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ABSTRACT

Large Language Models (LLMs) have excelled in remarkable reasoning capabil-
ities with advanced prompting techniques (e.g., Chain-of-Thought), but they fall
short on tasks that require exploration, strategic foresight, and sequential decision-
making. Recent works propose to utilize external programs (e.g., Python codes)
to define search logic, such that LLMs can perform passive tree search to solve
more challenging reasoning tasks. Though impressive results have been achieved,
there are several fundamental limitations of these approaches. First, passive tree
searches are not efficient as they usually require multiple rounds of LLM API calls
to solve one single problem. Moreover, passive search methods are not flexible
since they need task-specific program designs. Then a natural question arises: can
we maintain the tree-search capability of LLMs without the aid of external pro-
grams, and can still generate responses that clearly demonstrate the process of a
tree-structure search? To this end, we propose a new concept called autonomous
tree-search ability of LLM, which can automatically generate a response contain-
ing search trajectories for the correct answer. Concretely, we first perform both
BFS and DFS style search trajectories using more capable LLM API (e.g. GPT-4
and GPT-3.5) via a fixed system prompt, allowing them to perform autonomous
tree-search (ATS) right out of the box. Experiments on 4 challenge puzzle games
demonstrate our method can achieve huge improvements. The ATS-BFS method
outperforms the Chain of Thought approach by achieving an average accuracy im-
provement of 33%. Compared to Tree of Thoughts, it requires 65.6% or 47.7%
less GPT-api cost to attain a comparable level of accuracy. Moreover, we have
collected a dataset using the ATS prompt method and fine-tuned LLaMA with this
dataset. This approach has shown to yield a greater improvement compared to the
ones fine-tuned on CoT data. Specifically, it outperforms CoT-tuned LLaMAs by
an average of 40.6% and 38.5% for LLaMA2-7B and LLaMA2-13B, respectively.

1 INTRODUCTION

Large language models (LLMs) (e.g., LLaMA (Touvron et al., 2023), GPT-3 (Brown et al., 2020),
GPT-4 (OpenAI, 2023)) have demonstrated an increasing capability to perform a broader spectrum
of reasoning tasks that involve math (Cobbe et al., 2021), logic (Liu et al., 2023), and algorithm
execution (Jojic et al., 2023).

With more advanced prompting techniques, the reasoning ability of LLMs can be further improved.
For example, the Chain-of-Thought (CoT) approach (Wei et al., 2022) lets LLMs perform step-
by-step reasoning and achieve strong performances on several reasoning tasks. Some works tried
to improve CoT’s reasoning ability. For example, Hao et al. (2023) uses a world model to give
intermediate world states to help reasoning, Gao et al. (2023) lets LLM output programs during rea-
soning. More recently, Yao et al. (2023) found that CoT is confined to left-to-right decision-making
processes during inference, so it cannot handle more challenging reasoning tasks necessitating ex-
ploration, strategic foresight, and sequential decision-making. Several works (Yao et al., 2023;
Long, 2023; Besta et al., 2023; Ye et al., 2023) employed hand-crafted search algorithms that deter-
mined the search logic and utilized LLMs to perform the left functions. We refer to such methods as
passive search, since through these methods, LLMs perform as passive students guided by teachers
who keep asking single-functional questions. The style of passive search has crucial drawbacks.
First, passive search methods require multiple rounds of LLM API calls to solve a single problem.
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This inevitably results in substantial financial costs (Chen et al., 2023) and an increase in carbon
footprint (Wu et al., 2022; Dhar, 2020). Further, passive search methods are not flexible since they
need task-specific program designs. This is significantly less convenient than interacting with chat-
bots possessing the CoT capability. When utilizing CoT, we can directly request a step-by-step
response from LLMs in a chat scenario by simply asking, “Please provide a step-by-step answer.”
On the contrary, when utilizing passive search like Tree of Thoughts (ToT), we need to design the
format of states, design the prompt for LLMs to list the next states or evaluate states, and design
how to extract information from the response of LLMs. These are all required specific designs for
each task.

To address the challenges in passive search, this work focuses on the “active” search and studies
the so-called autonomous tree-search ability. That is, we let the large language model write down
the tree-search process entirely by itself. With autonomous tree-search (ATS) ability, LLMs, with-
out the aid of external programs, can generate responses that clearly demonstrate the process of a
tree-structure search. LLMs with ATS ability can exhibit satisfactory flexibility, capability, and ef-
ficiency. Specifically, compared to CoT, ATS can explore a large set of possible solutions through
tree search until it reaches a satisfying answer, while CoT only has one shot to produce the answer.
Compared to ToT, ATS is self-reliant, costing only a single response from the LLMs without external
assistance. We implement ATS in both ATS-BFS and ATS-DFS, defined by whether the trajectories
are shown in the text of form BFS structure or DFS structure. (§ 3)

To examine the search ability of LLM, we set up four moderately challenging puzzles as evaluation
datasets. Our experiment results show that with a carefully designed system prompt, GPT-4 could
conduct ATS on all these puzzles and significantly improve its performance. (§ 4) Also, smaller
models (i.e., LLaMA 2 7B and 13B (Touvron et al., 2023) ) can be equipped with ATS through fine-
tuning. We gathered the data produced by the ATS-enhanced GPT-4. Upon fine-tuning this data, the
ATS-tuned LLaMAs demonstrated satisfactory search performance. They surpassed the CoT-tuned
LLaMAs by an average of 40.6% and 38.5% for LLaMA2-7B and LLaMA2-13B, respectively.
Moreover, when compared to ToT-tuned LLaMAs that involve some search capability, the ATS-
tuned LLaMAs still exhibited better performance. (§ 5)

2 RELATED WORK

Large Language Model. It is commonly held that scaling up pretrained large models (PLMs)
often yields enhanced performance for downstream tasks, an observation encapsulated by the so-
called “scaling law” (Kaplan et al., 2020). Multiple research endeavors have probed the bound-
aries of performance by training increasingly vast PLMs, including the 175-billion-parameter GPT-
3 (Brown et al., 2020) and the colossal 540-billion-parameter PaLM (Chowdhery et al., 2022).
Nowadays, GPT-4 is the state-of-the-art (OpenAI, 2023). While GPT-4’s achievements are signifi-
cant, its opaque training processes and undisclosed architecture have hindered further open-source
progress and in-depth research within this field. Offering a refreshing contrast, Vicuna (Platzer &
Puschner, 2021), LLaMA (Touvron et al., 2023) and Alpaca (Taori et al., 2023), breaks through
these barriers as a transparent, open-source chatbot equipped with an expanded dataset and a user-
friendly, scalable infrastructure. In the rapidly evolving landscape of Language Model-based chat-
bots, LLaMA 2 (Touvron et al., 2023) has assertively carved out a prominent position as a leader in
the field.

Reasoning. In recent developments, there has been notable progress in Large Language Models
(LLMs), especially regarding their emergent properties and context-specific learning capabilities.
Such advancements pave the way for new horizons in machine reasoning (Wei et al., 2022). By uti-
lizing chain-of-thought prompts (Wei et al., 2022) and various cues, researchers have demonstrated
that these models can systematically solve mathematical and logical reasoning tasks (Kojima et al.,
2022; Drori et al., 2022). Building on this foundation, recent research has ventured into generat-
ing multiple solutions, subsequently leveraging self-consistency (Wang et al., 2022) to ascertain the
most appropriate response. Furthermore, to enhance performance on exploration-related questions.

Search Capability of LLM. In order to achieve passive search capabilities, previous research (Yao
et al., 2023; Long, 2023; Besta et al., 2023; Ye et al., 2023) has employed hand-crafted search pro-
gram to dictate the search logic, while leveraging LLMs to provide heuristic guidance. More specif-
ically, Yao et al. (2023); Long (2023) utilized a human-programmed approach to execute Breadth
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Figure 1: These figures provide an overview of Autonomous Tree-search (ATS) in comparison with
CoT and ToT, while also illustrating the process by which the tree structure is flattened into a text
paragraph. In Figure (a), a solid block within a step symbolizes a thought, and a box signifies a
single message chat with LLMs. Figures (b) and (c) offer additional clarification on ATS, detailing
each case of ATS-BFS and ATS-DFS.

First Search (BFS) and Depth First Search (DFS), incorporating an internal LLM-assisted function.
Besta et al. (2023) expanded the tree structure to a graph structure, while Ye et al. (2023) har-
nessed an Elo-based Self-Judgment Mechanism for decision-making. Zhang et al. (2023) provided
a human-designed space of search logic instead of a specific search logic and ask LLMs determine
which logic to preform. However, these methods necessitate the support of code logic. As dis-
cussed before, passive search methods are not only costly but also incapable of providing direct
assistance via chat, and necessitate task-specific design. As for autonomous search, a concurrent re-
search proposed Algorithm of Thoughts (Sel et al., 2023). The primary objective of their approach is
to significantly reduce the number of queries employed by existing multi-query reasoning methods,
while maintaining performance for tasks that necessitate adept application of world knowledge. This
is intended to foster a more efficient and responsible utilization of AI resources. However, this study
was limited to GPT-4 and few-shot in-context learning. In comparison, our work additionally con-
siders smaller language models and zero-shot settings, giving a more comprehensive investigation
towards Autonomous Tree-Search (ATS) ability.

Control and Enhance LLM Behaviour. Large-scale models like GPT-3 and GPT-4 have shown
impressive performance across a range of tasks through in-context learning. This has led to the
widespread belief that prompts can be used to impart new knowledge to GPT and alter its behavior.
For instance, it has been demonstrated that algorithmic reasoning ability can be taught through in-
context learning (Zhou et al., 2022). In the case of smaller models, it is common practice to finetune
them to excel in specific tasks (Rajani et al., 2019; Talmor et al., 2018; Hendrycks et al., 2021; Nye
et al., 2021).
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3 AUTONOMOUS TREE-SEARCH METHOD

3.1 FRAMEWORK

Figure 1 provides a concise overview of Autonomous Tree-search, illustrating that the response gen-
erated by Large Language Models (LLMs) encompasses tree-structured search trajectories. There
are two main methods for flattening tree-structures into text. If the trajectories have Breadth-First
Search (BFS) structure, we refer to the method as ATS-BFS, and if they have Depth-First Search
(DFS) structure, we call it ATS-DFS.

ATS-BFS. This approach, as depicted in Figure 1b, is grounded in BFS. When a problem is pre-
sented to LLMs, they explore from the shallow to deeper levels, iteratively maintaining various
scenarios after each step. In other words, at each step, there are certain scenarios preserved in the
previously generated text, and then LLMs continuously generate successors of these scenarios for
the next step. This iterative process concludes when a solution is discovered. Compared to DFS-like
exploration, BFS-like exploration is logically simpler. We will later demonstrate the effectiveness of
BFS-like exploration in the GPT-4 experiment using a straightforward global fixed system message.

ATS-DFS. This approach, as shown in Figure 1c, is based on DFS. When a problem is presented
to LLMs, they immediately attempt a solution, retreating and initiating another attempt from the
current position. As DFS-like exploration necessitates complex logic, it performs optimally in the
few-shot setting of GPT-4 and is less suitable for smaller models.

The detailed methodologies to enhance LLMs with ATS ability are different for large models and
small models. They are further discussed in § 4.1 and § 5.1.

3.2 DISCUSSION

Compared to the Chain of Thought (CoT), LLMs with ATS ability can explore a significantly larger
number of scenarios through its tree structure, while CoT is limited to a single trajectory. In contrast
to the Tree of Thought (ToT), ATS relies solely on the LLM itself, requiring only a single response
without external assistance. ToT, on the other hand, is heavily dependent on external code logic,
necessitating multiple chat messages for numerous smaller steps. We will now discuss the flexibility,
capability, and efficiency of ATS in comparison to these baselines.

Flexibility. ATS, like CoT, is an LLM behavior that does not require human intervention. It can
be incorporated into LLMs through prompting or supervised training. In contrast, ToT requires a
specific human-designed program for each specific task.

Capability. ATS can navigate numerous scenarios in a tree structure, similar to ToT. This capa-
bility allows ATS to significantly outperform CoT when tasks necessitate search. Moreover, ATS
has a comprehensive view of the entire tree structure, enabling it to gather information from other
branches. This advantage allows ATS to outperform ToT in certain instances.

Efficiency. As illustrated in Figure 1a, both CoT and ATS require only a single message call on
LLMs, whereas ToT necessitates a large number of message calls. Since each method requires
messages of varying lengths, in the following section, we will use the GPT-4 cost as a metric to
evaluate efficiency. Compared to ToT, ATS is a significantly more efficient method.

4 ENHANCE GPT-4 THROUGH PROMPT

4.1 PROMPT METHODOLOGY

GPT-4 shows a remarkable ability to adhere to instructions. It is a common practice within the
AI community to utilize system messages to direct GPT-4 to “role-play” a specific character. For
example, if GPT-4 is instructed to mimic a Socratic-style teacher who provides hints rather than
direct answers, it will faithfully assume this role, refraining from giving explicit answers.

Consequently, an efficient approach to teaching GPT-4 with ATS ability is through system messages.
We supply GPT-4 with a uniform system message (Appendix D) across all tasks. This message
briefly introduced ATS ability and encouraged GPT-4 to role-play an assistant who is good at ATS.
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In this context, we refer to the approach through system messages as the zero-shot method, given
that there is no task-specific prompt. Furthermore, we will explore the model’s performance in a
few-shot setting, providing some task-specific examples that execute ATS.

4.2 DATASETS

The datasets consist of four puzzles. These puzzles are derived from daily scenarios such as the
Drop Water Puzzle that faces the situation of two unmarked water cups in daily life. The puzzles
include the Drop Water Puzzle, Number Path Puzzle, Arithmetic Puzzle, and Minimal Grass Puzzle.
The first three are solution-finding puzzles, ensuring the existence of a solution, with the answer
defining the parameters of the solution. The last puzzle is an optimization puzzle. Further details
can be found in Appendix B.

Drop Water Puzzle. Given four integers a, b, c, and n. You are given two empty bottles without
scales of capacities of a and b liters and a large water reservoir. The goal is to get exactly c liters of
water within n operations.

Number Path Puzzle. Given three integers n, a, and b where a < b. Create a sequence of exactly
n mathematical operations, starting from the number a and ending at b, using only the operations of
doubling or increasing by one.

Arithmetic Puzzle. Given four integers a, b, c, and n. Use the numbers a, b, and c and arithmetic
operations to achieve a final result of n.

Minimal Grass Puzzle. Given three integers a, b, and c. Figure out the dimensions of three rectan-
gular buildings with given floor areas, ensuring they don’t block each other’s view, and then arrange
them to minimize the surrounding green space. The dimensions must be integer values.

Our datasets were created due to the limited research on search ability and the small number of
puzzles used in existing studies, such as Tree of Thoughts (ToT), which only uses three puzzles
which may not be suitable as they require additional skills. For example, ToT’s Word Puzzle tests
the vertical comprehension ability of LLMs, making it unsuitable for studying the search capability
of LLMs, especially in our research with smaller models. On the contrary, the puzzles in our work
focus better on search ability.

4.3 EXPERIMENT CONFIGURATIONS

In addition to our ATS-BFS and ATS-DFS methods, we also use CoT and ToT as baseline methods
and implement all of the methods for both zero-shot and few-shot settings:

• ATS-BFS and ATS-DFS. In the zero-shot setting, we use fixed system messages for ATS-
BFS and ATS-DFS respectively. The messages can be found in Appendix D.1 and Ap-
pendix D.2. The messages do not contain task information, so it is indeed a zero-shot
setting. In the few-shot setting, we designed four examples. The example not only contains
task-specific information but also shows how to perform ATS-BFS or ATS-DFS. Hence
there is no system message in the few-shot setting.

• Chain of Thought (CoT). Given that the GPT-4 model already possesses CoT capability,
we utilize GPT-4 with the “think step by step” prompt as the CoT method. We also designed
four example instances for the few-shot setting.

• Tree of Thought (ToT). We implement the ToT algorithm as described in Yao et al. (2023).
The process involves: 1) using GPT-4 to generate the next possible states from all current
candidate states, 2) evaluating all potential next states, and 3) retaining a select number of
top-rated states, denoted as “width”. Although ToT is typically implemented in a few-shot
setting, we also apply it in a zero-shot setting. This involves designing a detailed prompt for
each function (i.e., proposer, evaluator), and instructing GPT-4 on the rules and its current
role.

Furthermore, as the performance and cost of ToT are sensitive to its width, and all other methods can
enhance performance by increasing cost through self-consistency (Wang et al., 2022) (i.e., repeat and
select the best), we establish two settings for all methods: a low-cost setting and a high-cost setting.
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Figure 2: This figure illustrates the performance of GPT-4 in a zero-shot setting. The x-axis denotes
the cost associated with the GPT-4 API, while the y-axis signifies the accuracy. Consequently, points
that are positioned higher and more to the left depict the most effective and efficient results. The
outcomes of ToT are in both low-cost and high-cost settings which are displayed as a polyline, while
other results are shown in a low-cost setting.

• Low-cost setting. For ToT, the width is set to 1. For other experimental configurations,
nothing special, call the message once without self-consistency.

• High-cost setting. For ToT, the width is set to 5. For other experimental configurations,
they do not have the attribution “width”, so we apply a self-consistency value of 3.

4.4 EXPERIMENT RESULT

We test accuracy for each setting, as well as the input tokens usage and output tokens usage. For
ToT, we sum up the usage over all rounds of chat. The cost is estimated at the time of writing.
(Input: 0.03/1K tokens; Output: 0.06 / 1K tokens;) The full table is shown in Appendix A.

Zero-shot. Figure 2 illustrates the results in a zero-shot setting across the four puzzles. Upon com-
paring performance and cost, we observe that 1) CoT consistently incurs the least cost, but its perfor-
mance significantly lags behind the best. 2) ToT, with its expanded width, can achieve high accuracy
at a high cost, but it performs poorly in a low-cost setting. Furthermore, ToT sometimes exhibits
subpar performance, as it heavily relies on state evaluation, and the states in the Drop Water Puzzle
are challenging for it to evaluate in a zero-shot setting. 3) Generally, ATS-BFS is the most effective
method with a moderate cost. Specifically, ATS-BFS is at a cost level comparable to ToT (width=1),
and it significantly outperforms CoT and ToT (width=1). Moreover, ATS-BFS displays comparable
or better performance to ToT (width=5) at a much lower cost. 4) As for ATS-DFS, it demonstrates
inconsistent performance. While ATS-DFS can achieve dominant performance in some cases (i.e.,
Arithmetic Puzzle), it sometimes fails to match the performance of CoT. We attribute this to the
fact that DFS capability is not well generalized in LLMs, as evidenced by comparing zero-shot and
few-shot settings. DFS logic is complex and often requires task-specific design.

Few-shot. Figure 3 presents the results in a few-shot setting across the four puzzles. Upon compar-
ing performance and cost, we observe that 1) CoT consistently incurs the least cost, but its perfor-
mance significantly lags behind the best. 2) ToT, with its expanded width, can achieve high accuracy
at a high cost, and it demonstrates decent performance even in a low-cost setting, but fails some-
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Figure 3: This figure illustrates the performance of GPT-4 in a few-shot setting. The x-axis denotes
the cost associated with the GPT-4 API, while the y-axis signifies the accuracy. Consequently, points
that are positioned higher and more to the left depict the most effective and efficient results. The
outcomes of ToT are in both low-cost and high-cost settings which are displayed as a polyline, while
other results are shown in a low-cost setting.

times (Drop Water Puzzle). 3) Although ATS-BFS significantly outperforms CoT, it only exhibits
comparable or better performance to ToT. ATS-BFS benefits less from the few-shot setting than the
zero-shot setting. 4) As for ATS-DFS, it emerges as the generally best method in solution-finding
puzzles. Only in the optimization puzzle (Minimal Grass Puzzle), ATS-DFS performs poorly.

4.5 ADDITIONAL EXPERIMENTS

4.5.1 REAL COMPLEX REASONING TASK

A realistic and challenging reasoning task: CrossWords, one of the tasks in Tree-of-Thoughts. Ta-
ble 1 shows the result, indicating:

• ATS handles real complex reasoning tasks better than CoT.

• All in-context methods have similar orders of magnitude of cost, while ToT incurs much
higher costs.

• One major limitation of ATS is its constraint on the ability of LLMs. This task requires a
strong understanding of rows and columns, and GPT-4 often fails in this aspect. Conversely,
ToT decomposes some of the difficulty of rows and columns through Python code. (e.g.,
writing back to the table with a row/column, extracting a row/column to a flat style before
evaluation)

4.5.2 COMBINE TOT AND ATS

We also shows another application of ATS is to incorporate ATS into State Evaluator of ToT. This
also emphasize that ATS and ToT are not in conflict.

Table 2 the results of two tasks are shown below, indicating ATS technique can enhance ToT by
strengthening evaluator.
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Table 1: Crosswords: a task requiring both search ability and spatial understanding ability

Letter Words Game input output

IO (few-shot) 38.7 14 0 790.25 30.505
CoT (few-shot) 40.6 15.6 1 1448.25 162.81
ToT (few-shot) 78 60 20 >584306.45 >848.05
ATS-BFS (one-shot) 46.6 18.5 0 1549.25 1211.75

Table 2: Combine ToT and ATS

Drop Water Number Path

ToT width=1 without ATS-evaluator (few-shot) 14.8 52.8
ToT width=1 with ATS-evaluator (few-shot) 73.2 90.6

5 ENHANCE SMALL MODELS BY FINE-TUNING

5.1 FINE-TUNE METHODOLOGY
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Figure 4: A brief view of finetuning. The left part is ATS-tuned LLaMA pipeline, while the right
part is CoT-tuned LLaMA pipeline. The difference is whether to prune the tree structure or not.

In comparison to GPT-4, numerous smaller LLMs also have a substantial impact in daily life due to
their cost-effectiveness and convenience. Consequently, we employ supervised fine-tuning, distilling
from ATS-enhanced GPT-4 or from the messages generated by ToT method to smaller LLaMA
models, to illustrate the advantages of our approach for smaller models.

As depicted in the left part of Figure 4, we gather text generated by the GPT-4 with ATS ability for
a specific task. We then use these question-answer pairs to serve as supervised data for fine-tuning
the LLM. In our experiment, we utilized LLaMA 2, culminating in an ATS-tuned LLaMA.

We can also prune the tree structure to extract the final solution in a chain structure as supervised
data for another experiment setting. The right section of Figure 4 illustrates this. This pruning
ensures that the text comprises only a chain rather than a tree, resulting in a Chain-tuned LLaMA.

More finetune settings are discussed in next subsection.

5.2 EXPERIMENT CONFIGURATIONS

We use LLaMA 2 as the base model. The process of obtaining training data involves initially ac-
quiring raw data from either ATS or ToT (the raw data from ToT comprises multiple rounds of LLM
messages). Subsequently, we convert this raw data into text, which takes on either text containing
chain information or text containing tree information. With the data containing chain information,
we call the LLaMA CoT-tuned, otherwise ATS-tuned or ToT-tuned.

• Tuned Type. There are three tuned types in total: ATS-tuned, ToT-tuned, and CoT-tuned.
When applying ATS-tuned, we directly use the ATS output. In terms of ToT-tuning, we
flatten the multiple rounds of messages into a single text for one data instance. When
applying CoT-tuned, we extract the chain information from the raw data and rearrange
it into a CoT response. ATS-tuned LLaMA gains ATS-ability, while CoT-tuned LLaMA
gains CoT-ability.
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• Data Source. This pertains to the method of raw data generation. Any erroneous data
is eliminated from the raw data. To augment the quantity of usable raw data, we aim to
generate it in as high-cost a setting as feasible. Specifically, ATS methods are executed
with 5 self-consistency (selecting the best out of 5 trials), while ToT methods are run with
a width of 5.

When flattening ToT raw data into text, the text length imposes a limitation. Given the abundance of
information that needs to be flattened into text, such as potential successors and their evaluations, we
have to restrict the width to 2 to accommodate all ToT information within the text length constraint.
An example can be found in Appendix E.4.

5.3 EXPERIMENT RESULT

Table 3 presents the comprehensive results of the fine-tuned LLaMA 2.

The performance of CoT-tuned LLaMAs appears to be minimally influenced by the data source.
This is likely due to the fact that most puzzles have a unique solution.

ATS-tuned LLaMAs achieve the highest performance. 1) Generally, ATS-BFS-sourced ATS-tuned
LLaMA achieves the highest performance. 2) ATS-DFS-sourced ATS-tuned LLaMA performs ex-
ceptionally well in certain cases (e.g., Arithmetic Puzzle), but fails almost entirely in optimization
tasks (e.g., Minimal Grass Puzzle).

For the ToT-tuned LLaMA, it is possible that some messages in the overall ToT process are complex
and even redundant, making the structure more difficult for smaller LLMs to learn. As a result, it
not only shows rare improvement upon ToT-tuned LLaMAs but also fails sometimes and exhibits
lower than (e.g. Drop Water Puzzle, Minimal Grass Puzzle).

Table 3: LLaMA 2 Fine-tuned Result

Model Data Source Tuned type Performance (Accuracy)
DropWater NumberPath Arithmetic MinimalGrass

LLaMA 2 7B

ATS-BFS CoT-Tuned 58.5 15.1 28.4 69.0
ToTwidth=5 CoT-tuned 57.3 7.5 22.1 53.0
ATS-BFS ATS-tuned 74.4 94.3 51.6 88.0
ATS-DFS ATS-tuned 64.6 56.6 76.8 23.0
ToTwidth=2 ToT-tuned 28.0 17.0 35.8 33.0

LLaMA 2 13B

ATS-BFS CoT-tuned 59.8 20.8 33.7 69.0
ToTwidth=5 CoT-tuned 58.5 26.4 24.2 54.0
ATS-BFS ATS-tuned 75.6 100 72.6 82.0
ATS-DFS ATS-tuned 64.6 62.3 85.3 15.0
ToTwidth=2 ToT-tuned 25.6 41.5 44.2 25.0

6 CONCLUSION

This study presents a thorough examination of the Autonomous Tree-search (ATS) Ability of Large
Language Models (LLMs) that enables them to excel in tasks requiring exploration with minimal
queries. Our findings indicate that this ability can be activated through a fixed system prompt for
large models or acquired through in-domain fine-tuning by small models. The ATS performance has
demonstrated significant enhancements in accuracy, surpassing previous single-query techniques
such as the Chain of Thought in various settings. Furthermore, ATS exhibits a better balance
between performance and cost, particularly in zero-shot settings, compared to the earlier Tree of
Thought passive search method. Future research includes training larger LLMs, specifically those
exceeding 70B, with ATS ability. It remains uncertain whether a comprehensive performance degra-
dation (i.e., fee) occurs when acquiring the ATS capability, similar to the acquisition of instruction
following ability, and whether the ATS capability could ultimately enhance other abilities akin to
search ability.
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A DETAILED MAIN RESULT

Table 4 shows the accuracy on four puzzles by Large Models (GPT-4) in different settings.

B DATASET DETAILS

Table 5 shows the size of datasets.
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Table 4: Accuracy on four puzzles by Large Models (GPT-4) in different settings

Task Method Low Cost Setting High Cost Setting
accuracy input output accuracy input output

Drop Water

CoT 0-shot 54.8 472 334.94 76.8 472 1127.85
BFS 0-shot 74.4 756 1014.11 81.7 756 2566.24
DFS 0-shot 53.7 671 877.46 75.6 671 1614.29
ToT 0-shot 8.5 4244 375 37.8 9096 1168

CoT few-shot 57.3 3107 435.83 75.6 3107 850.17
BFS few-shot 97.6 4883 399.24 100 4436 1210.12
DFS few-shot 74.4 4173 752.32 89.0 3936 1563.78
ToT few-shot 14.8 4072 234 71.6 8043 541

Number Path

CoT 0-shot 45.3 198 261.6 77.36 198 804.25
BFS 0-shot 92.5 482 677.43 98.1 482 2040.89
DFS 0-shot 43.4 397 1210.38 83.0 397 2893.96
ToT 0-shot 49.1 1201 110 100.0 3376 317

CoT few-shot 22.6 1263 240.53 49.1 1263 435.34
BFS few-shot 79.2 3660 508.77 79.2 3213 1524.21
DFS few-shot 96.2 3194 496.81 98.1 2957 1878.04
ToT few-shot 52.8 1976 177 100.0 5553 498

Arithmetic

CoT 0-shot 28.4 182 203.37 37.9 182 573.22
BFS 0-shot 62.1 466 707.46 81.0 466 1634.83
DFS 0-shot 72.6 381 639.84 91.6 381 1469.4
ToT 0-shot 40.0 1195 513 65.3 2639 1086

CoT few-shot 37.9 1298 111.52 61.1 1298 384.39
BFS few-shot 74.7 2907 348.15 85.3 2460 1020.84
DFS few-shot 94.7 4666 644.05 96.8 4429 1950.67
ToT few-shot 76.8 1755 414 85.3 4250 964

Minimal Grass

CoT 0-shot 49.0 320 216.07 58.0 320 499.0
BFS 0-shot 79.0 604 946.17 92.0 604 2542.43
DFS 0-shot 13.0 519 414.43 49.0 519 1511.85
ToT 0-shot 29.0 1672 216 76.0 4736 589

CoT few-shot 59.0 2212 105.96 64.0 2160 317.24
BFS few-shot 99.0 5508 866.3 100.0 5009 2428.77
DFS few-shot 54.0 5278 1107.68 70.0 5041 3067.03
ToT few-shot 46.0 4170 1495 100.0 12423 3134

B.1 DROP WATER PUZZLE

Given four integers a, b, c, n. There are two empty bottles with capacities of a and b liters and a
large water reservoir. The goal is to get exactly c liters of water in either bottle within n steps, by
either filling or emptying a bottle completely, or pouring water from one bottle to the other until one
is full or the other is empty.

We prepare all possible cases for the puzzle, where the capacity of the two containers ranges between
5 and 30, and the number of steps is limited to 4 or fewer. We randomly select 82 cases to serve as
the test set, while the remaining cases constitute the training set.

B.2 NUMBER PATH PUZZLE

Number Path is a puzzle that involves finding a path between two numbers. In this puzzle, you are
provided with a starting number and a target number. Your task is to transform the starting number
into the target number in exactly four steps. For each transformation, you have the option to either
double the current number (x2) or add one (+1) to it.

We restrict the start number to less or equal to 20, and the goal number to less or equal to 100.
We collect all the pairs that can be reached with exactly 4 steps. There are 476 cases in total. We
randomly select 95 of them as the test set, while the remaining as the train set.

12
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B.3 ARITHMETIC PUZZLE

Arithmetic Puzzle is a challenge that involves using arithmetic operations on initial numbers to reach
a specified goal number. More specifically, you are given three numbers and a goal. Your task is to
strategically use arithmetic operations to link these initial numbers in order to achieve the desired
outcome.

We set the goal as one of 6, 8, 12, 16, 18, and 24. And we have imposed a restriction that all initial
numbers must be less than or equal to 12. Under these conditions, we collect all possible problem
scenarios, amounting to a total of 425 cases. We have randomly selected 53 cases to constitute the
test set, with the remaining cases forming the training set.

B.4 MINIMAL GRASS PUZZLE

Minimal Grass Puzzle involves determining the dimensions of three rectangular buildings, given
their floor areas. The length and width of each building must be integers. The buildings must
be positioned in such a way that they do not obstruct each other’s view horizontally or vertically.
The surrounding area in the bounding box of these buildings will be filled with green space. The
objective is to minimize the area of this green space.

The given areas are randomly and uniformly selected from a range of 1 to 15.

Table 5: Dataset information

Drop Water Number Path Arithmetic Minimal Grass

train instances 578 381 372 300
test instances 82 95 53 100

C EXPERIMENT HYPERPARAMETERS

• GPT-4 Experiment

– CoT / ATS-BFS / ATS-DFS (best of 1 / no self-consistency): temperature = 0.2;
– CoT / ATS-BFS / ATS-DFS (best of 3 / self-consistency=3): temperature = 0.7;
– ToT: temperature = 0.7, evaluate voters = 3;

• LLaMA 2 Experiment

– Training on one node with 8 GPUs.
– Less than 3000 tokens per batch per GPU.
– AdamW(lr=1e-5), update 250 iterations.
– Generating use sampling with temperature = 0.2.

D PROMPT

In this section, we show our system prompts of ATS-BFS and ATS-DFS for GPT-4.

D.1 ATS-BFS ZERO-SHOT PROMPT

When you are solve a puzzle, if you can’t ensure this step is the best
for following steps, you should write down some possible scenarios to
ensure a broad range of attempts. Here is an example of your

response format:

Step 1
scenario 1, [initial state]-> (operation 1) [state 1]
scenario 2, [initial state]-> (operation 2) [state 2]

13
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Step 2
scenario 1.1, [initial state]->[state 1]-> (operation 1) [state 1.1]
scenario 1.2, [initial state]->[state 1]-> (operation 2) [state 1.2]
scenario 2.1, [initial state]->[state 2]-> (operation 1) [state 2.1]
scenario 2.2, [initial state]->[state 2]-> (operation 2) [state 2.2]

Step 3
scenario 1.1.1, [initial state]->[state 1]->[state 1.1]-> (operation 1) [

state 1.1.1]
(You should write around 8 lines for Step 3)

Step 4
scenario 1.1.1.1 ...
(You should write around 16 lines for Step 4)
...

D.2 ATS-DFS ZERO-SHOT PROMPT

When you are solving a puzzle, if you find that a certain step cannot be
successful, you should step back appropriately. Here is an example of
your response format:

Step 1
[initial state]-> (operation) [state 1]

Step 2
[initial state]->[state 1]-> (operation) [state 2]

Step 3
[initial state]->[state 1]->[state 2]-> (operation) [state 3]

This is not the goal. Let’s step back. Now it is [state 2].

Step 3 (revised)
[initial state]->[state 1]->[state 2]-> (operation) [state 3]

Let’s step back. Now it is [state 2].

Let’s step back. Now it is [state 1].

Step 2 (revised)
[initial state]->[state 1]-> (operation) [state 2]

...

E EXAMPLES

E.1 GPT-4 ATS-BFS ZERO-SHOT OUTPUT

Step 1
scenario 1, [2, 3, 10]-> (2 + 3) [5, 10]
scenario 2, [2, 3, 10]-> (2 * 3) [6, 10]
scenario 3, [2, 3, 10]-> (2 + 10) [12, 3]
scenario 4, [2, 3, 10]-> (2 * 10) [20, 3]
scenario 5, [2, 3, 10]-> (3 + 10) [13, 2]
scenario 6, [2, 3, 10]-> (3 * 10) [30, 2]

Step 2
scenario 1.1, [2, 3, 10]->[5, 10]-> (5 + 10) [15]

14
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scenario 1.2, [2, 3, 10]->[5, 10]-> (5 * 10) [50]
scenario 2.1, [2, 3, 10]->[6, 10]-> (6 + 10) [16]
scenario 2.2, [2, 3, 10]->[6, 10]-> (6 * 10) [60]
scenario 3.1, [2, 3, 10]->[12, 3]-> (12 + 3) [15]
scenario 3.2, [2, 3, 10]->[12, 3]-> (12 * 3) [36]
scenario 4.1, [2, 3, 10]->[20, 3]-> (20 + 3) [23]
scenario 4.2, [2, 3, 10]->[20, 3]-> (20 * 3) [60]
scenario 5.1, [2, 3, 10]->[13, 2]-> (13 + 2) [15]
scenario 5.2, [2, 3, 10]->[13, 2]-> (13 * 2) [26]
scenario 6.1, [2, 3, 10]->[30, 2]-> (30 + 2) [32]
scenario 6.2, [2, 3, 10]->[30, 2]-> (30 * 2) [60]

Summary: [2, 3, 10] -> (2 * 3 = 6) -> [6, 10] -> (6 + 10 = 16) -> [16]

E.2 GPT-4 ATS-DFS ZERO-SHOT OUTPUT

Step 1
[1, 1, 7] -> (1 + 1 = 2) [2, 7]

Step 2
[1, 1, 7] -> [2, 7] -> (2 + 7 = 9)

This is not the goal. Let’s step back. Now it is [2, 7].

Step 2 (revised)
[1, 1, 7] -> [2, 7] -> (2 * 7 = 14)

This is not the goal. Let’s step back. Now it is [2, 7].

Let’s step back. Now it is [1, 1, 7].

Step 1 (revised)
[1, 1, 7] -> (1 * 7 = 7) [7, 1]

Step 2
[1, 1, 7] -> [7, 1] -> (7 + 1 = 8)

Summary: [1, 1, 7] -> (1 * 7 = 7) -> [7, 1] -> (7 + 1 = 8) -> [8]

E.3 GPT-4 COT ZERO-SHOT OUTPUT

Step 1
[2, 3, 10] -> (2 * 3 = 6) -> [6, 10]

Step 2
[6, 10] -> (6 + 10 = 16) -> [16]

Summary
[2, 3, 10] -> (2 * 3 = 6) -> [6, 10] -> (6 + 10 = 16) -> [16]

E.4 TOT-SOURCED TREE-TUNED DATA

# step = 0
The input is 2 3 10 16
The current states are:
[2, 3, 10]
From these states, we can achieve these new states:
[2, 3, 10] -> (2 + 3 = 5) -> [5, 10]\n", (value = 0)
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[2, 3, 10] -> (2 * 3 = 6) -> [6, 10]\n", (value = 100)
[2, 3, 10] -> (10 / 3 = 3.3333333333333335) -> [2, 3.3333333333333335]\n

", (value = 23.3)
[2, 3, 10] -> (3 - 2 = 1) -> [1, 10]\n" (value = 0)
Then we choose the new states with largest values:
[2, 3, 10] -> (2 * 3 = 6) -> [6, 10]\n",
[2, 3, 10] -> (10 / 3 = 3.3333333333333335) -> [2, 3.3333333333333335]\n"

# step = 1
The input is 2 3 10 16
The current states are:
[2, 3, 10] -> (2 * 3 = 6) -> [6, 10]\n"
[2, 3, 10] -> (10 / 3 = 3.3333333333333335) -> [2, 3.3333333333333335]\n
From these states, we can achieve these new states:
[2, 3, 10] -> (2 * 3 = 6) -> [6, 10]\n [6, 10] -> (6 + 10 = 16) -> [16]\n

", (value = 100)
[2, 3, 10] -> (2 * 3 = 6) -> [6, 10]\n [6, 10] -> (6 * 10 = 60) -> [60]\n

", (value = 0)
[2, 3, 10] -> (2 * 3 = 6) -> [6, 10]\n [6, 10] -> (10 / 6 =

1.6666666666666667) -> [6, 10]\n", (value = 100)
[2, 3, 10] -> (2 * 3 = 6) -> [6, 10]\n [6, 10] -> (10 - 6 = 4) -> [4]\n",

(value = 33.3)
[2, 3, 10] -> (10 / 3 = 3.3333333333333335) -> [2, 3.3333333333333335]\n

[2, 3.3333333333333335] -> (2 * 3.3333333333333335 =
6.666666666666667) -> [6.666666666666667]\n", (value = 0)

[2, 3, 10] -> (10 / 3 = 3.3333333333333335) -> [2, 3.3333333333333335]\n
[2, 3.3333333333333335] -> (2 + 3.3333333333333335 =
5.333333333333334) -> [5.333333333333334]\n", (value = 33.3)

[2, 3, 10] -> (10 / 3 = 3.3333333333333335) -> [2, 3.3333333333333335]\n
[2, 3.3333333333333335] -> (3.3333333333333335 - 2 =
1.3333333333333335) -> [1.3333333333333335]\n" (value = 0)

Then we choose the new states with largest values:
[2, 3, 10] -> (2 * 3 = 6) -> [6, 10]\n [6, 10] -> (6 + 10 = 16) -> [16]\n

",
[2, 3, 10] -> (2 * 3 = 6) -> [6, 10]\n [6, 10] -> (10 / 6 =

1.6666666666666667) -> [6, 10]\n"

# Summary
[2, 3, 10] -> (2 * 3 = 6) -> [6, 10]\n [6, 10] -> (6 + 10 = 16) -> [16]\n

"
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