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ABSTRACT

Automatic radiology report generation is an advanced medical assistive technol-
ogy capable of producing coherent reports based on medical images, akin to a
radiologist. However, current generative methods exhibit a notable gap in clinical
metrics when compared to medical image classification. Recently, leveraging di-
agnostic results to improve report quality has emerged as a promising approach.
We are curious whether training a classifier that encompasses all possible long-
tailed and rare diseases could enhance the robustness of reports. To investigate
this question, this study designs an evaluation framework that integrates long-tail
scenarios and summarizes potential combinations of LLM-based report genera-
tion models. We assess the impact of classification on report quality across four
benchmarks. Initially, we introduce LLM-based language and clinical metrics
and develop a pipeline to evaluate the model’s performance on both in-domain
and out-of-distribution (OOD) long-tail scenarios. Subsequently, we conduct a
systematic evaluation of all potential model combinations. Our findings reveal
that: 1) the impact of classification on report quality is positively correlated with
the performance of classifiers, but the gap still exists, and 2) while classification
can enhance report quality in in-domain long-tail scenarios, its benefits for OOD
scenarios are limited.

1 INTRODUCTION

Automatic radiology report generation (ARRG) (Jing et al., 2017) has emerged as a significant re-
search area within medical imaging and natural language processing (NLP). The objective of ARRG
systems is to accurately generate comprehensive and clinically meaningful reports from medical im-
ages, which has the potential to alleviate the workload of radiologists, reduce diagnostic errors, and
improve patient outcomes. Furthermore, such systems can enhance accessibility to high-quality
healthcare by providing diagnostic support in regions with limited medical resources.

Despite significant advances in deep learning for medical image analysis, generating coherent and
precise medical reports remains highly challenging due to the complexity of visual information and
the nuances of medical language. Traditional methods, such as retrieval-based (Li et al., 2019; 2018)
and template-based (Biswal et al., 2020; Harzig et al., 2019; Li et al., 2018) approaches, often rely
on fixed rules or knowledge closely tied to training data for generating radiology reports. In recent
years, LLM-based methods (Li et al., 2024; Bannur et al., 2024; Tu et al., 2024) have become an at-
tractive research direction, leveraging the powerful extrapolation and in-context learning capabilities
to enhance the accuracy of generated reports and improve the interactivity of ARRG systems. How-
ever, when evaluating the diagnostic accuracy on specific radiology findings, we observe that the
accuracy of reports generated by existing methods falls significantly short compared to the perfor-
mance of basic medical image classification approaches. For example, on the MIMIC-CXR dataset,
state-of-the-art generation models exhibit accuracy that is at least 20% lower than that of image
classification models1. To address this issue, some studies (Wang et al., 2023; Zhao et al., 2024b;
Jin et al., 2024) have sought to integrate diagnostic results to improve the accuracy and reliability of
generated reports. This raises an important question: is classification all you need for radiology
report generation? Specifically, this paper aim to conduct a comprehensive study to determine
whether training a classifier that encompasses all possible radiology findings in the training data,

1The details are shown in the appendix.
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including long-tailed and rare diseases, would improve the robustness of report generation when its
diagnostic results are incorporated.

To validate this hypothesis, we design a benchmark framework by modifying the existing evaluation
setup and introducing a set of baseline methods from a newly proposed LLM based design space
for report generation. Current evaluation metrics primarily include language metrics and clinical
metrics. Language metrics, such as BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004), focus
on n-gram overlap and sequence alignment, while clinical metrics, like CheXpert F1 (Smit et al.,
2020) and RadGraph metric (Jain et al., 2021), emphasize clinical events described in radiology
reports, such as pathological entities, their locations, and severity, based on predefined categories.
Conventional language metrics, however, primarily focused on grammatical and lexical similarities,
often fail to accurately reflect the precision required in clinical diagnostic reports. Clinical met-
rics, constrained by a limited set of predefined categories, struggle to capture the intricate diversity
of clinical scenarios depicted in medical documents. Furthermore, current clinical metrics are not
well-equipped to evaluate nuanced distinctions in inclusive relationships (e.g., differentiating be-
tween the left upper lobe and the entire left lung) and near synonyms (e.g., distinguishing a nodule
from an opacity). To address these challenges, besides these conventional evaluation metrics, we
proposed to introduces two extra metrics that leverages large language models (LLM) to mitigate
the shortcomings of both metric types. LLM-based language metrics provide analytical capabilities
that transcend simple sentence similarity, enabling the comprehension of clinical terminology for
assessing report similarity. We reference LLM-RadJudge (Wang et al., 2024) as our LLM-based
language metric, an LLM-based language metric that evaluates report similarity across six distinct
levels. Additionally, we propose a clinical metric based on LLM that automatically extracts all pos-
sible radiology findings from reports, including long-tail and rare disease categories that may not be
part of any predefined finding set.

In comparing baselines in our study, we propose an LLM-based design space for report genera-
tion models, outlining three key components of existing LLM-based methods: the vision encoder,
classifiers, and the LLM itself. The vision encoder, such as CLIP and DINO, extracts abstract
features from medical images, transforming them into vision tokens. The classifier derives easily
interpretable radiology observations, including probabilities and diagnosis confidence, which can
be represented as classification tokens for further processing. The LLM module aggregates and
processes all tokens, generating reports in an auto-regressive manner. We analyzed potential combi-
nations of these components and identified four baseline models, as illustrated in Fig. 1, which align
with the model design space of most existing methods.

Under the proposed benchmark framework, we conducted extensive experiments across four bench-
marks, revealing a counterintuitive phenomenon: while diagnostic results significantly improve re-
port quality in in-domain scenarios, they do not enhance report quality for long-tail diseases and
out-of-distribution (OOD) data scenarios when using powerful foundation models such as Llama 3.1
70B (Dubey et al., 2024) and OpenAI GPT-4. To better understand this phenomenon, we performed
detailed case studies and analyses. We found that LLM effectively utilize information provided by
classifiers to generate final reports, sometimes including observations not mentioned in actual clin-
ical reports. Consequently, the information from the classifier may mislead LLM-based generative
methods, leading to incorrect results. In summary, our findings indicate that incorporating addi-
tional classification information can enhance report quality in in-domain scenarios but may
severely compromise performance in zero-shot settings. Experimental results demonstrate that
LLM can modify and augment original reports based on classification information, potentially cor-
recting initial erroneous conclusions and narrowing the gap between classification and generation.
At the same time, it will also amplify the misclassification errors of the classifier in the long-
tail scenario. We hope these findings will inspire further exploration of LLM-based metrics and
classification-based report generation in this field.

2 METHODS

We aim to explore where classifier-based methods help and why. In this section, we introduce how to
explore the model design space and robustness evaluation framework to understand the gap between
report generation and classification.
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2.1 BASIC SETUP

For convenience, we employ LLaVA’s (Liu et al., 2024a) model architecture as the basis, which
consists of a large language model, a vision encoder, and a connector. The connector projects the
visual embedding from the vision encoder into the text embedding space. The connector is a multi-
layer perceptron (MLP) with GELU activations (Huang et al., 2023) and a hidden size of 1024 for
all layers.

2.2 MODEL DESIGN SPACE

Our goal is to explore potential model’s architecture from a high-level perspective, as illustrated in
Fig. 1. The existing LLM-based generation methods primarily consist of three main components: a
vision encoder, a classifier, and an LLM.

Connector Vision encoder Image tokens Text tokensLLM Trainable FrozenClassification tokens

LLM

Vision

Prompt ….

[Tokenization]

LLM

Vision

Prompt

[Token.]

Classification Info.

LLM

Report

Classification

Info. +

Refining Prompt

LLM

Classification Info.

+ Expanding Prompt

End-to-end Manner

LLM

Training-free Manner

(a) Vision + LLM (b) Vision + Classifier + LLM (c) Expanding (d) Refining

Figure 1: We combined the vision encoder, classifier, and large language model (LLM) from two
training perspectives, resulting in five potential LLM-based report generation methods represented
abstractly.

The vision encoder is a sophisticated component designed to meticulously analyze and extract
abstract features from medical images. The extracted features are then meticulously transformed
into vision tokens, which are essentially compact representations of the original data that retain the
essential information for further analysis.

The classifier plays a pivotal role in the system by deriving easily interpretable observational infor-
mation from the vision tokens. It calculates probabilities and confidence levels for various potential
diagnoses, which are critical for medical decision-making. These statistical measures are then con-
verted into classification tokens.

The LLM (Large Language Model) module serves as the central hub of the system, where it
aggregates and processes all the tokens generated by the vision encoder and classifier. It leverages
its extensive training on vast amounts of medical literature and data to generate comprehensive
and coherent reports. These reports are crafted in an auto-regressive manner, ensuring that each
subsequent part of the report is informed by the context established by the previous sections.

Based on the characteristics of the training paradigms, we can categorize the existing methods into
end-to-end training and training-free approaches. Among all training methods, the LLM is an es-
sential module, allowing us to focus on the combination of the vision encoder and the classifier.

The classifier as input to LLM. It employs only the classifier, with the large language model
(LLM) building upon the classification information to generate reports. This approach yields the
paradigms illustrated in Fig. 1c and 1d. Additionally, as shown in Fig. 1d, we can allow the LLM to
refine a report using the classification information, enhancing the accuracy of the generated report.
Researches (Wang et al., 2023; Zhao et al., 2024b) belong to this paradigm.

The vision encoder as input to LLM. Conversely, as illustrated in Fig. 1a, using only the vision
encoder, with the large language model (LLM) building upon the vision encoder to generate reports,
as seen in (Hyland et al., 2023; Dubey et al., 2024).
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Hybrid input to LLM. It is to combine these three modules to obtain the paradigm shown in Fig.
1b, which is utilized in (Jin et al., 2024). In practical applications, selecting different backbones for
each module can lead to significantly varied results; we discuss common backbones in the appendix.
In our experiments, we default to using Rad-DINO (Pérez-Garcı́a et al., 2024) as the vision encoder
and Swin Transformer-Large (Taslimi et al., 2022) as the classifier.

2.3 EVALUATION FRAMEWORK

In this part, our objective is to design a comprehensive benchmark framework that can evaluate
LLM-based methods in long-tail scenarios. We assess the robustness of a report generation model
from both in-domain and out-of-distribution (OOD) perspectives. First, we introduce the training
datasets, as well as the long-tail datasets for both in-domain and OOD scenarios. Next, we present
our evaluation metrics, which include traditional language and clinical metrics, alongside LLM-
based metrics.

2.3.1 DATASETS AND DATA PRE-PROCESSING

We train all baselines on MIMIC-CXR 2.0.0 (Johnson et al., 2019c;b), a large dataset of chest radio-
graphs in DICOM format with free-text radiology reports, containing 377,110 images corresponding
to 227,835 radiographic studies. Following (Hyland et al., 2023), we extract the Findings and In-
dication sections for each report, and discard all studies for which Findings could not be extracted.
Unlike (Hyland et al., 2023), we used png files from MIMIC-CXR-JPG (Johnson et al., 2019a) as
vision inputs, instead of the original DICOM files, the former of which show better compatibility in
our experimental setup. Following (Hyland et al., 2023), we used the available finding parts from
the official MIMIC-CXR test split, totaling 2,461 samples.

For evaluation, we utilized four datasets: MIMIC-CXR, CXR-LT (Holste et al., 2023; Goldberger
et al., 2000), PadChest (Bustos et al., 2020), and IU X-Ray (Demner-Fushman et al., 2016). We
divide them into in-domain and OOD long-tail datasets:

The In-domain Long-tail Dataset. We use CXR-LT as a dataset to verify the performance of the
model in the in-domain longtail scenario. It is an extension version of MIMIC-CXR, to evaluate the
performance of report generation models in long-tailed scenarios, containing 377,110 CXRs from
26 long-tail observations.

The OOD Long-tail Dataset. We introduce two out-of-distribution (OOD) long-tail datasets to
evaluate the model’s generalization capability in different X-ray positions as well as different lan-
guages and reporting styles. PadChest is a large-scale, high-resolution, labeled chest X-ray dataset
designed for automated medical image analysis, accompanied by corresponding reports. It contains
over 160,000 images from 67,000 patients. From this dataset, we randomly sampled 500 instances,
comprising 99 observations, to form the test set. Additionally, we employed GPT-4 to translate the
original Spanish reports into English. The IU X-Ray dataset consists of 7,470 chest X-ray images
paired with diagnostic reports. We categorized the labels based on primary disease classifications,
yielding a test set of 756 samples across 82 observations.

For image processing, we resize all images to 224×224 and 518×518 to adapt various vision back-
bones, e.g., CLIP (Radford et al., 2021) and Rad-DINO (Pérez-Garcı́a et al., 2024), and we do not
apply any data augmentation to images. For text processing, we utilize a same processing pipeline
in (Chiang et al., 2023).

2.3.2 EVALUATION METRICS

To more comprehensively evaluate the performance of different methods, we introduce the following
metrics: language, clinical, and LLM-based metrics, including:

Language Metrics. ROUGE-L (Lin, 2004), this metric assesses the length of the longest common
subsequence of words, normalized by the lengths of both the predicted and reference texts; BLEU-1/-
4 (Papineni et al., 2002), these metrics evaluate n-gram precision, with BLEU-1 focusing on single
words and BLEU-4 considering up to four-word sequences. A brevity penalty is applied to mitigate
the impact of excessively short predictions; METEOR (Banerjee & Lavie, 2005), this metric aligns
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unigrams from the prediction and reference texts while maintaining their order, and calculates a
weighted harmonic mean of precision and recall, incorporating a penalty for fragmented sequences.

Clinical Metrics. CheXpert F1, this metric utilizes the CheXbert automatic labeler (Smit et al.,
2020) to categorize observations into ‘present’, ‘absent’, or ‘uncertain’ for each of the 14 CheXpert
pathological conditions. We provide macro- and micro-averaged F1 scores for both the 5 major
observations and all 14 observations, termed “[Macro/Micro]-F1-[5/14]”; RadGraph metric (Jain
et al., 2021; Delbrouck et al., 2022), this metric measures the overlap of entities and relations sepa-
rately, and then computes their average. Entities are matched based on identical text spans and types,
while relations are matched based on the endpoints and the relation type, termed RGER score. This
evaluation is conducted using the radgraph package2.

LLM-based Metrics. LLM-Radjudge (Wang et al., 2024) uses large language models to assess the
quality of radiology reports, providing a detailed description and classification of errors. It includes
six error levels: levels 1 and 2 describe the number of observational errors, level 3 describes the
number of location errors, level 4 describes the number of severity errors, and levels 5 and 6 compare
with previous reports. We report the average values for levels 1-4; Long-tailed & OOD F1, this
metric is used to validate the generalization ability of the generation model to diseases that have
never been seen in the training set. We use the OpenAI GPT-4o API to extract the disease categories
from the generated reports and then compute the F1 score of these extracted categories. Specifically,
we use “[Macro/Micro]-F1-[LT26/LT99/OOD82]” to represent the result on 26 observations in the
CXR-LT dataset, 99 observations in the PadChest dataset, and 82 observations in the IU X-ray
dataset, respectively. Note that the metrics used in this study indicate that higher values are better
for all metrics except LLM-Radjudge where lower values are better.

3 EXPERIMENTS

In this section, we study the impact of various component variants on the quality of report genera-
tion. Specifically, we focus on the components of vision encoders, the classifier, and LLM. In our
setting, we examine four different vision encoders, namely Swin Transformers (Liu et al., 2021),
Rad-DINO (Pérez-Garcı́a et al., 2024), ViT-L (Dosovitskiy et al., 2021), and DINOv2 (Oquab et al.,
2024). For the LLM, we use off-the-shelf models of different scales, such as Phi3-3B (Abdin et al.,
2024), Vicuna-1.5-7B/13B (Zheng et al., 2024). The implementation details are shown in Appendix.

3.1 THE ROLE OF CLASSIFIER IN IN-DOMAIN LONG-TAIL SCENARIO

Does the classifier help in conventional report generation? We compared our approach with four
state-of-the-art (SOTA) baselines on the MIMIC-CXR dataset using traditional evaluation metrics.
In our settings, we used Swin Transformer-Large as the classifier, Rad-DINO as the vision encoder,
and Vicuna-1.5 (7B) as the large language model (LLM). We used four SOTA methods for compar-
ison: RGRG (Tanida et al., 2023), R2GEN (Chen et al., 2020), MAIRA-1 (Hyland et al., 2023), and
ChatCAD+ (Zhao et al., 2024b). As shown in Table 1, the results indicate that directly ‘Expanding’
classification information using an LLM yields the lowest performance among the four baselines. In
contrast, the ‘Refining’ method demonstrates superior performance across most metrics. We believe
that expanding without any additional information makes it difficult to produce a reliable report.
Moreover, the comparison between ‘V+LLM’ and ‘C+V+LLM’ shows that incorporating classifi-
cation information effectively improves the classification performance of the report. Finally, the
comparison between ‘C+V+LLM’ and ‘Refining‘ reveals that while ‘Refining‘ achieves the most
significant improvements in in-domain scenarios across most metrics, its performance in long-tail
scenarios is inferior to the end-to-end training paradigm of ‘C+V+LLM’.

Does the classifier help on in-domain’s long-tail scenarios of report generation? To equip the
classifier based method with recognition ablity on long-tail data, we initially trained classifiers uti-
lizing long-tail categories extracted from the MIMIC-CXR dataset. For simplicity, we employed the
Swin Transformer-Large to train on 100 and 200 long-tail categories, respectively. Subsequently, we
conducted experiments that combined the classification results with various scales of LLM. Addi-
tionally, from the perspective of the model architecture, we categorized these baselines into trainable
and frozen weights, with results presented in Table 2. A substantial number of experimental results

2https://pypi.org/project/radgraph/
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Table 1: We report the performance of various models on the MIMIC-CXR dataset. and
indicates whether the backbone is trainable or frozen, respectively. ‘C’ represents the classifier, ‘V’
is the vision encoder. The bold indicates the best value. † indicates that the result is directed cited
from the original paper. RJ-n represents the level score of LLM-Radjudge.

state-of-the-art Our baselines

Metrics RGRG† R2Gen† MAIRA-1 ChatCAD+† V + LLM C + V + LLM Expanding Refining

ROUGE-L 26.4 27.7 29.8 17.4 28.9 29.9 19.8 30.1

BLUE-1 37.3 35.3 37.7 31.6 37.7 34.8 27.5 38.5

BLUE-4 12.6 10.3 14.2 0.8 14.6 13.6 5.5 16.0

METEOR 16.8 14.2 33.2 24.1 32.3 31.8 22.7 33.4

RGER - - 29.0 - 29.0 28.0 19.2 29.7

RJ-1 - - 0.24 - 0.24 0.26 0.47 0.21

RJ-2 - - 2.77 - 2.76 2.79 2.89 2.53

RJ-3 - - 0.15 - 0.15 0.15 0.71 0.26

RJ-4 - - 0.09 - 0.09 0.11 0.24 0.13

Macro-F1-5 - - 46.1 47.4 46.1 48.9 38.6 46.4

Micro-F1-5 54.7 - 54.8 - 54.8 55.5 47.7 55.7

Macro-F1-14 - 27.6 36.7 - 35.7 38.7 25.5 38.2

Micro-F1-14 44.7 - 54.6 - 54.6 52.9 34.2 55.9

Macro-F1-LT26 - - 21.4 - 21.4 30.9 8.6 13.8

Micro-F1-LT26 - - 43.1 - 43.1 45.9 21.7 29.6

Table 2: The impact of long-tail classifiers on different methods on the CXR-LT dataset. and
indicates whether the backbone is trainable or frozen, respectively. RJ-n represents the level score
of LLM-Radjudge.

Method ROUGE-L BLUE-1/-4 METEOR RGER RJ-1 RJ-2 Macro-F1-14 Macro-F1-LT26

Classifier (Swin Transformer-L)
LT-100 - - - - - - 57.1 49.1
LT-200 - - - - - - 56.0 47.3

Baseline (V: Rad-DINO)
Phi-3-3B 29.9 35.3 / 14.1 32.3 27.9 0.28 2.64 34.7 20.7
Phi-3-3B + LT-100 29.8 35.4 / 13.9 32.1 27.7 0.28 2.66 36.5 29.1
Phi-3-3B + LT-200 29.8 35.0 / 13.8 32.1 27.7 0.27 2.66 36.5 27.7

Vicuna-1.5-7B 29.8 37.7 / 14.6 33.2 29.0 0.24 2.77 36.7 21.4
Vicuna-1.5-7B + LT-100 30.1 36.6 / 14.5 32.9 28.3 0.26 2.79 36.6 30.9
Vicuna-1.5-7B + LT-200 30.0 36.4 / 14.4 32.8 28.3 0.26 2.79 36.6 30.1

Vicuna-1.5-13B 30.0 38.1 / 14.9 32.2 27.9 0.24 2.76 37.9 20.3
Vicuna-1.5-13B + LT-100 30.3 36.4 / 14.3 32.8 28.0 0.26 2.78 39.0 31.3
Vicuna-1.5-13B + LT-200 30.3 36.4 / 14.3 32.8 28.0 0.26 2.78 39.0 31.0

Llam3.1-70B 19.8 27.5 / 5.5 22.7 19.2 0.47 2.89 25.5 8.6
Llam3.1-70B + LT-100 19.8 27.3 / 5.4 22.7 19.2 0.44 2.85 25.6 13.7
Llam3.1-70B + LT-200 19.8 27.3 / 5.4 22.7 19.2 0.44 2.85 25.6 12.0

ICL + Llam3.1-70B 19.6 27.1 / 5.0 22.6 19.1 0.49 2.93 22.8 8.4
ICL + Llam3.1-70B + LT-100 19.6 27.1 / 5.0 22.6 19.1 0.49 2.93 22.8 10.7
ICL + Llam3.1-70B + LT-200 19.6 27.1 / 5.0 22.6 19.1 0.49 2.93 22.8 10.0

demonstrate that baselines utilizing the long-tail classifier significantly enhance long-tail classifica-
tion capabilities in the in-domain context compared to the baseline that do not use the classification
information.

Finding 1: The classifier can improve the classification performance of generated reports in both
in-domain and long-tail scenarios.
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3.2 ABLATION STUDY ON THE DESIGNS OF THE INDIVIDUAL MODULES

Variation of classification information representation. Introducing classification information can
be done by adding semantic-level tokens, such as additional [CLS] tokens, and by directly converting
the classification information into a prompt as input to the model. We conducted the following
experiments to answer this question. 1) Using only a single image [CLS] token. As shown in Fig.
2, we used variants of vision encoders, including Swin transformers-L and Rad-DINO fine-tuned on
chest X-ray images, as well as ViT-L and DINOv2 pre-trained on ImageNet-21k. We fine-tuned our
report generation model using their [CLS] tokens and patch tokens (w/ [CLS] token), as well as using
only patch tokens (w/o [CLS] token); 2) Adding [CLS] tokens to the text and image, respectively;
3) Adding a special binary classification [CLS] token for each observation, indicating whether the
corresponding observation is positive or negative. The results of experiments 2 and 3 are shown in
Table 3a; 4) The output probability of the classifier is converted into a prompt, and the results are
shown in Table 3b. The format of the prompt is “The [obs.] is [positive / negative] (Probability:
[x]%)”. Note that, all [CLS] tokens pass through LLM. Overall, the results suggest that adding
[CLS] tokens to the input, even from high-performing classifiers, does not substantially improve
report generation performance. This phenomenon is contrary to the conclusion of (Kim et al., 2021;
Touvron et al., 2021). However, using classification information directly as a prompt input is a
more effective strategy for improving the model’s classification ability, which aligns with previous
findings in prompt-based learning studies (Wang et al., 2023; Jin et al., 2024).

Based on previous results, we aim to seek a way that can effectively improve the generalization of
generated reports, specifically by using large language models (LLM) to refine the original reports
based on additional classification information. We set up the following experiments to evaluate this
hypothesis, using the results of MAIRA-1 as the baseline: 1)Using LLM combined with classifi-
cation information to refine the reports generated by one (referred to as Re. Single) or multiple
(referred to as Re. Multi) pre-trained report generation models. In this setup, we use No. 3 in Table
8 as the single model and both No. 3 and No. 6 in Table 8 as the multiple models to generate the
reports to be refined; 2) Using only classification information, LLM iteratively generate and refine
the generated reports, referred to as Iteration n, where n represents the number of iterations. We use
Llama 3.1 70B as the default LLM, and the classification prompts are generated from the outputs of
the Swin-Transformer-L trained on the MIMIC-CXR dataset. The results, shown in Table A, indi-
cate that using classification information to refine based on the reports generated by the pre-trained
models leads to improvements in most metrics. Notably, when comparing Re. Multi with the Base-
line, the classification metric Macro-F1-14 improves by 2.7%. Meanwhile, the metrics of generated
reports using only classification information tend to decline with the increase in refining iterations.
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Figure 2: The impact of the [CLS] token on the classification performance of report generation.
We evaluated whether the [CLS] token carried by four pre-trained vision encoders on the MIMIC-
CXR dataset affects the 14-class classification performance of the generated report. The results show
that the [CLS] token from the image does not significantly improve the classification performance
of the generated report.

Variation of vision encoder. We evaluate the impact of four vision encoders on report genera-
tion using the MIMIC-CXR dataset. Specifically, we assess the performance of Swin Transform-
ers (Liu et al., 2021), Rad-DINO (Pérez-Garcı́a et al., 2024), ViT-L (Dosovitskiy et al., 2021), and
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Table 3: The impact of adding the different format of classification information.

(a) The baseline refers to using only Rad-DINO as the classifier. T and I represent text and image [CLS] tokens,
respectively. The symbol † indicates the classification performance measured on the generated report, while
the absence of this symbol indicates the average classification performance measured only on the classification
head. ∗ represents multiple classification tokens.

Metrics Baseline T+I [CLS] T+I [CLS]† T∗+I [CLS] T∗+I [CLS]†

Macro-F1-14 57.1 62.5 / 60.7 35.8 63.8 / 60.7 33.5
Micro-F1-14 60.9 65.6 / 63.1 49.5 66.2 / 63.1 47.1

(b) Use the output of Rad-DINO as the classification prompt. The Baseline refers to not using any classification
information. ALL means converting all classification information into prompts. Prob. indicates attaching the
corresponding classification probability. Only Pos. means only converting observations that are positive.

Metrics Baseline ALL ALL + Prob. Only Pos. Only Pos. + Prob.

Macro-F1-14 36.7 38.8 38.6 37.9 38.0
Micro-F1-14 54.6 56.5 56.1 55.3 55.9

Table 4: The zero-shot results of long-tail classifiers on different methods on the IU X-Ray dataset.
‘C’ represents the classifier, ‘V’ is the vision encoder. The bold indicates the best value. and
indicates whether the backbone is trainable or frozen, respectively.

Method ROUGE-L BLEU-1/-4 METEOR RJ-1 RJ-2 RJ-3 RJ-4 Macro-F1-OOD80

LT-200 Classifier - - - - - - - 13.6
V + LLM 22.5 33.5 / 7.6 29.0 0.15 2.30 0.07 0.93 8.3
C + V + LLM 22.5 33.6 / 7.6 29.1 0.15 2.33 0.07 0.85 9.3
Expanding 15.7 23.2 / 3.9 22.5 0.25 2.42 0.09 0.78 3.5
Refining 19.3 26.7 / 4.9 28.2 0.16 2.23 0.05 0.91 6.5

DINOv2 (Oquab et al., 2024). As shown in Fig 2, the results indicate that the choice of vision
encoder affects both classification and report generation performance.

The scales of LLM. We conduct experiments to assess the impact of the LLM’s scales to various
baselines. By default, we set the classifier to Swin Transformers-Large, and the vision encoder
to Rad-DINO. In the fine-tuning paradigm, we use Phi-3 3B, Vicuna-1.5 7B/13B, and Llama3.1
7B/13B as the large language models (LLMs). In the prompt learning paradigm, without introducing
additional vision information, we employ prompt engineering to evaluate the effect of classification
information on report quality. We compare two types of prompts: in-context learning (ICL) prompts
and directly inputting classification information into the LLM to generate the corresponding reports.
The format of the ICL prompt is as follows: Here is the classifier result for this Chest X-ray: [...],
and the corresponding report is: [...]. Now, based on the classification result of a new Chest X-ray
image: [...], provide a reasonable and rigorous report.

The results, presented in Table 8, indicate that comparisons across different scales of baselines
show that using classification as additional information can improve in-domain performance. For
instance, in the Macro-F1 classification, No. 3 versus No. 4 showed a significant improvement
of 2%. However, the results for ROUGE-L and BLEU-4 metrics were worse when compared to
smaller models, such as RGRG. Additionally, we find that Experiment 1 yield similar performance
to the baseline. Experiments 3-5 suggest that increasing the scale of the LLM can enhance language
metrics performance but offers limited improvement in classification performance. Experiments
9-12 demonstrate that the absence of vision information leads to a significant decline in overall
performance.

3.3 THE DIFFERENCES BETWEEN OOD AND IN-DOMAIN SCENARIOS

Can the long-tail classifier help the generation model on out-of-domain’s long-tail data? We
conducted comparative experiments on two OOD datasets (PadChest and IU X-ray). We first se-
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Table 5: The zero-shot results of long-tail classifiers on different methods on the PadChest dataset.
‘C’ represents the classifier, ‘V’ is the vision encoder. The bold indicates the best value. and
indicates whether the backbone is trainable or frozen, respectively.

Method ROUGE-L BLEU-1/-4 METEOR RJ-1 RJ-2 RJ-3 RJ-4 Macro-F1-OOD99

LT-200 Classifier - - - - - - - 12.8
V + LLM 14.9 17.8 / 1.8 19.6 0.41 1.54 0.09 0.10 7.5
C + V + LLM 15.5 18.3 / 1.8 20.4 0.46 1.55 0.09 0.08 7.4
Expanding 13.9 16.8 / 1.2 19.7 0.39 2.19 0.08 0.07 3.5
Refining 15.7 17.1 / 1.6 19.9 0.38 2.07 0.08 0.08 5.3

Patchy left basilar subsegmental atelectasis, infiltrates and/or small left pleural effusion. The cardiac silhouette is at the upper limits of 

normal for size. Patchy opacities are demonstrated in the left lung base. No focal pulmonary consolidation. No pneumothorax. Minimal 
degenerative changes of the thoracic spine.

GR

PA and lateral views of the chest were provided. There is left lower lobe consolidation, compatible with pneumonia. There is a small 

left pleural effusion. There is mild pulmonary edema. The heart size is difficult to assess. Mediastinal contour is normal. Bony 
structures are intact.

LLaVA

GPT-4

PA and lateral views of the chest were provided. There is left lower lobe consolidation, compatible with pneumonia, although the 

classification indicates no pneumonia. There is a small left pleural effusion, which is consistent with the classification. There is mild 
pulmonary edema, which aligns with the classification results. The heart size is difficult to assess, but cardiomegaly is indicated in the 

classification. Mediastinal contour is normal. Bony structures are intact.

Llama

PA and lateral chest radiographs are available. Left lower lobe consolidation consistent with pneumonia. Small effusion in the left 

pleural cavity. Mild pulmonary edema. Cardiac enlargement. Normal mediastinal contour. Bone structure intact.

ID: 170

LT Classifier: Pleural Effusion, Cardiomegaly, Edema, and Lung Opacity are

positive. Mediastinal Contour and Bony are negative.

GT: Opacity, Pulmonary, Atelectasis, and Pleural Effusion are positive.

Figure 3: We present a sample report from the IU X-Ray test set, and the reports generated by the
three baseline models. GR and GT represent the ground-truth report and ground-truth observations,
respectively. The classification results come from LT-200 classifier. The green text indicates that
this observation appeared in all reports, while the purple text indicates that this observation was not
mentioned in the ground truth but appeared in the report.

lected four baselines to generate corresponding reports based on the LT-200 classification results for
the long-tail classifier. These baselines were categorized by trainable (‘V+LLM’ and ‘C+V+LLM’)
and frozen weights(‘Expanding’ and ‘Refining’). We reported results for language metrics and
LLM-based metrics, as shown in Table 4 and Table 5. The results indicate that the trainable mod-
els like ‘C+V+LLM’ consistently outperform frozen models, but all models struggle with long-tail
classification, highlighting the challenges LLM-based models face with OOD data.

To further investigate this phenomenon, we conducted extensive case studies3, the partial result as
shown in Fig. 3. We find that significant discrepancies between the actual diagnostic report and the
report generated by the the model that integrated the long-tail classification information. The GT
diagnostic report primarily emphasizes atelectasis, pleural effusion, and pulmonary opacity, whereas
the generative reports erroneously identifies cardiomegaly and edema as positive findings, neglecting
atelectasis altogether. Additionally, while the pleural effusion noted in the LT Classifier report aligns
with the true diagnosis, the false positives regarding cardiomegaly and edema may be attributed to
biases in the training data or potential overfitting of the model.

Finding 2: The long-tail classifier offers limited assistance for report generation in out-of-
distribution (OOD), constrained by the generalization performance of classifier on OOD issues.

3More cases are shown in the Appendix.
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4 RELATED WORK

4.1 AUTOMATIC REPORT GENERATION

Automatic report generation has gained attention in healthcare and NLP, with various approaches
leveraging NLG and deep learning (Jing et al., 2017; Bannur et al., 2024; Jin et al., 2024; Tu et al.,
2024). Early methods used retrieval-based (Li et al., 2019) and template-based techniques (Biswal
et al., 2020; Harzig et al., 2019; Li et al., 2018), which lacked flexibility. Advances in large lan-
guage models (LLMs) (Bannur et al., 2024; Hyland et al., 2023; Wang et al., 2023; Zhao et al.,
2024b) have enabled more sophisticated systems, showing improved coherence in report genera-
tion (Li et al., 2024; Zhao et al., 2024a). Multi-modal data integration, combining text and images,
further enhances report interpretability. However, diagnostic accuracy remains an issue compared to
traditional methods, prompting efforts (Jin et al., 2024; Zhao et al., 2024b; Wang et al., 2023) to im-
prove accuracy by incorporating diagnostic imaging. More discussions are present at the appendix.

4.2 RADIOLOGY REPORT EVALUATION

Radiology report evaluation focuses on accuracy and clinical relevance, assessed via language and
clinical metrics. Language metrics, like BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), ME-
TEOR (Banerjee & Lavie, 2005), and BERTScore (Zhang et al., 2019), measure similarity but lack
clinical depth. Clinical metrics assess medical events, with tools like CheXpert and CheXbert (Smit
et al., 2020), RadGraph (Jain et al., 2021), and cosine similarity, though limited by predefined en-
tities. Recent methods, including RadCliQ (Yu et al., 2023), RadEval (Calamida et al., 2023), and
LLM-based approaches (Wang et al., 2024), show improved adaptability and performance. More
discussions are present at the appendix.

5 DISCUSSION AND LIMITATIONS

The gap between report generation and classification. Our experiments reveal a significant gap
between report generation and classification, both in in-domain and OOD long-tail scenarios. Clas-
sification only requires determining whether an observation is positive, while report generation de-
mands detailed text that mirrors the target report, including specifics like location and severity. The
absence of descriptive details in classification can cause hallucinations in LLM methods, leading to
poor reports. Some studies (Wang et al., 2023; Zhao et al., 2024b) have improved report quality
by using more complex information. A promising approach is to enable LLMs to selectively use
additional data during fine-tuning, such as dynamically adjusting attention weights (Chefer et al.,
2023; Zhou et al., 2024; Liu et al., 2024b).

Evaluation Framework. Developing a robust evaluation framework for free-text reports remains a
challenge. Current language and clinical metrics are inadequate: language metrics focus on gram-
matical similarities but miss the precision required for clinical diagnostics, while clinical metrics
are too narrow to capture the diverse scenarios in medical reports. In this paper, we enhance both
using LLMs, as they can interpret complex texts and support knowledge extrapolation. However,
this has limitations, especially in OOD scenarios, where varying granularity in observation names
across datasets requires semantic transformation. In long-tail datasets, overlapping observations can
further reduce the reliability of LLM-based metrics.

6 CONCLUSION

In this study, we explore and understand how diagnossis results impact the overall quality of LLM-
based report generation models. We design a long-tail evaluation framework that incorporates both
in-domain and out-of-domain (OOD) elements, utilizing LLM-based language metrics and clini-
cal metrics. Furthermore, we conducted a high-level analysis of the effective combinations of the
primary components of LLM-based generation models, assessing how classification information im-
pacts report quality across four benchmarks. Our findings reveal that the classifier’s performance
in long-tail observations directly influences the overall performance of the LLM-based generation
model. We hope these findings inspire further enthusiasm for more robust report evaluation metrics
and more effective report generation models.
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Schwaighofer, Fernando Pérez-Garcı́a, Valentina Salvatelli, Shaury Srivastav, Anja Thieme, et al.
Maira-1: A specialised large multimodal model for radiology report generation. arXiv preprint
arXiv:2311.13668, 2023.

Saahil Jain, Ashwin Agrawal, Adriel Saporta, Steven QH Truong, Du Nguyen Duong, Tan Bui,
Pierre Chambon, Yuhao Zhang, Matthew P Lungren, Andrew Y Ng, et al. Radgraph: Extracting
clinical entities and relations from radiology reports. arXiv preprint arXiv:2106.14463, 2021.

Haibo Jin, Haoxuan Che, Yi Lin, and Hao Chen. Promptmrg: Diagnosis-driven prompts for medical
report generation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 2607–2615, 2024.

Baoyu Jing, Pengtao Xie, and Eric Xing. On the automatic generation of medical imaging reports.
arXiv preprint arXiv:1711.08195, 2017.

Alistair Johnson, Matt Lungren, Yifan Peng, Zhiyong Lu, Roger Mark, Seth Berkowitz, and Steven
Horng. MIMIC-CXR-JPG - chest radiographs with structured labels, 2019a.

Alistair E W Johnson, Tom Pollard, Roger Mark, Seth Berkowitz, and Steven Horng. The MIMIC-
CXR database, 2019b.

Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz, Nathaniel R Greenbaum, Matthew P Lun-
gren, Chih-ying Deng, Roger G Mark, and Steven Horng. Mimic-cxr, a de-identified publicly
available database of chest radiographs with free-text reports. Scientific data, 6(1):317, 2019c.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
lution or region supervision. In International conference on machine learning, pp. 5583–5594.
PMLR, 2021.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024.

Christy Y Li, Xiaodan Liang, Zhiting Hu, and Eric P Xing. Knowledge-driven encode, retrieve,
paraphrase for medical image report generation. In Proceedings of the AAAI conference on arti-
ficial intelligence, volume 33, pp. 6666–6673, 2019.

Yuan Li, Xiaodan Liang, Zhiting Hu, and Eric P Xing. Hybrid retrieval-generation reinforced agent
for medical image report generation. Advances in neural information processing systems, 31,
2018.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024a.

Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method
for alleviating hallucination in lvlms. arXiv preprint arXiv:2407.21771, 2024b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.
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APPENDICES

A THE GAP BETWEEN GENERATION AND CLASSIFICATION
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Figure 4: The gap between generation and classification.

We utilized five mainstream backbones on the MIMIC-CXR dataset to evaluate their performance
on both classification and report generation tasks. For the classification task, ViT-L and Swin-L
were fine-tuned on MIMIC-CXR, while the other three backbones had their weights frozen and were
followed by a linear classification head. For the report generation task, we replaced the classification
head of each backbone with the vision encoder module from LLaVA. As shown in Fig. 4, the results
indicate that classification outperforms report generation by approximately 20% in terms of Macro
F1-score.

B MODEL DESIGN SPACE

See Table 6.

C THE PERFORMANCE OF REFINING REPORT

See Table 7.
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Table 6: Model design space.

No. Vision Encoder Classifier LLM

1 - Swin Transformer-Large Phi-3 3B
2 - Swin Transformer-Large Vicuna1.5 7B
3 - Swin Transformer-Large Vicuna1.5 13B
4 - Swin Transformer-Large Llama3.1 7B
5 - Swin Transformer-Large Llama3.1 13B

6 - Rad-DINO Phi-3 3B
7 - Rad-DINO Vicuna1.5 7B
8 - Rad-DINO Vicuna1.5 13B
9 - Rad-DINO Llama3.1 7B

10 - Rad-DINO Llama3.1 13B

11 Swin Transformer-Large - Phi-3 3B
12 Swin Transformer-Large - Vicuna1.5 7B
13 Swin Transformer-Large - Vicuna1.5 13B
14 Swin Transformer-Large - Llama3.1 7B
15 Swin Transformer-Large - Llama3.1 13B

16 Rad-DINO - Phi-3 3B
17 Rad-DINO - Vicuna1.5 7B
18 Rad-DINO - Vicuna1.5 13B
19 Rad-DINO - Llama3.1 7B
20 Rad-DINO - Llama3.1 13B

21 Swin Transformer-Large Swin Transformer-Large Phi-3 3B
22 Swin Transformer-Large Swin Transformer-Large Vicuna1.5 7B
23 Swin Transformer-Large Swin Transformer-Large Vicuna1.5 13B
24 Swin Transformer-Large Swin Transformer-Large Llama3.1 7B
25 Swin Transformer-Large Swin Transformer-Large Llama3.1 13B

26 Rad-DINO Swin Transformer-Large Phi-3 3B
27 Rad-DINO Swin Transformer-Large Vicuna1.5 7B
28 Rad-DINO Swin Transformer-Large Vicuna1.5 13B
29 Rad-DINO Swin Transformer-Large Llama3.1 7B
30 Rad-DINO Swin Transformer-Large Llama3.1 13B

Table 7: Comparison of results for different methods of refining generated reports using classifica-
tion information

Exp. ROUGE-L BLUE-1/-4 METEOR RGER Macro-F1-14 Macro-F1-5

Baseline 29.8 37.7 / 14.6 33.2 29.0 36.7 46.1
Re. Single 30.1 38.5 / 16.0 33.4 29.7 38.2 46.4
Re. Multi. 27.4 41.0 / 14.7 33.7 29.1 39.4 49.0
Iteration 1 19.8 27.5 / 5.5 22.7 19.2 25.5 38.6
Iteration 3 13.5 16.1 / 3.8 18.0 12.5 14.9 21.0

D THE SCALES OF LLMS

See Table 8.

E RELATED WORK

E.1 AUTOMATIC REPORT GENERATION

Automatic report generation has garnered significant attention in recent years, particularly in fields
such as healthcare and natural language processing. Researchers (Jing et al., 2017; Bannur et al.,
2024; Jin et al., 2024; Tu et al., 2024) have investigated various methods to automate report creation,
leveraging techniques from natural language generation (NLG) and deep learning. Early approaches
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Table 8: We report the performance differences of various models on the MIMIC-CXR dataset with
and without the use of the classifier. † indicates that the result is directed cited from the original
paper. § denotes that adding classification prompts into the model’s input.

Metrics

NO. Method Params. (B) ROUGE-L BLUE-1/-4 METEOR RGER Macro-F1-14 Micro-F1-14 Macro-F1-5 Micro-F1-5

Fine-tuned (V: Rad-DINO)
1 Phi-3-3B 4 29.9 35.3 / 14.1 32.3 27.9 34.7 53.6 46.2 54.9
2 Phi-3-3B§ 4 29.8 36.4 / 13.9 32.5 27.9 36.5 55.1 47.6 55.1
3 Vicuna-1.5-7B 7 29.8 37.7 / 14.6 33.2 29.0 36.7 54.6 46.1 54.8
4 Vicuna-1.5-7B§ 7 29.9 34.8 / 13.6 31.8 28.0 38.7 53.1 48.9 55.5
5 Vicuna-1.5-13B§ 13 30.0 36.1 / 14.0 32.2 27.9 38.9 54.4 49.1 55.6
6 Llama3.1-8B 8 29.6 37.8 / 14.7 33.1 28.9 36.6 53.9 46.0 54.6
7 Llama3.1-8B§ 8 29.9 35.6 / 14.1 32.6 27.9 38.1 55.7 48.8 56.1
8 Llama3.1-13B§ 13 30.0 36.1 / 14.0 32.2 27.9 38.9 54.4 49.1 55.6

Prompt Learning
9 ICL + Llam3.1-8B§ 8 19.5 26.7 / 4.5 22.7 19.1 21.4 34.2 34.6 43.7
10 Llam3.1-8B§ 8 19.4 26.6 / 4.3 22.3 18.9 25.0 42.2 38.1 48.2
11 ICL + Llam3.1-70B§ 70 19.6 27.1 / 5.0 22.6 19.1 22.8 34.3 35.2 43.9
12 Llam3.1-70B§ 70 19.8 27.5 / 5.5 22.7 19.2 25.5 43.9 38.6 48.9

primarily employed retrieval-based (Li et al., 2019) and template-based methods (Biswal et al., 2020;
Harzig et al., 2019; Li et al., 2018) , where predefined structures were populated with relevant data.
However, these methods often lacked flexibility and could not adapt to varying contexts. Recent
advancements in deep learning, especially the use of large language models (LLM) (Bannur et al.,
2024; Hyland et al., 2023; Wang et al., 2023; Zhao et al., 2024b), have facilitated the development
of more sophisticated report generation systems. Studies (Li et al., 2024; Zhao et al., 2024a) have
demonstrated the effectiveness of powerful foundation models in generating coherent and contextu-
ally relevant reports from structured data inputs. Furthermore, the integration of multi-modal data,
such as images and text, has shown promise in enhancing the richness and interpretability of gener-
ated reports.

Despite these advancements, the diagnostic accuracy of reports generated by these advanced mod-
els still exhibits significant performance gaps compared to traditional medical image classification.
Consequently, numerous efforts (Jin et al., 2024; Zhao et al., 2024b; Wang et al., 2023) have aimed
to incorporate diagnostic results from imaging to enhance the accuracy of generated reports. This
article systematically summarizes the potential combinations of these approaches and conducts a
comprehensive evaluation of their effectiveness in addressing both in-domain and out-of-domain
long-tail issues.

E.2 RADIOLOGY REPORT EVALUATION

The evaluation of radiology reports is essential for ensuring their accuracy, completeness, and
clinical relevance. Traditional evaluation methods can be categorized into two main types: lan-
guage metrics and clinical metrics. Language metrics include BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and METEOR (Banerjee & Lavie, 2005) scores, as well as more recent met-
rics like BERTScore (Zhang et al., 2019), which utilize embeddings from pre-trained models. These
metrics are commonly employed to assess the similarity between generated reports and ground-truth
reports. However, they often overlook the clinical events described in radiology reports, resulting in
limited clinical significance.

On the other hand, clinical metrics focus on the clinical descriptions within radiology reports, which
are vital for practical applications. These metrics capture all clinical events illustrated in medical
images, such as the nature, location, and extent of pathology. A widely used metric is CheXpert,
which categorizes 14 types of pathologies and indicates their presence or absence with labels. Tools
like CheXbert (Smit et al., 2020), along with metrics such as cosine similarity and RadGraph (Jain
et al., 2021), are employed for this evaluation. However, these extraction-based methods have limi-
tations due to their dependence on predefined entities and strict matching rules. Efforts to enhance
these methods, such as RadCliQ (Yu et al., 2023) and RadEval (Calamida et al., 2023), which com-
bine different metrics—still struggle to fully evaluate clinical descriptions. Recently, an innovative
approach (Wang et al., 2024) that leverages large language models for assessment offers improved
adaptability and performance comparable to that of radiologists.
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F IMPLEMENTATION DETAILS

Following (Liu et al., 2024a), we adopt hyper-parameters similar to those in LLaVA-1.5 for train-
ing, jointly tuning the LLM with a randomly initialized the vision connector. We do not include
a precursor training step to pretrain the adapter, as pretraining provides no significant performance
improvement (Hyland et al., 2023). The model is trained for 3 epochs without using parameter-
efficient fine-tuning techniques. We use AdamW as the optimizer, with β1 and β2 set to 0.9 and
0.999, respectively. The global batch size for all models is set to 128. A cosine learning rate sched-
uler with a warm-up factor of 0.03 and an initial learning rate of 2 × 10−5 is used for learning rate
adjustment. All experiments are conduct on a cluster of 4 NVIDIA A100 80G GPUs.

G MORE CASE STUDIES

Pulmonary detail obscured secondary to body habitus and superimposed soft tissue. Again seen is a left basilar opacity compatible 

with some effusion and adjacent left basilar atelectasis. Overall, size of effusion appears slightly smaller. Right lung stable and 
grossly clear. No XXXX acute abnormalities since the previous chest radiograph.

GR

A right IJ central venous catheter is seen with its tip residing at the level of the low SVC. There is left basilar opacity compatible with 

effusion and likely also atelectasis. The right lung appears clear. No pneumothorax is seen. The heart size appears grossly within 
normal limits. The mediastinal contour is unremarkable. The bony structures are intact.

LLaVA

GPT-4

A right IJ central venous catheter is seen with its tip residing at the level of the low SVC, confirmed as negative for any associated 

complications. There is left basilar opacity compatible with effusion and likely also atelectasis, both of which are positive findings. 
The right lung appears clear, with no evidence of any abnormalities. No pneumothorax is present. The heart size appears grossly 

within normal limits, with no cardiomegaly. The mediastinal contour is unremarkable, showing no abnormalities. The bony structures 

are intact, with no fractures or other bony abnormalities detected.

Llama

A right IJ central venous catheter is visible with its tip at the level of the inferior SVC. The left lung base is opaque, consistent with an 

effusion and possible atelectasis. The right lung appears clear. No pneumothorax is seen. The heart size appears within normal limits. 
The mediastinal contour is unremarkable. The bone architecture is intact.

ID: 138

LT Classifier: Atelectasis and Pleural Effusion are positive. Mediastinal Widening

and Pneumothorax are negative.

GT: Pleural Effusion, Pulmonary Atelectasis, and Lung Opacity are positive.

Figure 5: We present a sample report from the IU X-Ray test set, and the reports generated by the
three baseline models. GR and GT represent the ground-truth report and ground-truth observations,
respectively. The classification results come from LT-200 classifier. The green text indicates that
this observation appeared in all reports, while the purple text indicates that this observation was not
mentioned in the ground truth but appeared in the report.
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