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Abstract

Contextual multi-armed bandit (MAB) is an im-
portant sequential decision-making problem in rec-
ommendation systems. A line of works, called the
clustering of bandits (CLUB), utilize the collabo-
rative effect over users and dramatically improve
the recommendation quality. Owing to the increas-
ing application scale and public concerns about
privacy, there is a growing demand to keep user
data decentralized and push bandit learning to the
local server side. Existing CLUB algorithms, how-
ever, are designed under the centralized setting
where data are available at a central server. We
focus on studying the federated online clustering
of bandit (FCLUB) problem, which aims to mini-
mize the total regret while satisfying privacy and
communication considerations. We design a new
phase-based scheme for cluster detection and a
novel asynchronous communication protocol for
cooperative bandit learning for this problem. To
protect users’ privacy, previous differential privacy
(DP) definitions are not very suitable, and we pro-
pose a new DP notion that acts on the user cluster
level. We provide rigorous proofs to show that our
algorithm simultaneously achieves (clustered) DP,
sublinear communication complexity and sublinear
regret. Finally, experimental evaluations show our
superior performance compared with benchmark
algorithms.

1 INTRODUCTION

Stochastic multi-armed bandit (MAB) [Auer et al., 2002] is
a well-known sequential decision-making problem, where a
learner sequentially selects actions so as to maximize the cu-
mulative rewards (or minimize the cumulative regret). One

*Correspondence to: Shuai Li <shuaili8@sjtu.edu.cn>

fruitful application area of MAB is the online recommen-
dation systems (RecSys) [Chu et al., 2011, Abbasi-Yadkori
et al., 2011, Gentile et al., 2014, Li et al., 2019, Zhang
et al., 2020, Li et al., 2021], where MAB algorithms provide
a principled way to handle the challenge of exploration-
exploitation trade-off [Lattimore and Szepesvári, 2020].

To advance the bandit algorithm for large-scale applications,
contextual linear bandits add the simple yet effective linear
structure assumptions on actions and reward functions [Chu
et al., 2011, Li et al., 2010, Abbasi-Yadkori et al., 2011].
One limitation, however, is that such a model mainly works
in a content-dependent manner, ignoring the often used
tool of collaborative filtering. To address this issue, the
clustering of bandits (CLUB) are proposed [Gentile et al.,
2014, Li et al., 2016, Li and Zhang, 2018, Li et al., 2019].
The CLUB algorithms adaptively cluster similar users and
utilize the collaborative information given by the cluster
structure, which dramatically improves the recommendation
quality.

While most existing bandit algorithms are designed under
a centralized setting, in response to the increasing appli-
cation scale and public concerns about privacy, there is a
growing demand to keep user data decentralized and push
the learning of bandit models to the client or the local
server side . This paradigm is now known as federated learn-
ing [Kairouz et al., 2021]. Owing to its overall applicability,
there has been a surge of interest in studying federated
MAB [Dubey and Pentland, 2020, Zhu et al., 2021, Shi and
Shen, 2021], which promises cooperative bandit learning
with larger amounts of data (across multiple local servers)
while keeping the data decentralized. This motivates us to
study the CLUB problem to its federated counterpart, i.e.,
the federated clustering of bandits (FCLUB).

In FCLUB, each local server can conduct its own local
clustering of bandit algorithms. To enable the collaborative
effects of users across different servers, the local server
could also collaborate with other local servers under the co-
ordination of a global server, whose communication needs
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to satisfy specific privacy and communication requirements.
The goal of this work is to design an federated online clus-
tering of bandit framework, so as to minimize the T -round
regret under the privacy protection requirements and com-
munication cost considerations.

The key challenge of FCLUB is designing collaborative
bandit learning procedures and cluster detection strategies
to identify the overall cluster structures across different
local servers, where each local server only holds part of
the users with unknown interests. Such a problem is more
challenging due to the following privacy and communication
cost requirements, which are two first-order requirements
for any federated applications [Kairouz et al., 2021].

Privacy protection: To reduce the privacy leakage of each
user, we expect local servers to only share user clusters’
data instead of individuals’ raw data. In addition, we still
need a mechanism to protect the uploaded (cluster) informa-
tion against possible adversaries outside the local server, for
which we adopt the solution concept of differential privacy
(DP). However, the off-the-shelf DP notion is defined on
individual users, hence unsuitable for FCLUB. It is chal-
lenging and unclear what is a suitable notion of privacy
over the clustering of users and how to devise algorithms to
guarantee the corresponding privacy requirements.

Communication: Communication is critical for collabora-
tive learning, but may also be expensive or time-consuming.
For FCLUB, it is desired to minimize the total regret while
keeping the communication costs (in terms of communi-
cation rounds between the global server and local servers)
as low as possible. Another requirement is to design an
asynchronous communication protocol incorporating the
randomly arriving users and possibly lagging servers, pre-
venting commonly used synchronous protocols [Dubey and
Pentland, 2020].

1.1 OUR CONTRIBUTIONS

To address the aforementioned challenges, this paper makes
four contributions.

1. Problem Formulation: We propose the setting of on-
line clustering of bandits to its federated counterpart, which
considers the privacy protection and communication require-
ments. We also propose a novel cluster differential privacy
(CDP) notion tailored for the FCLUB setting.

2. Algorithm Design: We propose a private and
communication-efficient FCLUB-CDP algorithm. For pri-
vacy protection, a tree-based privatizer is designed to guar-
antee our proposed CDP. For communication efficiency, we
follow the phase-based principle for cluster detection and
propose the asynchronous communication protocol for de-
layed information sharing. In particular, each local server
maintains upload/download buffers and occasionally up-

loads/downloads the buffered information to/from the global
server only if it finds the latest information deviates too far
from the last update.

3. Theoretical Analysis: We prove that FCLUB-CDP

achieves the O(dL
√
mT log(1/δ)

ε log1.5 T ) regret bounds,
O(dmL log T ) communication costs and (ε, δ, L,m)-CDP
privacy guarantee, respectively.

4. Experiments: We conduct extensive experiments over
synthetic and real-world datasets to validate our theoretical
analysis. Empirical results show the superior performance
of our algorithm over existing algorithms.1

1.2 RELATED WORK

Online Clustering of Bandits. The online clustering ban-
dits is first proposed by Gentile et al. [2014] and shows its
effeteness by accelerating the learning process of contextual
bandits. The key idea is to use a graph representing the user
similarity and adaptively refine the user clusters for infor-
mation sharing. This work has been extended by a series of
works considering the collaborative effects on both users
and items [Li et al., 2016], the context-aware settings [Gen-
tile et al., 2017], the cascading bandit setting [Li and Zhang,
2018] and the users with different user frequency [Li et al.,
2019]. However, none of these works consider the privacy
constraints and communication cost requirements imposed
by the FL paradigm like the current work, and therefore can-
not give guarantees on these two critical criteria. Korda et al.
[2016] considers the peer-to-peer but non-private clustering
of bandits, our work studies the private bandit setting under
the orchestration of a global server, which requires different
algorithms and analysis.

Federated and Distributed Bandits. There has been grow-
ing interest in bandit learning with multiple players. One
line of research investigates the competitive agents with
collisions [Anandkumar et al., 2011, Rosenski et al., 2016,
Bistritz and Leshem, 2018, Boursier and Perchet, 2019],
in which the reward for an arm is zero if it is chosen by
more than one agent. The goal of these works is to mini-
mize regret without communication, which is different from
ours. The cooperative distributed bandits are most related
to our work, in which multiple agents collaborate to solve a
bandit problem over certain communication networks, e.g.,
peer-to-peer networks [Korda et al., 2016] or client-server
networks [Dubey and Pentland, 2020, Li and Wang, 2021].
Our work belongs to the client-server setting, but we differ
from both Dubey and Pentland [2020] and Li and Wang
[2021] since neither of them considers the clustering effects
of users.

Differential Privacy. Our work leverages on differential
privacy, a rigorous mathematical framework of privacy first
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proposed by Dwork et al. [2006]. We utilize several useful
techniques from the standard differential privacy to maintain
our cluster differential privacy condition. Most notably, we
use a tree-based algorithm which is introduced in Chan
et al. [2011] to realize differential privacy for the continual
release of statistics. In the single-agent bandit setting, Shariff
and Sheffet [2018] also utilizes this tree-based algorithm
to achieve Joint DP, which is then extended by Dubey and
Pentland [2020] to the federated setting. The closest work
to ours is Dubey and Pentland [2020] and they study the
simpler case where each local server only holds one user and
all users are identical (with the same unknown preference
vector), hence gives the different user-level DP definition
with different privatizer and analysis.

To the best of our knowledge, this paper is the first to gen-
eralize the CLUB to its federated setting, which simulta-
neously achieves privacy protection and communication
requirements.

2 PROBLEM SETTINGS

In this section, we formulate the setting of “Federated Clus-
tering of Bandits” (FCLUB). We use [n] to represent set
{1, ..., n}. We use boldface lowercase letters and boldface
capitalized letters for column vectors and matrices, respec-
tively. For the norms, ∥x∥ denotes the ℓ2 norm of vector x.
For any symmetric positive semi-definite (PSD) matrix M
(i.e., x⊤Mx ≥ 0,∀x), ∥x∥M =

√
x⊤Mx denotes the

matrix norm of x regarding matrix M .

At the global level, there are n users, denoted by the set
U = {u1, ..., un}. Each user i ∈ U has an unknown prefer-
ence vector θi ∈ Rd and for simplicity we assume ∥θi∥ ≤ 1.
Since users may have the same/similar preference vector,
we assume there exists m (unknown) different preference
vectors, i.e., |{θ1, ...,θn}| = m. Users with the same pref-
erence vector form an underlying cluster and we denote
these m (unrevealed) clusters by C = {C1, ..., Cm}. Dif-
ferent from CLUB, users in FCLUB are distributed in L
local servers denoted by {1, ..., L}. At the local level, the
local server ℓ contains nℓ users Uℓ = {uℓ

1, ..., u
ℓ
nℓ} (with⋃

ℓ∈[L] Uℓ = U) and similarly, these nℓ users form local
cluster Cℓ = {Cℓ

1, ..., C
ℓ
mℓ

} where mℓ ≤ m.

The learning agent interacts with the bandit game as the
follows. At each time t, a user it ∈ [n] randomly ar-
rives with probability 1/n. Then K items are generated
to form a item set Dt, where the feature of each item
x ∈ Dt is drawn independently from a fixed but unknown
distribution ρ over {x ∈ Rd : ∥x∥ ≤ 1}. The learn-
ing agent identifies the local server ℓt that it belongs to
and the current user cluster jt (detected by our algorithm)
which it lies in. The local server then recommends an item
xt ∈ Dt to the user based on the aggregated information
from cluster jt. After it receives the recommendation, the

learning agent receives a random reward yt ∈ [0, 1]. Let
Ht = {i1,x1, y1, ..., it−1,xt−1, yt−1, it} be the historical
information before time t. We assume the expectation of
reward yt is linear in the feature vector x ∈ Dt and the
unknown preference vector θit , i.e., Et[yt|x] = θ⊤

it
x, and

{yt − θ⊤
it
x}t=1,2,... have sub-Gaussian tails σ2

0 .

Now we give some assumptions on preference vectors and
item feature vectors. Note that all the assumptions follow
the previous works Gentile et al. [2014, 2017], Li and Zhang
[2018], Li et al. [2019].

Assumption 1 (Gap between preference vectors). For any
two different preference vectors θi1 ̸= θi2 , there is a fixed
but unknown gap γ > 0 so that ∥θi1 − θi2∥ ≥ γ.2

Assumption 2 (Item regularity). For item distribution ρ,
there exists a known λx > 0 so that Ex∼ρ[xx

⊤] is full rank
with minimal eigenvalue λx. Meanwhile, for all time t, for
any fixed unit vector θ ∈ Rd, (θ⊤x)2 has sub-Gaussian tail
with variance σ2 ≤ λx

8 log(4K) .

Learning Efficiency. The goal of the learning agent is to
accumulate as much reward as possible. Let the optimal
item for user it at time t be x∗

it
= argmaxx∈Dt

θ⊤
it
x. The

learning performance is measured by the regret, defined as

R(T ) = E[
T∑

t=1

rt] = E[
T∑

t=1

(θ⊤
itx

∗
it − θ⊤

itxt)], (1)

where rt is the regret at time t and the expectation is taken
over the randomness of the algorithm and the environment
regarding the users i1, ..., iT and the item sets D1, ..., DT .

In addition to the regret, privacy protection and the com-
munication cost are two important criterion in federated
learning. In this work, we aim to ensure that the user data
are protected under privacy constraints and the communica-
tion complexity is low.

Privacy Requirements. To protect the user data, we intro-
duce two privacy requirements. First, we desire the local
server only uploads the user clusters’ sufficient statistics
(or clustered data) for the learning procedure, instead of
individual users’ raw data. Second, to protect the clustered
data against third-party adversaries outside the local server,
we adopt the notion of DP, which encodes the intuition that
any observable output changes very little (in probability)
when any input datum changes. Since existing DP notions
are defined on user-level data Shariff and Sheffet [2018],
Dubey and Pentland [2020], we introduce a new differential
privacy requirement to protect the cluster-level data.

The contextual MAB problem involves two sets of variables
against the adversaries outside the local server: the deci-
sion sets Dt and the observed rewards yt. Since the users

2As previous works, this assumption can be relaxed by assum-
ing the existence of two thresholds, one for the between-cluster dis-
tance γ, the other for the within-cluster distance ∥θi1 − θi2∥ ≤ η.



Figure 1: Illustration of how our algorithm detects clusters
from phase s to s′. Local server 1 delete edge (1, 2) and
split C1

s,1 into C1
s′,1, C

1
s′,2. The global server merges local

clusters as {(C1
s′,1, C

2
s′,1), (C

1
s′,2, C

2
s′,2)}.

only receive and store observations regarding the chosen
action xt and the observed reward yt, it suffices to pro-
tect (xt, yt)t∈[T ] to achieve DP requirements. Let τℓ,j be
time slots when user in cluster j appears at local server ℓ,
we denote two sequences Sℓ,j = (xt, yt)t∈τℓ,j and S′

ℓ,j =
(x′

t, y
′
t)t∈τℓ,j as t-neighboring if (xτ , yτ ) = (x′

τ , y
′
τ ) for

τ ̸= t ∈ τℓ,j .

Definition 1 (Cluster Differential Privacy). In the FCLUB
setting with L servers and (at most) m clusters, a feder-
ated contextual bandit algorithm A = (Aℓ,j)ℓ∈[L],j∈[m]

is (ε, δ, L,m)-CDP, if for any (ℓ, j), (ℓ′, j′) s.t. (ℓ, j) ̸=
(ℓ′, j′), any t and the set of sequences S̄ℓ′,j′ =
∪i∈[L],k∈[m]Si,k and S̄′

ℓ′,j′ = ∪i∈[L]\ℓ′,k∈[m]\j′Si,k∪S′
ℓ′,j′

s.t. Sℓ′,j′ and S′
ℓ′,j′ are t neighboring, and for any subset of

actions aℓ,j ⊂
∏

τ∈τℓ,j
Dτ of actions, it holds that

Pr[Aℓ,j(S̄ℓ′,j′) ∈ aℓ,j ] ≤ eε Pr[Aℓ,j(S̄
′
ℓ′,j′) ∈ aℓ,j ] + δ.

(2)

Note that our CDP notion formalizes the intuition that the
action chosen by any local server ℓ (at the cluster level j)
must be sufficiently indistinguishable (in probability) to any
single (x, y) pair from any other local cluster (ℓ′, j′). Such
a notion does not require each cluster is private to its own
observations, i.e., each cluster of users can be trusted with
its own data, which is different from the local DP [Zheng
et al., 2020] or Joint DP [Shariff and Sheffet, 2018] that
assume even itself cannot be trusted.

Communication Complexity. To evaluate the communi-
cation complexity, we count one upload operation (or one
download operation) between any local server and the global
server as one communication round. Our communication
complexity is the total number of communication rounds
C(T ) over the time horizon T .

3 ALGORITHM

In this section, we introduce our phase-based federated clus-
tering of bandit algorithms with CDP (FCLUB-CDP).

Identify the Underlying Cluster Structure. To correctly
identify the cluster structure, we design a phase-based clus-
tering detection algorithm in Algorithm 2. The high level
idea is to first conduct local-level clustering of bandits on
each local server and merge the local clusters on the global
server.

At the local level, each server ℓ maintains a profile of
(Vt,i, bt,i, Tt,i) for its own local users i ∈ Uℓ, where Vt,i

is Gramian matrix, bt,i is the moment vector of regressand
by the regressors, and Tt,i is the number of times that i
has appeared up to time t. At the beginning of s phase (or
t = 2s + 1), based on profiles (Vt,i, bt,i, Tt,i)i∈Uℓ , each
server ℓ maintains an undirected graph structure Gℓ

s, where
nodes represent all local users Uℓ and a pair of users are
connected by an edge if they are similar. We initialize the
graph by a complete graph Gℓ

0 and gradually delete edges
at every beginning of each phase s. Specifically, in line 3,
we delete edge between any user i1 and i2 if the distance
between their estimated preference vector are larger than
the following threshold.∥∥∥θ̂t,i1 − θ̂t,i2

∥∥∥ > α1(F (Tt,i1) + F (Tt,i2)), (3)

where θ̂t,i = (λI + Vt,i)
−1bt,i and F (x) =

√
1+ln(1+x)

(1+x) .
After the deletion, users in connected components j ∈
C(Gℓ

s) are grouped into local cluster j. In line 5,
server ℓ uploads the clustered information Is,ℓ =

(Cℓ
s,j , Ṽ

ℓ
s,j , b̃

ℓ
s,j , T̃

ℓ
s,j)j∈C(Gℓ

s)
to the global server, which

contains clustered information for each cluster j ∈ C(Gℓ
s).

Note that Is,ℓ are added with random perturbation to protect
the users’ data, which will be introduced shortly after.

In line 7, when the global server receives the privatized
clustered information from all servers, it performs a merge
operation to merge clusters from different servers whose
estimated clustered preference vectors are close into a global
clusters according to the following inequality.∥∥∥θ̂ℓ1

s,j1
− θ̂ℓ2

s,j2

∥∥∥ < α2(F (T̃ ℓ1
s,j1

) + F (T̃ ℓ2
s,j2

)), (4)

where θ̂ℓ
s,j = (Ṽ ℓ

s,j)
−1b̃ℓs,j and F (x) =

√
1+ln(1+x)

(1+x) . Ps

denotes the set of ms global clusters. Note that the local
clusters in the same global cluster indexed by k ∈ [ms]
will communicate and share protected clustered informa-
tion with each other in an asynchronous manner. At the
beginning of phase s, if the new global cluster structure Ps

is different from Ps−1 at phase s − 1, we will renew the
shared global information (Sg

t,k, ug
t,k, T g

t,k) for k ∈ [ms].
For local servers (ℓ, j) in the same global cluster Ps,k, the
local synchronized information (Sℓ

t,j ,u
ℓ
t,j , T

ℓ
t,j), the up-

load buffers (∆Sℓ
t,j ,∆uℓ

t,j ,∆T ℓ
t,j) and download buffers

(∆S−ℓ
t,j ,∆u−ℓ

t,j ,∆T−ℓ
t,j ) are renewed. We also generate a new

tree-based privatizer PVT(ℓ, j) for each cluster j at server
ℓ, which will be introduced later on.



Algorithm 1 Phase-based FCLUB with CDP
1: Input: Failure probability α, deletion parameter α1 >

0, merge parameter α2 > 0, privacy parameters ε, δ.
2: User initialization: For i ∈ [n], V0,i = 0d×d, b0,i =

0d×1,T0,i = 0.
3: Local server initialization: For ℓ ∈ [L],

set graph Gℓ
0 = (Uℓ, Eℓ

0), local informa-
tion, upload buffers, download buffers:
(Sℓ

0,1,u
ℓ
0,1, T

ℓ
0,1) = (∆Sℓ

0,1,∆uℓ
0,1,∆T ℓ

0,1) =

(∆S−ℓ
0,1,∆u−ℓ

0,1,∆T−ℓ
0,1) = (0d×d,0d×1, 0), perturba-

tions (H̄ℓ
t,1, h̄

ℓ
t,1) = (Hℓ

t,1,h
ℓ
t,1) = (0d×d,0d×1).

4: Global server initialization: create one global cluster
P0 = {{(1, 1), ..., (L, 1)}} and set the global informa-
tion for V g

0,1 = 0d×d, the ug
0,1 = 0d×1, T

g
0,1 = 0.

5: for s = 1, 2, ..., do
6: Detect and adjust clusters (Algorithm 2).
7: for τ = 1, ..., 2s do
8: Compute the total time step t = 2s − 2 + τ .
9: Advance all parameter, e.g., Sℓ

t,j = Sℓ
t−1,j .

10: User it at local server lt arrives and lt gets the
local cluster jt that it belongs to based on Gℓ

s.
11: Compute local βlt

t,jt
according to Lemma 1.

12: Local server lt receives feasible con-
text set Dt and recommends item
xt = argmaxx∈Dt

x⊤(Slt
t,jt

)−1ult
t,jt

+

βlt
t,jt

∥x∥
(S

lt
t,jt

)−1 .

13: User it receives feedback yt, update the
user it’s information: (Tt,it ,Vt,it , bt,it) +=
(1,xtx

⊤
t , ytxt) and others unchanged.

14: Check upload event (Algorithm 3).
15: Check download event (Algorithm 4).
16: end for
17: end for

Asynchronous Communication Protocol. In this work,
we design a novel asynchronous communication protocol
to incorporate the randomly arriving users. To reduce the
communication cost, our high-level idea is to use the de-
layed communication, where the feedback are temporarily
stored in buffers and only if the stored information exceeds
a threshold, the upload/download events are triggered. Such
a threshold will ensure that the local information will not
diverge too far from the global information, which in turn
will not diverge too far from the scenario when informa-
tion are fully synchronized. Also note that our communi-
cation is conducted in the asynchronous manner at the lo-
cal cluster level. In other words, all local clusters indexed
by (ℓ, j) ∈ Ps,k will establish connection with each other
within the global cluster k. For each local cluster (ℓ, j), it
stores a local copy of the sufficient statistics (Sℓ

t,j ,u
ℓ
t,j , T

ℓ
t,j)

and a upload buffer (∆Sℓ
t,j ,∆uℓ

t,j ,∆T ℓ
t,j). For the global

server, it prepares for each local cluster (ℓ, j) a download
buffer (∆S−ℓ

t,j ,∆u−ℓ
t,j ,∆T−ℓ

t,j ), which are used to send other
local servers’ information to the local cluster. It also main-
tains the global statistics (Sg

t,k,u
g
t,k, T

g
t,k) to save the data

uploaded from local clusters in global cluster k.

Our proposed communication framework consists of two
components: the upload protocol (Algorithm 3) and the
download protocol (Algorithm 4). For the upload protocol,
at each time step t, user it visits the server lt and receives
recommended item xt. After the user it interacts with the
environment and observes feedback (xt, yt), the local server
updates the upload buffers in line 1 and checks the following
condition to decide whether to upload the upload buffer:

det(Slt
t,jt

+∆Slt
t,jt

)/det(Slt
t,jt

) ≥ U, (5)

where H lt
t,jt

and H̄ lt
t,jt

are tentative and current perturba-
tion for privacy protection, respectively. If the condition
is satisfied, the local server sends (∆Slt

t,jt
,ult

t,jt
, T lt

t,jt
) to

the global cluster kt. The global server then merges the
uploaded information into the global information in line 4
and also sends it to download buffers for other local clus-
ters (ℓ, j) ̸= (lt, jt) ∈ Ps,kt

in line 6. For local cluster
(lt, jt) itself, the local server updates the local statistics and
initializes the upload buffer using the newly generated per-
turbation in lines 8 to 10. For the download protocol, at each
time step t, the global server will check the deviation be-
tween global statistics and the local statistics via following
condition:

det(Sg
t,kt

)/det(Sℓ
t,j) ≥ D (6)

independently for local clusters (ℓ, j) in global cluster Ps,kt .
If any cluster (ℓ, j) satisfies such condition, the global server
sends the information from other clusters to (ℓ, j), which
is used to update (ℓ, j)’s local statistics. Finally, the global
server cleans the download buffer.

Tree-Based Privacy Protocol. To ensure the uploaded in-
formation are privatized, we adopt the tree-based privatizer
to generate random perturbations Hℓ

t,j and hℓ
t,j whenever

an upload event happens. Note that the privatier subroutine
is at the local cluster level and a new privatizer is created if
the cluster structure changes at the start of any phase s.

Let x1, ...,xT be a (matrix-valued) sequence of length T ,
and si =

∑i
t=1 xi be the partial sum of the first i elements

that will be realised privately. Generally speaking, the tree-
based mechanism Dwork et al. [2006] maintains a binary
tree T of depth 1 + ⌈log T ⌉, where the leaf nodes contain
the elements xi and the parent node maintains the sum
of its children. For each node with value ni, the tree-base
mechanism protects privacy by adding noise hi to each node
and release ni + hi if queried. The key advantage is that
such a tree only accesses ν = O(log T ) nodes to compute
and release the partial sum si, which means the perturbation
is at most O(ν) instead of O(T ).

Following this general idea, we implement the tree-based
privatizer (ℓ, j) that satisfies the requirements of CDP. Re-
call that we only need to protect the information uploaded
to the global server, it suffices to maintain a tree T ℓ

j of depth
ν = O(1 + ⌈log tc⌉) for the upload event, where tc is the



total number of uploads. To make the partial sums private,
we insert a random noise matrix to each node in T ℓ

j , sim-
ilar to that of Shariff and Sheffet [2018] and Dubey and
Pentland [2020],. Specifically, we sample a random matrix
N̄ ∈ R(d+1)×(d+1) where each entry N̄p,q is drawn from
i.i.d. Gaussian distribution N (0, σnoise) and symmetrize it
to get N = (N̄⊤ + N̄)/

√
2. It follows that in order to en-

sure the whole tree is (ε, δ)-DP, each node should preserve
(ε/

√
8ν log(2/δ), δ/2)-DP. In other words, it suffices to set

the variance σnoise = 64ν log(2/δ)2/ϵ2 for each tree node.
Note that at each upload round t, the total noise added to the
partial sum is the summation of at most ν random matrices
with size (d + 1) × (d + 1), where the top-left (d × d)-
submatrix forms Hℓ

t,j and the first d elements from the
right-most (d+ 1)× 1 vector forms hℓ

t,j . By concentration
of random matrices Tao [2011], we have with probability at
least (1− α

mL ), the operator norm of Hℓ
t,j is∥∥Hℓ

t,j

∥∥
op

≤ ρ ≜ 8
√
2ν log(4/δ)(4

√
d+2 log(2mL/α))/ε.

(7)
for any ℓ ∈ [L], j ∈ [m], t ∈ [T ].

Recommendation Procedure. At each time step t, the rec-
ommended item xt for user it is selected as follows. When
the current cluster is correct (which is guaranteed after
O(log T ) rounds and to be proved later), the estimated θ̂t =
(Slt

t,jt
)−1ult

t,jt
is computed using the local information Slt

t,jt

and ult
t,jt

. Since by Lemma 1,
∥∥∥θit − θ̂t

∥∥∥
2
≤ βlt

t,jt
, the

confidence radius is βlt
t,jt

∥x∥
(S

lt
t,jt

)−1 , which characterizes

the exploration bonus for item x ∈ Dt. Then the local
server will recommend the item xt ∈ Dt that maximizes
the x⊤ ˆthetat plus the above exploration bonus. Finally, the
user will receive feedback yt and the system updates cor-
responding statistics for better decision in future rounds.

Lemma 1. Under the setting of FCLUB and fix a local
cluster j located at the server ℓ which shares the informa-
tion with L′ ≤ L clusters (including itself), let the true
preference vector be θ∗ and the true cluster be j∗, let
θ̂ℓ
t,j = (Sℓ

t,j)
−1uℓ

t,j . When all (global) clusters are cor-
rectly identified and partitioned, it holds with probability at
least 1− 2α, ∥∥∥θ∗ − θ̂ℓ

t,j

∥∥∥
Sℓ

t,j

≤ βℓ
t,j , (8)

where βℓ
t,j ≜ βℓ

j(T
ℓ
t,j , L, α/(mL)) =

σ0

√
2 log(mL

α ) + d log(ρmax

ρmin
+

T ℓ
t,j

dL′ρmin
) +

√
L′ρmax +√

L′κ.

4 RESULTS

Recall that perturbations H̄ℓ
t,j , H̄

ℓ
t,j are designed to satisfy

the (ε, δ, L,m)-CDP requirement. In particular, the privacy

Algorithm 2 Phase-based Cluster Detection and Adjustment
1: t = 2s − 1.
2: for ℓ ∈ [L] do
3: Set Gℓ

s by deleting any edge (i1, i2) ∈ Gℓ
s−1 if Equa-

tion (3) holds.
4: For ℓ ∈ [L], j ∈ C(Gℓ

s), generate new perturbation
Hℓ

t,j ,h
ℓ
t,j using PVT(ℓ, j) in Algorithm 5 and set

historical H̄ℓ
t,j = Hℓ

t,j ,h
ℓ
t,j = h̄ℓ

t,j .
5: For ℓ ∈ [L], upload the local clustered informa-

tion Is,ℓ = (Cℓ
s,j , Ṽ

ℓ
s,j , b̃

ℓ
s,j , T̃

ℓ
s,j)j∈C(Gℓ

s)
to the

global server, where (Ṽ ℓ
s,j , b̃

ℓ
s,j , T̃

ℓ
s,j) = (2ρI +

Hℓ
t,j ,h

ℓ
t,j , 0) +

∑
i∈Cℓ

s,j
(Vt,i, bt,i, Tt,i).

6: end for
7: The global server does global merge based on Is and

get ms global clusters Ps = {Ps,1, ..., Ps,ms}, where
the two local clusters Cℓ1

t,j1
, Cℓ2

t,j2
(with ℓ1 ̸= ℓ2) are

merged together in Ps,k if Equation (4) holds.
8: if s = 0 or Ps ̸= Ps−1 then
9: //Renew the cluster information.

10: for k ∈ [ms] do
11: Set global gram matrix (Sg

t,k,u
g
t,k, T

g
t,k) =∑

(ℓ,j)∈Ps,k
(Ṽ ℓ

s,j , b̃
ℓ
s,j , T̃

ℓ
s,j).

12: for (ℓ, j) ∈ Ps,k do
13: Set (Sℓ

t,j , b
ℓ
t,j , T

ℓ
t,j) = (Sg

t,k, b
g
t,k, T

g
t,k).

14: Create new perturbation Hℓ
t,j ,h

ℓ
t,j using

PVT(ℓ, j) in Algorithm 5.
15: Set new (∆Sℓ

t,j ,∆uℓ
t,j ,∆T ℓ

t,j) = (3ρI +

Hℓ
t,j − H̄ℓ

t,j ,h
ℓ
t,j − h̄ℓ

t,j , 0)

16: Set new (∆S−ℓ
t,j ,∆u−ℓ

t,j ,∆T−ℓ
t,j ) = (0,0, 0).

17: end for
18: end for
19: end if

budget (ε, δ) affects the regret and communication bounds
via the following quantities (ρmax, ρmin, κ), which can be
treated as spectral bounds for H̄ℓ

t,j , H̄
ℓ
t,j . Let H̃ℓ

t,j = 2ρI+

3ρcℓj,tI+H̄ℓ
t,j , where cℓj,t is the number of uploads for local

server ℓ and cluster j.

Definition 2 (Approximately-accurate ρmin, ρmax and κ).
The bounds 0 < ρt,min ≤ ρt,max and κ > 0 are (α/(mL))-
accurate for (H̄ℓ

t,j) for any ℓ ∈ [L], j ∈ [m] and t ∈ [T ]:

∥∥∥H̃ℓ
t,j

∥∥∥
op

≤ ρmax,
∥∥∥(H̃ℓ

t,j)
−1

∥∥∥
op

≤ 1

ρmin
,
∥∥h̄ℓ

t,j

∥∥
(H̃ℓ

t,j)
−1 ≤ κ

(9)

with probability at least (1− α
mL ).

As will be shown later, our communication protocol ensures
cℓj,t ∈ [0, d log T/ log(min{U,D})], so ρmin = ρ, ρmax =

3ρ + 3ρd log T/ log(min{U,D}) , and κ =
∥∥h̄ℓ

t,j

∥∥ /√ρ,
where ρ ≜ 8

√
2ν log(4/δ)(4

√
d + 2 log(2mL/α))/ε is

given by our privatizer.

In the following, we will give general regret and communi-



Algorithm 3 Check Upload Event

1: Update upload buffer (∆Slt
t,jt

,∆ult
t,jt

,∆T lt
t,jt

) +=

(xtx
⊤
t , ytxt, 1).

2: if det(Slt
t,jt

+∆Slt
t,jt

)/det(Slt
t,jt

) ≥ U then
3: The global cluster finds kt so that (lt, jt) ∈ Ps,kt

.
4: Update global information (Sg

t,kt
,ug

t,kt
, T g

t,kt
) +=

(∆Slt
t,jt

,∆ult
t,jt

,∆T lt
t,jt

).
5: for (ℓ, j) ̸= (lt, jt) ∈ Ps,kt

do
6: Global server updates other servers’ down-

load buffer (∆S−ℓ
t,j ,∆u−ℓ

t,j ,∆T−ℓ
t,j ) +=

(∆Slt
t,jt

,∆ult
t,jt

,∆T lt
t,jt

).
7: end for
8: Local server lt updates the local statistics:

(Slt
t,jt

,ult
t,jt

, T lt
t,jt

) += (∆Slt
t,jt

,∆ult
t,jt

,∆T lt
t,jt

).
9: Local server lt sets (H̄ lt

t,jt
, h̄lt

t,jt
) = (H lt

t,jt
,hlt

t,j)

and creates new perturbation Hℓ
t,jt

,hℓ
t,jt

using the
tree-based privatizer PVT(lt, jt).

10: Local server lt initializes the upload buffer using
the new perturbation: (∆Slt

t,jt
,∆ult

t,jt
,∆T lt

t,jt
) =

(3ρI +H lt
t,j −H lt

t,jt
,hlt

t,jt
− h̄lt

t,jt
, 0).

11: end if

Algorithm 4 Check Download Event

1: for (l, j) ∈ Ps,kt do
2: if det(Sg

t,kt
)/det(Sℓ

t,j) ≥ D then
3: Local server receives (Sℓ

t,j ,u
ℓ
t,j , T

ℓ
t,j) +=

(∆S−ℓ
t,j ,∆u−ℓ

t,j ,∆T−ℓ
t,j ).

4: Global server cleans the download buffer:
(∆S−ℓ

t,j ,∆u−ℓ
t,j ,∆T−ℓ

t,j ) = (0,0, 0).
5: end if
6: end for

cation bounds using (ρmax, ρmin, κ) and replace them with
their exact values.

4.1 REGRET BOUND

We give the following theorem as our main result for the
regret bound.

Theorem 1. Suppose the cluster structure over the users
and items satisfy the assumptions in Section 2 with gap
parameter γ > 0 and item regularity parameter 1 ≥ λx >
0. If the privatizer produces random perturbation that are
(1/(8mLT ))-accurate as in Definition 2, with probability
at least 1− 1/T , the regret is upper bounded by

R(T ) ≤ Õ
(
n(

log T

λ2
x

+
σ2
0d log T

λxγ2
+

log(1/δ) log T

λxεγ2
)

+ dL

√
mT

log(1/δ)

ε
log1.5 T

)
(10)

We will give the proof sketch for the above theorem 1.

Algorithm 5 Privatizer PVT(ℓ, j) for cluster j at server ℓ
1: Input: Privacy budget ε, δ, number of uploads tc.
2: Create a binary tree T of depth ν = ⌈log(tc +1)⌉+1.
3: For each node, we generate a perturbation matrix matrix

N ∈ R(d+1)×(d+1), where N = (N̄ + N̄⊤)/
√
2 and

N̄ ∈ R(d+1)×(d+1) with N̄p,q ∼ N (0, 64ν log(2/δ)2

ε2 ).
4: Calculate a queue of Q = (Hi,hi)i=1,...,tc+1 for par-

tial sums s0, ..., stc .
5: Sequentially pop one pair of Q if PVT(ℓ, j) is called.

Proof. Our proof mainly consists of two parts. The first
part bounds the number of exploration rounds 2T0 after
which the overall user clusters are correctly detected at the
global server. The second part is to bound the regret for the
asynchronous contextual linear bandits after the clusters are
partitioned correctly.

Different from standard online clustering bandits, the key
technical challenge is to take care of the additional random
Gaussian noise produced by the privater, which perturbs
the true observation that is needed for global cluster detec-
tion and the regret analysis for contextual linear bandits.
Moreover, such perturbed observation are also lagged be-
hind the instant observation, since FCLUB-CDP adopts the
"delayed" asynchronous communication where upload and
download are triggered occasionally. This makes standard
contextual bandit analysis no longer works and requires
new proof techniques to handle the gap between instant
observation and the lagged (and perturbed) observation.

For the first cluster detection part, by the assumption of item
regularity, we prove that after t ≥ O(n( log T

λ2
x

+
dσ2

0 log T
λxγ2 ))

rounds, the local estimates are accurate enough so that the lo-
cal clusters are correctly identified, similar to that of Li and
Zhang [2018]. Specifically, the 2-norm distance between
local estimate θ̂t,i and the truth θi for any user i is less than
γ/4. Thus the local clusters are split correctly for all local
servers. Now for the global cluster detection, the global
server receives the aggregated observation from correctly
partitioned local clusters, in which random Gaussian noises
are added. Based on spectra property of Gaussian noise ma-
trices (definition 2), the global server will spend additional
O(n log(1/δ) log T

λxεγ2 ) rounds so that the perturbed estimate θ̂ls,j
are accurate enough at the beginning of phase s = ⌈log2 T0⌉,
where T0 = O(n( log T

λ2
x

+
dσ2

0 log T
λxγ2 + log(1/δ) log T

λxεγ2 )). There-
fore, after t > 2T0, the overall user clusters are partitioned
correctly.

For the regret after 2T0, we use the delayed update technique
from [Abbasi-Yadkori et al., 2011, Section 5.1], which only
recomputes the confidence radius only O(log T ) times and
hence saves computation. The same strategy can also be
applied for the delayed communication. The key analysis
relies on using the upload and download condition in eq. (5)
and eq. (6), so that the actually-used cluster confidence



radius is at most Γ times larger than that if all local servers
upload their perturbed observations in a fully synchronized
manner, where Γ =

√
D(1 + (L− 1)(U − 1)) + U − 1.

This will give a ΓRj(Tj) regret for the second part, where
Rj(Tj) is the private-version regret for the cluster j if all
observation are synchronized at each round. The full proof
is put in Appendix B. ■

4.2 COMMUNICATION COST

We give the following theorem to bound the total communi-
cation cost.

Theorem 2. Under the CDP setting, the total communica-
tion cost satisfies:

C(T ) ≤ O(
dmL log T

log(min{U,D}
) (11)

Proof. The total communication cost also has two parts:
the upload at the beginning of each phase for global clus-
ter detection and the asynchronous communication within
each phase for information sharing. For the first part, the
algorithm has at most log T phases and at each phase, there
are total mL local clusters uploading the clustered informa-
tion, hence the total communication cost is O(mL log T ).
For the second part, recall that we adopt the delayed asyn-
chronous communication protocol and the total number of
uploads and downloads can be bounded by O(dmL log T ).
See Appendix C for the detailed proofs. ■

4.3 PRIVACY GUARANTEE

Theorem 3. Algorithm 1 preserves (ε, δ, L,m)-CDP as
defined in Definition 1.

Proof. The CDP condition is satisfied by assigning the right
amount of Gaussian noise in each tree node of our tree-
based privacy protocol in Section 3. See Appendix D for
details. ■

4.4 DISCUSSION AND COMPARISON

Discussion on the Regret Bounds. For the regret bound,
our result has two terms: the regret before the clusters are
correctly partitioned n( log T

λ2
x

+
σ2
0d log T
λxγ2 + log(1/δ) log T

λxεγ2 )

and the regret after the clusters are correctly partition

O(dL
√
mT log(1/δ)

ε log1.5 T ). We will compare our re-
sults with several degenerate cases, given that we are the
first work to study the federated clustering of bandits set-
ting. For these cases, the additional CDP causes at most

O(
√

log(1/δ)
ε ) factor and asynchronous communication pro-

tocol causes at most O(
√
dL log T ) factor in general.

First, when m = 1, L = 1, our setting degenerates to the
linear bandits with DP where all users share the same un-
derlying parameter. Compared to Shariff and Sheffet [2018]

which gives a O(
√

d log(1/δ)
ε

√
T log1.5 T ) regret with 0

communication, our bound has a O(
√
d) additional factor

(or more precisely O(
√
d log log T ) factor) for the second

term, which stems from the larger perturbation in order to
protect total O(d log T ) communication rounds.

Second, when L = 1, our setting reduces to the online
clustering bandits with DP, Li and Zhang [2018] gives a
O(n( log T

λ2
x

+
dσ2

0 log T
λxγ2 )+d

√
mT log T ) for the non-DP ver-

sion. Since CDP mechanism requires random perturbation,
the clustering process suffers an additional n log T log(1/δ)

λxεγ2

for the first term and the second regret term now has a new√
log(1/δ) log T

ε leading factor due to the CDP requirements.

Third, when m = 1 and if we consider the special case
when each local server only has one user and all users
come in a round-robin manner, our setting reduces to the
distributed linear bandits with DP. Dubey and Pentland
[2020] provides a synchronized algorithm that achieves

O(
√

dLT log(1/δ)
ε log1.5 T ), our second term has an addi-

tional
√
dL factor because of different communication pro-

tocol, which enables asynchronous communication at the
cost of the larger O(dL log T ) (compared with O(L log T ))
communication rounds and an additional Γ = O(

√
L) fac-

tor in the confidence radius.

Finally, there is a lower bound Ω(
√
dmT ), if we consider

the case where the clustering structure is known, the commu-
nication and privacy budgets are unlimited and each cluster
contains equal number of users. In this case, it is equivalent
to learn m independent linear bandits, each with expected
rounds T/m and according to Dani et al. [2008], the lower
bound is Ω(

∑
i∈[m]

√
dT/m) = Ω(

√
dmT ). In other cases,

the regret lower bound will be greater and the lower bound
Ω(

√
dmT ) still holds. Our regret bound matches the lower

bound up to a factor of O(L
√
d log(1/δ)

ε log1.5 T ).

Discussion on the Communication Cost. Our communica-
tion cost also has two terms: the first O(mL log T ) term for
identifying clusters at the beginning of each phase and the
leading O( dmL log T

log(min{U,D} ) term for our asynchronous com-
munication protocol. Compared with Dubey and Pentland
[2020] when m = 1 and users come at the round-robin
manner, our communication has an additional O(d) factor.
Due to the specialty of the user arrival, the same paper can
achieve communication cost independent of T at the cost of
O(log(LT )) additional factor in the regret. Though our total
communication cost can not be reduced below O(mL log T )
due to the first term, it will be interesting to consider whether
the similar trade-off works for our asynchronous protocol
in the future work.
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(b) Comparison with Baselines on the MovieLens Dataset
Figure 2: Comparative Experiments on the Cumulative Regret with Baseline Algorithms

5 EXPERIMENTS

To validate our theoretical findings, we conduct experiments
on a synthetic dataset and a real-world MovieLens dataset.
Algorithm 1 is denoted as CDP-FCLUB-DC and we also
present its non-private version FCLUB-DC and its non-
private, synchronized version FCLUB (by instantly upload-
ing the observations). The baselines include CLUB which
uses a separate CLUB algorithm Gentile et al. [2014] for
each local server; SCLUB which uses a separate SCLUB al-
gorithm Li et al. [2019] for each server; and LinUCB which
uses a separate LinUCB algorithm Abbasi-Yadkori et al.
[2011] for each user. We also consider the synchronized and
asynchronous version of Algorithm 1 (denoted as Homo
and Homo-DC, respectively) by treating users are identical
with the same preference vector. Note that all results are av-
eraged over ten random seeds, and we provide mean results
with one unit of standard derivation for each curve. Due to
the space limit, we provide the detailed experiment settings
(including data generation and processing) in Appendix E.1,
the parameter study Appendix E.2, the communication cost
Appendix E.3 and running time results in Appendix E.4,
respectively.

Synthetic Dataset. We first conduct experiments on a syn-
thetic dataset. In Figure 2a, we compare our algorithm
CDP-FCLUB-DC with the baselines listed above. The verti-
cal axis indicates the cumulative regret and the horizontal
axis indicates the round t. In general, our algorithm CDP-
FCLUB-DC’s performance has a clear advantage over base-
line SCLUB, CLUB, LinUCB, Homo and Homo-DC. Since
Homo-DC and Homo assumes users are in the same cluster,
they mistakenly merge different clusters and suffer linear
regrets, indicating the correctness of cluster detection is es-
sential to have small regrets. Compared with SCLUB and
CLUB that only perform local clustering operations, we
can verify the correctness of our algorithm’s clustering op-
erations at the global level, which successfully leverages
the collaborative effects across different local servers. As
expected, CDP-FCLUB-DC performs a little worse than
FCLUB and FCLUB-DC due to the delayed communication
and cluster differential privacy requirements.

MovieLens Dataset. In this section, we also compare our al-
gorithm CDP-FCLUB-DC with the baselines listed above on
movie recommendations with the MovieLens dataset. The
performances are shown in Figure 2b. Our algorithm CDP-
FCLUB-DC’s performance has an advantage over baseline
SCLUB, CLUB, LinUCB, Homo and Homo-DC in general.
Figure 2b shows CDP-FCLUB-DC performs worse than
FCLUB and FCLUB-DC due to the delay communication
and cluster differential privacy (CDP) as we have explained
in synthetic dataset part. Different from the synthetic dataset,
in the early stage, our algorithm needs more time to identify
the underlying cluster structure. But after all user clusters
are correctly detected at the global server, our algorithm
performs better than Homo/Homo-DC that assume users
are homogeneous, CLUB/SCLUB on each local server and
LinUCB on each user.

6 CONCLUSION AND FUTURE WORK

In this paper, we formulate the federated online cluster-
ing of bandits problem, which generalizes the clustering
of bandits problem to its federated counterpart. To tackle
this new problem, we propose a FCLUB-CDP algorithm,
which simultaneously achieves sublinear regret, sublinear
communication complexity and satisfies our newly-defined
clustered differential privacy requirements. Compared with
benchmark algorithms, we show that FCLUB-CDP achieves
superior performance regarding regret and communication
cost. There are many compelling directions for future study.
For example, it would be interesting to study our problem
where local differential privacy is considered. One could
also study a more efficient protocol to further reduce the
communication cost.
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