convolu-
tional filter is constructed by applying a learnable func-
tion hθp¨q to an underlying characteristic operator L to
build up the filter matrix hθpLq. If the operator L “

V ´1ΛV is diagonalizable (e.g. on undirected graphs), spec-
tral convolutional filters hθpLq are defined as hθpLq “
V ´1hθpΛqV , with hθ applied to the eigenvalues Λ as
hθpΛq “ diag phθpλ1q, ..., hθpλN qq. If L is not diagonaliz-
able, a more subtle definiton is used (c.f. Appendix B)

In practice one avoids working with the expensive eigen-
decomposition hθpLq “ V ´1hpΛqV by parametrizing a
generic filter function hθp¨q as a weighted sum over ’simpler’
basis functions tψiuiPI “: Ψ as hθp¨q :“

ř

iPI θi ¨ ψip¨q.
These simpler functions ψip¨q may then e.g. be chosen as
polynomials (Defferrard et al., 2016; He et al., 2021; 2022;
Koke & Cremers, 2024) or rational functions (Bianchi et al.,
2019; Koke & Cremers, 2024), with ψipLq then simply
given as a polynomial (or rational function) in the matrix
L. Complete filters hθpLq are then parametrized via the
learnable coefficients tθiuiPI as hθpLq :“

ř

iPI θi ¨ ψipLq.

Graph Convolutional Networks: Learnable filters are
then combined into a (K-layer) graph convolutional network
mapping initial node-features X P CNˆF to final represen-
tations XK P CNˆFK . With bias matrices B` P CNˆF`
(B:j “ bj ¨1G) and weight matrices W `

i P C
F`´1ˆF` , layer-

updates are then implemented as:

X` “ ρ

˜

ÿ

iPI

ψipLq ¨X
`´1 ¨W `

i `B
`

¸

(1)

Here ρ is a point-wise non-linearity, for which we assume
ρp0q “ 0 and |ρpaq ´ ρpbq| ď |a´ b| (a, b P C). With basis
functions Ψ “ tψiuiPI and weights and biases represented
as W and B, we denote the output of a graph neural network
based on the characteristic operator L and applied to the
node feature matrix X as Φ “ ΦW ,B,ΨpL,Xq.
3. Transferability via Information-Diffusion
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Figure 1. Perturbed K16

We are interested in significant
perturbations of graphs which
nevertheless should be consid-
ered small: Consider e.g. the
(unnormalized) graph Laplacian
(L “ ∆) on the unweighted com-
plete N -node graph KN . Let
L̃ “ ∆̃ be the Laplacian ob-
tained from deleting a single
edge from KN . Clearly }L ´
L̃} “ 2 irrespective of N . For
N “ 2 deleting the only present

edge in K2 clearly amounts to a significant change in geom-

etry. For largerN however, deleting a single edge intuitively
corresponds to a comparatively small change in the graph’s
geometry (c.f. K16 with edge ’1 Ø 5’ removed in Fig 1).

This intuition is related to the way information diffuses over
the underlying graph: On a two node graph, deleting the
only present edge clearly completely disrupts information
flow. Deleting an edge within a large fully connected clique
hardly modifies the way information is diffused. To quantify
these considerations, we recall that the diffusion equation
on a graph is given as (Veerman & Lyons, 2020; Gasteiger
et al., 2019b) dXptq{dt “ ´L ¨Xptq with solution Xptq “
e´Lt ¨Xp0q. Solving this for the same initial conditionXp0q
but with diffusion implemented via L and L̃ respectively, we
find }e´LtXp0q ´ e´L̃tXp0q} À e´pN´2qt (c.f. Appendix
G). Hence information indeed diffuses similarly over the
distinct graph structures determined by L and L̃ if N " 1.

The observation that even if }L´ L̃} ě 1 information might
still diffuse similarly over the corresponding graph struc-
tures G, G̃ provides the core of the transferability theory we
develop here: We consider two graphs to be similar, if the
information diffusion flows e´tL, e´tL̃ generated by their
characteristic operators are similar.1 We then desire that
networks are transferable between such similar graphs.

If the two graphs share a common node set, similarity is
captured by suptě0 }e

´Lt´ e´L̃t} ! 1. If the node sets are
distinct, we facilitate contact between the two graphs via
linear intertwining operators J and J̃ , with J linearly map-
ping features from G to G̃ and J̃ mapping in the opposite
direction. We may then consider two notions of comparing
diffusion flows on graphs G and G̃ (c.f. also Appendix H):

Definition 3.1. Two graphs G, G̃ are unidirectionally sim-
ilar under the identification J if suptě0 }Je

´Lt´e´L̃tJ} !

1. They are bidirectionally similar if }e´Lt´ J̃e´L̃tJ} ď
ηptq for some (fast decaying) function ηptq ě 0 with
limtÑ8 ηptq “ 0 and ηp0q “ }IdG ´ J̃J}.

Single Filter Transferability: We now want to character-
ize the class of filters that are transferable between graphs
which are similar in the sense of Definition 3.1. This class
will turn out to consist of functions that arise as Laplace
transforms (c.f. (Widder, 1941) or Appendix I.2):

Definition 3.2. Let ψ̂ be a (generalized) function defined
on Rě0 :“ r0,8q for which }ψ̂}1 :“

ş8

0
|ψ̂ptq|dt ă 8.

A Laplace Transform Filter ψ is any function defined as
ψpzq :“

ş8

0
e´tzψ̂ptqdt.

Here a generalized function ψ̂ is meant to be understood in
a distributional sense: We e.g. allow ψ̂ptq to be given as a
(complex multiple of) the dirac delta distribution ψ̂δt0 ptq :“
cδpt´ t0q with c P C and t0 ě 0 (c.f. Appendix I).

1 Appendix I.6 discusses implicit assumptions on L, L̃.
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Example 3.3. Considering ψ̂k “ δpt ´ kt0q for t0 ą 0
and k P N yields ψkpzq “ e´pkt0qz . Using this set of
exponential basis-functions ΨExp “ te´pkt0qzukPN yields
a wide class of filter functions (c.f. Appendix I.2).
Example 3.4. Defining ψ̂k :“ p´tqk´1e´λt yields
ψkpzq “ pz ` λq´k. Using this set of resolvent basis-
functions ΨRes “ tpz ` λq´kukPN yields a broad func-
tion class thθp¨q :“

ř

i θi ¨ ψip¨qu as well (c.f. Ap-
pendix I.2). The name arises since corresponding filters
ψkpLq “

“

pL` λIdq´1
‰k

are given as powers of the resol-
vent pL` λIdq´1 of the operator L.

Since we can write ψpLq “
ş8

0
ψ̂ptqe´tLdt, we may think

of Laplace transform filters as a weighted sum over diffusion
processes that have progressed to various times t P r0,8q.
As we prove in Appendix I.3, this property endows such
filters with transferability in the setting of Definition 3.2:
Theorem 3.5. We have }JψpLq ´ ψpL̃qJ} ď }ψ̂}1 ¨

suptě0 }Je
´Lt ´ e´L̃tJ} in the unidirectional setting.

In the bidirectional setting }ψpLq ´ J̃ψpL̃qJ} ď
ş8

0
|ψ̂ptq|ηptqdt holds true.

In the unidirectional setting, }ψ̂}1 hence provides the sin-
gle filter stability constant. In the bidirectional setting,
we note that if ψ̂ptq “ δptq, we have

ş8

0
|ψ̂ptq|ηptqdt “

}IdG´ J̃J} ą 0 irrespective of L, L̃. Hence for filters to be
transferable in the bidirectional setting, we need to assume
that the generalized function ψ̂ contains no dirac-delta at
t “ 0; or equivalently (as we show in Appendix I.4):
Corollary 3.6. Consider a sequence of graphs Gn for which
}e´Lnt ´ J̃ne

´L̃tJn} Ñ 0. Then for a Laplace transform
filter ψ, we have }ψpLnq ´ J̃nψpL̃qJn}| Ñ 0 if and only if
limrÑ8 ψprq “ 0.

While there exist computational methods for evaluat-
ing the quantity suptě0 }Je

´Lt ´ e´L̃tJ} numerically
(Braker Scott, 2021), this is sometimes cumbersome to do
in practice. For this reason, we here provide estimates in
terms of a different quantity, that is often more accessible in
practice (c.f. also our example below). This quantity makes
use of the concept of the resolvent RλpLq :“ pL` λIdq´1

of the operator L; introduced in Example 3.4 above:
Theorem 3.7. Let ψ be a Laplace transform filter. There
exists a constant C “ Cψ,νpLq,νpL̃q ă 8 so that we have
}JψpLq´ψpL̃qJ} ď C ¨ }JpL`λIdq´1´pL̃`λIdq´1J}.

If either J̃J “ IdG̃ or JJ̃ “ IdG (as is e.g. the case in
our coarse-graining example below, Theorem 3.7 directly
translates to the bidirectional setting. If this is not the case,
we still have the following bidirectional convergence result;
proved together with Theorem 3.7 in Appendix I.4:
Theorem 3.8. Consider a graph sequence Gn with }pLn `
λIdq´1 ´ J̃npL̃ ` λIdq´1Jn} Ñ 0. If the graphs are di-

rected, assume eigenvalues of all Lns lie within a cone of
opening angle α ă π symmetric about the real axis. Then
}ψpLnq ´ J̃nψpL̃qJn} Ñ 0 iff limrÑ8 ψprq “ 0.

Network Transferability: Building on this, we find the
following for the transferability of networks:
Theorem 3.9. Let ΦW ,B,Ψ be a K-layer deep GCN. As-
sume that

ř

iPI }W
`
i } ď W and }B`} ď B. Choose

C ě }ΨipL̃q} (i P I) and w.l.o.g. assume CW ą 1.
Assume ρpJX̃q “ Jρp rXq and if biases are enabled,
assume J1G “ 1G̃. With this, we have with δ “

maxiPIt}JψipLq ´ ψiprLqJ}u that

}JΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL, JXq}

ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙

¨ δ.

We prove Theorem 3.9 together with the corresponding re-
sult for the bidirectional setting in Appendix I.7. Extensions
to graph level tasks are discussed in Appendix I.8.

Example: Coarse-Graining Graphs. Deferring additional
examples to Appendix J, we here consider graphs contain-
ing clusters of nodes connected by significantly larger edge
weights than those of edges outside of these clusters. This
might for example arise for weighted graphs discretizing
underlying continuous spaces: Here, edge weights are typi-
cally set to inverse discretization length (wij „ d´1

ij ), which
might vary over the graph (Post, 2012; Post & Simmer,
2021). Strongly connected sub-graphs then correspond to
clusters of spatially closely co-located nodes. Alternatively,
such different scales can occur in social networks; e.g. if
edge-weights are set to number of exchanged messages.

(a) (b) (c)

Figure 2. (a) G with red stong edges (b) Coarse grained G (c) Ghigh

From a diffusion perspective, information in a graph equal-
izes faster along edges with large weights. In the limit where
edge-weights within certain sub-graphs tend to infinity, in-
formation within these clusters equalizes immediately and
such sub-graphs should thus effectively behave as single
nodes. We might thus consider a course grained graph G
where these strongly connected clusters are indeed fused
together and represented only via single nodes. The cor-
responding node set G of G is then given by the set of
connected components in Ghigh Edges E are given by ele-
ments pR,P q P G ˆ G with non-zero accumulated edge
weight WRP “

ř

rPR

ř

pPP Wrp. Node weights in G are
defined accordingly by aggregating as µ

R
“

ř

rPR µr. To
compare signals on these two graphs G,G, we define inter-
twining operators JÓ, JÒ transferring information between
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the two graphs: Let x be a scalar graph signal and let 1R
be the vector that has 1 as entry for nodes r P R and is
zero otherwise. Denote by uR the entry of u at node R P G.
Projection JÓ is then defined component-wise by evaluation
at node R P G as pJÓxqR “ x1R, xy{µR. Interpolation is
defined as JÒu “

ř

RPG uR ¨ 1R.

As proved in Appendix J.1, we have for Laplacians ∆,∆
on G and G that (with ∆high the Laplacian for Ghigh)

}p∆` Idq´1 ´ JÒp∆` Idq´1JÓ} À 1{λ1p∆highq. (2)

Hence – as desired in view of Definition 3.1 – the transfer-
ability error for networks based on Laplace transform fil-
ters decreases inversely with increasing connectivity within
Ghigh as measured via the first non-trivial eigenvalue λ1 of
∆high (scaling linearly with the edge-weights in Ghigh). In
contrast other common, GNNs equip G and G with vastly
different feature-vectors, as observed below.

4. Numerical Results
In this section we focus on showcasing the transferability
properties established in Section 3 in a practical example.
Following (Levie et al., 2019; Koke, 2023) in spirit, we con-
sider transferability between original- and coarse grained
versions of graphs. In order to evaluate on real world data
we follow (Koke, 2023) and evaluate on the task of molec-
ular property prediction, which allows to fairly compare
properties of standard GNN architectures (Hu et al., 2020).
Our dataset (QM7; (Rupp et al., 2012)) contains 7165 or-
ganic molecules; each containing both hydrogen and heavy
atoms. Each molecule is represented by a weighted ad-
jacency matrix, whose entries Aij “ ZiZj ¨ |~xi ´ ~xj |

´1

correspond to Coulomb repulsions between atoms i and j.
Prediction target is molecular atomization energy. We also
consider a coarsified version of QM7: Here we fuse together
each heavy atom with its surrounding hydrogen atoms into
super-nodes. Appendix K.1 provides exact details and dis-
cusses baselines. We might interpret this low-resolution
QM7 dataset as a model for data obtained from a resolution-
limited observation process unable to resolve positions of
individual (small) hydrogen atoms and only providing infor-
mation about how many are bound to a given heavy atom.

We then consider two architectures using Laplace transform
filters, with the set of basis functions Ψ (c.f. Section 2) given
respectively as the set of exponential basis functions ΨExp

introduced in Example 3.3 and the set of resolvent basis-
functions ΨRes introduced in Example 3.4. We compare the
transferability properties of these architectures (LTF-ΨRes

and LTF-ΨExp) against those of typical GNNs.

Using the high-resolution graphs tGu of QM7 and the low-
resolution graphs tGu in coarsified-QM7, we then investi-
gate transferability by confronting models during inference

with a resolution-scale different from the one they were
trained on: Table 1 collects corresponding results; including
reference results for inference on same-resolution data.

Table 1. Regression using high- and low-resolution QM7

Mean Absolute Error (Ó) on QM7 [kcal/mol]

Training High Resolution Low Resolution

Inference
Low

Resolution
High

Resolution
Low

Resolution
High

Resolution

GCN 125.34˘2.47 63.17˘0.92 67.75˘3.73 380.51˘30.33

ARMA 206.50˘18.68 62.18˘3.24 62.30˘4.70 301.44˘38.29

GATv2 415.09˘96.5748.41˘19.20 60.01˘3.34 245.03˘90.97

ChebNet 568.47˘37.70 64.63˘1.21 64.90˘4.55339.64˘101.30

SAG 542.16˘27.33 68.43˘1.93104.20˘3.92 506.75˘60.57

BernNet 765.22˘495.2883.76˘21.75 90.52˘37.17594.62˘341.55

SAG-M 285.53˘95.54 66.22˘4.51 73.57˘14.57 307.67˘77.24

UFGNet 620.21˘4.80 13.71˘1.05 24.53˘4.80156.44˘156.44

Lanczos 939.87˘16.35 10.55˘3.22 83.11˘5.27654.61˘529.13

PushNet 2442.59˘303.27 60.94˘1.83 69.25˘3.11 124.08˘3.94

LTF-ΨRes 16.54˘3.01 16.53˘3.03 15.79˘0.98 13.80˘1.34

LTF-ΨExp 16.37˘1.71 16.36˘2.16 16.25˘1.41 16.25˘1.41

We first note that for all baselines, the mean-absolute-errors
(MAEs) made during inference increase significantly when
going from a same-resolution setting to a cross-resolution
setting. This shows clearly that standard architectures
are not transferable. Their errors increase by factors of
Op2q for simple methods (e.g. GCN) up to Op100q for
sophisticated ones (e.g. UFGNet and Lanczos). MAEs
of LTF-ΨRes and LTF-ΨExp do not increase when going
from a same- to a cross-resolution setting: Thus we see that
networks based on Laplace transform filters are trans-
ferable. In cross-resolution settings, MAEs of LTF-ΨRes

and LTF-ΨExp are lower than that of all baselines by a fac-
tor of at least Op10q but up to Op100q. It is interesting to
observe that LTF-ΨRes’s best performance is achieved when
only low-resolution training data is available, but inference
is performed on high resolution data; a setup is likely to
occur in real-life settings without high-quality training-data.

5. Conclusion
We developed a widely applicable transferability theory for
(potentially directed) graph convolutional networks based
on the intrinsic notion of information diffusion on graphs.
In an example, we saw how our theory enables the design
of networks transferable between graphs arising from one
another via coarse-graining. This was confirmed experi-
mentally: Networks designed according to the principles
laid out by our developed theory were seen to be transfer-
able between graphs describing the same object at different
resolutions. Other architectures proved not transferable.
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A. Notation
We provide a summary of employed notational conventions:

Table 2. Notational Conventions
Symbol Meaning
} ¨ } The standard 2-norm
G a graph
G Nodes of the graph G
N number of nodes |G| in G
G Coarse grained version of graph G
µi weight of node i
M weight matrix
x¨, ¨y inner product
A (weighted) adjacency matrix
Din/out in/out-degree matrix
Lin in-degree graph Laplacian
L generic characteristic operator
L˚ hermitian adjoint of L
LJ transpose of L (used if and only if L has only real entries)
U change-of-basis matrix to a basis of orthogonal eigenvec-

tors (used in the undirected setting only)
V change-of-basis matrix to a basis of eigenvectors (used in

the diagonalizable setting only)
κpV q condition number of V
νpLq departure from normality of L
σpLq spectrum (i.e. collection of eigenvalues) of L
λ an eigenvalue
h a filter function
hpLq function h applied to operator L
Ψ a filter bank
ψi an element of a filter-bank
z a complex number
JÓ, JÒ projection and interpolation operator
J, J̃ intertwining operators
Φ map associated to a graph convolution network
Ω graph-level aggregation mechanism
M a manifold
Zi atomic charge of atom corresponding to node i
~xi Cartesian position of atom corresponding to node i
ZiZj
|~xi´~xj |

Coulomb interaction between atoms i and j
|~xi ´ ~xj | Euclidean distance between xi and xj

B. Additional Details on spectral convolutional filters on directed graphs
For a detailed discussion, the reader is referred to (Koke & Cremers, 2024); which this appendix follows closely.

On undirected graphs, one may apply generic functions thu to the a characteristic operator L “ UJΛU employ-
ing the complete eigendecomposition of L as hpLq :“ UJhθpΛqU . On directed graphs L is generically not even
diagonalizable. Here (Koke & Cremers, 2024) discussed a different approach to consistently defining the matrix
hpT q: One restricts h to be a holomorphic function: For a given subset U of the complex plane, these are the
complex valued functions h : U Ñ C for which the complex derivative dhpzq{dz can be defined everywhere.
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Any value hpλq of such a function can then be reproduced by calculating an integral
of the function h along a path Γ encircling λ (c.f. Fig. 3) as

hpλq “ ´
1

2πi

¿

Γ

hpzq ¨ pλ´ zq´1dz. (3)

Figure 3. Cauchy Integral (3)

Fundamental Definition: When defining the matrix hpLq, the formal replacement λ ÞÑ L is then made on both sides of
the Cauchy formula (3). The path Γ now not only encircles a single value λ but all eigenvalues λ P σpLq in the spectrum of
L (c.f. also Fig. 4):

gpLq :“ ´
1

2πi

¿

Γ

gpzq ¨ pL´ z ¨ Idq´1dz (4)

It can be shown that the precise choice of path Γ is not important (Koke & Cremers,
2024).

Figure 4. Operator Integral (4)

Compatibility with Algebraic relations This holomorphic functional calculus is compatible with algebraic relations
(Kato, 1976): Applying the function hpλq “ λk to L yields Lk and if y is not an eigenvalue of L, applying the function

hpλq “
´

1
λ´y

¯k

to L yields hpLq “ rpL´ y ¨ Idq´1sk.

C. An additional perspective on Graph Convolutional Networks:
Learnable filters are combined into a (K-layer) graph convolutional network mapping initial node-features X P CNˆF to
final representations XK P CNˆFK . With bias matrices B` P CNˆF` (B:j “ bj ¨1G) and weight matrices W `

i P C
F`´1ˆF` ,

layer-updates are then implemented as:

X`
i: “ ρ

˜

F`´1
ÿ

j“1

h`θij pLqpX
`´1
j: q `B`i:

¸

(5) ô X` “ ρ

˜

ÿ

iPI

ψipLq ¨X
`´1 ¨W `

i `B
`

¸

(6)

Here ρ is a point-wise non-linearity, for which we assume ρp0q “ 0 and |ρpaq ´ ρpbq| ď |a´ b| (a, b P C). The connection
between the scalar viewpoint (5) and the matrix formulation (6) is given via the identity hθij pLq ”

ř

kpWkqijψkpLq.
With the set of basis functions denoted as Ψ “ tψiuiPI , and weights and biases represented as W and B, we denote
the output of a graph neural network based on the characteristic operator L and applied to the node feature matrix X as
Φ “ ΦW ,B,ΨpL,Xq.

D. Additional Result I: Stability to Node Level Perturbations
In real world settings, node-features are generically only known up to a certain level of precision. Our first result (proved
below) bounds GCN output variations in terms of input-uncertainty.

Theorem D.1. Let ΦW ,B,Ψ be a K-layer GCN. We have that

}ΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨpL, Y q} ď

˜

K
ź

`“1

C`

¸

¨ }X ´ Y }

with C` “ 1
2π

ű

Γ

?
e

dpz,σpLqq exp
´

1
2

νpLq
dpz,σpLqq

¯
b

ř

jPF`´1

ř

iPF`
|h`θij pzq|

2d|z| using (4) and (5). Alternatively, we may set

C` “
ř

iPI }W
`
i } ¨ }ψipLq} using the the formulation of (1).

Our estimate of C` using (4) extends preliminary results in (Koke, 2023) to generic complex differentiable filters and
provides an explicit expression for C`: We see that a failure of L to be unitarily diagonalizable (i.e. νpLq ą 0 ) negatively
influences stability. The smallest stability constants correspond to the undirected setting (νpLq “ 0). We also note that in
the formulation (1) the magnitude of weight matrices Wk P C

F`´1ˆF` is estimated in spectral norm } ¨ } and not – say
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– Frobenius norm }¨}F . This yields reasonable stability constants and allows to retain predictive power even if F`´1, F` " 1.

Hence let us prove the above result:

Proof. Given input signals X,Y P CNˆF , let us denote the intermediate signal representations in the intermediate layers
by X`, Y ` P CNˆF` . With the update rule described in Appendix C, we then have

}X``1 ´ Y ``1}2

“

F``1
ÿ

i“1

›

›

›

›

›

ρ

˜

Fn
ÿ

j“1

hn`1
ij pLqX`

:j

¸

´ ρ

˜

Fn
ÿ

j“1

hn`1
ij pLqY `:j

¸
›

›

›

›

›

2

ď

F``1
ÿ

i“1

›

›

›

›

›

F
ÿ̀

j“1

hn`1
ij pLqX`

:j ´

Fn
ÿ

j“1

hn`1
ij pLqY `:j

›

›

›

›

›

2

“

F``1
ÿ

i“1

›

›

›

›

›

F
ÿ̀

j“1

h``1
ij pLq

“

X`
:j ´ Y

`
:j

‰

›

›

›

›

›

2

,

which follows from ρp0q “ 0 and |ρpaq ´ ρpbq| ď |a´ b| (a, b P C). We next note

F``1
ÿ

i“1

›

›

›

›

›

F
ÿ̀

j“1

h``1
ij pLq

“

X`
:j ´ Y

`
:j

‰

›

›

›

›

›

2

ď

F``1
ÿ

i“1

˜

F
ÿ̀

j“1

}h``1
ij pLq} ¨ }

“

X`
:j ´ Y

`
:j

‰

}

¸2

ď

˜

F``1
ÿ

i“1

F
ÿ̀

j“1

}h``1
ij pLq}2

¸

F
ÿ̀

j“1

}
“

X`
:j ´ Y

`
:j

‰

}2

“

˜

F``1
ÿ

i“1

F
ÿ̀

j“1

}h``1
ij pLq}2

¸

}X` ´ Y `}2

where the second to last step is an application of the Cauchy Schwarz inequality.

For generic L and holomorphic h, we note

Lemma D.2. For holomorphic g and generic T we have

}hpLq} ď
1

2π

¿

Γ

|hpzq|

?
e

dpz, σpLqq
exp

ˆ

1

2

νpLq

dpz, σpLqq

˙

d|z|.

Proof. We first note
›

›

›

›

›

›

1

2πi

¿

Γ

hpzq ¨ pzId´ Lq´1dz

›

›

›

›

›

›

ď

›

›

›

›

›

›

1

2πi

¿

Γ

hpzq ¨ pzId´ Lq´1dz

›

›

›

›

›

›

ď
1

2π

¿

Γ

|hpzq|
›

›¨pzId´ Lq´1
›

› d|z|.

The claim thus follows from (c.f. (Bandtlow, 2004))

}pzId´ Lq´1} ď

?
e

dpz, σpLqq
exp

ˆ

1

2

νpLq

dpz, σpLqq

˙

.

10



Transferability for Graph Convolutional Networks

An application of the triangle inequality together with the above Lemma then yields

˜

F``1
ÿ

i“1

F
ÿ̀

j“1

}h``1
ij pLq}2

¸

1
2

ď
1

2π

¿

Γ

?
e

dpz, σpT qq
exp

ˆ

1

2

νpT q

dpz, σpT qq

˙

d

ÿ

jPF`´1

ÿ

iPF`

|h``1
ij pzq|2d|z|.

Which hence establishes the characterization of C`. Iterating through the Layers yields the total claim.

To establish our second characterization of C` we note

}X``1 ´ Y ``1}

“

›

›

›

›

›

ρ

˜

ÿ

iPI

ψipLqX
`W `

i `B
`

¸

´ ρ

˜

ÿ

iPI

ψipLqY
`W `

i `B
`

¸
›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

ψipLqX
`W `

i `B
` ´

˜

ÿ

iPI

ψipLqY
`W `

i `B
`

¸
›

›

›

›

›

“

›

›

›

›

›

ÿ

iPI

ψipLqpX
` ´ Y `qW `

i

›

›

›

›

›

ď
ÿ

iPI

}ψipLq} ¨ }X
` ´ Y `} ¨ }W `

i }

“

˜

ÿ

iPI

}ψipLq}}W
`
i }

¸

¨ }X` ´ Y `}.

Iterating through the layers then yields the claim.

E. Stability to Graph Level Perturbations
Beyond node features, also edge weights of graphs (entering the architecture viaL) are generically only known approximately.
Stability under variations in these weights is captured by our next result:

Theorem E.1. Let ΦW ,B,Ψ be a K-layer deep graph convolutional architecture. Assume in each layer 1 ď ` ď K that
ř

iPI }W
`
i } ď W and }B`} ď B. Choose C ě }ΨipLq} (@i P I) and w.l.o.g. assume CW ą 1. With this, we have with

δ “ maxiPIt}ΨipLq ´ΨiprLq}u that

}ΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL,Xq} ď

„

K ¨ CK´1WK ¨

ˆ

}X} `
1

CW ´ 1
B

˙

¨ δ.

To ease presentation, we here have chosen the stability constant larger than is strictly necessary. The proof below contains
additional results (e.g. for CW ď 1). Contrary to previous results our result also applies to networks containing biases.

Theorem E.1 reduces the question of stability of entire networks to the question of single filter stability of the basis elements
ψi in Ψ “ tψiuiPI . In practice, the difference ”}ψipLq ´ ψiprLq}” may of course be evaluated numerically if the basis Ψ is
already given.

When designing new architectures, it is however important to know in advance how the choice of basis functions affects
the stability properties of the network. To this end, bounds of the form }ψipLq ´ ψiprLq} ď Cψi ¨ }L´

rL} are desirable.
Previous works have derived such bounds for specific classes of filter functions (c.f. e.g. (Koke, 2023)). Here we provide
two new useful characterizations (proved in Appendix F) of Cψ in the most general (potentially directed) setting without
assuming specific forms of the underlying filter functions:

Theorem E.2. Let L, rL be characteristic operators. We have }ψpLq ´ ψprLq} ď Cψ ¨ }L ´ L̃}, with Cψ “

1
2π

ű

Γ
e

|z|¨dpz,σpLqq¨dpz,σpT̃ qq
exp

´

1
2

νpLq
dpz,σpLqq `

1
2

νpL̃q

dpz,σpT̃ qq

¯

|ψpzq|d|z| using Γ as in (4). If L, L̃ are additionally diago-

11
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nalizable, we have with the Frobenius norm denoted by } ¨ }F that }ψprLq ´ ψpLq} ď κpVLq ¨ κpVL̃q ¨ Lψ ¨ }
rL´ L}F . Here

Lψi is the Lipschitz constant of ψi.

Here we made used of the condition number κpVLq “ }VL} ¨ }V ´1
L } of the change-of-basis matrix VL (with κpVLq “ 1 if

VL is unitary).

For both characterisations of Cψ , we hence see that the departure of L from being unitarily diagonalizable (either measured
via the condition number κpVLq or the departure from normality νpLq) increases the stability constant. Thus the same
difference δ “ }L ´ L̃} in characteristic operators has a bigger effect on GCN output variations if the operators L, L̃
correspond to directed graphs.

Hence let us prove Theorem E.1

Proof. For simplicity in notation, let us denote the hidden representations in the network corresponding to L̃ by X`. With
this, we note:

}XK ´ X̃K} ď
ÿ

iPI

}ψipLq ´ ψipL̃q} ¨ }X
K´1} ¨ }WK

i } `
ÿ

iPI

}ψipL̃q} ¨ }X̃
K´1 ´XK´1} ¨ }WK

i }

ď δW }XK´1} ` CW }X̃K´1 ´XK´1}

ď δW }XK´1} ` CWδ}XK´2} ` pCW q2}X̃K´1 ´XK´1}

ď
δ

C
¨

˜

K
ÿ

`“1

pCW q`}XK´`}

¸

“
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j}Xj}

¸

Hence we need to bound the quantity }Xj} in terms of C,W,B and X .

We have

}Xj} ď
ÿ

i

}ψipLq} ¨ }X
j´1} ¨ }W j

i | ` }B
J}

ď CW }Xj´1} `B

ď pCW q2}Xj´2} ` CWB `B

ď B

˜

j´1
ÿ

k“0

pCW qk

¸

` pCW qj}X}

“

#

B pCW q
j
´1

CW´1 ` pCW qj}X} ;CW ‰ 1

jB ` }X} ;CW “ 1
.

For the case CW “ 1, we thus find

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pjB ` }X}q

¸

“
δ

C
¨

ˆ

K}X} `B
KpK ´ 1q

2

˙

.

For the case CW ‰ 1, we find

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j
„

B
pCW qj ´ 1

CW ´ 1
` pCW qj}X}



¸

12
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For CW ą 1, we may further estimate this as

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j
„

B
pCW qj ´ 1

CW ´ 1
` pCW qj}X}



¸

ď δ ¨
KpCW qK

C

„

B

CW ´ 1
` }X}



.

This proves the claim.

F. Proof of Theorem E.2
In this section, we prove Theorem E.2 stated here again for convenience:
Theorem F.1. Let L, rL be characteristic operators. We have }ψpLq ´ ψprLq} ď Cψ ¨ }L ´ L̃}, with Cψ “

1
2π

ű

Γ
e

|z|¨dpz,σpLqq¨dpz,σpT̃ qq
exp

´

1
2

νpLq
dpz,σpLqq `

1
2

νpL̃q

dpz,σpT̃ qq

¯

|ψpzq|d|z|. If T, T̃ are additionally diagonalizable, we have

with the Frobenius norm denoted by } ¨ }F that }ψprLq´ψpLq} ď κpVLq ¨κpVL̃q ¨Lψ ¨ }
rL´L}F . Here Lψk is the Lipschitz

constant of Ψk.

We split this proof into proving two Lemmata:
Lemma F.2. Let g : CÑ C be Lipschitz continuous with Lipschitz constant Dg . Let X and Y satisfy

V ´1XV “ diagpλ1, ...λd2q “: DpXq

W´1YW “ diagpµ1, ...µd1q “: DpY q.

This implies
}gpXq ´ gpY q}F ď }V

´1}}V }}W´1}}W } ¨Dg ¨ }X ´ Y }F .

Proof. This proof builds on the proof idea in (Wihler, 2009). We find:

}gpXq ´ gpY q||2F “ ||gpV DpXqV
´1q ´ gpWDpY qW´1q}2F

“ }V gpDpXqqV ´1 ´WgpDpY qqW´1}2F

ď }V }}W´1} ¨ }gpDpXqqV ´1W ´ V ´1WgpDpY qq}2F

“ }V }}W´1} ¨
ÿ

i,j

ˇ

ˇpgpDpXqqV ´1W ´ V ´1WgpDpY qqqij
ˇ

ˇ

2

“ }V }}W´1} ¨
ÿ

i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k

rgpDpXqqsikrV
´1W skj ´ rV

´1W sikrgpDpY qqskj

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ }V }}W´1} ¨
ÿ

i,j

ˇ

ˇrV ´1W sij
ˇ

ˇ

2
|gpλjq ´ gpµiq|

2

ď }V }}W´1} ¨
ÿ

i,j

ˇ

ˇrV ´1W sij
ˇ

ˇ

2
D2
g |λj ´ µi|

2

“ }V }}W´1} ¨D2
g}DpXqV

´1W ´ V ´1WDpY q}2F

ď }V }}V ´1}}W´1}}W } ¨D2
g}X ´ Y }

2
F .

Next we want to prove the following:
Lemma F.3. Let L, rL be operators . With

Kg “
1

2π

¿

Γ

1

|z|

?
e

dpz, σpLqq
exp

ˆ

1

2

νpLq

dpz, σpLqq

˙ ?
e

dpz, σpL̃qq
exp

˜

1

2

νpL̃q

dpz, σpL̃qq

¸

|gpzq|d|z|

13
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for g holomorphic, we have
}gpLq ´ gprLq} ď Kg ¨ }L´ rL}

Proof. We first note the following:

1

rL´ z
prL´ Lq

1

L´ z

“
1

rL´ z
rLJ

1

T ´ z
´

1

rL´ z
L

1

L´ z

“

„

1

rL´ z
prL´ zqJ `

z

rL´ z



1

L´ z
´

1

rL´ z

„

1

L´ z
pL´ zqJ `

z

T ´ z



“z

ˆ

1

L´ z
´

1

rL´ z
J

˙

.

Thus we have

}gprLq ´ gpLq} ď
1

2π

¿

Γ

1

|z|
}RzpLq}}RzprLq}|gpzq|d|z|

ď
1

2π

¿

Γ

1

|z|

?
e

dpz, σpLqq
exp

ˆ

1

2

νpLq

dpz, σpLqq

˙ ?
e

dpz, σpL̃qq
exp

˜

1

2

νpL̃q

dpz, σpL̃qq

¸

|gpzq|d|z|.

Here we estimated (using (Bandtlow, 2004))

}pL´ zIdq´1} ” }RzpLq} ď

?
e

dpz, σpLqq
exp

ˆ

1

2

νpLq

dpz, σpLqq

˙

.

G. Comparison of Diffusion Flows for edge-rewiring in KN

We are interested in establishing that in the setting of Section 3, we have

}e´Lt ´ e´L̃t} À e´pN´2qt.

To this end, we first note that both Laplacians L, L̃ correspond to graphs that are connected. Hence the kernel of both
Laplacians is spanned by the vector of 1 of all ones. Denote by P the orthogonal projection onto 1 and set Q “ Id´ P .
We then have

}e´Lt ´ e´L̃t} “ }Qe´LtQ´Qe´L̃tQ}.

Next we note for the Laplacian L on KN that
L “ N ¨Q,

and hence
}e´Lt ´ e´L̃t} “ }Qe´Nt ´Qe´L̃tQ}.

From perturbation theory, we note that for the eigenvalues of symmetric matrices A, pA`Bq ordered in decreasing order,
we have (c.f. e.g. (Kato, 1976))

|λipA`Bq ´ λipAq| ď }B}.

Since L̃ arises from L by deleting a single edge and the Laplacian defined on an unweighted connected two-node graph has
operator norm equal to two, we find

|λ´N | ď 2

for any λ P σpL̃q. Thus with spectral projection Pλ of L̃, we find

}e´Lt ´ e´L̃t} ď e´Nt

›

›

›

›

›

›

ÿ

0‰λPσpL̃q

Qp1´ epN´λqtPλQ

›

›

›

›

›

›

À e´pN´2qt.

14
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H. Further discussion of unidirectional similarity
In the unidirectional setting, we can transfer the diffusion process from G
to G̃ without producing a large deviation, but not vice versa. Such a setting
might e.g. occur if G is a subgraph of G̃ (c.f. the example in Fig. 5 further
discussed in Appendix H. Bidirectional similarity is a stronger measure
of similarity. In this setting, diffusing features on G is approximately the
same as first projecting them to G̃ via J ,

(a) (b)

Figure 5. Example of unidirectionally similar graphs
then diffusing on G̃ and finally interpolating back to G with J̃ . Since G and G̃ generically have different numbers of nodes,
we can not demand JJ̃ “ IdG̃ while J̃J “ IdG, as at least one of the products tJJ̃, J̃Ju can not have full rank. Hence
for t “ 0 we have }e´Lt ´ J̃e´L̃tJ}|t“0 “ }IdG ´ J̃J} ą 0 irrespective of L, L̃. In this setting, similarity between the
two graphs is then measured by how fast the difference between the respective diffusion processes on G and G̃ becomes
negligible as diffusion time t increases beyond the initial t “ 0; i.e. by how fast ηptq decays to zero.

Hence let us further discuss the example of unidirectionally similar graphs introduced in Fig. 5. Let us denote the graph of
Fig. 5 (a) by G̃ and the graph of Fig. 5 (b) by G. On both these graphs let us consider the out-degree Laplacian

Lout :“ Dout ´W

as characteristic operator on both G and G̃. Here Dout denotes the diagonal out-degree matrix Dout
jj “

ř

iAij .

The diffusion process e´tL arises as the solution operator of the differential equation

dxptq

dt
“ ´Lxptq.

Using this, we see that no information flows from the ’top’ node of G̃ to either of the two bottom nodes in Fig. 5 (a).
Chosing as J the obvious inclusion operator mapping from G̃ to G and assigning the value ’0’ to the top node in G̃, we
easily find }e´tLJ ´ e´tL̃J} “ 0. The diffusion on G̃ (i.e. the graph in Fig. 5 (a)) however is dependent on the top node in
G̃ as well if this node carries a non-zero initial value. Hence we can not transfer it to G.

I. Laplace Transform Filters
In this section we provide an overview of the concept of Laplace transforms. We begin with a recapitulation of complex
measures.

I.1. Complex measures on Rě0 and their Theory of Integration

As reference for this section (Tao, 2013) might serve.

In mathematics, a measure is a formal generalization of concepts such as length, area and volume. We are interested in
assigning a generalized notion of length (or mass) to subsets of the real half-line

Rě0 “ r0,8q.

The set will turn out to be a so called σ-Algebra; i.e. a set Σ of sets for which

• H,Rě0 P Σ

• A,B P σ ñ AXB P Σ

• A,B P Σ ñ AzB P Σ

• A,B P Σ ñ AYB P Σ.

15
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We now take ΣRě0
to be the smallest such set of sets Σ that contains all open intervals.

A complex measure then is a set-function that assigns to each set in ΣRě0
a complex number in a certain way:

Definition I.1. A complex measure µ on Rě0 is a complex valued function µ : ΣRě0
Ñ C satisfying

µ

˜

ď

n

An

¸

“
ÿ

n

µ pAnq

for any countable (potentially infinite) collection of sets in ΣRě0
which are pairwise disjoint.

Let us provide some examples:

Example I.2. The prototypical example of a measure is the standard Lebesgue measure that assigns to any interval pa, bq
the length µLebppa, bqq “ |a´ b| (a, b P Rě0).

Example I.3. Alternatively, we might consider the Dirac measure µδt0 , which assigns the value µδt0 ppa, bqq “ 1 to any
interval pa, bq containing t0 (i.e. t0 P pa, bq). Otherwise it assigns the value µδt0 ppa, bqq “ 0 if t0 R pa, bq.

Example I.4. Every integrable function ψ̂ : Rě0 Ñ C defines a complex measure via µψ̂ppa, bqq “
şb

a
ψ̂ptqdt.

Any given measure on Rě0 defines a unique way of integrating (known as Lebesgue integration) a function f defined on
Rě0. This proceeds by approximating any function f via a weighted sequence of indicator functions (with A P ΣRě0

a set)

χAptq “

#

1 ; t P A

0 ; t R A
.

as

fptq « fnptq :“
ÿ

k

ankχAkptq.

with ak P C. For these functions, one then sets
ż

Rě0

fndµ ”
ÿ

k

ank ¨ µpAkq.

Since we have limnÑ8 fn “ f , one then simply sets

ż

Rě0

fdµ ” lim
nÑ8

ż

Rě0

fndµ.

Example I.5. For the prototypical example of the standard Lebesgue measure, this process simply yields

ż

Rě0

fptqdµLebptq “

ż 8

0

fptqdt.

Example I.6. For the Dirac measure µδt0 , the above process yields

ż

Rě0

fptqdµδt0 ptq “ fpt0q

Example I.7. For measures arising from integrable functions ψ̂ : Rě0 Ñ C as µψ̂ppa, bqq “
şb

a
ψ̂ptqdt, we find

ż

Rě0

fptqdµψ̂ “

ż 8

0

ψ̂ptqfptqdt.
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I.2. Laplace Transforms

We say complex valued measure µ is finite if we have
ż

Rě0

d|µ|ptq ă 8.

Here the measure |µ| arises from the original measure µ via

|µ|ppa, bqq ” |µppa, bqq|.

For any such finite measure µ we may define its Laplace transform as

ψµpzq :“

ż

Rě0

e´tzdµptq.

This function fµ is well defined for z in the right hemisphere

CR :“ tz P C : Repzq ě 0u.

of the complex plane C, since there we have

|ψµpzq| “

ˇ

ˇ

ˇ

ˇ

ż

Rě0

e´tzdµptq

ˇ

ˇ

ˇ

ˇ

ď

ż

Rě0

|e´tz|d|µ|ptq

ď

ż

Rě0

d|µ|ptq ă 8.

Example I.8. For the Dirac measure µδt0 , we have

ψµδt0
pzq “ e´t0z.

Example I.9. For any integrable function ψ̂, we have

ψpzq ”

ż

Rě0

e´tzdµψ̂ “

ż 8

0

ψ̂ptqe´tzdt.

More specifically, if the integrable function is given as ψ̂k :“ p´tqk´1e´λt (with Repλq ą 0), then ψkpzq “ pz ` λq´k:

Example I.10. If ψ̂k :“ p´tqk´1e´λt yields ψkpzq “ pz ` λq´k, then

ψkpzq “ pz ` λq
´k.

For k “ 1, this can be seen from
ż 8

0

e´tze´λtdt “ ´
1

z ` λ
e´pz`λq

ˇ

ˇ

ˇ

ˇ

8

0

.

For k ą 1, the claim follows from differentiating the above expression with respect to z Note that the functions ψkpzq “
pz ` λq´k are also defined if Repzq ď 0, as long as z ‰ ´λ.

Using the function ψk of the examples above, a wide class of functions may be parametrized
Theorem I.11. Let f : Rě0 Ñ 0 be any function with lim

xÑ8
fpxq “ 0. Then for any ε ą 0, there is a function

hpxq “
ÿ

k

θkψkpxq

for which
sup

xPr0,8q

|fpxq ´ hpxq| ă ε.

Here the basis functions tψku may either be chosen as ψkpzq “ pz ` λq´k or ψkpxq “ e´pkt0qx for any t0 ą 0.

Proof. This is a direct consequence of the Weierstrass approximation theorem.
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I.3. Proof of Theorem 3.5

In this section, we prove Theorem 3.5, which we restate here for convenience:

Theorem I.12. We have }JψpLq ´ ψpL̃qJ} ď }ψ̂}1 ¨ suptě0 }Je
´Lt ´ e´L̃tJ} in the unidirectional setting. In the

bidirectional setting }ψpLq ´ J̃ψpL̃qJ} ď
ş8

0
|ψ̂ptq|ηptqdt holds true.

Proof. We start by proving the first claim. To this end, we note

}JψpLq ´ ψpL̃qJ} “

›

›

›

›

ż

Rě0

”

Je´tL ´ e´tL̃J
ı

dµψ̂

›

›

›

›

ď

ż

Rě0

›

›

›

”

Je´tL ´ e´tL̃J
ı
›

›

›
d|µ|ψ̂

ď sup
tě0

}Je´Lt ´ e´L̃tJ} ¨

ż

Rě0

d|µ|ψ̂

Observing that in the notation of Section 3 we precisely have

}ψ̂}1 ”

ż

Rě0

d|µ|ψ̂

the claim follows.
Proceeding as above, we note

}ψpLq ´ J̃ψpL̃qJ} ď

ż 8

0

›

›

›

”

e´tL ´ J̃e´tL̃J
ı
›

›

›
d|µ|ψ̂,

from which the second claim follow.

I.4. Proof of Corollary 3.6

Here we prove Corollary 3.6; restated here for convenience:

Corollary I.13. Consider a sequence of graphs Gn for which }e´Lnt ´ J̃ne
´L̃tJn} Ñ 0. Then for a Laplace transform

filter ψ, we have }ψpLnq ´ J̃nψpL̃qJn}| Ñ 0 if and only if limrÑ8 ψprq “ 0.

Proof. Let us first prove that the condition is sufficient. To this end assume that limrÑ8 ψprq “ 0. This implies that
µψ̂pt0uq “ 0. Hence we have

}ψpLnq ´ J̃nψpL̃qJn} “

›

›

›

›

ż 8

0

”

e´Lt ´ J̃e´L̃tJ
ı

dµψ̂ptq

›

›

›

›

ď

ż 8

0

›

›

›
e´Lt ´ J̃e´L̃tJ

›

›

›
d|µ|ψ̂ptq

The integrand
›

›

›
e´Lt ´ J̃e´L̃tJ

›

›

›
converges to zero everywhere except on a set of measure zero (i.e. the set tt|t “ 0u “ t0u).

The dominated convergence theorem then yields the claim.

I.5. Proof of Theorem 3.7 and Corollary 3.8

We begin by proving Theorem 3.7; restated here for convenience:

Theorem I.14. Let ψ be a Laplace transform filter. There exists a constant C “ Cψ,νpLq,νpL̃q ă 8 so that we have

}JψpLq ´ ψpL̃qJ} ď C ¨ }JpL` λIdq´1 ´ pL̃` λĨdq´1J}.
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Proof. We make use of the characterization (4)

ψpLq :“ ´
1

2πi

¿

Γ

ψpzq ¨ pL´ z ¨ Idq´1dz

to arrive at

}JψpLq ´ ψpL̃qJ} ď
1

2π

¿

Γ

|ψpzq| ¨ }JpL´ zIdq´1 ´ pL̃´ zIdq´1J}d|z|.

Combining results of (Post, 2012) and (Bandtlow, 2004) yields

}JpL´ zIdq´1 ´ pL̃´ zIdq´1J}

ď

˜

1` |λ` z|

?
e

dpz, σpL̃qq
exp

˜

1

2

νpL̃q

dpz, σpL̃qq

¸¸

¨

˜

1` |λ` z|

?
e

dpz, σpL̃qq
exp

˜

1

2

νpL̃q

dpz, σpL̃qq

¸¸

ˆ}JpL` λIdq´1 ´ pL̃` λIdq´1J}.

Hence we may set

C “
1

2π

¿

Γ

|ψpzq| ¨ pνpLq,νpL̃qpzqd|z|

with

pνpLq,νpL̃qpzq

”

˜

1` |λ` z|

?
e

dpz, σpL̃qq
exp

˜

1

2

νpL̃q

dpz, σpL̃qq

¸¸

¨

˜

1` |λ` z|

?
e

dpz, σpL̃qq
exp

˜

1

2

νpL̃q

dpz, σpL̃qq

¸¸

Next we prove Theorem 3.8; restated below.
Theorem I.15. Consider a graph sequence Gn with }pLn ` λIdq´1 ´ J̃npL̃` λIdq

´1Jn} Ñ 0. If the graphs are directed,
assume eigenvalues of all Lns lie within a cone of opening angle α ă π symmetric about the real axis. Then we have
}ψpLnq ´ J̃nψpL̃qJn} Ñ 0 if and only if limrÑ8 ψprq “ 0.

Proof. As in the proof of Theorem 3.7 above, we arrive at

}ψpLq ´ J̃ψpL̃qJ} ď
1

2π

¿

Γ

|ψpzq| ¨ }pL´ zIdq´1 ´ J̃pL̃´ zIdq´1J}d|z|.

Since }pLn ` λIdq´1 ´ J̃npL̃` λIdq
´1Jn} Ñ 0 implies }pLn ´ zIdq´1 ´ J̃npL̃´ zIdq

´1Jn} Ñ 0 uniformly (in z) on
compact sets (c.f. e.g. (Arendt, 2001)), we can apply dominated convergence as in the proof of Corollary 3.6 in Appendix
I.4; if we find an majorizing function that is integrable on Γ. But this is ensured by the decay of ψ and the possibility to
choose Γ to lie within in a cone of opening angle α ň π about the real axis of opening angle less than π.

I.6. Discussion of extension beyond spectral assumptions

Above, we have assumed that all appearing eigenvalues λ P C in the spectrum σpLq have real part Repλq ě 0. This
guarantees that

lim sup
tÑ8

}e´Lt} ă 8.

From this we find that

}ψpLq} “

›

›

›

›

ż

Rě0

e´tLdµptq

›

›

›

›

ď

ˆ

lim sup
tÑ8

}e´Lt}

˙

¨

ż

Rě0

d|µ|ptq ă 8,

so that the filter ψpLq is indeed well-defined. If we want to allow Repλq ă 0 as well, we have two options:

19



Transferability for Graph Convolutional Networks

The set tRepλqu is bounded from below: In this setting we have a guarantee that there is c´ ą 0 so that for all appearing
eigenvalues in the spectra of L and L̃ we have

´c´ ď Repλq.

This implies that
lim sup
tÑ8

}e´Lte´c´t} ă 8.

Using
›

›

›

›

ż

Rě0

e´tLdµptq

›

›

›

›

“

›

›

›

›

ż

Rě0

e´tLe´c´tec´tdµptq

›

›

›

›

ď

ˆ

lim sup
tÑ8

}e´Lte´c´t}

˙

¨

ż

Rě0

ec´td|µ|ptq,

the developed theory above is still applicable in this setting, as long as we assume that the measure µ defining the Laplace
transform filter ψ satisfies

ż

Rě0

ec´td|µ|ptq ă 8.

Note that this is stronger than the demand
ż

Rě0

d|µ|ptq ă 8.

made in Definition 3.2.

The set tRepλqu is not bounded from below: In this setting, we pick a µ P C with Repµq ă 0 and µ R σpLq Y σpL̃q.
We then restrict the class of filters to those determined by Example 3.4: There we chose ψ̂k :“ p´tqk´1e´µt, which yielded
filters of the form thθp¨q :“

ř

i θi ¨ ψip¨qu , with ψkpLq “
“

pL` µIdq´1
‰k

. Such filters hence remain defined as long as
µ R σpLq.

I.7. Proof of Theorem 3.9

Theorem I.16. Let ΦW ,B,Ψ be an L-layer deep GCN. Assume that
ř

k }W
`
k} ďW and }B`} ď B. Choose C ě }ΨkpT q}

(@k) and w.l.o.g. assume CW ą 1. Assume ρpJX̃q “ Jρp rXq and if biases are enabled, assume J1G “ 1G̃. With this, we
have with δ “ maxiPIt}JψipLq ´ ψiprLqJ}u that

}JΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL, JXq} ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙

¨ δ.

Proof. Let us define
X̃ :“ JX.

Let us further use the notation ψ̃i :“ ψipL̃q and ψi :“ ψipLq.

Denote by X` and rX` the (hidden) feature matrices generated in layer ` for networks based on ψi and ψ̃i respectively: I.e.
we have

X` “ ρ

˜

ÿ

iPI

ψiX
`´1W `

i `B
`

¸

and

rX` “ ρ

˜

ÿ

iPI

ψ̃i rX
`´1W `

i ` B̃
`

¸

.

We then have
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}JΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL, JXq}

“}JXK ´ rXK}

“

›

›

›

›

›

Jρ

˜

ÿ

iPI

ψiX
L´1WK

i `BK

¸

´ ρ

˜

ÿ

iPI

ψ̃i rX
K´1WK

i ` B̃L

¸
›

›

›

›

›

“

›

›

›

›

›

ρ

˜

J
ÿ

iPI

ψiX
L´1WK

i ` B̃K

¸

´ ρ

˜

ÿ

iPI

ψ̃i rX
K´1WK

i `BL

¸
›

›

›

›

›

Here we used the assumption that ρ and J commute. We also made use of the assumption J1G “ 1G̃ when dealing with
biases .
Using the fact that ρp¨q is 1-Lipschitz-continuous (c.f. Section C), we can establish

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

˜

J
ÿ

iPI

ψiX
L´1WK

i ` B̃K

¸

´

˜

ÿ

iPI

ψ̃i rX
K´1WK

i ` B̃K

¸
›

›

›

›

›

.

We then have

}JΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

ÿ

iPI

JψiX
K´1WK

i ´
ÿ

iPI

ψ̃i rX
K´1WK

i

›

›

›

›

›

.

From this, we find (inserting a zero), that

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

ÿ

iPI

JψiX
K´1WK

i ´
ÿ

iPI

ψ̃i rX
K´1WK

i

›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

pJψi ´ ψ̃iJqX
K´1WK

i

›

›

›

›

›

`
ÿ

iPI

}ψ̃i} ¨ } rX
K´1 ´ JXK´1} ¨ }WK

i }

ď

›

›

›

›

›

ÿ

iPI

pJψi ´ ψ̃iJqX
K´1WK

i

›

›

›

›

›

` CW ¨ } rXK´1 ´ JXK´1}

ď
ÿ

iPI

›

›

›
pJψi ´ Jψ̃iJq

›

›

›
¨
›

›XK´1
›

› ¨
›

›WK
i

›

›` CW ¨ } rXK´1 ´ JXK´1}

ď
ÿ

iPI

δ ¨
›

›XK´1
›

›W ` CW ¨ }J̃ rXK´1 ´XK´1}

Arguing as in the proof of Theorem E.1 in Appendix E then yields the claim.

For the bidirectional setting we find the following:
Theorem I.17. Let ΦW ,B,Ψ be an L-layer deep GCN. Assume that

ř

k }W
`
k} ďW and }B`} ď B. Choose C ě }ΨkpT q}

(@k) and w.l.o.g. assume CW ą 1. Assume ρpJ̃Xq “ J̃ρpXq and if biases are enabled, assume rJ1
rG “ 1G. Further

assume JJ̃ “ IdG̃ With this, we have with δ “ maxiPIt}ψipLq ´ J̃ψiprLqJ}u that

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq} ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙

¨ δ.
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Proof. Let us define

X̃ :“ JX.

Let us further use the notation ψ̃i :“ ψipL̃q and ψi :“ ψipLq.

Denote by X` and rX` the (hidden) feature matrices generated in layer ` for networks based on ψi and ψ̃i respectively: I.e.
we have

X` “ ρ

˜

ÿ

iPI

ψiX
`´1W `

i `B
`

¸

and

rX` “ ρ

˜

ÿ

iPI

ψ̃i rX
`´1W `

i ` B̃
`

¸

.

We then have

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

“}XK ´ J̃ rXK}

“

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
L´1WK

i `BK

¸

´ J̃ρ

˜

ÿ

iPI

ψ̃i rX
K´1WK

i ` B̃L

¸
›

›

›

›

›

“

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
L´1WK

i `BK

¸

´ ρ

˜

J̃
ÿ

iPI

ψ̃i rX
K´1WK

i `BL

¸
›

›

›

›

›

Here we used the assumption that ρ and J̃ commute. fact that since ReLUp¨q maps positive entries to positive entries and
acts pointwise, it commutes with JÒ. We also made use of the assumption J̃1G̃ “ 1G when dealing with biases .
Using the fact that ρp¨q is 1-Lipschitz-continuous (c.f. Section C), we can establish

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
L´1WK

i `BK

¸

´ ρ

˜

J̃
ÿ

iPI

ψ̃i rX
K´1WK

i `BL

¸
›

›

›

›

›

.

Using the assumption that that JJ̃ “ IdG̃, we have

}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJ̃ ψ̃iJqJ̃ rXK´1WK
i

›

›

›

›

›

.

From this, we find (assuming }J̃}, }J} ď 1 ), that
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}ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq}

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJ̃ ψ̃iJqJ̃ rXK´1WK
i

›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

pψi ´ J̃ ψ̃iJqX
K´1WK

i

›

›

›

›

›

`
ÿ

iPI

}J̃ ψ̃iJ} ¨ }J̃ rXK´1 ´XK´1} ¨ }WK
i }

ď

›

›

›

›

›

ÿ

iPI

pψi ´ J̃ ψ̃iJqX
K´1WK

i

›

›

›

›

›

` CW ¨ }J̃ rXK´1 ´XK´1}

ď
ÿ

iPI

›

›

›
pψi ´ J̃ ψ̃iJq

›

›

›
¨
›

›XK´1
›

› ¨
›

›WK
i

›

›` CW ¨ }J̃ rXK´1 ´XK´1}

ď
ÿ

iPI

δ ¨
›

›XK´1
›

›W ` CW ¨ }J̃ rXK´1 ´XK´1}

Arguing as in the proof of Theorem E.1 in Appendix E then yields the claim.

I.8. Graph Level Transferability

Aggegating node features X P CNˆF to graph-level features ΩpXq P CF via ΩpXqj “
řN
i“1 |Xij | ¨ µi for graph level

property prediction, we have :

Theorem I.18. Assuming ΩpJXq “ ΩpXq, we have in the setting of Theorem 3.9 that
}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨprL, JXq} ď }JΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL, JXq} .

The assumption ΩpJXq “ ΩpXq clearly need only be satisfied on the potential output of the node-level network Φ (which
might e.g. be limited to tensors with positive entries). Such a consistency assumption is for example satisfied when coarse
graining graphs.

Let us now prove Theorem I.18:

Proof. We note

}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨprL, JXq}

“}ΩpΦW ,B,ΨpL,Xqq ´ ΩpΦW ,B,ΨprL, JXqq}

“}ΩpJΦW ,B,ΨpL,Xqq ´ ΩpΦW ,B,ΨprL, JXqq}.

To prove the claim from here, we only have to note that the aggregation method Ω is 1-Lipschitz (as a consequence of the
reverse triangle inequality).

A similar proof shows the following for the bidirectional setting:

Theorem I.19. Assuming ΩpXq “ ΩpJ̃Xq, we have in the setting of Theorem I.17 that
}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨprL, JXq} ď }ΦW ,B,ΨpL,Xq ´ J̃ΦW ,B,ΨprL, JXq} .
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J. Further Discussion for Examples of Transferability Settings
J.1. Further Discussion of the example of Coarse-Graining Graphs

In this appendix, we prove (2):

}p∆` Idq´1 ´ JÒp∆` Idq´1JÓ} À 1{λ1p∆highq.

For convenience, we restate the definitions leading up to this result again:

Definition J.1. Denote by G the set of connected components in Ghigh. We give this set a graph structure as follows: Let R
and P be elements of G (i.e. connected components in Ghigh). We define the real number

WRP “
ÿ

rPR

ÿ

pPP

Wrp,

with r and p nodes in the original graph G. We define the set of edges E on G as

E “ tpR,P q P G ˆ G : WRP ą 0u

and assign WRP as weight to such edges. Node weights of limit nodes are defined similarly as aggregated weights of all
nodes r (in G) contained in the component R as

µ
R
“

ÿ

rPR

µr.

In order to translate signals between the original graph G and the limit description G, we need translation operators mapping
signals from one graph to the other:

Definition J.2. Denote by 1R the vector that has 1 as entries on nodes r belonging to the connected (in Ghign) component
R and has entry zero for all nodes not in R. We define the down-projection operator JÓ component-wise via evaluating at
node R in G as

pJÓxqR “ x1R, xy{µR.

The upsampling operator JÒ is defined as
JÒu “

ÿ

R

uR ¨ 1R;

where uR is a scalar value (the component entry of u at R P G) and the sum is taken over all connected components in Ghigh.

The result we then prove is the following:

Theorem J.3. We have
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› “ O
ˆ

}∆reg.}

λ1p∆highq

˙

holds; with λ1p∆highq denoting the first non-zero eigenvalue of ∆high.

λmaxp∆reg.q “ }∆reg.}.

Proof. We will split the proof of this result into multiple steps. For z ă 0 Let us denote by

Rzp∆q “ p∆´ zIdq´1,

Rzp∆highq “ p∆high ´ zIdq
´1

Rzp∆reg.q “ p∆reg. ´ zIdq
´1

the resolvents correspodning to ∆, ∆high and ∆reg. respectively.
Our first goal is establishing that we may write

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
¨Rzp∆highq
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This will follow as a consequence of what is called the second resolvent formula (Teschl, 2014):

”Given self-adjoint operators A,B, we may write

RzpA`Bq ´RzpAq “ ´RzpAqBRzpA`Bq.”

In our case, this translates to
Rzp∆q ´Rzp∆highq “ ´Rzp∆highq∆reg.Rzp∆q

or equivalently
rId`Rzp∆highq∆reg.sRzp∆q “ Rzp∆highq.

Multiplying with rId`Rzp∆highq∆reg.s
´1 from the left then yields

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
¨Rzp∆highq

as desired.
Hence we need to establish that rId`Rzp∆highq∆reg.s is invertible for z ă 0.

To establish a contradiction, assume it is not invertible. Then there is a signal x such that

rId`Rzp∆highq∆reg.sx “ 0.

Multiplying with p∆high ´ zIdq from the left yields

p∆high `∆reg. ´ zIdqx “ 0

which is precisely to say that
p∆´ zIdqx “ 0

But since ∆ is a graph Laplacian, it only has non-negative eigenvalues. Hence we have reached our contradiction and
established

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
Rzp∆highq.

Our next step is to establish that

Rzp∆highq Ñ
P high

0

´z
,

where P high
0 is the spectral projection onto the eigenspace corresponding to the lowest lying eigenvalue λ0p∆highq “ 0 of

∆high. Indeed, by the spectral theorem for finite dimensional operators (c.f. e.g. (Teschl, 2014)), we may write

Rzp∆highq ” p∆high ´ zIdq
´1 “

ÿ

λPσp∆highq

1

λ´ z
¨ P high

λ .

Here σp∆highq denotes the spectrum (i.e. the collection of eigenvalues) of ∆high and the tP high
λ uλPσp∆highq are the correspond-

ing (orthogonal) eigenprojections onto the eigenspaces of the respective eigenvalues. Thus we find

›

›

›

›

›

Rzp∆highq ´
P high

0

´z

›

›

›

›

›

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0ăλPσp∆highq

1

λ´ z
¨ P high

λ

›

›

›

›

›

›

;

where the sum on the right hand side now excludes the eigenvalue λ “ 0.

Using orthonormality of the spectral projections, the fact that z ă 0 and monotonicity of 1{p¨ ` |z|q we find
›

›

›

›

›

Rzp∆highq ´
P high

0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
.
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Here λ1p∆highq is the firt non-zero eigenvalue of p∆highq.
Non-zero eigenvalues scale linearly with the weight scale since we have

λpS ¨∆q “ S ¨ λp∆q

for any graph Laplacian (in fact any matrix) ∆ with eigenvalue λ. Thus we have
›

›

›

›

›

Rzp∆highq ´
P high

0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
ď

1

λ1p∆highq
ÝÑ 0

as λ1p∆highq Ñ 8.

Our next task is to use this result in order to bound the difference

I :“

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1
P high

0

´z
´ rId`Rzp∆highq∆reg.s

´1
Rzp∆highq

›

›

›

›

›

›

.

To this end we first note that the relation

rA`B ´ zIds´1 “ rId`RzpAqBs
´1RzpAq

provided to us by the second resolvent formula, implies

rId`RzpAqBs
´1 “ Id´BrA`B ´ zIds´1.

Thus we have
›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›
ď 1` }∆reg.} ¨ }Rzp∆q}

ď 1`
}∆reg.}

|z|
.

With this, we have

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

¨
P high

0

´z
´Rzp∆q

›

›

›

›

›

›

“

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

¨
P high

0

´z
´ rId`Rzp∆highq∆reg.s

´1
¨Rzp∆highq

›

›

›

›

›

›

ď

›

›

›

›

›

P high
0

´z

›

›

›

›

›

¨

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

›

›

›

›

›

P high
0

´z
´Rzp∆highq

›

›

›

›

›

¨

›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›

ď
1

|z|

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

ˆ

1`
}∆reg.}

|z|

˙

¨
1

λ1p∆highq
.

Hence it remains to bound the left hand summand. For this we use the following fact (c.f. (Horn & Johnson, 2012), Section
5.8. ”Condition numbers: inverses and linear systems”):

Given square matrices A,B,C with C “ B ´A and }A´1C} ă 1, we have

}A´1 ´B´1} ď
}A´1} ¨ }A´1C}

1´ }A´1C}
.

26



Transferability for Graph Convolutional Networks

In our case, this yields (together with }P high
0 } “ 1) that

›

›

›

›

”

Id` P high
0 {p´zq ¨∆reg.

ı´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

ď
p1` }∆reg.}{|z|q

2
¨ }∆reg.} ¨ }

P high
0

´z ´Rzp∆highq}

1´ p1` }∆reg.}{|z|q ¨ }∆reg.} ¨ }
P high

0

´z ´Rzp∆highq}

For Shigh sufficiently large, we have

} ´ P high
0 {z ´Rzp∆highq} ď

1

2 p1` }∆reg.}{|z|q

so that we may estimate

›

›

›

›

›

›

«

Id`∆reg.
P high

0

´z

ff´1

´ rId`∆reg.Rzp∆highqs
´1

›

›

›

›

›

›

ď2 ¨ p1` }∆reg.}q ¨ }
P high

0

´z
´Rzp∆highq}

“2
1` }∆reg.}{|z|

λ1p∆highq

Thus we have now established
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

«

Id`
P high

0

´z
∆reg.

ff´1

¨
P high

0

´z
´Rzp∆q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
ˆ

}∆reg.}

λ1p∆highq

˙

.

Hence we are done with the proof, as soon as we can establish
”

´zId` P high
0 ∆reg.

ı´1

P high
0 “ JÒRzp∆qJ

Ó,

with JÒ,∆, JÓ as defined above. To this end, we first note that

JÒ ¨ JÓ “ P high
0 (7)

and
JÓ ¨ JÒ “ IdG. (8)

Indeed,the relation (7) follows from the fact that the eigenspace corresponding to the eignvalue zero is spanned by the
vectors t1RuR, with tRu the connected components of Ghigh. Equation (8) follows from the fact that

x1R,1Ry “ µ
R
.

With this we have
”

Id` P high
0 ∆reg.

ı´1

P high
0 “

“

Id` JÒJÓ∆reg.
‰´1

JÒJÓ.

To proceed, set
x :“ F Óx

and
X “

”

P high
0 ∆reg. ´ zId

ı´1

P high
0 x.

Then
”

P high
0 ∆reg. ´ zId

ı

X “ P high
0 x
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and hence X P RanpP high
0 q. Thus we have

JÒJÓp∆reg. ´ zIdqJ
ÒJÓX “ JÒJÓx.

Multiplying with JÓ from the left yields

JÓp∆reg. ´ zIdqJ
ÒJÓX “ JÓx.

Thus we have
pJÓ∆reg.J

Ò ´ zIdqJÒJÓX “ JÓx.

This – in turn – implies
JÒJÓX “

“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.

Using
P high

0 X “ X ,

we then have
X “ JÒ

“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.

We have thus concluded the proof if we can prove that JÓ∆reg.J
Ò is the Laplacian corresponding to the graph G defined in

Definition J.1. But this is a straightforward calculation.

As a corollary, we find
Corollary J.4. We have

Rzp∆q
k Ñ JÒRkp∆qJÓ

Proof. This follows directly from the fact that
JÓJÒ “ IdG.

J.2. Example II: Graph Rewiring

In real world unweighted graph datasets, the presence of edges is often determined by arbitrary thresholds (Gasteiger et al.,
2019b). Thus node embeddings should not depend too strongly on the presence of any given edge. At the beginning of
Section 3, we already observed that deleting an edge in a large fully connected clique corresponds to a minor change in
geometry from the perspective of information diffusion. Here we generalize this finding to arbitrary rewiring operations
within high

connectivity areas. To this end, let G be a graph with
adjacency matrix A. Let us split the adjacency ma-
trix as A “ Ac ` Arw (c.f. Figure 6). We will keep
the summand Ac constant and perform rewiring oper-
ations within the graph structure determined by Arw
(depicted in Figure 6 (c)).

(a) (b) (c)

Figure 6. figure
(a) Graph G with adjacency matrix A, (b) Gc corresponding to Ac,

(c) Grw corresponding to Arw
Let us denote the hence obtained modified partial adjacency matrix by Ãrw. For the total modified graph structure let us
write Ã “ Ac` Ãrw. Below, we then prove for the graph Laplacians ∆, ∆̃ corresponding to the graph structures determined
by A and Ã, that we have

}p∆` Idq´1 ´ p∆̃` Idq´1} ď CAc ¨ p1{λ1p∆rwq ` 1{λ1p∆̃rwqq. (9)

Here λ1p∆rwq is the first non-zero eigenvalue of the Laplacian ∆rw corresponding to the graph structure Arw (c.f. Fig. 6
(c)). It is a well known fact in spectral graph theory, that much information about the connectivity of a graph Grw is encoded
into the first non-zero eigenvalue λ1p∆rwq of its graph Laplacian ∆rw. For an unweighted graph G on N nodes, λ1p∆rwq

is for example maximized if every node is connected to all other nodes in which case we have λ1p∆rwq “ N .

Combining this result with Theorems 3.7 and 3.9, we see that the transferability error for networks confronted with the
graph structures A and Ã decreases inversely with the connectivity within Grw.
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Hence let us, prove (9):

}p∆` Idq´1 ´ p∆̃` Idq´1} ď CAc ¨ p1{λ1p∆rwq ` 1{λ1p∆̃rwqq. (10)

With the work that we have already done in Appendix J.1, this is now straightforward. We note that an application of the
triangle inequality yields

}p∆` Idq´1 ´ p∆̃` Idq´1} ď }p∆` Idq´1 ´ JÒp∆` Idq´1JÓ} ` }p∆̃` Idq´1 ´ JÒp∆` Idq´1JÓ}

Here ∆ is the Laplacian arising from collapsing the connected clusters of Grw to single nodes. We may then simply use (2).

J.3. Example III: Graphs discretizing an Ambient Space.

The concept of characteristic operators capturing the geometry of the space on which they are defined is not limited to
graphs: Similar considerations also apply to continuous spaces such as manifoldsM, where the Laplace-Beltrami operator

∆M can be thought of as a continuous analogue of the graph Laplacian (Hein et al., 2006).
Motivated by this observation, we consider the setting of two graphs G1, G2 discretely ap-
proximating the same ambient space (c.f. e.g. Fig. 7). Mathematically, this notion can
be made precise using the concept of generalized norm resolvent convergence (Post, 2012;
Post & Simmer, 2021): Making use of projection operators JÓi mapping from M to Gi
and interpolation operators JÒi mapping from Gi to M, one then measures the difference
}p∆i ` Idq´1 ´ JÒi p∆M ` Idq´1JÓi } ď δ. The fidelity of the discrete approximation is
then determined by the size of δ ! 1 (Post, 2012; Post & Simmer, 2021). As we discuss in
detail below, we have in this setting of two graphs discretizing the same ambient space that
}p∆1 ` Idq

´1 ´ pJÓ1J
Ò
2 qp∆2 ` Idq

´1pJÓ2J
Ò
1 q} À 2δ. Thus Theorem 3.7 directly applies and

networks may be transferred between G1 and G2. Figure 7. figure
Distinct Torus Discretiza-
tions

Somewhat similar transferability settings of graphs discretizing manifolds have been considered in other works: In (Levie
et al., 2019), transferability for bandlimited signals sampled from manifolds are considered and a stability constant that
grows linearly with the number of allowed eigenvalues is derived. The setup in (Wang et al., 2022) considers graphs that are
statistically sampled from a manifold and yields probabilistic transferability statements. In contrast, our framework provides
results beyond the probabilistic setting and without stability constants depending linearly on the bandwidth of band-limited
features.

Hence let us further discuss the setting of two graphs discretizing the same ambient spaceM in the sense of

}p∆i ` Idq
´1 ´ JÒi p∆M ` Idq´1JÓi } ď δ.

We will assume JÓi J
Ò

i “ IdGi , which is a justified assumption, as Example J.5 below elucidates. In this setting, we then
have

}p∆1 ` Idq
´1 ´ pJÓ1J

Ò
2 qp∆2 ` Idq

´1pJÓ2J
Ò
1 q}

“}p∆1 ` Idq
´1 ´ JÓ1 p∆M ` Idq´1JÒ1 ` J

Ó
1 p∆M ` Idq´1JÒ1 ´ pJ

Ó
1J
Ò
2 qp∆2 ` Idq

´1pJÓ2J
Ò
1 q}

ď}p∆1 ` Idq
´1 ´ JÓ1 p∆M ` Idq´1JÒ1 } ` }J

Ó
1 p∆M ` Idq´1JÒ1 ´ pJ

Ó
1J
Ò
2 qp∆2 ` Idq

´1pJÓ2J
Ò
1 q}
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We note

}p∆1 ` Idq
´1 ´ JÓ1 p∆M ` Idq´1JÒ1 }

“}JÓ1J
Ò
1 p∆1 ` Idq

´1JÓ1J
Ò
1 ´ J

Ó
1 p∆M ` Idq´1JÒ1 }

ď}JÓ1 }}J
Ò
1 } ¨ }p∆1 ` Idq

´1 ´ JÒ1 p∆M ` Idq´1JÓ1 } À δ.

We consider:

}p∆M ` Idq´1 ´ pJÓ1J
Ò
2 qp∆2 ` Idq

´1pJÓ2J
Ò
1 q}

ď}JÓ1 }}J
Ò
1 } ¨ }p∆M ` Idq´1 ´ JÒ2 p∆2 ` Idq

´1JÓ2 }

À}p∆M ` Idq´1 ´ JÒ2 p∆2 ` Idq
´1JÓ2 } ď δ.

Hence we have indeed established

}p∆1 ` Idq
´1 ´ pJÓ1J

Ò
2 qp∆2 ` Idq

´1pJÓ2J
Ò
1 q} À 2δ.

Next let us consider an explicit example.

Example J.5. To this end, let us revisit the torus-setting introduced in Fig. 7.

Figure 8. Distinct Torus Discretizations

In fact, instead of bounding the resolvent distances (10) after one which might apply Theorem 3.7 to quantify filter
transferability, we directly bound the diffusion distances as originally proposed in Definition 3.1.

We begin by recalling that the standard torus T arises as the cartesian product of two circles S1 of circumference
2π:

T “ S1 ˆ S1.

Let us parametrize these circles via angles 0 ď θ1, θ1 ď 2π. The Laplacian on T can then be written as

∆T “ ´B
2
θ1 ´ B

2
θ2 .

A set of corresponding normalized eigenfunctions are given as

φk1,k2 “
1

2π
e´ik1θ1e´ik2θ2

with corresponding eigenvalues
λk1,k2 “ k2

1 ` k
2
2

and k1, k2 P Z.

We now consider a regular discretization of T using N2 nodes. This mesh can be thought of as arising from regular
discretizations of each S1 factor; with a node being placed at angles φ “ 2π

N k with 0 ď k ď N . The individual node

weight of each node in the mesh discretization of T is set to µ “ p2πq2

N2 . We might think of this discretization TN pf T
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as arising via a cartesian product of the group Z{NZ (i.e. the group of integers modulo N ) with itself. Each node of
TN “ Z{NZˆZ{NZ is then specified by a tuple pa, bq P TN , with a P Z{NZ and b P Z{NZ.

The graph Laplacian ∆N on TN “ Z{NZˆZ{NZ then acts on a scalar node signal xab as

p∆Nxqab “
N2

p2πq2
`

4xab ´ xpa`1qb ´ xpa´1qb ´ xapb`1q ´ xapb´1q

˘

.

Henceforth we will adopt the notation xpa, bq ” xab.
Normalized eigenvectors for this Laplacian ∆N on TN are given as

φNk1,k2 “
1

2π
e´i

2πk1
N ae´i

2πk1
N b

with 0 ď k1, k2 ď pN ´ 1q. Corresponding eigenvalues are found to be

λNk1,k2 “
N2

π2

”

sin2
´ π

N
¨ k1

¯

` sin2
´ π

N
¨ k2

¯ı

.

To facilitate contact between T and its graph approximation TN , we define an interpolation operator JÒN that maps a graph
signal fpa, bq defined on T “ Z{NZˆZ{NZ to a function f defined on T by defining

fpθ1, θ2q “ fpa, bq

whenever 2π
N pa´ 1q ď θ1 ď

2π
N a and 2π

N pb´ 1q ď θ2 ď
2π
N b.

We then take JÓ to be the adjoint of JÒ (i.e. JÓ “ pJÒq˚. It is not hard to see that JÓJÒ “ IdTN .
We now want to show that (for t ą 0)

}e´t∆T ´ JÒe´t∆NJÓ} Ñ 0 (11)

as N Ñ 8. To this end, denote by Pk1,K2
the orthogonal projection onto φk1,k2 . Denote by PNk1,K2

the orthogonal

projection onto φNk1,k2 . We note

}e´t∆T ´ JÒe´t∆NJÓ} “

›

›

›

›

›

›

ÿ

k1,k2PZ

e´λk1,k2 tPk1,k2 ´
ÿ

´´
N´1

2 ďp1,p2ď
N´1

2

e´λk1,k2 tPNp1,p2

›

›

›

›

›

›

.

From this we observe

}e´t∆T ´ JÒe´t∆NJÓ} “

›

›

›

›

›

›

ÿ

k1,k2PZ

e´λk1,k2 tPk1,k2 ´
ÿ

´´
N´1

2 ďp1,p2ď
N´1

2

e´λ
N
p1,p2

tPNp1,p2

›

›

›

›

›

›

ď

›

›

›

›

›

›

ÿ

N´1
2 ă|k1|,|k2|

e´λk1,k2 tPk1,k2

›

›

›

›

›

›

`

›

›

›

›

›

›

ÿ

´´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2 tPk1,k2 ´ e
´λNk1,k2

tPNk1,k2

¯

›

›

›

›

›

›

For the first summand, we already have
›

›

›

›

›

›

ÿ

N´1
2 ă|k1|,|k2|

e´λk1,k2 tPk1,k2

›

›

›

›

›

›

ď e´t
pN´1q2

2 .

Hence let us investigate the second summand. We note
›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2 tPk1,k2 ´ e
´λNk1,k2

tPNk1,k2

¯

›

›

›

›

›

›

(12)

ď

›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2 t ´ e´λ
N
k1,k2

t
¯

PNk1,k2

›

›

›

›

›

›

`

›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

e´λk1,k2 tpPk1,k2 ´ P
N
k1,k2q

›

›

›

›

›

›
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For the first summand we note
›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2 t ´ e´λ
N
k1,k2

t
¯

PNk1,k2

›

›

›

›

›

›

“ sup
´
N´1

2 ďk1,k2ď
N´1

2

ˇ

ˇ

ˇ
e´λk1,k2 t ´ e´λ

N
k1,k2

t
ˇ

ˇ

ˇ

“ sup
´
N´1

2 ďk1,k2ď
N´1

2

e´tpk
2
1`k

2
2q

ˇ

ˇ

ˇ

ˇ

1´ e
´t

´

N2

π2 sin2p πN k1q´k
2
1

¯

e
´t

´

N2

π2 sin2p πN k2q´k
2
2

¯

ˇ

ˇ

ˇ

ˇ

We note
ˆ

N2

π2
sin2

´ π

N
k
¯

´ k2

˙

“ O
ˆ

k4

N2

˙

.

Using
N2

π2
sin2

´ π

N
N

1
3

¯

À N
2
3

we note

sup
´
N´1

2 ďk1,k2ď
N´1

2

e´tpk
2
1`k

2
2q

ˇ

ˇ

ˇ

ˇ

1´ e
´t

´

N2

π2 sin2p πN k1q´k
2
1

¯

e
´t

´

N2

π2 sin2p πN k2q´k
2
2

¯

ˇ

ˇ

ˇ

ˇ

ď sup
|k1|,|k2|ďN

1
3

e´tpk
2
1`k

2
2q

ˇ

ˇ

ˇ

ˇ

1´ e
´t

´

N2

π2 sin2p πN k1q´k
2
1

¯

e
´t

´

N2

π2 sin2p πN k2q´k
2
2

¯

ˇ

ˇ

ˇ

ˇ

` sup
|k1|,|k2|ąN

1
3

e´tpk
2
1`k

2
2q

ˇ

ˇ

ˇ

ˇ

1´ e
´t

´

N2

π2 sin2p πN k1q´k
2
1

¯

e
´t

´

N2

π2 sin2p πN k2q´k
2
2

¯

ˇ

ˇ

ˇ

ˇ

ď e´tp2N
2
3 q ` e´tp2N

2
3 q ` e´tpN

2
3 q.

Hence it remains to bound the second summand in (12). We note

›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

e´λk1,k2 tpPk1,k2 ´ P
N
k1,k2q

›

›

›

›

›

›

ď
ÿ

|k1|,|k2|ď
N´1

2

e´pk
2
1`k

2
2qt}Pk1,k2 ´ P

N
k1,k2}.

Next we note
}Pk1,k2 ´ P

N
k1,k2} ď 2 }φk1,k2 ´ φk1,k2} .

It is not hard to see that
›

›

›
φk1,k2 ´ φ

N
k1,k2

›

›

›
ď 2Cp|k1| ` |k|2q

2π

N

for some appropriately chosen C ą 0. Hence we have

›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

e´λk1,k2 tpPk1,k2 ´ P
N
k1,k2q

›

›

›

›

›

›

ď
ÿ

|k1|,|k2|ď
N´1

2

e´pk
2
1`k

2
2qt ¨ 2Cp|k1| ` |k|2q

2π

N

“Op1{Nq.
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Where the lass claim follows from summability in k1, k2. Thus we have in total indeed established that (11) holds.

J.4. Example IV: Coarse graining weighted directed Graphs

In this section we consider a graph G with directed weighted adjacency matrix As which we (disjointly) decompose as

As ” Ac ` s ¨Am

into a weighted directed (partial) adjacency matrix AC which we keep constant and a weighted directed (partial) adjacency
matrix s ¨Am. Both adjacency matrices determine directed graph structures on the same common node set G. Similar to
the setting of Appendix J.1, we are then interested in establishing that when sÑ8 this graph is similar (from a diffusion
perspective) to a coarse grained graph G. In the proof of (2) in Appendix J.1, we saw that the the coarse grained ”limit
graph” G was determined by the structure of the kernel of the operator ∆high; which encoded the connected components of
the graph Ghigh into its vectors. We expect that this also persists in the directed setting.

In this directed setting, we are faced with the choice of whether to make use of the in-degree Laplacian

Lin “M´1
“

Din ´A
‰

or the out-degree Laplacian

Lout “M´1
“

Dout ´A
‰

.

The following is known about the kernels of these operators (c.f. (Veerman & Lyons, 2020; Sahi, 2013)):

In-degree Laplacian: To understand the kernel of directed in-degree Laplacians, we need the concept of reaches. Reaches
generalize the concept of connected components of undirected graphs (Veerman & Lyons, 2020): A subgraph R Ď G is
called reach, if for any two vertices a, b P R there is a directed path in R along which the (directed) edge weights do not
vanish, and R simultaneously possesses no outgoing connections (i.e. for any c P G with c R R: wca “ 0). We here limit
ourselves to the setting where all reaches within a given graph are disjoint (c.f. (Veerman & Lyons, 2020) for the general
setting).

Consider now a graph G with adjacency matrix Am The dimensionality of the kernel of Lin on this graph is then given as
the number of reaches NReach present in Am. The right-kernel of Lin is spanned by the vectors tviu1ďRďNReach which have
entry 1 at all nodes in reach R and are zero outside of R. By definition these vectors satisfy

Lin ¨ vi “ 0.

The left-kernel is spanned by vectors twRu1ďRďNReach so that wR has non-zero entries only for nodes in reach R and is zero
elsewhere. As can be derived from results in (Sahi, 2013), we may write wR “MŵR with M the matrix of node weights
and the entry pŵRqi (for i a node in the reach R) given as

pŵRqi “
ÿ

τiPT Ri

ź

pabqPτi

Amab.

Here T Ri is the set of all spanning trees of the reach R that are rooted at node i P R. τi is such a spanning tree beginning at
node i. The quantity

ś

pabqPτi

Amab then multiplies all (directed) edge weights along the spanning tree τi. From this, we can

derive that we may write the (not necessarily orthogonal) projection P projecting onto the kernel of Lin as

P “
ÿ

RPReaches ofAm

vR ¨ pMŵRq
ᵀ

pMŵRqᵀ ¨ VR
.

We might write this as
P “ JÒJÓ

with JÓ mapping (similarly to the setting in Appendix J.1) to a coarsified graph G, whose node set consists of the reaches in
the original graph structure determined by A:

G “ tRuRPtReaches ofAmu.
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Similarly to Definition J.2, we then have for x a signal defined on the original graph G, that pJÓxq is a signal on the
coarsified graph G. It is defined by specifying it on each node R P G as

pJÓxqR “
1

pMŵRqᵀ ¨ VR
¨ pMŵRq

ᵀ ¨ x.

Similarly interpolation back up to G is defined as

JÒx :“
ÿ

RPG
xR ¨ vR.

Out-degree Laplacian: For the out-degree Laplacian Lout, the roles of left- and right kernels above are essentially reversed.
Instead of reaches R determined by the adjacency matrix Am, one considers reaches R̃ determined by the transpose pAmqᵀ

of the adjacency matrix. The left kernel of the out-degree Laplacian is given as the set of vectors tṽR̃u given as ṽR̃ “MvR̃,
with

vR̃ again the vector with entry 1 at all nodes in reach R̃ and zero outside of R̃. The right kernel is spanned by vectors tw̃R̃u
whose ith entry is given by

pw̃R̃qi “
ÿ

τ̃iPT R̃i

ź

pabqPτ̃i

Aᵀ
ab.

Here T R̃i is the set of all spanning trees of the reach R̃ (as determined by the connectivity structure of the transposed
adjacency matrix pAmqᵀ).

We then note for the projection P̃ onto the kernel of Lout, that we may write

P̃ “
ÿ

R̃PReaches of pAmqᵀ

w̃R̃ ¨ pMvR̃q
ᵀ

pMvR̃q
ᵀ ¨ w̃R̃

.

We may again write this as
P “ J̃ÒJ̃Ó

with JÓ mapping (similarly to the setting in Appendix J.1) to a coarsified graph G, whose node set consists of the reaches in
the adjacency structure determined by pAmqᵀ:

Similarly to above, we then have for x a signal defined on the original graph G, that pJ̃Óxq is a signal on the coarsified graph
G. It is defined by specifying it on each node R̃ P G as

pJ̃ÓxqR̃ “
1

pMvR̃q
ᵀ ¨ w̃R̃

¨ pMvR̃q
ᵀ ¨ x

Similarly interpolation back up to G is defined as

J̃Òx :“
ÿ

R̃PG

xR ¨ w̃R̃.

In the setting
As ” Ac ` s ¨A

m

we may then prove (exactly as done in Appendix J.1) that – with Lin
s , L

out
s the in-and out-degree Laplacians corresponding to

As – we have

}pLin
s ` Idq

´1 ´ JÓpLin
` Idq´1JÒ} “ O

ˆ

1

s

˙

and

}pLout
s ` Idq´1 ´ J̃ÓpLout

` Idq´1J̃Ò} “ O
ˆ

1

s

˙

.
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This extends results of (Koke & Cremers, 2024), which still needed graphs to have the same in- and out-degee at every node.

Investigating the operators JÒ and J̃Ò, we see that we have

JÒ1G “ 1G

J̃Ò1G ‰ 1G.

In view of Theorem I.17 we hence find:
Proposition J.6. In the directed setting, using the in-degree Laplacian allows for networks to be transferable between a
graph G and its coarse grained version G even if biases are enabled. This is not true when using the out-degree Laplacian.

K. Additional Experimental Considerations
K.1. Additional details on Section 4

Dataset: The dataset we consider is the QM7 dataset, introduced in (Blum & Reymond, 2009; Rupp et al., 2012). This
dataset contains descriptions of 7165 organic molecules, each with up to seven heavy atoms, with all non-hydrogen atoms
being considered heavy. A molecule is represented by its Coulomb matrix CClmb, whose off-diagonal elements

CClmb
ij “

ZiZj
|Ri ´Rj |

correspond to the Coulomb-repulsion between atoms i and j. We discard diagonal entries of Coulomb matrices; which
would encode a polynomial fit of atomic energies to nuclear charge (Rupp et al., 2012).

For each atom in any given molecular graph, the individual Cartesian coordinates Ri and the atomic charge Zi are (in
principle) also accessible individually. To each molecule an atomization energy - calculated via density functional theory
- is associated. The objective is to predict this quantity. The performance metric is mean absolute error. Numerically,
atomization energies are negative numbers in the range ´600 to ´2200. The associated unit is rkcal/mols.

Details on collapsing procedure: Again, we make use of the QM7 dataset (Rupp et al., 2012) and its Coulomb matrix
description

CClmb
ij “

ZiZj
|Ri ´Rj |

(13)

of molecules. We modify (all) molecular graphs in QM7 by deflecting hydrogen atoms (H) out of their equilibrium positions
towards the respective nearest heavy atom. This is possible since the QM7 dataset also contains the Cartesian coordinates of
individual atoms. Edge weights between heavy atoms then remain the same, while Coulomb repulsions between H-atoms
and respective nearest heavy atom increasingly diverge; as is evident from (13).

Given an original molecular graph G with node weights µi “ Zi, the corresponding limit graph G corresponds to a coarse
grained description, where heavy atoms and surrounding H-atoms are aggregated into single super-nodes.

Mathematically, G is obtained by removing all nodes corresponding to H-atoms from G, while adding the corresponding
charges ZH “ 1 to the node-weights of the respective nearest heavy atom. Charges in (13) are modified similarly to generate
the weight matrix W .

On original molecular graphs, atomic charges are provided via one-hot encodings. For the graph of methane – consisting of
one carbon atom with charge ZC “ 6 and four hydrogen atoms of charges ZH “ 1 – the corresponding node-feature-matrix
is e.g. given as

X “

¨

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 1 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

˛

‹

‹

‹

‹

‚
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with the non-zero entry in the first row being in the 6th column, in order to encode the charge ZC “ 6 for carbon.

The feature vector of an aggregated node represents charges of the heavy atom and its neighbouring H-atoms jointly.

Node feature matrices are translated as X “ JÓX . Applying JÓ to one-hot encoded atomic charges yields (normalized)
bag-of-word embeddings on G: Individual entries of feature vectors encode how much of the total charge of the super-node
is contributed by individual atom-types. In the example of methane, the limit graph G consists of a single node with
node-weight

µ “ 6` 1` 1` 1` 1 “ 10.

The feature matrix

X “ JÓX

is a single row-vector given as

X “

ˆ

4

10
, 0, ¨ ¨ ¨ , 0,

6

10
, 0, ¨ ¨ ¨

˙

.

Experimental Setup: We randomly select 1500 molecules for testing and train on the remaining graphs. On QM7 we run
experiments for 23 different random random seeds and report mean and standard deviation. All experiments were performed
on a single NVIDIA Quadro RTX 8000 graphics card.

Additional details on baselines: Baselines divided into standard architectures (GCN (Kipf & Welling, 2017), ChebNet
(Defferrard et al., 2016), ARMA (Bianchi et al., 2019), BernNet (He et al., 2021), GATv2 (?)) and multi- scale architectures
(PushNet (?), UFGNet (?), Lanczos (Liao et al., 2019)). Apart from UFGNet (already acting as a pooling layer) we also
consider self-attention-pooling (?); both acting on the final layer (SAG) and as acting on the output of each indivifual layer,
with resulting layer-wise features concatenated to produce the final embedding (SAG-M).

Additional details on training and models: All considered convolutional layers are incorporated into a two layer deep
and fully connected graph convolutional architecture. In each hidden layer, we set the width (i.e. the hidden feature
dimension) to

F1 “ F2 “ 64.

For BernNet, we set the polynomial order to K “ 3 to combat appearing numerical instabilities. ARMA is set to K “ 2
and T “ 1. ChebNet uses K “ 2. Lnaczos uses 20 Lanczos iterations, as proposed in the original paper (Liao et al.,
2019). UFGNet uses Haar wavelets. For all baselines, the standard mean-aggregation scheme is employed after the
graph-convolutional layers to generate graph level features. Finally, predictions are generated via an MLP.

LTF-ΨRes architecture, we set λ “ 1 and and build filters using the k “ 1 and “ 2 atoms in ΨRes “ tpz ` λq´kukPN.

For the LTF-ΨExp architecture, we set t “ 1 and and build filters using the k “ 1 and “ 2 atoms in ΨExp “ te´pkt0qzukPN.

As aggregation, we employ the graph level feature aggregation scheme discussed in Appendix I.8 with node weights set to
atomic charges of individual atoms. Predictions are then generated via a final MLP with the same specifications as the one
used for baselines.
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L. Additional Experiment using the coarse graining setting of Section 3

Figure 9. Transferability error }F̃ ´ F }

Equation (2) predicts in combination with Theorem I.18 that in the setting of the example of Section 3 the transferability
error decreases with increasing edge-weights within the components of Ghigh that are being collapsed into single nodes.
This is of course desirable: The stronger the connectivity within the connected components of Ghigh, the more it is justified
to treat them as the (super-)nodes making up G. To numerically verify that transferability errors indeed decrease with
increasing connectivity within Ghigh, we modify the molecular graphs of QM7 again. We now deflect hydrogen atoms (H)
out of their equilibrium positions towards the respective nearest heavy atom. This then introduces a setting precisely as
discussed in in the example of Section 3: Edge-weights Aij “ ZiZj ¨ |~xi ´ ~xj |

´1 between heavy atoms remain the same,
while those between H-atoms and nearest heavy atom increasingly diverge. We then compare embeddings tF u generated
for coarsified graphs tGu, with embeddings tF̃ u of graphs tG̃u where hydrogen atoms have been deflected. As is evident
from Figure 9, the transferability error of LTF-ΨRes and LTF-ΨExp converges towards zero as the connectivity with Ghigh
increases. Transferability errors of baselines remain large.

L.1. Transferability on Graphs generated via Stochastic Block Models

Stochastic Block Models: Stochastic block models (Holland et al., 1983) are generative models for random graphs that
produce graphs containing strongly connected communities. In our experiments in this section, we consider a stochastic
block model whose distributions is characterized by four parameters: The number of communities cnumber determine how
many (strongly connected) communities are present in the graph that is to be generated. The community size csize determines
the number of nodes belonging to each (strongly connected) community. The probability pconnect determines the probability
that two nodes within the same community are connected by an edge. The probability pinter determines the probabilities that
two nodes in different communities are connected by an edge.

Experimental Setup: Since stochastic block models do not generate node-features, we equip each node with a randomly-
generated unit-norm feature vector. Given such a graph G drawn from a stochastic block model, we then compute a version
G of this graph, where all communities are collapsed to single nodes as described in Definition J.2. We then compare
the feature vectors generated for G and G. All experiments were performed on a single NVIDIA Quadro RTX 8000
graphics card. As before, we then consider the LTF-ΨRes and LTF-ΨExp together with GCN as a baseline when investigating
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transferability.

Experiment: Varying the Connectivity within the Communities: As discussed in detail in Appendix J.1 and Appendix
J.2, we desire that networks assign similar feature vectors to graphs with strongly connected communities and coarse-grained
versions of these graphs, where these communities are collapsed to aggregate nodes. The higher the connectivity within
these communities, the more similar should the feature vector of the original graph G and its coarsified version G be, as
Appendix J.1 established. In order to verify this experimentally, we fix the parameters cnumber, csize and pinter in our stochastic
block model. We then vary the probability pconnect that two nodes within the same community are connected by an edge
from pconnect “ 0 to pconnect “ 1. This corresponds to varying the connectivity within the communities from very sparse
(or in fact no connectivity) to full connectivity (i.e. the community being a clique). In Figure 10 below, we then plot the
difference of feature vectors generated by ResolvNet and baselines for for G and G respectively. For each pconnect P r0, 1s,
results are averaged over 100 graphs randomly drawn from the same stochastic block model.

(a) (b)

Figure 10. (a) Example Graph (b) Varying the parameter pconnect P r0, 1s for fixed csize “ 20, pinter “ 2{c2size and cnumber “ 10.

We have chosen pinter “ 2{c2size so that – on average – clusters are connected by two edges. The choice of two edges
(as opposed to 1, 3, 4, 5, ...) between clusters is not important; any arbitrary choice of pinter ensures a decay behavior for
ResolvNet as in Figure 10. A corresponding ablation study is provided below.

As can be inferred from Fig. 10, LTF-ΨRes and LTF-ΨExp produce more and more similar feature-vectors for G and its
coarse-grained version G, as the connectivity within the clusters is increased. As a reference, we plot GCN for which such a
transferability result clearly does not hold.

L.2. Implications for graphs with imbalanced Geometry

In the preceding experiments, baselines proved not transferable. Here we show that this lack of transferability can be harmful
also for node-level tasks on a single graph that has an imbalanced geometry in the sense that it contains strongly connected
subgraphs with weaker connectivity between such subgraphs.

To this end, we duplicated individual nodes on popular node-classification datasets (CITESEER & CORA (Sen et al., 2008;
McCallum et al., 2000)) k-times to form (fully connected) k-cliques, while keeping the train-val-test partition constant.
Models were then trained on the same (k-fold expanded) train-set and asked to classify nodes on the (k-fold expanded)
test-partition. Baselines were chosen to form a representative selection of common information-propagation methods and in
addition to previous baselines from Section 4 include GIN (Xu et al., 2019) and SAGE (Hamilton et al., 2017) (which could
not handle weighted edges).

We then compare against an architecture using Laplace transform filters based on the atoms ΨRes introduced in Example 3.4.
Contrary to earlier experiments, we also include the k “ 0 term in ΨRes “ tpz ` λq´kukPN. To distinguish this architecture
from previously employed networks that did not include the k “ 0 atom (ψ0pLq “ Id), we do not refer to the architecture
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(a) (b)

Figure 11. Individual nodes (a) replaced by k-cliques (b)

built here as LTF-ΨRes, but instead refer to it as ResolvNet.

Figure 12. Node-Classification-Accuracy (Ò) and uncertainty (for 100 runs) vs. clique size. ResolvNet with its Laplace transform filters
remains stable while the performance of other architectures deteriorate significantly as geometry becomes more and more challenging
with increasing clique-size.

As can be inferred from Fig. 12, the classification accuracy of all methods not employing Laplace transform filters decreases
drastically as the geometry becomes more and more complex as k increases. We can understand the underlying reason for
this considering the update rule implementing message passing in GCN as an example. There, a node feature matrix X is
updated as X ÞÑ ÂXW , with the renormalized adjacency adjacency Â determined by

Âij „
´

D´
1
2AD´

1
2

¯

ij
“

1
?
di
¨Aij ¨

1
a

dj
. (14)

As the degree of each node increases (linearly) with increasing clique-size k, we see that the message-strength Âij between
the respective cliques decreases as Âij „ 1

k . Hence information propagation between the cliques becomes more and more
challenging as k increases.

In principle however increasing the clique size does not increase the complexity of the classification task at hand as nodes
are simply duplicated in the respective train-, val.- and test-sets.

What does become more challenging is the specific graph-geometry underlying the task. The considered ResolvNet
architecture is able to handle this somewhat more challenging geometry; it consistently provides high classification
accuracies even as k increases. This can be understood from the viewpoint of the considerations in Appendix J.1 and
Appendix J.2: As the connectivity within the cliques increases (linearly as k becomes larger), the information flow over the
graph G in Figure 11 (b) as implemented by an architecture using Laplace transform filters is more and more the same as an
architecture that would first average information over the cliques of G; then project to a coarse grained graph G where the
cliques are fused together to single nodes and subsequently propagate information there (c.f. the discussion of Appendix J.1
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or Theorem I.7 together with its extended discussion in Appendix I.7). This avoids an interruption of the message passing
scheme as in (14) and instead allows information to frrely flow between the cliques.

Additional details on training and models: All experiments were performed on a single NVIDIA Quadro RTX 8000
graphics card. We closely follow the experimental setup of (Gasteiger et al., 2019a) on which our codebase builds: All
models are trained for a fixed maximum (and unreachably high) number of n “ 10000 epochs. Early stopping is performed
when the validation performance has not improved for 100 epochs. Test-results for the parameter set achieving the highest
validation-accuracy are then reported. Ties are broken by selecting the lowest loss (c.f. (Velickovic et al., 2018)). Confidence
intervals are calculated over multiple splits and random seeds at the 95% confidence level via bootstrapping.

We train all models on a fixed learning rate of lr “ 0.1. Global dropout probability p of all models is optimized individually
over p P t0.3, 0.35, 0.4, 0.45, 0.5u. We use `2 weight decay and optimize the weight decay parameter λ for all models
over λ P t0.0001, 0.0005u. Where applicable (e.g. not for (He et al., 2021)) we choose a two-layer deep convolutional
architecture with the dimensions of hidden features optimized over

K` P t32, 64, 128u. (15)

In addition to the hyperparemeters specified above, some baselines have additional hyperparameters, which we detail
here: BernNet uses an additional in-layer dropout rate of dp rate “ 0.5 and for its filters a polynomial order of K “ 10
as suggested in (He et al., 2021). Hyperparameters depth T and number of stacks K of the ARMA convolutional layer
(Bianchi et al., 2019) are set to T “ 1 and K “ 2. ChebNet also uses K “ 2 to avoid the known over-fitting issue (Kipf &
Welling, 2017) for higher polynomial orders. The graph attention network (Velickovic et al., 2018) uses 8 attention heads, as
suggested in (Velickovic et al., 2018).

For the ResolvNet model, we choose a depth of L “ 1 with hidden feature dimension optimized over the values in (15) as
for baselines. We empirically observed in the setting of unweighted graphs, that rescaling the Laplacian as

∆nf :“
1

cnf
∆

with a normalizing factor cnf before calculating the resolvent

Rzp∆nf q :“ p∆nf ´ z ¨ Idq
´1 (16)

on which we base our ResolvNet architectures improved performance.

For our ResolvNet architecture, we express this normalizing factor in terms of the largest singular value }∆} of the
(non-normalized) graph Laplacian. It is then selected among

cnf {}∆} P t0.001, 0.01, 0.1, 2u.

The value z in (16) is selected among
p´zq P t0.14, 0.15, 0.2, 0.25u.
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