
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ONE PASS STREAMING ALGORITHM FOR SUPER LONG
TOKEN ATTENTION APPROXIMATION IN SUBLINEAR
SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Attention computation takes both the time complexity of O(n2) and the space com-
plexity of O(n2) simultaneously, which makes deploying Large Language Models
(LLMs) in streaming applications that involve long contexts requiring substantial
computational resources. In recent OpenAI DevDay (Nov 6, 2023), OpenAI re-
leased a new model that is able to support a 128K-long document, in our paper,
we focus on the memory-efficient issue when context length n is much greater
than 128K (n ≫ 2d). Considering a single-layer self-attention with Query, Key,
and Value matrices Q,K, V ∈ Rn×d, the polynomial method approximates the
attention output T ∈ Rn×d. It accomplishes this by constructing U1, U2 ∈ Rn×t

to expedite attention Attn(Q,K, V) computation within n1+o(1) time executions.
Despite this, computing the approximated attention matrix U1U

⊤
2 ∈ Rn×n still

necessitates O(n2) space, leading to significant memory usage. In response to
these challenges, we introduce a new algorithm that only reads one pass of the data
in a streaming fashion. This method employs sublinear space o(n) to store three
sketch matrices, alleviating the need for exact K,V storage. Notably, our algorithm
exhibits exceptional memory-efficient performance with super-long tokens. As
the token length n increases, our error guarantee diminishes while the memory
usage remains nearly constant. This unique attribute underscores the potential of
our technique in efficiently handling LLMs in streaming applications.

1 INTRODUCTION

Large Language Models (LLMs) such as ChatGPT (ChatGPT, 2022), InstructGPT (Ouyang et al.,
2022), Palm (Chowdhery et al., 2022; Anil et al., 2023), BARD (BARD, 2023), GPT-4 (OpenAI,
2023), LLAMA (Touvron et al., 2023a), LLAMA 2 (Touvron et al., 2023b), Adobe firefly (Adobe,
2023), have revolutionized various aspects of human work. These models have shown remarkable
capabilities in dialog systems (Ni et al., 2023; Deng et al., 2023a;b), document summarization (Huang
et al., 2023; Ghadimi & Beigy, 2023; Zhang et al., 2023; Krishna et al., 2023), code completion
(Zheng et al., 2023; Liu et al., 2023a; Allal et al., 2023), and question-answering (Rogers et al., 2023;
Budler et al., 2023; Roy et al., 2023). However, their performance in these applications is often
constrained by the context length.

To prepare for the coming of artificial general intelligence (AGI) (Bubeck et al., 2023), one of
the crucial bottlenecks for nowadays LLM is about how to handle super long context. In recent
OpenAI DevDay (Nov 6, 2023) (Altman, 2023) 1, OpenAI released a new model that is able to
support a 128K-long document. In other words, you can feed a 300-page textbook into LLM. This is
already quite surprising. However, to finally achieve AGI, we might need to feed some data that is
significantly larger than the memory in a model. For example, what if we can’t even store the entire x
pages of a book in memory when x is super large?

A longer context length allows the LLM to incorporate more information, potentially leading to more
accurate and contextually appropriate responses. This increased capacity for information processing
can enhance the LLM’s understanding, coherence, and contextual reasoning abilities. Therefore, to
optimally utilize pretrained LLMs, it’s crucial to efficiently and accurately generate long sequences.

1OpenAI DevDay, Opening Keynote. https://www.youtube.com/watch?v=U9mJuUkhUzk

1

https://www.youtube.com/watch?v=U9mJuUkhUzk

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Comparison between our method and previous works. On the left: vanilla attention
computation (Vaswani et al., 2017); Middle: fast attention by polynomial method (Alman & Song,
2023a); On the right: one pass algorithm (ours).

Despite the advantages of a long context length, LLMs, especially those based on transformers, face
significant computational challenges. Inference with a long context in LLMs is computationally
intensive, requiring both O(n2) space complexity and O(n2) time complexity to compute the
attention output. This computational demand can limit the practical application of LLMs in real-
world scenarios, making it a crucial area for further research and optimization.

Previous work (Alman & Song, 2023a;b) has conducted an in-depth study on the fast approximation
of attention computation within n1+o(1) time executions without space requirements. Below is a
formal definition:

Definition 1.1 (Static Attention Approximation without Space Requirement (Alman & Song, 2023a)).
Let ϵ ∈ (0, 1) denote an accuracy parameter. Given three matrices Q,K, V ∈ Rn×d, the goal is to
construct T ∈ Rn×d such that

∥T − Attn(Q,K, V)∥∞ ≤ ϵ

where

• Att(Q,K, V) := D−1AV

• A ∈ Rn×n is a square matrix A := exp(QK⊤/d), here we apply exp() function entry-
wisely.

• D ∈ Rn×n is a diagonal matrix D := diag(A1n) where 1n ∈ Rn is a length-n vector
where all the entries are ones.

However, the memory requirement of caching attention matrix D−1A for LLM’s inference is still a
considerable issue that consumes O(n2) space complexity. In this paper, we study the computation-
efficiency problem in the context of transformer-based LLMs with super long context. We consider
the following problem:

How can we compute the attention with super-long context in space complexity of o(n)?

This question is crucial as it directly relates to the computational efficiency of LLMs, particularly
when dealing with super-long context lengths. In response to this question, our goal is to develop
an effective streaming algorithm. We aim to define and solve the streaming version of approximate
attention computation, which is a critical aspect of our research. By addressing this problem, we hope
to significantly enhance the computational efficiency of transformer-based LLMs, thereby expanding
their applicability in various real-world scenarios. We define the streaming version of approximate
attention computation, which is also the problem we aim to solve in this paper:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Definition 1.2 (Streaming Attention Approximation with Sublinear in n Space). Given Q,K, V ∈
Rn×d, we’re only allowed to use o(n) spaces and read Q,K, V in one pass, and then outputs
T ∈ Rn×d such that T is close to D−1AV .

1.1 OUR RESULT

In our research, we tackle the challenge of efficiently calculating attention for extremely long input
sequences (super-long context) with limited memory resources. Our goal is to process Query Q, Key
K, and Value V matrices of size n× d in a single streaming pass while utilizing only o(n) space.

To address this, we propose a novel one-pass streaming algorithm (Algorithm 1). For d = O(log n),
we first compute low-rank approximation matrices U1, U2 ∈ Rn×t as in prior work (Alman & Song,
2023a) such that D−1U1U

⊤
2 ≈ Attn(Q,K, V).

Next, we introduce sketching matrices Φ ∈ Rm1×n (Nakos & Song, 2019), Ψ ∈ Rm2×n (Alon et al.,
1999) to sample U1, U2 respectively, where m1 = O(ϵ−1

1 k log n),m2 = O(ϵ−2
2 log n) and k controls

sparsity.

We present our main result as follows:
Theorem 1.3 (Main Result, informal version of Theorem 4.1). There is a one pass streaming
algorithm (Algorithm 1) that reads Q,K, V ∈ Rn×d with d = O(log n), uses O(ϵ−1

1 kno(1) +

ϵ−2
2 no(1)) spaces and outputs a matrix T ∈ Rn×d such that

• For each i ∈ [d], T∗,i ∈ Rn is O(k)-sparse column vector

• For each i ∈ [d], ∥Ti−yi∥2 ≤ (1+ϵ)·mink−sparse y′ ∥y′−yi∥2+ϵ2 where yi = D−1AV∗,i

• The succeed probability 0.99.

The purpose of our work is to address the memory constraints associated with computing attention over
very long sequences where the context length n≫ 2d (potentially infinitely long), then furthermore
contribute towards more efficient and scalable transformer models, which could assist in advancing
capabilities towards artificial general intelligence (AGI) (Bubeck et al., 2023). Section 2 discusses
related work that focuses on approximating attention computation. This includes prior studies
on fast approximations without space requirements, which lay the groundwork for our streaming
formulation. In Section 3, we outline the preliminary concepts and definitions used in our analysis.
This includes problem definition, attention computation, and sketching techniques. Our key technical
contributions are presented in Section 4. Here, we introduce a novel one-pass streaming algorithm
for attention approximation with sublinear o(n) space complexity. We also state our main theorem,
which establishes performance guarantees for our proposed algorithm. Section 4 further provides a
detailed proof of the main theorem. This validates that our algorithm is able to process queries, keys
and values in a single streaming pass while meeting the stated approximation bounds using limited
memory.

2 RELATED WORK

In this section, we briefly review three topics that have close connections to this paper, which are
Attention Theory, Streaming Algorithm and Improving LLM’s Utilization of Long Text.

Attention Theory Numerous recent studies have explored attention computation in Large Language
Models (LLMs) (Kitaev et al., 2020; Tay et al., 2020; Chen et al., 2021; Zandieh et al., 2023; Tarzanagh
et al., 2023; Sanford et al., 2023; Panigrahi et al., 2023; Zhang et al., 2020; Arora & Goyal, 2023;
Tay et al., 2021; Deng et al., 2023d; Xia et al., 2023; Deng et al., 2023c; Kacham et al., 2023; Alman
& Song, 2023a; Brand et al., 2023; Deng et al., 2023e; Gao et al., 2023a; Li et al., 2023c;b; Sinha
et al., 2023; Han et al., 2023; Alman & Song, 2023b; Gao et al., 2023b; Alman & Song, 2023a; Han
et al., 2023; Kacham et al., 2023; Chu et al., 2023). Some have focused on the benefits of multiple
attention heads, showing improved optimization and generalization (Deora et al., 2023). Others have
proposed methods like Deja Vu to reduce computational cost during inference without sacrificing
quality or learning ability (Liu et al., 2023d). Formal analyses have examined lower and upper bounds
for attention computation (Zandieh et al., 2023; Alman & Song, 2023a;b), while dynamic attention

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

computation has also been investigated (Brand et al., 2023). Regression problems within in-context
learning for LLMs have been addressed, with a unique approach using matrix formulation (Gao et al.,
2023c). These studies collectively contribute to our understanding of attention models and their
optimization, generalization, and efficiency.

Streaming Algorithm Streaming algorithms have been extensively studied in graph problems
(Kapralov et al., 2014; Assadi et al., 2019a; Farhadi et al., 2020; Bernstein, 2020; Feigenbaum
et al., 2004; McGregor, 2005; Paz & Schwartzman, 2017; Ahn & Guha, 2011; Eggert et al., 2012;
Goel et al., 2012; Kapralov, 2013; Dobzinski et al., 2014; Ahn & Guha, 2018; Assadi et al., 2020;
Assadi & Raz, 2020; Assadi et al., 2021; Ahn & Guha, 2011; 2018; Assadi et al., 2022), spanning
trees (Chang et al., 2020), convex programming (Assadi et al., 2019b; Liu et al., 2023c), cardinality
estimation (Flajolet et al., 2007), frequency estimation (Alon et al., 1999; Hsu et al., 2019), sampler
data structures (Jayaram & Woodruff, 2021), heavy hitter detection (Larsen et al., 2019), and sparse
recovery (Nakos & Song, 2019). These studies focus on developing efficient algorithms for various
problem domains, such as processing massive graphs, constructing spanning trees, optimizing convex
programs, estimating cardinality and frequency, designing sampler data structures, detecting heavy
hitters, and recovering sparse signals. The advancements in these areas contribute to the development
of efficient and scalable algorithms for real-time analysis of streaming data.

Improving LLMs’ Utilization of Long Text Extensive research has been conducted on the
application of Large Language Models (LLMs) to lengthy texts (Su et al., 2021; Press et al., 2021;
Chen et al., 2023; Dao et al., 2022; Dao, 2023; Zaheer et al., 2020; Beltagy et al., 2020; Wang et al.,
2020; Kitaev et al., 2020; Peng et al., 2023). These studies aim to optimize LLMs to effectively
capture and utilize the content within longer contexts, rather than treating them solely as inputs.
However, despite advancements in these two directions, competent utilization of lengthy contexts
within LLMs remains a challenge, as highlighted by recent works (Liu et al., 2023b; Li et al., 2023a).

The effective usage of prolonged contexts poses a significant challenge in the development and
application of LLMs. While research has focused on improving LLMs’ understanding of longer
texts, successfully leveraging this understanding for improved performance is not guaranteed. The
challenge lies in effectively incorporating and utilizing the information contained within lengthy
contexts, ensuring that LLMs can make accurate and meaningful predictions based on this additional
context.

3 PRELIMINARY

Notations. We use poly(n) to denote O(nc) where c ≥ 1 is some constant.

For a vector x ∈ Rn, we use ∥x∥2 to denote its ℓ2 norm.

We use ∥A∥∞ to denote the ℓ∞ norm of A, i.e., ∥A∥∞ := maxi,j |Ai,j |.
We use ∥A∥ to denote the spectral norm of a matrix. Then it is obvious that ∥A∥ ≥ maxj ∥A∗,j∥2.

For a vector x ∈ Rn, we say x is k-sparse if and only there are k nonzero entries in x.

For a vector w ∈ Rn, we use diag(w) ∈ Rn×n to denote a diagonal matrix where the i, i-th entry on
diagonal is wi.

We use Pr[] to denote the probability.

3.1 POLYNOMIAL METHOD

We state a tool from previous work.
Lemma 3.1 (Error Approximation, Lemma 3.6 in (Alman & Song, 2023a)). if the following condi-
tions

• Let Q,K, V ∈ Rn×d

• Let d = O(log n), B = O(
√
log n)

• Let ∥Q∥∞, ∥K∥∞, ∥V ∥∞ ≤ B

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Let A := exp(QK⊤/d)

• D := diag(A1n)

Then, there are matrices U1, U2 ∈ Rn×t such that

• Part 1. t = no(1)

• Part 2. For i-th row in U1, we can construct it based on i-th row in Q in O(t+ d) time.

• Part 3. For i-th row in U2, we can construct it based on i-th row in K in O(t+ d) time.

• Part 4. Let Ã := U1U
⊤
2 , let D̃ := diag(Ã1n), then

∥D−1Av − D̃−1Ãv∥∞ ≤ 1/ poly(n)

3.2 SKETCHING MATRICES

Definition 3.2 (k-wise independence). We sayH = {h : [m]→ [l]} is a k-wise independent hash
family if ∀i1 ̸= i2 ̸= · · · ̸= ik ∈ [n] and ∀j1, · · · , jk ∈ [l],

Pr
h∈H

[h(i1) = j1 ∧ · · · ∧ h(ik) = jk] =
1

lk
.

Definition 3.3 (Random Gaussian matrix). We say Ψ ∈ Rm×n is a random Gaussian matrix if all
entries are sampled from N (0, 1/m) independently.

Definition 3.4 (AMS sketch matrix (Alon et al., 1999)). Let h1, h2, · · · , hm be m random hash
functions picking from a 4-wise independent hash family H = {h : [n] → {− 1√

m
,+ 1√

m
}}. Then

Ψ ∈ Rm×n is a AMS sketch matrix if we set Ψi,j = hi(j).

Note that in streaming setting, we never need to explicit write the m×n matrix. That is too expensive
since it takes Ω(n) space. It is well-known that in the streaming area, we only need to store those m
hash functions, and each hash function only needs O(log n)-bits. Thus, the overall store for storing
Φ is just O(m log n) bits

3.3 APPROXIMATE MATRIX PRODUCT

Lemma 3.5 (Johnson–Lindenstrauss lemma, folklore, (Johnson & Lindenstrauss, 1984)). Let
m2 = O(ϵ−2 log(1/δ)). For any fixed vectors u and v ∈ Rn, let Ψ ∈ Rm2×n denote a random
Gaussian/AMS matrix, we have

Pr[|⟨Ψu,Ψv⟩ − ⟨u, v⟩| ≤ ϵ∥u∥2∥v∥2] ≥ 1− δ

Lemma 3.6. If the following conditions hold

• Let δ ∈ (0, 1) denote the failure probability

• Let ϵ2 ∈ (0, 1) denote the accuracy parameter

• Let m2 = O(ϵ−2
2 log(nd/δ)).

• Let ∥V ∥ ≤ 1/
√
n.

Then we have: with probability 1− δ

• Part 1. for all j ∈ [n], i ∈ [d]

|(D̃−1U1U
⊤
2 V)j,i − (D̃−1U1U

⊤
2 Ψ⊤ΨV)j,i| ≤ ϵ2/

√
n

• Part 2. for all i ∈ [d], we have

∥D̃−1U1U
⊤
2 V∗,i − D̃−1U1U

⊤
2 Ψ⊤ΨV∗,i∥2 ≤ ϵ2

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proof. First of all, ∥V ∥ ≤ 1/
√
n directly implies that

max
i∈[d]
∥V∗,i∥2 ≤ 1/

√
n (1)

The proof follows from applying Lemma 3.5 and applying a union bound over nd coordinates.

Proof of Part 1. For each j ∈ [n], for each i ∈ [d], we can show that

|(D̃−1U1U
⊤
2 V)j,i − (D̃−1U1U

⊤
2 Ψ⊤ΨV)j,i|

≤ ϵ2 · ∥(D̃−1U1U
⊤
2)j,∗∥2 · ∥V∗,i∥2

≤ ϵ2 · ∥V∗,i∥2

≤ ϵ2 ·
1√
n

where the first step follows from Lemma 3.5, the second step follows from ∥(D̃−1U1U
⊤
2)j,∗∥2 ≤

∥(D̃−1U1U
⊤
2)j,∗∥1 = 1, the third step follows from Eq. (1).

Proof of Part 2. For each i ∈ [d], we can show that

∥D̃−1U1U
⊤
2 V∗,i − D̃−1U1U

⊤
2 Ψ⊤ΨV∗,i∥2

= ∥(D̃−1U1U
⊤
2 V)∗,i − (D̃−1U1U

⊤
2 Ψ⊤ΨV)∗,i∥2

≤ (n · (ϵ2/
√
n)2)1/2

≤ ϵ2

where the first step follows from AB∗,i = (AB)∗,i for all i ∈ [d], second step follows from Part 1,
the third step follows from definition of ℓ2 norm.

3.4 SPARSE RECOVERY

We state a sparse recovery tool from previous work (Nakos & Song, 2019).
Lemma 3.7 (Sparse Recovery, Theorem 1.1 in (Nakos & Song, 2019)). For any vector x ∈ Rn, there
is an oblivious sketching matrices Φ ∈ Rm1×n such that

• Let k denote a positive integer.

• m1 = O(ϵ−1
1 k log n)

• The encoding/update time(or the column sparsity of Φ) is O(log n)

– In particular, computing Φei∆ takes O(log n) for any scalar ∆ ∈ R, and one-hot
vector ei ∈ Rn.

– For convenient of later analysis, we use z = Φx.
– The space is to store Φ is O(m) bits

• The decoding/recover time is O(m1 log n)

• The algorithm is able to output a k-sparse vector x′ ∈ Rn such that

∥x′ − x∥2 ≤ (1 + ϵ1) min
k−sparse xk

∥xk − x∥2

• The succeed probability is 0.999

4 ANALYSIS

We present the main result of this paper.
Theorem 4.1 (Main Result, formal version of Theorem 1.3). If the following conditions hold

• Let d = O(log n)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Our One-Pass Streaming Algorithm for matrices Q,K ∈ Rn×d and V ∈ Rn×d. The
goal of this algorithm is to provide a k-sparse approximation to column of Y = D−1 exp(QK⊤)V ∈
Rn×d.

1: procedure MAINALGORITHM(Q ∈ Rn×d,K ∈ Rn×d, V ∈ Rn×d) ▷ Theorem 4.1
2: /*Create O((m2 +m1)× t) spaces*/
3: Let sk(U2) ∈ Rm2×t denote the sketch of U2 ▷ After stream, we will have sk(U2) = ΨU2

4: Let sk(V) ∈ Rm2×d denote the sketch of V ▷ sk(V) = ΨV
5: Let sk(D−1U1) ∈ Rm1×t denote the sketch of D−1U1 ▷ sk(D−1U1) = ΦD−1U1

6: Let prod(U⊤
2 1n) ∈ Rt denote the U⊤

2 1n

7: /* Initialization */
8: We initialize all the matrices/vector objects to be zero
9: sk(U2)← 0m2×t, sk(V)← 0m2×d, sk(D−1U1)← 0m1×t, prod(U⊤

2 1n)← 0t

10: /*Read V in streaming and compute sketch of V */
11: Read V in one pass stream, and compute sk(V) = ΨV
12: ▷ We will have sk(V) = ΨV when we reach this line
13: /*Read K in streaming and compute sketch of U2*/
14: for i = 1→ n do
15: Read one row of K ∈ Rn×d

16: ▷ We construct U2 according to Lemma 3.1
17: We construct one row of U2 ∈ Rn×t, let us call that row to be (U2)i,∗ which has length t
18: prod(U⊤

2 1n)← prod(U⊤
2 1n) + ((U2)i,∗)

⊤

19: sk(U2)← sk(U2) + Ψ︸︷︷︸
m2×n

ei︸︷︷︸
n×1

(U2)i,∗︸ ︷︷ ︸
1×t

20: end for
21: ▷ We will have prod(U⊤

2 1n) = U⊤
2 1n when reach this line

22: ▷ We will have sk(U2) = ΨU2 when reach this line
23: /* Read Q in streaming and compute sketch of D−1U1*/
24: for i = 1→ n do
25: Read one row of Q ∈ Rn×d

26: ▷ We construct U1 according to Lemma 3.1
27: We construct one row of U1 ∈ Rn×t, let us call that row to be (U1)i,∗ which has length t

28: Compute Di,i ← (U1)i,∗︸ ︷︷ ︸
1×t

prod(U⊤
2 1n)︸ ︷︷ ︸

t×1

29: sk(D−1U1)← sk(D−1U1) + Φ︸︷︷︸
m1×n

ei︸︷︷︸
n×1

D−1
i,i (U1)i,∗︸ ︷︷ ︸

1×t

30: end for
31: ▷ We will have sk(D−1U1) = ΦD−1U1 when we reach this line
32: /* Run Sparse Recovery Algorithm */
33: Compute Z ← sk(D−1U1) sk(U2)

⊤ sk(V) ▷ Z ∈ Rm1×d

34: Run sparse recovery on each column of Z ∈ Rm1×d to get approximation to the correspond-
ing column of Y ∈ Rn×d

35: end procedure

• Let B = O(
√
log n)

• Let ∥Q∥∞ ≤ B, ∥K∥∞ ≤ B, ∥V ∥ ≤ 1/
√
n

• Let A := exp(QK⊤/d) ∈ Rn×n

• Let D := diag(A1n) ∈ Rn×n

There is a one pass streaming algorithm (Algorithm 1) that reads Q,K, V ∈ Rn×d uses

O(ϵ−1
1 kno(1) + ϵ−2

2 no(1))

spaces and outputs a matrix T ∈ Rn×d such that

• For each i ∈ [d], T∗,i ∈ Rn is O(k)-sparse column vector

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• For each i ∈ [d], ∥Ti−yi∥2 ≤ (1+ϵ1)·mink−sparse y′ ∥y′−yi∥2+ϵ2 where yi = D−1AV∗,i

• The succeed probability 0.99.

• The decoding time is O(ϵ−1
1 kno(1)).

Proof. The streaming will be able to construct sketch Z ∈ Rm1×d which is

Z = sk(D−1U1) sk(U2)
⊤ sk(V)

= ΦD−1U1U2Ψ
⊤ΨV

Running Lemma 3.7 on Z is essentially, doing sparse recovery for D−1U1U2Ψ
⊤ΨV .

Since D−1U1U2Ψ
⊤ΨV is close to D−1U1U2V , thus, we can finally show the error guarantees for

D−1U1U2V .

Proof of Space Requirement.

From the algorithm it is easy to see, the space is coming from two parts

• O(m1t) spaces for object sk(D−1U1)

• O(m2t) spaces for object sk(U2)

From Lemma 3.1, we have

t = no(1)

From Lemma 3.6, we have

m2 = O(ϵ−2
2 log(n))

From Lemma 3.7, we have

m1 = O(ϵ−1
1 k log n)

Thus, total space is

O(m1t+m2t) = O(ϵ−1
1 kno(1) + ϵ−2

2 no(1)).

Proof of Decoding Time.

The decoding time is directly following from Lemma 3.7, it is

O(m1 log n) = O(ϵ−1
1 kno(1) log n) = O(ϵ−1

1 kno(1)).

where the first step follows from choice of m1, the last step follows from O(log n) = O(no(1)).

Proof of Error Guarantees.

To finish the proofs, we define a list of variables

• yi = D−1AV∗,i ∈ Rn

• ỹi = D̃−1ÃV∗,i ∈ Rn

• ŷi = D̃−1ÃΨ⊤ΨV∗,i ∈ Rn

• Let ξ1 be the value that ∥yi − ỹi∥2 ≤ ξ1 (ξ1 = 1/poly(n), by Part 4 of Lemma 3.1)

• Let ξ1 be the value that ∥ỹi − ŷi∥2 ≤ ξ2 (ξ2 = ϵ2, by Part 2 of Lemma 3.6)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Firstly, we can show that

∥yi − ŷi∥2 ≤ ∥yi − ỹi∥2 + ∥ỹi − ŷ∥2
≤ ξ1 + ξ2 (2)

We can show

∥Ti − yi∥2 ≤ ∥Ti − ŷi∥2 + ∥ŷi − yi∥2
≤ ∥Ti − ŷi∥2 + ξ1 + ξ2

≤ (1 + ϵ1) min
k−sparse y′

∥y′ − ŷi∥2 + ξ1 + ξ2

≤ (1 + ϵ1) min
k−sparse y′

∥y′ − yi∥2

+ (1 + ϵ)(ξ1 + ξ2) + (ξ1 + ξ2)

≤ (1 + ϵ1) min
k−sparse y′

∥y′ − yi∥2 + 3(ξ1 + ξ2)

≤ (1 + ϵ1) min
k−sparse y′

∥y′ − yi∥2 +O(ϵ2)

where the first step follows from triangle inequality, the second step follows from Eq. (2), the third
step follows from Lemma 3.7, the fourth step follows from triangle inequality, the fifth step follows
from ϵ1 ∈ (0, 1) and the last step follows from ξ1 = 1/ poly(n) < ξ2 = ϵ2.

Proof of Failure Probability.

The failure probability of Lemma 3.6 is δ = 1/poly(n). The failure probability of Lemma 3.7 is
0.001. Taking a union bound over those Lemmas, we get failure probability 0.01 here.

In particular, the failure probability is at most

0.001 + 1/ poly(n) ≤ 0.001 + 0.001

≤ 0.01.

Thus, we complete the proof.

4.1 A GENERAL RESULT

We state a result for solving cross attention (X1 ̸= X2). Using our framework to solve self-attention
(X1 = X2), then the algorithm will need two passes, instead of one pass.
Corollary 4.2 (An application of Theorem 4.1). If the following conditions hold

• Let d = O(log n), B = O(
√
log n)

• Let WQ,WK ,WV ∈ Rd×d

• Let X1, X2 ∈ Rn×d

• Let Q = X1WQ ∈ Rn×d, K = X2WK ∈ Rn×d, V = X2WV ∈ Rn×d

• Let ∥Q∥∞ ≤ B, ∥K∥∞ ≤ B, ∥V ∥ ≤ 1/
√
n

• Let A := exp(QK⊤/d) ∈ Rn×n

• Let D := diag(A1n) ∈ Rn×n

There is a one pass streaming algorithm (Algorithm 2) that reads X ∈ Rn×d, WQ,WK ,WV ∈ Rn×d

uses

O(ϵ−1
1 kno(1) + ϵ−2

2 no(1))

spaces and outputs a matrix T ∈ Rn×d such that

• For each i ∈ [d], T∗,i ∈ Rn is O(k)-sparse column vector

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

• For each i ∈ [d], ∥Ti−yi∥2 ≤ (1+ϵ1)·mink−sparse y′ ∥y′−yi∥2+ϵ2 where yi = D−1AV∗,i

• The succeed probability 0.99.

• The decoding time is O(ϵ−1
1 kno(1)).

Proof. The proofs are similar to Theorem 4.1. The only difference between streaming algorithms
(Algorithm 1 and Algorithm 2) is that, in Algorithm 2 we don’t receive each row of Q (similarly as
K,V) on the fly anymore. Instead, we store weight WQ, and we receive each row of X1 on the fly.
Whenever we see a row of X1, we will compute matrix vector multiplication for that row and weight
WQ.

Similarly, we applied the same strategy for K and V .

REFERENCES

Adobe. Adobe firefly. https://www.adobe.com/sensei/generative-ai/firefly.html, 2023.

Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with application
to the maximum matching problem. In International Colloquium on Automata, Languages, and
Programming, pp. 526–538. Springer, 2011.

Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal algorithms
for maximum matching under resource constraints. ACM Transactions on Parallel Computing
(TOPC), 4(4):1–40, 2018.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988, 2023.

Josh Alman and Zhao Song. Fast attention requires bounded entries. In NeurIPS, 2023a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix softmax
attention to kronecker computation. arXiv preprint arXiv:2310.04064, 2023b.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
moments. Journal of Computer and system sciences, 58(1):137–147, 1999.

Sam Altman. Openai devday. https://www.youtube.com/watch?v=U9mJuUkhUzk, 2023.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language models.
arXiv preprint arXiv:2307.15936, 2023.

Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming algorithms.
In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pp. 342–353.
IEEE, 2020.

Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff Stein.
Coresets meet edcs: algorithms for matching and vertex cover on massive graphs. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1616–1635. SIAM,
2019a.

Sepehr Assadi, Nikolai Karpov, and Qin Zhang. Distributed and streaming linear programming in low
dimensions. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems (PODS), pp. 236–253, 2019b.

Sepehr Assadi, Gillat Kol, Raghuvansh R Saxena, and Huacheng Yu. Multi-pass graph streaming
lower bounds for cycle counting, max-cut, matching size, and other problems. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS), pp. 354–364. IEEE, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sepehr Assadi, S Cliff Liu, and Robert E Tarjan. An auction algorithm for bipartite matching in
streaming and massively parallel computation models. In Symposium on Simplicity in Algorithms
(SOSA), pp. 165–171. SIAM, 2021.

Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming bipartite
matching in fewer passes and optimal space. In SODA. arXiv preprint arXiv:2011.03495, 2022.

BARD. Try bard, an ai experiment by google. Google, February 2023. URL https://bard.
google.com/.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Aaron Bernstein. Improved bound for matching in random-order streams. arXiv preprint
arXiv:2005.00417, 2020.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv preprint arXiv:2304.02207, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Leona Cilar Budler, Lucija Gosak, and Gregor Stiglic. Review of artificial intelligence-based question-
answering systems in healthcare. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 13(2):e1487, 2023.

Yi-Jun Chang, Martin Farach-Colton, Tsan-Sheng Hsu, and Meng-Tsung Tsai. Streaming complexity
of spanning tree computation. In 37th international symposium on theoretical aspects of computer
science (STACS), 2020.

ChatGPT. Optimizing language models for dialogue. OpenAI Blog, November 2022. URL https:
//openai.com/blog/chatgpt/.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for efficient
neural network training. In International Conference on Learning Representations, 2021.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of
large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Timothy Chu, Zhao Song, and Chiwun Yang. How to protect copyright data in optimization of large
language models? arXiv preprint arXiv:2308.12247, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Jiawen Deng, Hao Sun, Zhexin Zhang, Jiale Cheng, and Minlie Huang. Recent advances towards
safe, responsible, and moral dialogue systems: A survey. arXiv preprint arXiv:2302.09270, 2023a.

Yang Deng, Wenqiang Lei, Wai Lam, and Tat-Seng Chua. A survey on proactive dialogue systems:
Problems, methods, and prospects. arXiv preprint arXiv:2305.02750, 2023b.

Yichuan Deng, Yeqi Gao, and Zhao Song. Solving tensor low cycle rank approximation. In BigData.
arXiv preprint arXiv:2304.06594, 2023c.

11

https://bard.google.com/
https://bard.google.com/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. arXiv
preprint arXiv:2304.10411, 2023d.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsifi-
cation algorithms for over-parameterized feature dimension. arxiv preprint: arxiv 2304.03426,
2023e.

Puneesh Deora, Rouzbeh Ghaderi, Hossein Taheri, and Christos Thrampoulidis. On the optimization
and generalization of multi-head attention. arXiv preprint arXiv:2310.12680, 2023.

Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic efficiency requires interaction. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pp. 233–242,
2014.

Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite matching in
the semi-streaming model. Algorithmica, 63(1-2):490–508, 2012.

Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mah, Anup Rao, and Ryan A Rossi. Approxi-
mate maximum matching in random streams. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1773–1785. SIAM, 2020.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph
problems in a semi-streaming model. In International Colloquium on Automata, Languages, and
Programming, pp. 531–543. Springer, 2004.

Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the analysis of
a near-optimal cardinality estimation algorithm. Discrete mathematics & theoretical computer
science, (Proceedings), 2007.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression. arXiv
preprint arXiv:2303.16504, 2023a.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023b.

Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from single soft-
max regression to multiple softmax regression via a tensor trick. arXiv preprint arXiv:2307.02419,
2023c.

Alireza Ghadimi and Hamid Beigy. Sgcsumm: An extractive multi-document summarization method
based on pre-trained language model, submodularity, and graph convolutional neural networks.
Expert Systems with Applications, 215:119308, 2023.

Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming com-
plexity of maximum bipartite matching. In Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms, pp. 468–485. SIAM, 2012.

Insu Han, Rajesh Jarayam, Amin Karbasi, Vahab Mirrokni, David P Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. arXiv preprint arXiv:2310.05869,
2023.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In International Conference on Learning Representations, 2019.

Kung-Hsiang Huang, Philippe Laban, Alexander R Fabbri, Prafulla Kumar Choubey, Shafiq Joty,
Caiming Xiong, and Chien-Sheng Wu. Embrace divergence for richer insights: A multi-document
summarization benchmark and a case study on summarizing diverse information from news articles.
arXiv preprint arXiv:2309.09369, 2023.

Rajesh Jayaram and David Woodruff. Perfect l p sampling in a data stream. SIAM Journal on
Computing, 50(2):382–439, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of the
twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pp. 1679–1697. SIAM, 2013.

Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from random
streams. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms,
pp. 734–751. SIAM, 2014.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Kalpesh Krishna, Erin Bransom, Bailey Kuehl, Mohit Iyyer, Pradeep Dasigi, Arman Cohan, and Kyle
Lo. Longeval: Guidelines for human evaluation of faithfulness in long-form summarization. arXiv
preprint arXiv:2301.13298, 2023.

Kasper Green Larsen, Jelani Nelson, Huy L Nguyen, and Mikkel Thorup. Heavy hitters via cluster-
preserving clustering. Communications of the ACM, 62(8):95–100, 2019.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can opensource llms truly promise on context length,
2023a.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. arXiv preprint arXiv:2303.04245, 2023b.

Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh regression problems.
arXiv preprint, 2303.15725, 2023c.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023a.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023b.

S Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-efficient interior
point method, with applications to linear programming and maximum weight bipartite matching.
In International Colloquium on Automata, Languages and Programming (ICALP), pp. 88:1–88:14,
2023c.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023d.

Andrew McGregor. Finding graph matchings in data streams. In International Workshop on
Approximation Algorithms for Combinatorial Optimization, pp. 170–181. Springer, 2005.

Vasileios Nakos and Zhao Song. Stronger l2/l2 compressed sensing; without iterating. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 289–297, 2019.

Jinjie Ni, Tom Young, Vlad Pandelea, Fuzhao Xue, and Erik Cambria. Recent advances in deep
learning based dialogue systems: A systematic survey. Artificial intelligence review, 56(4):
3055–3155, 2023.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Abhishek Panigrahi, Sadhika Malladi, Mengzhou Xia, and Sanjeev Arora. Trainable transformer in
transformer. arXiv preprint arXiv:2307.01189, 2023.

Ami Paz and Gregory Schwartzman. A (2+ϵ)-approximation for maximum weight matching in the
semi-streaming model. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 2153–2161. SIAM, 2017.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Anna Rogers, Matt Gardner, and Isabelle Augenstein. Qa dataset explosion: A taxonomy of nlp
resources for question answering and reading comprehension. ACM Computing Surveys, 55(10):
1–45, 2023.

Pradeep Kumar Roy, Sunil Saumya, Jyoti Prakash Singh, Snehasish Banerjee, and Adnan Gutub.
Analysis of community question-answering issues via machine learning and deep learning: State-
of-the-art review. CAAI Transactions on Intelligence Technology, 8(1):95–117, 2023.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. arXiv preprint arXiv:2306.02896, 2023.

Ritwik Sinha, Zhao Song, and Tianyi Zhou. A mathematical abstraction for balancing the trade-off
between creativity and reality in large language models. arXiv preprint arXiv:2306.02295, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers as
support vector machines. arXiv preprint arXiv:2308.16898, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention for transformer models. In International conference on machine learning,
pp. 10183–10192. PMLR, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. arXiv preprint arXiv:2302.02451, 2023.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. Extractive summarization via chatgpt for faithful
summary generation. arXiv preprint arXiv:2304.04193, 2023.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual
evaluations on humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A LIMITATIONS

In our work, we propose a single-pass streaming algorithm for the computation of very long sequences
of attention, but we recognize some limitations. Limitations relate to the algorithm’s reliance on
specific assumptions, limitations of the test scope, sensitivity to input quality and data characteristics,
and changes in performance as the data size increases.

B SOCIETAL IMPACT

In this paper, we introduce an innovative single-pass algorithm, which can achieve efficient approx-
imation of ultra-long sequence attention computing under sublinear space complexity, and solve
the problem of high time and space complexity in current attention computing. Our paper is purely
theoretical and empirical in nature (mathematics problem) and thus we foresee no immediate negative
ethical impact.

By constructing a specific matrix to approximate the attention output, the algorithm only needs one
data traversal and uses sublinear space to store three summary matrices, which greatly reduces the
memory requirement. It is especially suitable for processing extremely long sequences. As the
sequence length increases, the error is guaranteed to decrease while the memory usage is almost
constant, showing excellent memory efficiency when streaming super long tokens.

C ALGORITHM FOR GENERAL RESULT

Here, we state our algorithm for general result in Section 4.1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 2 Our Streaming Algorithm for matrices X1 ∈ Rn×d, X2 ∈ Rn×d,WQ,WK ∈ Rd×d

and WV ∈ Rd×d. The goal of this algorithm is to provide a k-sparse approximation to column of
Y = D−1 exp(QK⊤)V ∈ Rn×d.

1: procedure MAINALGORITHM(X1 ∈ Rn×d, X2 ∈ Rn×d,WQ ∈ Rd×d,WK ∈ Rd×d,WV ∈
Rd×d) ▷ Corollary 4.2

2: /*Create O((m2 +m1)× t) +O(d2) spaces*/
3: Let sk(U2) ∈ Rm2×t denote the sketch of U2 ▷ After stream, we will have sk(U2) = ΨU2

4: Let sk(V) ∈ Rm2×d denote the sketch of V ▷ sk(V) = ΨV
5: Let sk(D−1U1) ∈ Rm1×t denote the sketch of D−1U1 ▷ sk(D−1U1) = ΦD−1U1

6: Let prod(U⊤
2 1n) ∈ Rt denote the U⊤

2 1n

7: /* Initialization */
8: We initialize all the matrices/vector objects to be zero
9: sk(U2)← 0m2×t, sk(V)← 0m2×d, sk(D−1U1)← 0m1×t, prod(U⊤

2 1n)← 0t

10: /*Read X2 in streaming and compute sketch of U2 and sketch of V */
11: for i = 1→ n do
12: Read one row of X2 ∈ Rn×d

13: We can obtain one row of K and also one row of V (by computing matrix vector
multiplication between one row of X1 and WK , and X1 and WV)

14: ▷ We construct U2 according to Lemma 3.1
15: We construct one row of U2 ∈ Rn×t, let us call that row to be (U2)i,∗ which has length t
16: prod(U⊤

2 1n)← prod(U⊤
2 1n) + ((U2)i,∗)

⊤

17: sk(U2)← sk(U2) + Ψ︸︷︷︸
m2×n

ei︸︷︷︸
n×1

(U2)i,∗︸ ︷︷ ︸
1×t

18: sk(V)← sk(V) + Ψ︸︷︷︸
m2×n

ei︸︷︷︸
n×1

(V2)i,∗︸ ︷︷ ︸
1×d

19: end for
20: ▷ We will have prod(U⊤

2 1n) = U⊤
2 1n when reach this line

21: ▷ We will have sk(U2) = ΨU2 when reach this line
22: ▷ We will have sk(V) = ΨV when reach this line
23: /* Read X1 in streaming and compute sketch of D−1U1*/
24: for i = 1→ n do
25: Read one row of X1 ∈ Rn×d

26: We can obtain one row of Q (by computing matrix vector multiplication between one
row of X1 and WQ)

27: ▷ We construct U1 according to Lemma 3.1
28: We construct one row of U1 ∈ Rn×t, let us call that row to be (U1)i,∗ which has length t

29: Compute Di,i ← (U1)i,∗︸ ︷︷ ︸
1×t

prod(U⊤
2 1n)︸ ︷︷ ︸

t×1

30: sk(D−1U1)← sk(D−1U1) + Φ︸︷︷︸
m1×n

ei︸︷︷︸
n×1

D−1
i,i (U1)i,∗︸ ︷︷ ︸

1×t

31: end for
32: ▷ We will have sk(D−1U1) = ΦD−1U1 when we reach this line
33: /* Run Sparse Recovery Algorithm */
34: Compute Z ← sk(D−1U1) sk(U2)

⊤ sk(V) ▷ Z ∈ Rm1×d

35: Run sparse recovery on each column of Z ∈ Rm1×d to get approximation to the correspond-
ing column of Y ∈ Rn×d

36: end procedure

17

