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ABSTRACT

Attention computation takes both the time complexity of O(n2) and the space com-
plexity of O(n2) simultaneously, which makes deploying Large Language Models
(LLMs) in streaming applications that involve long contexts requiring substantial
computational resources. In recent OpenAI DevDay (Nov 6, 2023), OpenAI re-
leased a new model that is able to support a 128K-long document, in our paper,
we focus on the memory-efficient issue when context length n is much greater
than 128K (n ≫ 2d). Considering a single-layer self-attention with Query, Key,
and Value matrices Q,K, V ∈ Rn×d, the polynomial method approximates the
attention output T ∈ Rn×d. It accomplishes this by constructing U1, U2 ∈ Rn×t

to expedite attention Attn(Q,K, V ) computation within n1+o(1) time executions.
Despite this, computing the approximated attention matrix U1U

⊤
2 ∈ Rn×n still

necessitates O(n2) space, leading to significant memory usage. In response to
these challenges, we introduce a new algorithm that only reads one pass of the data
in a streaming fashion. This method employs sublinear space o(n) to store three
sketch matrices, alleviating the need for exact K,V storage. Notably, our algorithm
exhibits exceptional memory-efficient performance with super-long tokens. As
the token length n increases, our error guarantee diminishes while the memory
usage remains nearly constant. This unique attribute underscores the potential of
our technique in efficiently handling LLMs in streaming applications.

1 INTRODUCTION

Large Language Models (LLMs) such as ChatGPT (ChatGPT, 2022), InstructGPT (Ouyang et al.,
2022), Palm (Chowdhery et al., 2022; Anil et al., 2023), BARD (BARD, 2023), GPT-4 (OpenAI,
2023), LLAMA (Touvron et al., 2023a), LLAMA 2 (Touvron et al., 2023b), Adobe firefly (Adobe,
2023), have revolutionized various aspects of human work. These models have shown remarkable
capabilities in dialog systems (Ni et al., 2023; Deng et al., 2023a;b), document summarization (Huang
et al., 2023; Ghadimi & Beigy, 2023; Zhang et al., 2023; Krishna et al., 2023), code completion
(Zheng et al., 2023; Liu et al., 2023a; Allal et al., 2023), and question-answering (Rogers et al., 2023;
Budler et al., 2023; Roy et al., 2023). However, their performance in these applications is often
constrained by the context length.

To prepare for the coming of artificial general intelligence (AGI) (Bubeck et al., 2023), one of
the crucial bottlenecks for nowadays LLM is about how to handle super long context. In recent
OpenAI DevDay (Nov 6, 2023) (Altman, 2023) 1, OpenAI released a new model that is able to
support a 128K-long document. In other words, you can feed a 300-page textbook into LLM. This is
already quite surprising. However, to finally achieve AGI, we might need to feed some data that is
significantly larger than the memory in a model. For example, what if we can’t even store the entire x
pages of a book in memory when x is super large?

A longer context length allows the LLM to incorporate more information, potentially leading to more
accurate and contextually appropriate responses. This increased capacity for information processing
can enhance the LLM’s understanding, coherence, and contextual reasoning abilities. Therefore, to
optimally utilize pretrained LLMs, it’s crucial to efficiently and accurately generate long sequences.

1OpenAI DevDay, Opening Keynote. https://www.youtube.com/watch?v=U9mJuUkhUzk
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Figure 1: Comparison between our method and previous works. On the left: vanilla attention
computation (Vaswani et al., 2017); Middle: fast attention by polynomial method (Alman & Song,
2023a); On the right: one pass algorithm (ours).

Despite the advantages of a long context length, LLMs, especially those based on transformers, face
significant computational challenges. Inference with a long context in LLMs is computationally
intensive, requiring both O(n2) space complexity and O(n2) time complexity to compute the
attention output. This computational demand can limit the practical application of LLMs in real-
world scenarios, making it a crucial area for further research and optimization.

Previous work (Alman & Song, 2023a;b) has conducted an in-depth study on the fast approximation
of attention computation within n1+o(1) time executions without space requirements. Below is a
formal definition:

Definition 1.1 (Static Attention Approximation without Space Requirement (Alman & Song, 2023a)).
Let ϵ ∈ (0, 1) denote an accuracy parameter. Given three matrices Q,K, V ∈ Rn×d, the goal is to
construct T ∈ Rn×d such that

∥T − Attn(Q,K, V )∥∞ ≤ ϵ

where

• Att(Q,K, V ) := D−1AV

• A ∈ Rn×n is a square matrix A := exp(QK⊤/d), here we apply exp() function entry-
wisely.

• D ∈ Rn×n is a diagonal matrix D := diag(A1n) where 1n ∈ Rn is a length-n vector
where all the entries are ones.

However, the memory requirement of caching attention matrix D−1A for LLM’s inference is still a
considerable issue that consumes O(n2) space complexity. In this paper, we study the computation-
efficiency problem in the context of transformer-based LLMs with super long context. We consider
the following problem:

How can we compute the attention with super-long context in space complexity of o(n)?

This question is crucial as it directly relates to the computational efficiency of LLMs, particularly
when dealing with super-long context lengths. In response to this question, our goal is to develop
an effective streaming algorithm. We aim to define and solve the streaming version of approximate
attention computation, which is a critical aspect of our research. By addressing this problem, we hope
to significantly enhance the computational efficiency of transformer-based LLMs, thereby expanding
their applicability in various real-world scenarios. We define the streaming version of approximate
attention computation, which is also the problem we aim to solve in this paper:
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Definition 1.2 (Streaming Attention Approximation with Sublinear in n Space). Given Q,K, V ∈
Rn×d, we’re only allowed to use o(n) spaces and read Q,K, V in one pass, and then outputs
T ∈ Rn×d such that T is close to D−1AV .

1.1 OUR RESULT

In our research, we tackle the challenge of efficiently calculating attention for extremely long input
sequences (super-long context) with limited memory resources. Our goal is to process Query Q, Key
K, and Value V matrices of size n× d in a single streaming pass while utilizing only o(n) space.

To address this, we propose a novel one-pass streaming algorithm (Algorithm 1). For d = O(log n),
we first compute low-rank approximation matrices U1, U2 ∈ Rn×t as in prior work (Alman & Song,
2023a) such that D−1U1U

⊤
2 ≈ Attn(Q,K, V ).

Next, we introduce sketching matrices Φ ∈ Rm1×n (Nakos & Song, 2019), Ψ ∈ Rm2×n (Alon et al.,
1999) to sample U1, U2 respectively, where m1 = O(ϵ−1

1 k log n),m2 = O(ϵ−2
2 log n) and k controls

sparsity.

We present our main result as follows:
Theorem 1.3 (Main Result, informal version of Theorem 4.1). There is a one pass streaming
algorithm (Algorithm 1) that reads Q,K, V ∈ Rn×d with d = O(log n), uses O(ϵ−1

1 kno(1) +

ϵ−2
2 no(1)) spaces and outputs a matrix T ∈ Rn×d such that

• For each i ∈ [d], T∗,i ∈ Rn is O(k)-sparse column vector

• For each i ∈ [d], ∥Ti−yi∥2 ≤ (1+ϵ)·mink−sparse y′ ∥y′−yi∥2+ϵ2 where yi = D−1AV∗,i

• The succeed probability 0.99.

The purpose of our work is to address the memory constraints associated with computing attention over
very long sequences where the context length n≫ 2d (potentially infinitely long), then furthermore
contribute towards more efficient and scalable transformer models, which could assist in advancing
capabilities towards artificial general intelligence (AGI) (Bubeck et al., 2023). Section 2 discusses
related work that focuses on approximating attention computation. This includes prior studies
on fast approximations without space requirements, which lay the groundwork for our streaming
formulation. In Section 3, we outline the preliminary concepts and definitions used in our analysis.
This includes problem definition, attention computation, and sketching techniques. Our key technical
contributions are presented in Section 4. Here, we introduce a novel one-pass streaming algorithm
for attention approximation with sublinear o(n) space complexity. We also state our main theorem,
which establishes performance guarantees for our proposed algorithm. Section 4 further provides a
detailed proof of the main theorem. This validates that our algorithm is able to process queries, keys
and values in a single streaming pass while meeting the stated approximation bounds using limited
memory.

2 RELATED WORK

In this section, we briefly review three topics that have close connections to this paper, which are
Attention Theory, Streaming Algorithm and Improving LLM’s Utilization of Long Text.

Attention Theory Numerous recent studies have explored attention computation in Large Language
Models (LLMs) (Kitaev et al., 2020; Tay et al., 2020; Chen et al., 2021; Zandieh et al., 2023; Tarzanagh
et al., 2023; Sanford et al., 2023; Panigrahi et al., 2023; Zhang et al., 2020; Arora & Goyal, 2023;
Tay et al., 2021; Deng et al., 2023d; Xia et al., 2023; Deng et al., 2023c; Kacham et al., 2023; Alman
& Song, 2023a; Brand et al., 2023; Deng et al., 2023e; Gao et al., 2023a; Li et al., 2023c;b; Sinha
et al., 2023; Han et al., 2023; Alman & Song, 2023b; Gao et al., 2023b; Alman & Song, 2023a; Han
et al., 2023; Kacham et al., 2023; Chu et al., 2023). Some have focused on the benefits of multiple
attention heads, showing improved optimization and generalization (Deora et al., 2023). Others have
proposed methods like Deja Vu to reduce computational cost during inference without sacrificing
quality or learning ability (Liu et al., 2023d). Formal analyses have examined lower and upper bounds
for attention computation (Zandieh et al., 2023; Alman & Song, 2023a;b), while dynamic attention
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computation has also been investigated (Brand et al., 2023). Regression problems within in-context
learning for LLMs have been addressed, with a unique approach using matrix formulation (Gao et al.,
2023c). These studies collectively contribute to our understanding of attention models and their
optimization, generalization, and efficiency.

Streaming Algorithm Streaming algorithms have been extensively studied in graph problems
(Kapralov et al., 2014; Assadi et al., 2019a; Farhadi et al., 2020; Bernstein, 2020; Feigenbaum
et al., 2004; McGregor, 2005; Paz & Schwartzman, 2017; Ahn & Guha, 2011; Eggert et al., 2012;
Goel et al., 2012; Kapralov, 2013; Dobzinski et al., 2014; Ahn & Guha, 2018; Assadi et al., 2020;
Assadi & Raz, 2020; Assadi et al., 2021; Ahn & Guha, 2011; 2018; Assadi et al., 2022), spanning
trees (Chang et al., 2020), convex programming (Assadi et al., 2019b; Liu et al., 2023c), cardinality
estimation (Flajolet et al., 2007), frequency estimation (Alon et al., 1999; Hsu et al., 2019), sampler
data structures (Jayaram & Woodruff, 2021), heavy hitter detection (Larsen et al., 2019), and sparse
recovery (Nakos & Song, 2019). These studies focus on developing efficient algorithms for various
problem domains, such as processing massive graphs, constructing spanning trees, optimizing convex
programs, estimating cardinality and frequency, designing sampler data structures, detecting heavy
hitters, and recovering sparse signals. The advancements in these areas contribute to the development
of efficient and scalable algorithms for real-time analysis of streaming data.

Improving LLMs’ Utilization of Long Text Extensive research has been conducted on the
application of Large Language Models (LLMs) to lengthy texts (Su et al., 2021; Press et al., 2021;
Chen et al., 2023; Dao et al., 2022; Dao, 2023; Zaheer et al., 2020; Beltagy et al., 2020; Wang et al.,
2020; Kitaev et al., 2020; Peng et al., 2023). These studies aim to optimize LLMs to effectively
capture and utilize the content within longer contexts, rather than treating them solely as inputs.
However, despite advancements in these two directions, competent utilization of lengthy contexts
within LLMs remains a challenge, as highlighted by recent works (Liu et al., 2023b; Li et al., 2023a).

The effective usage of prolonged contexts poses a significant challenge in the development and
application of LLMs. While research has focused on improving LLMs’ understanding of longer
texts, successfully leveraging this understanding for improved performance is not guaranteed. The
challenge lies in effectively incorporating and utilizing the information contained within lengthy
contexts, ensuring that LLMs can make accurate and meaningful predictions based on this additional
context.

3 PRELIMINARY

Notations. We use poly(n) to denote O(nc) where c ≥ 1 is some constant.

For a vector x ∈ Rn, we use ∥x∥2 to denote its ℓ2 norm.

We use ∥A∥∞ to denote the ℓ∞ norm of A, i.e., ∥A∥∞ := maxi,j |Ai,j |.
We use ∥A∥ to denote the spectral norm of a matrix. Then it is obvious that ∥A∥ ≥ maxj ∥A∗,j∥2.

For a vector x ∈ Rn, we say x is k-sparse if and only there are k nonzero entries in x.

For a vector w ∈ Rn, we use diag(w) ∈ Rn×n to denote a diagonal matrix where the i, i-th entry on
diagonal is wi.

We use Pr[] to denote the probability.

3.1 POLYNOMIAL METHOD

We state a tool from previous work.
Lemma 3.1 (Error Approximation, Lemma 3.6 in (Alman & Song, 2023a)). if the following condi-
tions

• Let Q,K, V ∈ Rn×d

• Let d = O(log n), B = O(
√
log n)

• Let ∥Q∥∞, ∥K∥∞, ∥V ∥∞ ≤ B

4
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• Let A := exp(QK⊤/d)

• D := diag(A1n)

Then, there are matrices U1, U2 ∈ Rn×t such that

• Part 1. t = no(1)

• Part 2. For i-th row in U1, we can construct it based on i-th row in Q in O(t+ d) time.

• Part 3. For i-th row in U2, we can construct it based on i-th row in K in O(t+ d) time.

• Part 4. Let Ã := U1U
⊤
2 , let D̃ := diag(Ã1n), then

∥D−1Av − D̃−1Ãv∥∞ ≤ 1/ poly(n)

3.2 SKETCHING MATRICES

Definition 3.2 (k-wise independence). We sayH = {h : [m]→ [l]} is a k-wise independent hash
family if ∀i1 ̸= i2 ̸= · · · ̸= ik ∈ [n] and ∀j1, · · · , jk ∈ [l],

Pr
h∈H

[h(i1) = j1 ∧ · · · ∧ h(ik) = jk] =
1

lk
.

Definition 3.3 (Random Gaussian matrix). We say Ψ ∈ Rm×n is a random Gaussian matrix if all
entries are sampled from N (0, 1/m) independently.

Definition 3.4 (AMS sketch matrix (Alon et al., 1999)). Let h1, h2, · · · , hm be m random hash
functions picking from a 4-wise independent hash family H = {h : [n] → {− 1√

m
,+ 1√

m
}}. Then

Ψ ∈ Rm×n is a AMS sketch matrix if we set Ψi,j = hi(j).

Note that in streaming setting, we never need to explicit write the m×n matrix. That is too expensive
since it takes Ω(n) space. It is well-known that in the streaming area, we only need to store those m
hash functions, and each hash function only needs O(log n)-bits. Thus, the overall store for storing
Φ is just O(m log n) bits

3.3 APPROXIMATE MATRIX PRODUCT

Lemma 3.5 (Johnson–Lindenstrauss lemma, folklore, (Johnson & Lindenstrauss, 1984)). Let
m2 = O(ϵ−2 log(1/δ)). For any fixed vectors u and v ∈ Rn, let Ψ ∈ Rm2×n denote a random
Gaussian/AMS matrix, we have

Pr[|⟨Ψu,Ψv⟩ − ⟨u, v⟩| ≤ ϵ∥u∥2∥v∥2] ≥ 1− δ

Lemma 3.6. If the following conditions hold

• Let δ ∈ (0, 1) denote the failure probability

• Let ϵ2 ∈ (0, 1) denote the accuracy parameter

• Let m2 = O(ϵ−2
2 log(nd/δ)).

• Let ∥V ∥ ≤ 1/
√
n.

Then we have: with probability 1− δ

• Part 1. for all j ∈ [n], i ∈ [d]

|(D̃−1U1U
⊤
2 V )j,i − (D̃−1U1U

⊤
2 Ψ⊤ΨV )j,i| ≤ ϵ2/

√
n

• Part 2. for all i ∈ [d], we have

∥D̃−1U1U
⊤
2 V∗,i − D̃−1U1U

⊤
2 Ψ⊤ΨV∗,i∥2 ≤ ϵ2

5
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Proof. First of all, ∥V ∥ ≤ 1/
√
n directly implies that

max
i∈[d]
∥V∗,i∥2 ≤ 1/

√
n (1)

The proof follows from applying Lemma 3.5 and applying a union bound over nd coordinates.

Proof of Part 1. For each j ∈ [n], for each i ∈ [d], we can show that

|(D̃−1U1U
⊤
2 V )j,i − (D̃−1U1U

⊤
2 Ψ⊤ΨV )j,i|

≤ ϵ2 · ∥(D̃−1U1U
⊤
2 )j,∗∥2 · ∥V∗,i∥2

≤ ϵ2 · ∥V∗,i∥2

≤ ϵ2 ·
1√
n

where the first step follows from Lemma 3.5, the second step follows from ∥(D̃−1U1U
⊤
2 )j,∗∥2 ≤

∥(D̃−1U1U
⊤
2 )j,∗∥1 = 1, the third step follows from Eq. (1).

Proof of Part 2. For each i ∈ [d], we can show that

∥D̃−1U1U
⊤
2 V∗,i − D̃−1U1U

⊤
2 Ψ⊤ΨV∗,i∥2

= ∥(D̃−1U1U
⊤
2 V )∗,i − (D̃−1U1U

⊤
2 Ψ⊤ΨV )∗,i∥2

≤ (n · (ϵ2/
√
n)2)1/2

≤ ϵ2

where the first step follows from AB∗,i = (AB)∗,i for all i ∈ [d], second step follows from Part 1,
the third step follows from definition of ℓ2 norm.

3.4 SPARSE RECOVERY

We state a sparse recovery tool from previous work (Nakos & Song, 2019).
Lemma 3.7 (Sparse Recovery, Theorem 1.1 in (Nakos & Song, 2019)). For any vector x ∈ Rn, there
is an oblivious sketching matrices Φ ∈ Rm1×n such that

• Let k denote a positive integer.

• m1 = O(ϵ−1
1 k log n)

• The encoding/update time(or the column sparsity of Φ) is O(log n)

– In particular, computing Φei∆ takes O(log n) for any scalar ∆ ∈ R, and one-hot
vector ei ∈ Rn.

– For convenient of later analysis, we use z = Φx.
– The space is to store Φ is O(m) bits

• The decoding/recover time is O(m1 log n)

• The algorithm is able to output a k-sparse vector x′ ∈ Rn such that

∥x′ − x∥2 ≤ (1 + ϵ1) min
k−sparse xk

∥xk − x∥2

• The succeed probability is 0.999

4 ANALYSIS

We present the main result of this paper.
Theorem 4.1 (Main Result, formal version of Theorem 1.3). If the following conditions hold

• Let d = O(log n)

6
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Algorithm 1 Our One-Pass Streaming Algorithm for matrices Q,K ∈ Rn×d and V ∈ Rn×d. The
goal of this algorithm is to provide a k-sparse approximation to column of Y = D−1 exp(QK⊤)V ∈
Rn×d.

1: procedure MAINALGORITHM(Q ∈ Rn×d,K ∈ Rn×d, V ∈ Rn×d) ▷ Theorem 4.1
2: /*Create O((m2 +m1)× t) spaces*/
3: Let sk(U2) ∈ Rm2×t denote the sketch of U2 ▷ After stream, we will have sk(U2) = ΨU2

4: Let sk(V ) ∈ Rm2×d denote the sketch of V ▷ sk(V ) = ΨV
5: Let sk(D−1U1) ∈ Rm1×t denote the sketch of D−1U1 ▷ sk(D−1U1) = ΦD−1U1

6: Let prod(U⊤
2 1n) ∈ Rt denote the U⊤

2 1n

7: /* Initialization */
8: We initialize all the matrices/vector objects to be zero
9: sk(U2)← 0m2×t, sk(V )← 0m2×d, sk(D−1U1)← 0m1×t, prod(U⊤

2 1n)← 0t

10: /*Read V in streaming and compute sketch of V */
11: Read V in one pass stream, and compute sk(V ) = ΨV
12: ▷ We will have sk(V ) = ΨV when we reach this line
13: /*Read K in streaming and compute sketch of U2*/
14: for i = 1→ n do
15: Read one row of K ∈ Rn×d

16: ▷ We construct U2 according to Lemma 3.1
17: We construct one row of U2 ∈ Rn×t, let us call that row to be (U2)i,∗ which has length t
18: prod(U⊤

2 1n)← prod(U⊤
2 1n) + ((U2)i,∗)

⊤

19: sk(U2)← sk(U2) + Ψ︸︷︷︸
m2×n

ei︸︷︷︸
n×1

(U2)i,∗︸ ︷︷ ︸
1×t

20: end for
21: ▷ We will have prod(U⊤

2 1n) = U⊤
2 1n when reach this line

22: ▷ We will have sk(U2) = ΨU2 when reach this line
23: /* Read Q in streaming and compute sketch of D−1U1*/
24: for i = 1→ n do
25: Read one row of Q ∈ Rn×d

26: ▷ We construct U1 according to Lemma 3.1
27: We construct one row of U1 ∈ Rn×t, let us call that row to be (U1)i,∗ which has length t

28: Compute Di,i ← (U1)i,∗︸ ︷︷ ︸
1×t

prod(U⊤
2 1n)︸ ︷︷ ︸

t×1

29: sk(D−1U1)← sk(D−1U1) + Φ︸︷︷︸
m1×n

ei︸︷︷︸
n×1

D−1
i,i (U1)i,∗︸ ︷︷ ︸

1×t

30: end for
31: ▷ We will have sk(D−1U1) = ΦD−1U1 when we reach this line
32: /* Run Sparse Recovery Algorithm */
33: Compute Z ← sk(D−1U1) sk(U2)

⊤ sk(V ) ▷ Z ∈ Rm1×d

34: Run sparse recovery on each column of Z ∈ Rm1×d to get approximation to the correspond-
ing column of Y ∈ Rn×d

35: end procedure

• Let B = O(
√
log n)

• Let ∥Q∥∞ ≤ B, ∥K∥∞ ≤ B, ∥V ∥ ≤ 1/
√
n

• Let A := exp(QK⊤/d) ∈ Rn×n

• Let D := diag(A1n) ∈ Rn×n

There is a one pass streaming algorithm (Algorithm 1) that reads Q,K, V ∈ Rn×d uses

O(ϵ−1
1 kno(1) + ϵ−2

2 no(1))

spaces and outputs a matrix T ∈ Rn×d such that

• For each i ∈ [d], T∗,i ∈ Rn is O(k)-sparse column vector

7
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• For each i ∈ [d], ∥Ti−yi∥2 ≤ (1+ϵ1)·mink−sparse y′ ∥y′−yi∥2+ϵ2 where yi = D−1AV∗,i

• The succeed probability 0.99.

• The decoding time is O(ϵ−1
1 kno(1)).

Proof. The streaming will be able to construct sketch Z ∈ Rm1×d which is

Z = sk(D−1U1) sk(U2)
⊤ sk(V )

= ΦD−1U1U2Ψ
⊤ΨV

Running Lemma 3.7 on Z is essentially, doing sparse recovery for D−1U1U2Ψ
⊤ΨV .

Since D−1U1U2Ψ
⊤ΨV is close to D−1U1U2V , thus, we can finally show the error guarantees for

D−1U1U2V .

Proof of Space Requirement.

From the algorithm it is easy to see, the space is coming from two parts

• O(m1t) spaces for object sk(D−1U1)

• O(m2t) spaces for object sk(U2)

From Lemma 3.1, we have

t = no(1)

From Lemma 3.6, we have

m2 = O(ϵ−2
2 log(n))

From Lemma 3.7, we have

m1 = O(ϵ−1
1 k log n)

Thus, total space is

O(m1t+m2t) = O(ϵ−1
1 kno(1) + ϵ−2

2 no(1)).

Proof of Decoding Time.

The decoding time is directly following from Lemma 3.7, it is

O(m1 log n) = O(ϵ−1
1 kno(1) log n) = O(ϵ−1

1 kno(1)).

where the first step follows from choice of m1, the last step follows from O(log n) = O(no(1)).

Proof of Error Guarantees.

To finish the proofs, we define a list of variables

• yi = D−1AV∗,i ∈ Rn

• ỹi = D̃−1ÃV∗,i ∈ Rn

• ŷi = D̃−1ÃΨ⊤ΨV∗,i ∈ Rn

• Let ξ1 be the value that ∥yi − ỹi∥2 ≤ ξ1 (ξ1 = 1/poly(n), by Part 4 of Lemma 3.1)

• Let ξ1 be the value that ∥ỹi − ŷi∥2 ≤ ξ2 (ξ2 = ϵ2, by Part 2 of Lemma 3.6)
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Firstly, we can show that

∥yi − ŷi∥2 ≤ ∥yi − ỹi∥2 + ∥ỹi − ŷ∥2
≤ ξ1 + ξ2 (2)

We can show

∥Ti − yi∥2 ≤ ∥Ti − ŷi∥2 + ∥ŷi − yi∥2
≤ ∥Ti − ŷi∥2 + ξ1 + ξ2

≤ (1 + ϵ1) min
k−sparse y′

∥y′ − ŷi∥2 + ξ1 + ξ2

≤ (1 + ϵ1) min
k−sparse y′

∥y′ − yi∥2

+ (1 + ϵ)(ξ1 + ξ2) + (ξ1 + ξ2)

≤ (1 + ϵ1) min
k−sparse y′

∥y′ − yi∥2 + 3(ξ1 + ξ2)

≤ (1 + ϵ1) min
k−sparse y′

∥y′ − yi∥2 +O(ϵ2)

where the first step follows from triangle inequality, the second step follows from Eq. (2), the third
step follows from Lemma 3.7, the fourth step follows from triangle inequality, the fifth step follows
from ϵ1 ∈ (0, 1) and the last step follows from ξ1 = 1/ poly(n) < ξ2 = ϵ2.

Proof of Failure Probability.

The failure probability of Lemma 3.6 is δ = 1/poly(n). The failure probability of Lemma 3.7 is
0.001. Taking a union bound over those Lemmas, we get failure probability 0.01 here.

In particular, the failure probability is at most

0.001 + 1/ poly(n) ≤ 0.001 + 0.001

≤ 0.01.

Thus, we complete the proof.

4.1 A GENERAL RESULT

We state a result for solving cross attention (X1 ̸= X2). Using our framework to solve self-attention
(X1 = X2), then the algorithm will need two passes, instead of one pass.
Corollary 4.2 (An application of Theorem 4.1). If the following conditions hold

• Let d = O(log n), B = O(
√
log n)

• Let WQ,WK ,WV ∈ Rd×d

• Let X1, X2 ∈ Rn×d

• Let Q = X1WQ ∈ Rn×d, K = X2WK ∈ Rn×d, V = X2WV ∈ Rn×d

• Let ∥Q∥∞ ≤ B, ∥K∥∞ ≤ B, ∥V ∥ ≤ 1/
√
n

• Let A := exp(QK⊤/d) ∈ Rn×n

• Let D := diag(A1n) ∈ Rn×n

There is a one pass streaming algorithm (Algorithm 2) that reads X ∈ Rn×d, WQ,WK ,WV ∈ Rn×d

uses

O(ϵ−1
1 kno(1) + ϵ−2

2 no(1))

spaces and outputs a matrix T ∈ Rn×d such that

• For each i ∈ [d], T∗,i ∈ Rn is O(k)-sparse column vector

9
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• For each i ∈ [d], ∥Ti−yi∥2 ≤ (1+ϵ1)·mink−sparse y′ ∥y′−yi∥2+ϵ2 where yi = D−1AV∗,i

• The succeed probability 0.99.

• The decoding time is O(ϵ−1
1 kno(1)).

Proof. The proofs are similar to Theorem 4.1. The only difference between streaming algorithms
(Algorithm 1 and Algorithm 2) is that, in Algorithm 2 we don’t receive each row of Q (similarly as
K,V ) on the fly anymore. Instead, we store weight WQ, and we receive each row of X1 on the fly.
Whenever we see a row of X1, we will compute matrix vector multiplication for that row and weight
WQ.

Similarly, we applied the same strategy for K and V .
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A LIMITATIONS

In our work, we propose a single-pass streaming algorithm for the computation of very long sequences
of attention, but we recognize some limitations. Limitations relate to the algorithm’s reliance on
specific assumptions, limitations of the test scope, sensitivity to input quality and data characteristics,
and changes in performance as the data size increases.

B SOCIETAL IMPACT

In this paper, we introduce an innovative single-pass algorithm, which can achieve efficient approx-
imation of ultra-long sequence attention computing under sublinear space complexity, and solve
the problem of high time and space complexity in current attention computing. Our paper is purely
theoretical and empirical in nature (mathematics problem) and thus we foresee no immediate negative
ethical impact.

By constructing a specific matrix to approximate the attention output, the algorithm only needs one
data traversal and uses sublinear space to store three summary matrices, which greatly reduces the
memory requirement. It is especially suitable for processing extremely long sequences. As the
sequence length increases, the error is guaranteed to decrease while the memory usage is almost
constant, showing excellent memory efficiency when streaming super long tokens.

C ALGORITHM FOR GENERAL RESULT

Here, we state our algorithm for general result in Section 4.1.
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Algorithm 2 Our Streaming Algorithm for matrices X1 ∈ Rn×d, X2 ∈ Rn×d,WQ,WK ∈ Rd×d

and WV ∈ Rd×d. The goal of this algorithm is to provide a k-sparse approximation to column of
Y = D−1 exp(QK⊤)V ∈ Rn×d.

1: procedure MAINALGORITHM(X1 ∈ Rn×d, X2 ∈ Rn×d,WQ ∈ Rd×d,WK ∈ Rd×d,WV ∈
Rd×d) ▷ Corollary 4.2

2: /*Create O((m2 +m1)× t) +O(d2) spaces*/
3: Let sk(U2) ∈ Rm2×t denote the sketch of U2 ▷ After stream, we will have sk(U2) = ΨU2

4: Let sk(V ) ∈ Rm2×d denote the sketch of V ▷ sk(V ) = ΨV
5: Let sk(D−1U1) ∈ Rm1×t denote the sketch of D−1U1 ▷ sk(D−1U1) = ΦD−1U1

6: Let prod(U⊤
2 1n) ∈ Rt denote the U⊤

2 1n

7: /* Initialization */
8: We initialize all the matrices/vector objects to be zero
9: sk(U2)← 0m2×t, sk(V )← 0m2×d, sk(D−1U1)← 0m1×t, prod(U⊤

2 1n)← 0t

10: /*Read X2 in streaming and compute sketch of U2 and sketch of V */
11: for i = 1→ n do
12: Read one row of X2 ∈ Rn×d

13: We can obtain one row of K and also one row of V (by computing matrix vector
multiplication between one row of X1 and WK , and X1 and WV )

14: ▷ We construct U2 according to Lemma 3.1
15: We construct one row of U2 ∈ Rn×t, let us call that row to be (U2)i,∗ which has length t
16: prod(U⊤

2 1n)← prod(U⊤
2 1n) + ((U2)i,∗)

⊤

17: sk(U2)← sk(U2) + Ψ︸︷︷︸
m2×n

ei︸︷︷︸
n×1

(U2)i,∗︸ ︷︷ ︸
1×t

18: sk(V )← sk(V ) + Ψ︸︷︷︸
m2×n

ei︸︷︷︸
n×1

(V2)i,∗︸ ︷︷ ︸
1×d

19: end for
20: ▷ We will have prod(U⊤

2 1n) = U⊤
2 1n when reach this line

21: ▷ We will have sk(U2) = ΨU2 when reach this line
22: ▷ We will have sk(V ) = ΨV when reach this line
23: /* Read X1 in streaming and compute sketch of D−1U1*/
24: for i = 1→ n do
25: Read one row of X1 ∈ Rn×d

26: We can obtain one row of Q (by computing matrix vector multiplication between one
row of X1 and WQ)

27: ▷ We construct U1 according to Lemma 3.1
28: We construct one row of U1 ∈ Rn×t, let us call that row to be (U1)i,∗ which has length t

29: Compute Di,i ← (U1)i,∗︸ ︷︷ ︸
1×t

prod(U⊤
2 1n)︸ ︷︷ ︸

t×1

30: sk(D−1U1)← sk(D−1U1) + Φ︸︷︷︸
m1×n

ei︸︷︷︸
n×1

D−1
i,i (U1)i,∗︸ ︷︷ ︸

1×t

31: end for
32: ▷ We will have sk(D−1U1) = ΦD−1U1 when we reach this line
33: /* Run Sparse Recovery Algorithm */
34: Compute Z ← sk(D−1U1) sk(U2)

⊤ sk(V ) ▷ Z ∈ Rm1×d

35: Run sparse recovery on each column of Z ∈ Rm1×d to get approximation to the correspond-
ing column of Y ∈ Rn×d

36: end procedure
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