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Abstract—In remote telerobotics applications, real-time 3D
perception through RGB-D cameras (real-time 3D reconstruction,
point-clouds), and its rendering inside modern virtual reality
(VR) environments, can enhance a user’s sense of presence
and immersion in a remote scene. However, this approach
requires that the whole pipeline from sensor data acquisition
to VR rendering satisfy the speed, throughput, and visual
quality requirements. Point-cloud data suffers from network
latency and throughput limitations that can negatively impact
user experience. In this research, the human visual system was
taken as an inspiration to address this problem. Human eyes
have their sharpest visual acuity at the center of their field-
of-view, which falls off at the periphery. A remote 3D data
visualization framework is proposed that utilizes this acuity
fall-off to facilitate the processing, transmission, buffering, and
rendering in VR of dense point-clouds / 3D reconstructed scenes.
The proposed framework shows significant reductions in latency
and throughput needs, higher than 60% in both. A preliminary
user study shows that the framework does not significantly affect
the perceived visual quality.

Index Terms—3D Reconstruction, Virtual Reality, Gaze track-
ing, Foveated Rendering, Telerobotics

I. INTRODUCTION

Remote telerobotics applications have received increased
interest in recent times due in no small measure to the ongoing
COVID-19 pandemic. Effective implementations in this field
would immeasurably improve the lives of frontline workers,
being able to respond to certain emergencies without requiring
physical presence [21]. The advances in the field are especially
attributed to the ready availability of good quality, low-cost,
consumer-grade sensors (RGB-D cameras), and immersive vir-
tual reality (VR) devices [22]. This has helped the development
of novel algorithms in real-time point-cloud acquisition and
3D scene reconstruction [7, 19]. Immersive remote telerobotics
(IRT), i.e., the combination of VR and real-time 3D visual data
from remote RGB-D cameras can allow real-time immersive
visualization and interaction by the user, perceiving the colour
and 3D profile of the remote scene and robotic agents simulta-
neously [17, 10]. The user can experience enhanced situational
awareness while maintaining their presence illusion [16, 20].
This combination is the key distinguishing factor against
traditional teleoperation interfaces, which rely on mono- or
stereo-video feedback and suffer from limitations in terms of
fixed or non-adaptable camera viewpoints, occluded views of
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the remote space, etc. [2, 8]. Nevertheless, the increased data
footprint (3D vs 2D) in real-time IRT imposes constraints on
resolution, latency, throughput, compression, acquisition, and
the visualization of this information [16, 12]. For instance,
latency and low resolution negatively impact the sense of
presence and provoke cybersickness [9, 15].

In this paper, the human visual system serves as the inspi-
ration to address the coupling between the 3D data acquisition
and its rendering in IRT. The human eye has the highest visual
acuity at the center of its field-of-view, and this acuity falls off
towards the periphery [5]. This acuity fall-off can facilitate the
processing, streaming, and rendering of 3D data to a remote
user in VR, thereby optimizing the amount of data transmitted.
The user’s gaze is exploited to divide the acquired 3D data into
concentric conical regions of progressively reducing resolution
away from the center of the gaze. It is shown that such
data manipulation offers significant benefits in latency and
throughput. Preliminary analysis shows that it has minimal
impact on the perceived visual experience for the user.

II. SYSTEM OVERVIEW

A. Human Visual Acuity and Foveation

Humans perceive visual information through two kinds of
photoreceptors in the retina: cones and rods. As shown in
Figure 1-A the cone density is highest in the central region
of the retina, and reduces monotonically to a reasonably even
density into the peripheral retina region. This distribution is
the concept of Foveation. Retinal eccentricity is the angle at
which light from a scene / image gets focused on the retina.
With the photoreceptors’ density reducing monotonically, it
is possible to approximate the retina as being formed of
discrete concentric regions. The density of the photoreceptors
is inversely proportional to the eccentricity angles [11]. Table I
gives an example of such an approximation for retinal regions.
Figure 1-B shows an example of how the concentric regions
are applied to foveate the point-cloud.

1) Visual Acuity: is quantitatively represented in terms
of the minimum angle of resolution (MAR, measured in
arcminutes), which is the smallest angle at which two objects
in the visual scene are perceived as separate by the human eye
[18]. The relationship between MAR and eccentricity can be
approximated as a linear model, Eq. 1. This has been shown
to closely match the anatomical features of the eye [18, 3].
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TABLE I
HUMAN RETINAL REGIONS AND THEIR SIZES IN DIAMETER AND

ECCENTRICITY ANGLE (DERIVED FROM [11]).

Region Diameter (mm) Eccentricity ◦

R0 Fovea 1.5 5◦

R1 ParaFovea 2.5 8◦

R2 PeriFovea 5.5 18◦

R3 Near Peripheral 8.5 30◦

R4 Mid Peripheral 14.5 60◦

R5 Far Peripheral 26 > 60◦
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Fig. 1. A) Rods and Cones distribution in the retina. B) Retinotopic
organization of the primary visual cortex (bottom-left). Foveation applied to
a sample point-cloud (bottom-right).

MAR = mE +MAR0 (1)

Here MAR0 is the intercept, which signifies the smallest
resolvable eccentricity angle for humans, and m is the slope
of the linear model. Authors in [3] experimentally determined
the values of m based on observed image quality, ranging
between 0.022 to 0.034. This formulation applies the concept
of foveation to RGB-D data.

B. Real-time 3D Data Acquisition and Foveated Sampling

The acquired RGB and depth map images from the RGB-
D camera are utilized in two ways: (i) as a point-cloud
represented as an unordered list of surfels, where each surfel
has a position p ∈ R3, a normal n ∈ R3, a colour c ∈ R3, a
weight w ∈ R, a radius r ∈ R, an initialization timestamp t0,
and a current timestamp t; and (ii) the mapping pipeline uses
the state-of-the-art dense visual SLAM system, ElasticFusion
[19], at each time step t, to register the colour image Ct and
the depth map Dt into the global 3D reconstruction map, M,
by estimating the camera pose. The alignment is achieved by
minimizing the geometric and photometric error [19].

1) Map Partitioning: For brevity, the symbol M is used
interchangeably for the real-time point-cloud and the global
3D reconstruction map. Applying the foveation model to M
implies projecting the retinal fovea regions into it to partition
it into concentric conical regions. M is then resampled to
approximate the monotonically decreasing visual acuity in the
foveation model, termed foveated sampling.

To partition M into regions, the eye gaze direction and
its point of origin are utilized. The center of the eye gaze is
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Fig. 2. Map partitioning - the surfel point P(px, py, pz) is classified using
the ray L cast from the point of gaze origin H(hx, hy, hz).

used as a point of origin H(hx, hy, hz). A ray is cast from
H(hx, hy, hz), i.e., the gaze vector L ∈ R3, and is extended
up to the last point of intersection G(gx, gy, gz) with the surfel
map M. The foveation regions are now structured around
L. To assign each surfel in M to a particular region Mn

(n ∈ {0...N} retinal regions), the shortest distance, i.e., the
perpendicular distance between the surfel P(px, py, pz) and L,
PB⊥L, where B(bx, by, bz) is a point on L is used, as shown
in Fig. 2. The algorithm 1 is implemented in CUDA in the
GPU for faster processing.

Algorithm 1: Map Partitioning Algorithm
Input: M /* Map to be partitioned */

L /* Gaze direction vector */
e0 . . .n /* Eccentricity angles */

foreach surfel Pi in the map M do
B← projPi

L /* projection of Pi on L */
dvi ← ∥H⃗B∥ /* dist. between H and B */
d← PB⊥L /* shortest distance */
for j=1 to max(e) do

rj ← tan (ej) ∗ dvi /* calc. radii rj */
end
/* put Pi into the maps M0 ...Mn */
if d < r0 then
M0 ← Pi;

else if d > r0 AND d ≤ r1 then
M1 ← Pi;

...
else
Mn ← Pi

end
end

2) Foveated PCL Sampling: The partitioned global map
M, with the region-assigned surfels, then needs to be down-
sampled to follow the acuity drop-off, as seen in Fig. 1. For
this, M is converted into a PCL point-cloud data structure,
Pn for each Mn region ∀n ∈ {0...N}. To implement the
foveated sampling, the R3 space of each Pn region needs to
be further partitioned into an axis-aligned regular grid of cubes
as shown in Fig. 3. This process of re-partitioning the regions
is called voxelization [13] and the discrete grid elements are
called voxels.

This voxelization and down-sampling is a three-step pro-



cess: (1) calculating the volume of the voxel grid in each
region, which is the point-cloud distribution along x-, y-, and
z-axes; (2) calculating the voxel size, i.e., dimension, vn, for
the voxelization in each region, and (3) down-sampling by
approximating the point-cloud inside each voxel by its 3D
centroid point.

For the voxel size, v, consider the voxelization of the central
fovea region, P0. The smallest angle a healthy human with a
normal visual acuity of 20/20 can discern is 1 arcminute, i.e.,
0.016667◦. In Eq. (1) therefore, MAR0 = 0.016667◦. Eq. 2
calculates the smallest visually resolvable object length.

l = dvi ∗ tan (MAR0) (2)

The important consideration here is the value of dvi, which
is the distance to the image along the gaze vector L. In Alg.
1, a dvi value for each surfel is calculated. In contrast, here in
order to down-sample the region based on the voxelization, we
calculate one dvi value for the entire P0 region, approximated
as the distance from H(hx, hy, hz) to the 3D centroid of the
point-cloud in the region, Eq. (3).

pc0 =
1

NP0

NP0∑
i=1

xi,

NP0∑
i=1

yi,

NP0∑
i=1

zi

 (3)

dvi0 = d(H, pc0) (4)

, where NP0
is the number of PCL points in P0, and H is the

eye gaze origin. Then, Eq. (2) is re-written as Eq. (5) to give
the voxel size v0 for the region.

v0 = dvi0 ∗ tan (MAR0) (5)
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Fig. 3. PCL voxelization - the point-cloud inside each voxel is approximated
by its centroid in that voxel.

Fig. 4. Foveated point-cloud sampling example showing the different voxel
grid sizes for the different regions.

Once the voxelization of region P0 is finalized, for the
subsequent concentric regions from P1 to Pn, the voxel sizes
are correlated through the linear MAR relationship. Eq. (6)
shows that as the eccentricity angle of the regions increases,
so do the voxel sizes.

MARn = m · En +MAR0

vn =
MARn

MARn−1
∗ vn−1

(6)

The increasing voxel size away from the fovea region
implies more and more surfels of the point-cloud of the cor-
responding regions are now accommodated within each single
voxel of that region. Therefore, when the down-sampling step
is applied, the approximation of the point-cloud within a
voxel is done over progressively dense voxels. For the down-
sampling part, the region P0 being the fovea region is left
untouched so its density is the same as the incoming global
map density, i.e., the resolution set for the RGB-D camera.
The down-sampling in the subsequent regions is done by
approximating the point-cloud within each voxel with its 3D
centroid, using Eq. (7).

pcvn (x, y, z) =
1
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Pn

Nv
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 (7)

Here Nv
Pn

is the number of points in voxel v of the region
Pn (∀n ∈ {1...N}). Figure 3 shows the centroid approxima-
tion of the point-cloud, while Fig. 4 shows the sample voxel
grids for the different regions.

C. The Foveated Rendering Framework

Based on the system overview, the proposed Foveated Ren-
dering (FR) framework, seen in Figure 5, comprises a server-
client architecture that encapsulates the foveation methodology
detailed in sec. II. It is divided into three parts: the user
site, the remote site, and a communication network between
them. Figure 5 shows the details and the main system com-
ponents are described below:
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Fig. 5. Schema of the proposed Foveated Rendering framework.

The user site manages the: (1) decoding, conversion, and
texture rendering of the streamed 3D data, (2) tracking of
the eye-gaze and head-mounted display (HMD) pose, and
(3) real-time transfer of gaze and pose information to the
remote site. A VR-based interface is designed using the Unreal



Engine (UE) graphics development environment on Windows
10, which serves as the IRT environment for the user. As
shown in Fig. 5 a parallel streamer, a point-cloud decoder and
a conversion system to transfer the textures to the UE GPU
shaders is implemented. The remote site consists of modules
for acquisition, reconstruction, map partitioning, foveated sam-
pling, encoding, and streaming, as shown in Fig. 5. A custom
point-cloud and data packetization and streaming pipeline was
implemented using the Boost ASIO cross-platform C++ library
for the communication network.

III. EXPERIMENT DESIGN AND EVALUATION METRICS

The experiment design focuses on an initial evaluation of
the FR framework using two datasets: (i) an online synthetic
dataset of a static living room environment [4], (LIV), seen
in Fig. 4, and (ii) a dynamic scene dataset acquired using an
RGB-D camera and a moving balloon (BAL), seen in Fig. 1.

Three test conditions were created with combinations of
regions from the Table I as follows:

• F1: The 3D data has four partitions - Fovea, Parafovea,
Perifovea, and the rest. The progressive foveated sam-
pling in the regions follows Eq. (6). For the 4th region,
i.e., the rest of the point-cloud is sampled using the voxel
sizes for the Far Peripheral region.

• F2: has five partitions - Fovea, Parafovea, and Perifovea,
Near Peripheral, and then the rest, with a similar sam-
pling strategy as F1.

• F3: includes all six partitions - Fovea, Parafovea, Peri-
fovea, Near-, Mid-, and the Far Peripheral regions.

These conditions are compared against the reference con-
dition FREF, where the FR framework is not applied on
the 3D data. The following metrics were used to evaluate
the FR framework: (i) Data transfer rate measured using the
network data packet analysis tool, Wireshark [14]; (ii) End-
to-end latency measured for each of the sub-components seen
in Fig. 5; and (iii) A preliminary user study to assess the
visual quality experience of the FR framework. Using the
Double Stimulus Impairment Scale (DSIS) study approach [6]
with the LIV dataset, subjects were first presented with the
FREF condition, followed by a 3-second pause, and one of
the altered conditions (F1-F3) following immediately after, in
a randomized manner. The subjects were then asked to rate the
second presented stimulus on a 5-point scale [6], on whether
the alteration was: (5) imperceptible; (4) perceptible, but not
annoying; (3) slightly annoying; (2) annoying; and (1) very
annoying. 24 subjects (9 females and 15 males) participated
in the study. The arithmetic mean opinion score (MOS) was
calculated for each condition.

IV. RESULTS AND CONCLUSIONS

Five randomized HMD positions with varying distances to
the center of the datasets were used for the objective metrics
evaluation [1]. Four hundred frames were tested for each
HMD position from each dataset. Table II reports the average
bandwidth and overall latency values for streaming the datasets
in each condition and the relative percentage reductions in

the values as compared to the FREF condition. F1 gives an
average 61% reduction against FREF. The numbers are similar
for F2, while F3 offers a lower, 56% reduction. Statistical t-
test analysis showed that these reductions are significant at
95% CI (p-values << 0.05), against FREF. However, within
the 3 conditions, the differences are not statistically significant
(p-value = 0.3).

TABLE II
COMPRESSED BANDWIDTH (MBYTES/SEC; TOP ROW) AND LATENCY (MS;

BOTTOM ROW) FOR REAL-TIME POINT-CLOUD STREAMING

LIV BAL Reduction(%)
40 60 80 10020

0.50 0.80
F1 223 226

0.55 0.97
F2 242 235

0.74 1.03
F3 257 256

1.32 1.82FREF 618 562
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Fig. 6. Mean MOS for the VQE metric against the experimental conditions
(F1,F2,F3). Error bars show the standard deviation.

Likewise for the latency numbers, the foveation conditions
offer between 60% (F3) and 67% (F1) speedup over the FREF
condition, which are statistically significant, p-values << 0.05.

Figure 6 shows the MOS, averaged over the 24 subjects.
It is seen that all three foveation conditions have their MOS
> 3. For the F1 and F2 conditions, the foveation is certainly
perceptible, but it may not hinder the users’ experience, since
the perceived degradation is only ‘slightly annoying’ (F1) or
‘not annoying’. With an MOS > 4, the F3 condition shows
that subjects are not able to easily perceive the degradation,
and even if they do, it is ‘not annoying’.

The novel FR framework presented here shows that by
integrating eye-tracking, remotely acquired real-time 3D data
can be represented to the user in a foveated way inside
VR in IRT applications, which not only helps to reduce the
bandwidth and latency but also does not significantly impact
the visual quality experience. Future investigations will include
the analysis of the limitations in the approach, e.g., effects
of discontinuities at region boundaries and the over-sampling
in the peripheral regions. A comprehensive user study will
help situate the FR framework in terms of usability and user
experience in real-world environments.
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