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Abstract

Normalizing flows are a widely used class of latent-variable generative models
with a tractable likelihood. Affine-coupling models [Dinh et al., 2014, 2016] are
a particularly common type of normalizing flows, for which the Jacobian of the
latent-to-observable-variable transformation is triangular, allowing the likelihood
to be computed in linear time. Despite the widespread usage of affine couplings,
the special structure of the architecture makes understanding their representational
power challenging. The question of universal approximation was only recently
resolved by three parallel papers [Huang et al., 2020, Zhang et al., 2020, Koehler
et al., 2020] – who showed reasonably regular distributions can be approximated
arbitrarily well using affine couplings—albeit with networks with a nearly-singular
Jacobian. As ill-conditioned Jacobians are an obstacle for likelihood-based training,
the fundamental question remains: which distributions can be approximated using
well-conditioned affine coupling flows?
In this paper, we show that any log-concave distribution can be approximated using
well-conditioned affine-coupling flows. In terms of proof techniques, we uncover
and leverage deep connections between affine coupling architectures, underdamped
Langevin dynamics (a stochastic differential equation often used to sample from
Gibbs measures) and Hénon maps (a structured dynamical system that appears in
the study of symplectic diffeomorphisms). Our results also inform the practice of
training affine couplings: we approximate a padded version of the input distribution
with iid Gaussians—a strategy which Koehler et al. [2020] empirically observed
to result in better-conditioned flows, but had hitherto no theoretical grounding.
Our proof can thus be seen as providing theoretical evidence for the benefits of
Gaussian padding when training normalizing flows.

1 Introduction

Normalizing flows [Dinh et al., 2014, Rezende and Mohamed, 2015] are a class of generative models
parametrizing a distribution in Rd as the pushfoward of a simple distribution (e.g. Gaussian) through
an invertible map g✓ : Rd ! Rd with trainable parameter ✓. The fact that g✓ is invertible allows us to
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write down an explicit expression for the density of a point x through the change-of-variables formula,
namely p✓(x) = �(g�1

✓
(x))det(Dg�1

✓
(x)), where � denotes the density of the standard Gaussian.

For different choices of parametric families for g✓, one gets different families of normalizing flows,
e.g. affine coupling flows [Dinh et al., 2014, 2016, Kingma and Dhariwal, 2018], Gaussianization
flows [Meng et al., 2020], sum-of-squares polynomial flows [Jaini et al., 2019].

In this paper we focus on affine coupling flows – arguably the family that has been most successfully
scaled up to high resolution datasets [Kingma and Dhariwal, 2018]. The parametrization of g✓ is
chosen to be a composition of so-called affine coupling blocks, which are maps f : Rd ! Rd, s.t.
f(xS , x[d]\S) = (xS , x[d]\S � s(xS) + t(xS)), where � denotes entrywise multiplication and s, t
are (typically simple) neural networks. The choice of parametrization is motivated by the fact that the
Jacobian of each affine block is triangular, so that the determinant can be calculated in linear time.

Despite the empirical success of this architecture, theoretical understanding remains elusive. The
most basic questions revolve around the representational power of such models. Even the question
of universal approximation was only recently answered by three concurrent papers [Huang et al.,
2020, Zhang et al., 2020, Koehler et al., 2020]—though in a less-than-satisfactory manner, in light
of how normalizing flows are trained. Namely, Huang et al. [2020], Zhang et al. [2020] show that
any (reasonably well-behaved) distribution p, once padded with zeros and treated as a distribution in
Rd+d

0
, can be arbitrarily closely approximated by an affine coupling flow. While such padding can be

operationalized as an algorithm by padding the training image with zeros, it is never done in practice,
as it results in an ill-conditioned Jacobian. This is expected, as the map that always sends the last d0
coordinates to 0 is not injective. Koehler et al. [2020] prove universal approximation without padding;
however their construction also gives rise to a poorly conditioned Jacobian: namely, to approximate a
distribution p to within accuracy ✏ in the Wasserstein-1 distance, the Jacobian of the network they
construct will have smallest singular value on the order of ✏.

Importantly, for all these constructions, the condition number of the resulting affine coupling map
is poor no matter how nice the underlying distribution it’s trying to approximate is. In other words,
the source of this phenomenon isn’t that the underlying distribution is low-dimensional or otherwise
degenerate. Thus the question arises:

Question: Can well-behaved distributions be approximated by an affine coupling flow with a
well-conditioned Jacobian?

In this paper, we answer the above question in the affirmative for a broad class of distributions –
log-concave distributions – if we pad the input distribution not with zeroes, but with independent
Gaussians. This gives theoretical grounding of an empirical observation in Koehler et al. [2020] that
Gaussian padding works better than zero-padding, as well as no padding.

The practical relevance of this question is in providing guidance on the type of distributions we can
hope to fit via training using an affine coupling flow. Theoretically, our techniques uncover some deep
connections between affine coupling flows and two other (seeming unrelated) areas of mathematics:
stochastic differential equations (more precisely underdamped Langevin dynamics, a “momentum”
variant of the standard overdamped Langevin dynamics) and dynamical systems (more precisely, a
family of dynamical systems called Hénon-like maps).

2 Overview of results

In order to state our main result, we introduce some notation and definitions.

2.1 Notation

Definition 1. An affine coupling block is a map f : Rd ! Rd, s.t. f(xS , x[d]\S) = (xS , x[d]\S �
s(xS) + t(xS)) for some set of coordinates S, where � denotes entrywise multiplication and s, t are
trainable (generally non-linear) functions. An affine coupling network is a finite sequence of affine
coupling blocks. Note that the partition (S, [d] \ S), as well as s, t may be different between blocks.
We say that the non-linearities are in a class F (e.g., neural networks, polynomials, etc.) if s, t 2 F .

The appeal of affine coupling networks comes from the fact that the Jacobian of each affine block is
triangular, so calculating the determinant is a linear-time operation.
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We will be interested in the conditioning of f—that is, an upper bound on the largest singular value
�max(Df) and lower bound on the smallest singular value �min(Df) of the Jacobian Df of f . Note
that this is a slight abuse of nomenclature – most of the time, “condition number” refers to the ratio of
the largest and smallest singular value. As training a normalizing flow involves evaluating det(Df),
we in fact want to ensure that neither the smallest nor largest singular values are extreme.

The class of distributions we will focus on approximating via affine coupling flows is log-concave
distributions:
Definition 2. A distribution p : Rd ! R+, p(x) / e�U(x) is log-concave if r2U(x) =
�r2 ln p(x) ⌫ 0.

Log-concave distributions are typically used to model distributions with Gaussian-like tail behavior.
What we will leverage about this class of distributions is that a special stochastic differential equation
(SDE), called underdamped Langevin dynamics, is well-behaved in an analytic sense. Finally, we
recall the definitions of positive definite matrices and Wasserstein distance, and introduce a notation
for truncated distributions.
Definition 3. We say that a symmetric matrix is positive semidefinite (PSD) if all of its eigenvalues
are non-negative. For symmetric matrices A,B, we write A ⌫ B if and only if A�B is PSD.
Definition 4. Given two probability measures µ, ⌫ over a metric space (M,d), the Wasserstein-1
distance between them, denoted W1(µ, ⌫), is defined as

W1(µ, ⌫) = inf
�2�(µ,⌫)

Z

M⇥M

d(x, y) d�(x, y)

where �(µ, ⌫) is the set of couplings, i.e. measures on M ⇥M with marginals µ, ⌫ respectively. For
two probability distributions p, q, we denote by W1(p, q) the Wasserstein-1 distance between their
associated measures. In this paper, we set M = Rd and d(x, y) = kx� yk2.
Definition 5. Given a distribution q and a compact set C, we denote by q|C the distribution q truncated
to the set C. The truncated measure is defined as q|C(A) = 1

q(C)q(A \ C).

2.2 Main result

Our main result states that we can approximate any log-concave distribution in Wasserstein-1 distance
by a well-conditioned affine-coupling flow network. Precisely, we show:

Theorem 1. Let p(x) : Rd ! R+ be of the form p(x) / e�U(x), such that:

1. U 2 C2, i.e., r2U(x) exists and is continuous.
2. ln p satisfies Id � �r2 ln p(x) � Id.

Furthermore, let p0 := p⇥N (0, Id). Then, for every ✏ > 0, there exists a compact set C ⇢ R2d and
an invertible affine-coupling network f : R2d ! R2d with polynomial non-linearities, such that

W1(f#(N (0, I2d)|C), p0)  ✏.

Furthermore, the map defined by this affine-coupling network f is well conditioned over C, that is,
there are positive constants A(), B() = O(1) such that for any unit vector w,

A()  kDwf(x, v)k  B()

for all (x, v) 2 C, where Dw is the directional derivative in the direction w. In particular, the
condition number of Df(x, v) is bounded by B()

A() = O(1) for all (x, v) 2 C.

We make several remarks regarding the statement of the theorem:
Remark 1. The Gaussian padding (i.e. setting p0 = p⇥N (0, Id)) is essential for our proofs. All the
other prior works on the universal approximation properties of normalizing flows (with or without
padding) result in ill-conditioned affine coupling networks. This gives theoretical backing of empirical
observations on the benefits of Gaussian padding in Koehler et al. [2020].
Remark 2. The choice of non-linearities s, t being polynomials is for the sake of convenience in our
proofs. Using standard universal approximation results, they can also be chosen to be neural networks
with a smooth activation function.
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Remark 3. The Jacobian Df has both upper-bounded largest singular value, and lower-bounded
smallest singular value—which of course bounds the determinant det(Df). As remarked in Sec-
tion 2.1, merely bounding the ratio of the two quantities would not suffice for this. Moreover, the
bound we prove only depends on properties of the distribution (i.e., ), and does not worsen as ✏ ! 0,
in contrast to Koehler et al. [2020].
Remark 4. The region C where the pushforward of the Gaussian through f and p0 are close is
introduced solely for technical reasons—essentially, standard results in analysis for approximating
smooth functions by polynomials can only be used if the approximation needs to hold on a compact
set. Note that C can be made arbitrarily large by making ✏ arbitrarily small.
Remark 5. We do not provide an explicit computation of the number of affine coupling blocks in the
constructed network, although a bound of polylog(✏)/✏O(k) can be extracted from our proofs.
Remark 6. Our proof also implies a well-conditioned universal approximation result for other related
normalizing flow models. Lemma 1 proves that the flow map of underdamped Langevin dynamics
is well conditioned for all t 2 [0, T ]. However, as indicated in Chen et al. [2018], underdamped
Langevin dynamics is a continuous normalizing flow, thus the claim applies to such flows as well.
Similarly, the particular affine coupling layers we construct in eq. (13) also form a residual block, so
the claim also holds for residual flows [Behrmann et al., 2018].

3 Related Work

The landscape of normalizing flow models is rather rich. The inception of the ideas was in Rezende
and Mohamed [2015] and Dinh et al. [2014], and in recent years, an immense amount of research
has been dedicated to developing different architectures of normalizing flows. The focus of this
paper are affine coupling flows, which were introduced in Dinh et al. [2014], introduced the idea of
using pushforward maps with triangular Jacobians for computational efficiency. This was further
developed in Dinh et al. [2016] and culminated in Kingma and Dhariwal [2018], who introduced 1x1
convolutions in the affine coupling framework to allow for “trainable” choices of partitions. We note,
there have been variants of normalizing flows in which the Jacobian is non-triangular, e.g. [Grathwohl
et al., 2018, Dupont et al., 2019, Behrmann et al., 2018], but these models still don’t scale beyond
datasets the size of CIFAR-10.

In terms of theoretical results, the most closely related works are Huang et al. [2020], Zhang et al.
[2020], Koehler et al. [2020]. The former two show universal approximation of affine couplings—
albeit if the input is padded with zeros. This of course results in maps with singular Jacobians,
which is why this strategy isn’t used in practice. Koehler et al. [2020] show universal approximation
without padding—though their constructions results in a flow model with condition number 1/✏ to
get approximation ✏ in the Wasserstein sense, regardless of how well-behaved the distribution to be
approximated is. Furthemore, Koehler et al. [2020] provide some empirical evidence that padding
with iid Gaussians (as in our paper) is better than both zero padding (as in Huang et al. [2020], Zhang
et al. [2020]) and no padding on small-scale data.

4 Preliminaries

Our techniques leverage tools from stochastic differential equations and dynamical systems. We
briefly survey the relevant results.

4.1 Langevin Dynamics

Broadly, Langevin diffusions are families of stochastic differential equations (SDEs) which are most
frequently used as algorithmic tools for sampling from distributions specified up to a constant of
proportionality. They have also recently received a lot of attention as tools for designing generative
models [Song and Ermon, 2019, Song et al., 2020].

In this paper, we will only make use of underdamped Langevin dynamics, a momentum-like analogue
of the more familiar overdamped Langevin dynamics, defined below. Our construction will involve
simulating underdamped Langevin dynamics using affine coupling blocks.
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Definition 6 (Underdamped Langevin Dynamics). Underdamped Langevin dynamics with potential
U and parameters ⇣, � is the pair of SDEs

⇢
dxt = �⇣vtdt
dvt = ��⇣vtdt�rU(xt)dt+

p
2� dBt.

(1)

The stationary distribution of the SDEs (limiting distribution as t ! 1) is given by p⇤(x, v) /
e�U(x)� ⇣

2 kvk
2

.

The variable vt can be viewed as a “velocity” variable and xt as a “position” variable – in that sense,
the above SDE is an analogue to momentum methods in optimization.

The convergence of (1) can be bounded when the distribution p(x) / exp(�U(x)) satisfies an
analytic condition, namely has a bounded log-Sobolev constant. Though we don’t use the log-Sobolev
constant in any substantive manner in this paper, we include the definition for completeness.
Definition 7. A distribution p : Rd ! R+ satisfies a log-Sobolev inequality with constant C > 0 if
8g : Rd ! R, s.t. g2, g2| log g2| 2 L1(p), we have

Ep[g
2 log g2]� Ep[g

2] logEp[g
2]  2CEpkrgk2. (2)

In the context of Markov diffusions (and in particular, designing sampling algorithms using diffusions),
the interest in this quantity comes as it governs the convergence rate of overdamped Langevin diffusion
in the KL divergence sense. Namely, if pt is the distribution of overdamped Langevin after time t,
one can show

KL(pt||p)  e�CtKL(p0||p).

We will only need the following fact about the log-Sobolev constant:
Fact 1 (Bakry and Émery [1985], Bakry et al. [2013]). Let the distributions p(x) / exp(�U(x)) be
such that U(x) ⌫ �I . Then, p has log-Sobolev constant bounded by �.

We will also need the following result characterizing the convergence time of underdamped Langevin
dynamics in terms of the log-Sobolev constant, as shown in Ma et al. [2019]:
Theorem 2 (Ma et al. [2019]). Let p⇤(x) / exp(�U(x)) have a log-Sobolev constant bounded by ⇢.
Furthermore, for a distribution p : Rd ! R+, let

L[p] := KL(pkp⇤) + Ep

⌧
r�KL(pkp⇤)

�p
, Sr�KL(pkp⇤)

�p

��
,

where S is a positive definite matrix given by S = 1



1
4Id⇥d

1
2Id⇥d

1
2Id⇥d 2Id⇥d

�
. If pt is the distribution of

(xt, vt) which evolve according to (1), we have

d

dt
L[pt]  � ⇢

10
L[pt] (3)

whenever p⇤ satisfies a log-Sobolev inequality with constant ⇢.

We note that the above theorem uses a non-standard Lyapunov function L, which combines KL
divergence with an extra term, since the generator of underdamped Langevin is not self-adjoint—this
makes analyzing the drop in KL divergence difficult. As L is clearly an upper bound on KL(p||p⇤),
so it suffices to show L decreases rapidly.

We will also need a less-well-known deterministic form of the updates which is equivalent to (1).
Precisely, we convert (1) an equivalent ODE (with time-dependent coefficients). The proof of this fact
(via a straightforward comparison of the Fokker-Planck equation) can be found in Ma et al. [2019].
Theorem 3. Let pt(xt, vt) be the probability distribution of running (1) for time t. If started from
(x0, v0) ⇠ p0, the probability distribution of the solution (xt, vt) to the ODEs

d

dt


xt

vt

�
=


O Id
�Id ��Id

�
(r ln pt �r ln p⇤) (4)

is also pt(xt, vt).
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4.2 Dynamical systems and Henon maps

We also build on work from dynamical systems, more precisely, a family of maps called Hénon-like
maps [Hénon, 1976].
Definition 8 ([Turaev, 2002]). A pair of ODEs forms a Hénon-like map if it has the form

⇢
dx

dt
= v

dv

dt
= �x+rJ(x)

(5)

for a smooth function J : Rd ! R.

This special family of ODEs is a continuous-time generalization of a classical discrete dynamical sys-
tem of the same name Hénon [1976]. The property that is useful for us is that the Euler discretization
of this map can be written as a sequence of affine coupling blocks.

In Turaev [2002], it was proven that these ODEs are universal approximators in some sense. Namely,
the iterations of this ODE can approximate any symplectic diffeomorphism: a continuous map which
preserves volumes (i.e. the Jacobian of the map is 1). These kinds of diffeomorphisms have their
genesis in Hamiltonian formulations of classical mechanics [Abraham and Marsden, 2008].

At first blush, symplectic diffeomorphisms and underdamped Langevin seem to have nothing to do
with each other. The connection comes through the so-called Hamiltonian representation theorem
[Polterovich, 2012], which states that any symplectic diffeomorphism from C ✓ R2d ! R2d can be
written as the iteration of the following Hamiltonian system of ODEs for some (time-dependent)
Hamiltonian H(x, v, t): ⇢

dx

dt
= d

dv
H(x, v, t)

dv

dt
= � d

dx
H(x, v, t)

(6)

In fact, in our theorem, we will use techniques inspired by those in Turaev [2002], who shows:
Theorem 4 (Turaev [2002]). For any function H(x, v, t) : R2d ⇥ R�0 ! R which is polynomial in
(x, v), there exists a polynomial V (x, v, t), s.t. the time-⌧ map of the system

⇢
dx

dt
= @

@v
H(x, v, t)

dv

dt
= � @

@x
H(x, v, t)

(7)

is uniformly O(⌧2)-close to the time-2⇡ map of the system
(

dx

dt
= v

dvj

dt
= �⌦2

j
xj � ⌧ @

@xj

V (x, t)
(8)

for some integers {⌦i}di=1.

We will prove a generalization of this theorem that applies to underdamped Langevin dynamics.

5 Proof Sketch of Theorem 1

5.1 Overview of strategy

We wish to construct an affine coupling network that (approximately) pushes forward a Gaussian
p⇤ = N (0, I2d) to the distribution we wish to model with Gaussian padding, i.e. p0 = p⇥N (0, Id).
Because the inverse of an affine coupling network is an affine coupling network, we can invert the
problem, and instead attempt to map p0 to N(0, I2d). 1

There is a natural map that takes p0 to p⇤ = N(0, I2d), namely, underdamped Langevin dynamics (1).
Hence, our proof strategy involves understanding and simulating underdamped Langevin dynamics
with the initial distribution p0 = p ⇥ N (0, Id), and the target distribution p⇤ = N (0, I2d), and
comprises of two important steps.

1As an aside, a similar strategy is taken in practice by recent SDE-based generative models (Song et al.
[2020]).
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First, we show that the flow-map for Langevin is well-conditioned (Lemma 1 below). Here, by
flow-map, we mean the map which assigns each x to its evolution over a certain amount of time t
according to the equations specified by (1).

Second, we break the simulation of underdamped Langevin dynamics for a certain time t into intervals
of size ⌧ , and show that the inverse flow-map over each ⌧ -sized interval of time can be approximated
well by a composition of affine-coupling maps (Lemma 5 below). To show this, we consider a more
general system of ODEs than the one in Turaev [2002] (in particular, a non-Hamiltonian system),
which can be applied to underdamped Langevin dynamics. We then show that the inverse flow-map
of this system of ODEs can be approximated by a sequence of affine-coupling blocks. We note that
for this argument, it is critical that we use underdamped rather than overdamped Langevin dynamics,
as overdamped Langevin dynamics do not have the required form for affine-coupling blocks.

5.2 Underdamped Langevin is well-conditioned

Consider running underdamped Langevin dynamics with stationary distribution p⇤ equal to the
standard Gaussian, started at a log-concave distribution with bounded condition number . The
following lemma says that the flow map is well-conditioned, with condition number depending
polynomially on .
Lemma 1. Consider underdamped Langevin dynamics (1) with ⇣ = 1, friction coefficient � < 2 and
starting distribution p which satisfies all the assumptions in Theorem 1. Let Tt denote the flow-map
from time 0 to time t induced by (4). Then for any x0, v0 2 Rd and unit vector w, the directional
derivative of Tt at x0, v0 in direction w satisfies

✓
1 +

2 + �

2� �
(� 1)

◆�2/�

 kDwTt(x0)k 
✓
1 +

2 + �

2� �
(� 1)

◆2/�

.

Therefore, the condition number of Tt is bounded by
⇣
1 + 2+�

2��
(� 1)

⌘4/�
.

We sketch the proof below and include a complete proof in Section A.

First, using (4) and the chain rule shows that the Jacobian of the flow map at x0, Dt = DTt(x0),
satisfies

d

dt
Dt =


O Id
�Id ��Id

�
r2(ln pt � ln p⇤)Dt, (9)

i.e., it is bounded by the difference of the Hessians of the log-pdfs of the current distribution and the
stationary distribution. We will show that r2 ln pt decays exponentially towards r2 ln p⇤ = I2d.

To accomplish this, consider how r2 ln pt evolves if we replace (1) by its discretization,

ext+⌘ = ext + ⌘evt
evt+⌘ = (1� ⌘�)evt � ⌘ext + ⇠t, ⇠t ⇠ N(0, 2�⌘Id).

Note that because the stationary distribution is a Gaussian, rU(xt) = xt in (1), and the above

equations take a particularly simple form: we apply a linear transformation to

ext

evt

�
, and then

add Gaussian noise, which corresponds to convolving the current distribution by a Gaussian. We
keep track of upper and lower bounds for r2 ln pt, and compute how they evolve under this linear
transformation and convolution by a Gaussian. Taking ⌘ ! 0, we obtain differential equations for
the upper and lower bounds for r2 ln pt, which we can solve. A Grönwall argument shows that these
bounds decay exponentially towards r2 ln p⇤ = I2d. The decay rate can be bounded as a power of 1


.

From (9), we then obtain that the condition number of Dt is bounded by the integral of a exponentially
decaying function, and hence is bounded independent of t. In particular, we may take t large enough
so that pt is ✏-close to the stationary distribution. Because the decay rate of the exponential is 1

O(1) ,
the bound is O(1).

Note that we vitally used the fact that the stationary distribution p is a standard Gaussian, as our
argument requires that r2 ln p⇤ be constant everywhere.
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5.3 ODE approximation by affine-coupling blocks

Next, we analyze a more general version of the Hamiltonian system of ODEs considered in Turaev
[2002], which we recalled in (7). In particular, the system of ODEs we will be considering is:

⇢
dx

dt
= @

@v
H(x, v, t)

dv

dt
= � @

@x
H(x, v, t)� � @

@v
H(x, v, t)

(10)

Note that substituting H(x, v, t) = ln pt(x, v)�ln p⇤(x, v) above gives us the underdamped Langevin
dynamics.

The first step is to restrict our considerations to H being a polynomial in x, v, rather than a general
smooth function. Towards this, we recall the notion of closeness in the C1 topology:
Definition 9. Let C ✓ Rd be a compact set. Let f, g : C ! R be two continuously differentiable
functions. Then we say that f, g are uniformly ✏-close over C in C1 topology if

sup
x2C

(kf(x)� g(x)k+ kDf(x)�Dg(x)k)  ✏

The following lemma (a generalization of the Stone-Weierstrass Theorem) then establishes that it
suffices to focus on H being polynomial in x, v:
Lemma 2 (Theorem 5, Peet [2007]). Let C ⇢ Rd be a compact set. For any C2 function H : Rd ! R,
and any ✏ > 0, there is a multivariate polynomial P : Rd ! R such that P,H are uniformly ✏-close
over C in C1 topology.

Focusing on the case of polynomials, Lemma 3 below shows that instead of flowing the pair of ODEs
given by (10) over an interval of time ⌧ , we can instead run a different ODE for time 2⇡, such that
the flow-maps corresponding to both these ODEs are O(⌧2)-close.
Lemma 3. Let C ⇢ R2d be a compact set. For any function H(x, v, t) : R2d ! R which is
polynomial in (x, v), there exist polynomial functions J, F,G, s.t. the time-(t0 + ⌧, t0) flow map of
the system ⇢

dx

dt
= @

@v
H(x, v, t)

dv

dt
= � @

@x
H(x, v, t)� � @

@v
H(x, v, t)

(11)

is uniformly O(⌧2)-close over C in C1 topology to the time-2⇡ map of the system
(

dx

dt
= v � ⌧F (v, t)� x

dvj

dt
= �⌦2

j
xj � ⌧Jj(x, t)� ⌧vjGj(x, t)

(12)

Here, � denotes component-wise product, and the constants inside the O(·) depend on C and the
coefficients of H.

The complete proof of this lemma is included in Appendix B; we provide a brief sketch here. First, we
consider the first order (O(⌧2)) approximation of the flow map of a standard ODE of the form ẏ = Dy
(where D is diagonal), and observe that for small ⌧ , we can think of (12) as a perturbed version of
such an ODE with an appropriate choice of D. Using standard ODE perturbation techniques, we can
approximately express the time-t evolution of (12) up to first-order in ⌧ , in terms of polynomials
F,G, J and trigonometric functions.

Then, we compare this map to the first-order approximation of flowing the pair of ODEs (11) for
time ⌧ via Taylor’s theorem. Furthermore, this approximation is a polynomial in (x, v) since H is a
polynomial in (x, v).

The crucial step involves choosing the functional form of F (z, t), J(z, t), G(z, t) suitably, so that
they are polynomials in z with coefficients in terms of sin(⌦t), cos(⌦t). After simplification, both
expressions can be expressed in terms of polynomials in x, v where coefficients can be expressed in
terms of

R 2⇡
0 sinp(⌦s) cosq(⌦s) ds, which either integrate to 0 or a constant. Thus, to ensure that the

two approximations match, we are left with a problem of making two multivariate polynomials in
(x, v) equal.

This final step can of course be written as a linear system of equations. We identify a special structure
in this system, which helps us show that the system is full-rank, and hence has a solution.
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Finally, consider discretizing the newly constructed ODE (12) into small steps of size ⌘ by a simple
Euler schema i.e.,

⇢
xn+1 = xn + ⌘(vn � ⌧F (vn, ⌘n)� xn)
vn+1,j = vn,j � ⌘(⌦2

j
xn,j � ⌧Jj(xn, ⌘n)� ⌧vn,jGj(xn, ⌘n))

(13)

We note that each step above can be written as a composition of two affine coupling blocks given by
(xn, vn) 7! (xn, vn+1) 7! (xn+1, vn+1). Namely, the map (xn, vn) 7! (xn, vn+1) can be written as

⇢
xn = xn

vn+1 = vn � (1� ⌧)G(xn, ⌘n)� ⌘(⌦2 � xn � ⌧J(xn, ⌘n))

This map is an affine coupling block with s(xn) = (1 � ⌧) � G(xn, ⌘n) and t(xn) = �⌘(⌦2 �
xn � ⌧J(xn, ⌘n)). The map (xn, vn+1) 7! (xn+1, vn+1) can be written as

⇢
vn+1 = vn+1

xn+1 = xn + ⌘(vn+1 � ⌧F (vn+1, ⌘n)� xn)

which is an affine coupling block with s(vn+1) = 1� ⌘⌧F (vn+1, ⌘n) and t(vn+1) = ⌘vn+1.

The composition of the two maps above yields an affine coupling network (xn, vn) 7! (xn+1, vn+1)
precisely as given by Equation (13) with non-linearities s, t in each of the blocks given by polynomials.
The following lemma bounds the error resulting from this discretization:
Lemma 4 (Euler’s discretization method). 2 Let C ⇢ R2d be a compact set. Consider discretizing
the time from 0 to t into t

⌘
steps and performing the update given by (13) at each of these steps. Let

the map obtained as a result of discretizing thus be denoted by T 0
t

and let the original flow map be
denoted by Tt. Then Tt and T 0

t
are uniformly O(⌘) close over C in C1 topology, and the constants

inside the O(·) depend on C, and bounds on the derivatives of Tt over C.

5.4 Simulating by breaking into ⌧ -sized intervals

Let Ts,t denote the time-s, t flow-map of (10) from time s to time t. Since the flow maps are
invertible, Ts,t and Tt,s are inverses. We are now ready to state the following lemma which says that
the underdamped Langevin flow-map T�,0 can be written as a composition of affine-couplings maps:

Lemma 5. Let C ⇢ R2d be a compact set. Suppose that T�,0(x, v) is the time-(�, 0) flow-map of the
ODE’s ⇢

dx

dt
= @

@v
H(x, v, t)

dv

dt
= � @

@x
H(x, v, t)� � @

@v
H(x, v, t)

(14)

where H is C1. Then for any ✏1,� 2 R+, there exists an integer N = N(✏1,�, C) and affine-
coupling blocks f1, . . . , fN such that the composition f = fN � · · · � f1 is ✏1-close to T�,0 in the C1

topology over C.

The proof of Lemma 5 is in Appendix C. We provide a brief sketch here: from Lemma 2, we know
that it suffices to show the result for a polynomial H . Thereafter, we break the time for which we
want to flow the ODE given by (14) into small chunks of length ⌧ . Lemmas 3 and 4 then show that
the flow map over this chunk can be written as an affine coupling network. Composing the affine
coupling networks over all the chunks of time gives us the result.

5.5 Putting components together

The previous sections established that for any t and any compact set C, there is a affine-coupling
network f with polynomial non-linearities such that Tt,0 and f are uniformly close over C. We will
now pick an appropriate value of t and set C such that W1(f#(p⇤|C), p0)  ✏ where p⇤ = N (0, I2d),
which is the required result of Theorem 1. First, using Theorem 2, for

� > �10 log ✏1 + log 2 + logL[p0]

we have that KL(T0,�#(p0), p⇤)  ✏
2
1
2 . We use the following transportion cost inequality to convert

this to a Wasserstein bound.
2This result is well known in the C

0 topology, we provide an analysis for the C
1 bound in Appendix D.1.
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Theorem 5 (Talagrand [1996]). The standard Gaussian p on Rd satisfies a transportation cost
inequality: For every distribution q on Rd with finite second moment, W1(p, q)2  2KL(qkp).

This gives us that W1(T0,�#(p0), p⇤)  ✏1. A simple argument in Lemma 10 (Appendix D.2) then
gives

W1(p0, T�,0#(p
⇤)) = W1(T�,0#(T0,�#(p0)), T�,0#(p

⇤))  Lip(T�,0)✏1 (15)

A subsequent argument stated as Lemma 11 in Appendix D.2, shows that if f and T�,0 are uniformly
✏1-close in C0 topology on some C, then their pushforwards through p⇤|C are indeed close, i.e.,

W1(T�,0#(p
⇤|C), f#(p⇤|C))  ✏1. (16)

Next, we establish a bound on the Wasserstein distance between the standard Gaussian and its
truncation on a compact set, proved in Appendix D.3.
Lemma 6. Let p⇤ = N (0, I2d). Then for every � 2 R+, there exists a compact set C = B(0, R)
such that W1(p⇤, p⇤|C)  �, where B(0, R) denotes the ball of radius R centered at the origin.

We now choose a compact set C such that Lemma 6 holds for � = ✏1. Then Lemma 10 again implies
that

W1(T�,0#(p
⇤), T�,0# (p⇤|C))  Lip(T�,0)✏1 (17)

Equations (15), (16), (17) and the triangle inequality together imply

W1(f#(p
⇤|C), p0)  (2Lip(T�,0) + 1)✏1  ✏

for small enough ✏1. We can indeed set ✏1 small enough so as to satisfy the last inequality above,

because of the global bound Lip(T�,0) 
⇣
1 + 2+�

2��
(� 1)

⌘2/�
established in Lemma 1. This gives

us the statement of Theorem 1. Note that the final value of � depends on ✏,, � and L[p0].

6 Conclusion

In this paper, we provide the first guarantees on universal approximation with well-conditioned affine
coupling networks. The conditioning of the network is crucial when the networks are trained using
gradient-based optimization of the likelihood. Mathematically, we uncover connections between
stochastic differential equations, dynamical systems and affine coupling flows. Our construction
uses Gaussian padding, which lends support to the empirical observation that this strategy tends to
result in better-conditioned flows [Koehler et al., 2020]. We leave it as an open problem to generalize
beyond log-concave distributions.
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