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Abstract

Physics-informed neural networks (PINNs) offer a flexible way to solve partial
differential equations (PDEs) with machine learning, yet they still fall well short of
the machine-precision accuracy many scientific tasks demand. This motivates an
investigation into whether the precision ceiling comes from the ill-conditioning of
the PDEs themselves or from the typical multi-layer perceptron (MLP) architecture.
We introduce the Barycentric Weight Layer (BWLER), which models the PDE
solution through barycentric polynomial interpolation. A BWLER can be added on
top of an existing MLP (a BWLER-hat) or replace it completely (explicit BWLER),
cleanly separating how we represent the solution from how we take its derivatives
for the physics loss. Using BWLER, we identify fundamental precision limitations
within the MLP: on a simple 1-D interpolation task, even MLPs with O(105) param-
eters stall around 10−8 relative error – about eight orders above float64 machine
precision – before any PDE terms are added. In PDE learning, adding a BWLER lifts
this ceiling and exposes a tradeoff between achievable accuracy and the conditioning
of the PDE loss. For linear PDEs we fully characterize this tradeoff with an explicit
error decomposition and navigate it during training with spectral derivatives and
preconditioning. Across five benchmark PDEs, adding a BWLER on top of an
MLP improves ℓ2 relative error by up to 30× for convection, 10× for reaction, and
1800× for wave equations while remaining compatible with first-order optimizers.
Replacing the MLP entirely lets an explicit BWLER reach near-machine-precision
on convection, reaction, and wave problems (up to 10 billion times better than prior
results) and match the performance of standard PINNs on stiff Burgers’ and irregular-
geometry Poisson problems. Together, these findings point to a practical path for
combining the flexibility of PINNs with the precision of classical spectral solvers.

1 Introduction

Partial differential equations (PDEs) are the standard tool for modeling complex phenomena across sci-
ence and engineering [12]. Traditionally, PDEs have been solved using numerical methods (e.g. finite
element or spectral methods [17, 4]) but there has been recent interest in leveraging modern machine
learning (ML) techniques to solve these classical problems [6, 20]. Producing better ML-based method-
ologies for PDEs could enable faster simulations while maintaining the high fidelity of traditional
numerical methods, with applications from weather forecasting to design optimization [25, 7].

Physics-informed neural networks (PINNs) [29] parametrize the solution of a PDE with a multi-layer
perceptron (MLP) and enforce PDE constraints with least-squares losses during training. The main bene-
fit of this physics-informed framework is flexibility: it requires no meshing, handles irregular geometries

∗Corresponding author: jwl50@stanford.edu

Preprint. Under review.



Figure 1: Top: model architecture comparison. Standard PINN evaluates an MLP throughout
the domain (left). BWLER interpolates globally based on values at discrete grid nodes; BWLER-
hatted MLP obtains values using an MLP (middle), explicit BWLER parameterizes values directly
(right). Bottom: results for convection equation [31]. Standard PINN stagnates at a suboptimal
local minimum (left); BWLER-hatted MLP finds a qualitatively correct solution (middle); explicit
BWLER converges to higher precision (right).

gracefully, and provides a unified methodology for diverse PDE types [30, 20, 28]. However, PINNs
have struggled to achieve high-precision solutions [27, 26, 24], crucial for scientific applications such
as turbulence modeling or maintaining stable temporal rollouts [15]. PDEs are particularly challenging
because of their fundamentally ill-conditioned differential operators; despite recent progress inves-
tigating the precision saturation of PINNs on PDE problems [36, 22, 38, 31], it remains unclear to what
extent the issues stem from problem-inherent ill-conditioning versus the models’ parameterizations.

In this work, we aim to disentangle and analyze the sources of precision limitations in PINNs.
Specifically, we ask: (i) are there inherent precision bottlenecks in the MLP architectures used by
PINNs, and (ii) how does the difficulty of the underlying PDE affect the precision that can be achieved?
Our study has the following three parts:

• We identify fundamental MLP precision limitations in a simple setting. Through systematic
experiments on 1-D interpolation, we show that MLP precision plateaus around 10−8 ℓ2 relative
error (L2RE). This is roughly eight orders of magnitude above float64’s machine epsilon
(2−52≈2.22×10−16), even without PDE constraints. We demonstrate that this limitation persists
as we scale network width by 16× and depth by 4×, with precision improving by just 1–2 orders
of magnitude even with 1000× more parameters (Figure 2). In contrast, classical polynomial
representations with just 10–100 parameters can provably achieve machine precision (Theorem 2.2).
Our results point to precision bottlenecks stemming from the neural network parameterization itself
even beyond optimization challenges specific to PDEs.
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• We propose a barycentric interpolation framework for PDE learning. Motivated by the
precision of polynomials, we introduce BWLER1, a simple baseline that can be used as a drop-in
replacement for standard PINN architectures. BWLER parameterizes the solution function as a
barycentric polynomial interpolant [33, 3], where the model is defined by the function values it
takes on a pre-specified discrete grid in the domain (Figure 1, top; Algorithm 1). Our method builds
upon decades of work using polynomial interpolants to solve numerical PDEs [4, 14, 32, 8, 1];
BWLER effectively embeds a pseudo-spectral solver into the physics-informed framework while
leveraging auto-differentiation and ML optimizers. Excitingly, BWLER lets us decouple our choice
of model parameterization (e.g. explicit grid, neural network) from our PDE derivatives calculations
(e.g. finite differences, spectral derivatives). Using BWLER, we next ablate the MLP to study the
effect of model parameterization vs. the PDE ill-conditioning on precision.

• We characterize a precision-conditioning tradeoff with BWLER. We investigate two variants
of BWLER (Algorithm 1). BWLER-hatted MLPs, which apply BWLER atop existing MLPs,
outperform standard MLPs on convection, reaction, and wave equation benchmark problems
by 30×, 10×, and 1800× respectively. We find BWLER improves the PDE loss conditioning,
decreasing mean eigenvalue by 5–10× (Figure 8, Figure 9). We then turn to explicit BWLER,
where the model is directly parameterized by its function values on the pre-specified grid. We fully
characterize the training error of explicit BWLER on linear PDEs, identifying a fundamental tradeoff
between BWLER’s maximum achievable precision and the conditioning of the optimization problem
(Theorem 5.1). Motivated by our error decomposition, we vary preconditioning and derivative
computations to navigate the tradeoff space during training. For the first time, we achieve near
machine precision with PINNs on convection, reaction, and wave equation benchmarks (up to 10
billion times better L2RE than prior PINN methods) and match state-of-the-art performance on
Burgers’ and irregular-geometry Poisson problems (Table 2).

2 Background

We provide background information on physics-informed neural networks and barycentric Lagrange
interpolation. We defer a lengthier discussion of related work to Appendix A.

2.1 Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) [30] propose a flexible and general framework to solve
PDEs using neural networks, capable of treating a variety of boundary conditions and geometries.
Consider a PDE of the form: {

F(u,x)=0, x∈ΩPDE

u(x)=u0(x), x∈ΩIBC
(1)

whereF is a differential operator, ΩPDE is the domain, and ΩIBC⊂ΩPDE denotes the initial condition
region. The PINN framework represents the solution to Equation (1) as a parametric model uθ and
formulates a composite loss function combining a physics term and a boundary term:

L(u)=LPDE(u)+λIBCLIBC(u), (2a)

LPDE(u)=Ex∈ΩPDE

[
(F(u,x))2

]
, (2b)

LIBC(u)=Ex∈ΩIBC

[
(u(x)−u0(x))

2
]

(2c)

This framework requires the following operations from its model class: (i) Evaluation, computing
uθ(x) for any x∈ΩPDE, and (ii) Differentiation, computing partial derivatives ∂(k)uθ/∂x

(k)
i (x) for

any x∈ΩPDE. In order to leverage auto-differentiation during optimization, both operations must be
differentiable with respect to model parameters θ. Although any models satisfying these properties
can be used for physics-informed learning (e.g. Gaussian processes [29]), recent work focuses on
neural networks [30].

2.2 Barycentric interpolants and spectral methods

Barycentric Lagrange interpolation is a classical technique for polynomial-based function
approximation, specified entirely by the function’s values at a set of interpolation nodes [3].

1Code available at https://github.com/HazyResearch/bwler.
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Figure 2: Left: MLPs struggle to interpolate 1-D functions beyond 10−8 MSE (pictured: f(x) =
sin(4x)), even as we scale model width and depth. Right: BWLER achieves spectral accuracy
(10−12 MSE); BWLER-hat improves MLP’s MSE by more than 100,000×. Least squares Chebyshev
interpolation (fit on train, evaluated on test) is also reported (right).

Definition 2.1. Given N + 1 distinct nodes {xj} and values f(xj), the barycentric Lagrange
interpolant is:2

pN (x)=

∑N
j=0

wj

x−xj
f(xj)∑N

j=0
wj

x−xj

, (3)

where {wj} are barycentric weights: wj=1/
(∏

k ̸=j(xj−xk)
)

.

Derivatives can be efficiently computed using differentiation matrices or FFT-based methods,
depending on the node distribution [32]. See Section 4 and Appendix B for more details.

For well-chosen nodes (e.g. Chebyshev-distributed [33]) and smooth functions, the resulting inter-
polants exhibit spectral convergence – exponentially decaying error for the function and its derivatives.
Theorem 2.2 (Chebyshev interpolants exhibit spectral convergence [33, 4]). Let f : [−1,1]→R extend
to an analytic function on a Bernstein ellipse Eρ with foci at±1 and sum of semiaxes ρ>1. Let pn
be the degree-n Chebyshev interpolant of f . Then:

∥f−pn∥∞≤
4Mρ−n

ρ−1
, ∥f (k)−p(k)n ∥∞≤

CkMρ−n

(ρ−1)k+1
,

for some constant Ck depending on k and ρ, where M=maxz∈Eρ
|f(z)|.

Barycentric interpolation forms the foundation of classical pseudo-spectral methods for solving
numerical PDEs [4, 32, 8], where function values on a fixed grid are used to compute derivatives
spectrally. This approach underlies well-established numerical solvers (e.g., Chebfun [1]), and
provides a principled framework for high-precision computation. Our method, BWLER, builds on
this line of work, adapting it for use with gradient-based optimization and machine learning.

3 Neural networks struggle with precise 1-D interpolation

To disentangle the effects of PDE conditioning from model parameterization, we begin with a simplified
setting: one-dimensional smooth function interpolation. This lets us isolate the approximation behavior
of different model classes in a well-conditioned regime. Surprisingly, we find that MLPs consistently
plateau in precision and scale poorly with larger models (Section 3.2). In contrast, polynomial
interpolation admits a complete theoretical analysis and provably converges to (near)-machine
precision (Section 3.3).

3.1 Experimental setup

We study the task of one-dimensional function interpolation on the domain [−1, 1], isolating
approximation behavior from PDE constraints. We evaluate on sinusoids of the form sin(kx) for
frequencies k∈{1,2,4,8,16,32}. See Appendix C.1 for more details.

2Although Equation (3) is a rational function with poles at the interpolation nodes, the barycentric form is
numerically stable even for largeN , and avoids the catastrophic cancellation associated with the standard Lagrange
formula [3, 1].
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For each target function, we generate a training set of Ntrain=100 points sampled uniformly at random
from the domain, and evaluate performance on a dense test grid of Ntest = 1000 points. We report
relative ℓ2 error (L2RE) on the test grid (Appendix B).

3.2 MLPs exhibit precision bottlenecks

We use a fully-connected MLP with tanh activations, a standard architecture in prior work on PINNs
[20, 16, 37]. Given a set of training points {(xi,f(xi))}Ntrain

i=1 , the model is trained to minimize the
mean squared error (MSE). We use the Adam optimizer [21] with a learning rate of 10−3 and a cosine
decay schedule. To study the effect of model capacity, we sweep network widths within {24,...,28}
and depths from 2–8 layers (16× and 4× ranges, respectively). We also sweep across different levels
of function smoothness.

Figure 2 (left) shows representative results for f(x)= sin(4x); comprehensive results are provided
in Appendix C.1. We find that MLPs consistently stagnate well above machine epsilon – for the
function shown, relative error plateaus around 10−8 – 8 orders of magnitude worse than float64’s
machine precision of 2.22×10−16. Moreover, precision scales poorly with model size: even when
increasing the number of parameters by over 1000× (400,000 parameters for the largest MLP we
consider), we observe only a 10–100× improvement in accuracy. These results suggest that the MLP
architecture itself imposes a fundamental bottleneck on achievable precision.

3.3 Polynomials achieve exponential convergence

In our experiments, we use an N -element Chebyshev polynomial basis and solve for the optimal
coefficients via least squares on the training set. This reduces to solving a linear system Ac= f , where
A is the matrix of Chebyshev basis functions evaluated at the training nodes, and f contains the target
function values at those nodes. More details about the polynomial baseline are in Appendix C.1.3.

Figure 2 (right, dotted) shows the empirical error decay of polynomial interpolation on the same target
used in the MLP experiment. As predicted by theory (Theorem 2.2), the error decays exponentially
in N . In particular, for the optimal basis size, the polynomial baseline achieves relative errors near
machine epsilon – up to 10,000× better L2RE than the MLP with just 20–50 basis functions. These
results motivate the BWLER architecture we introduce in the next section.

4 BWLER: a simple baseline using barycentric interpolants

BWLER proposes barycentric interpolants as a drop-in replacement for MLPs in the physics-informed
framework of PINNs. For clarity, we present our method in the 1-D setting over the domain Ω=[−1,1],
though the approach directly generalizes to periodic domains (using trigonometric instead of
Chebyshev polynomials) and higher dimensions (via tensor products). See Appendix B for details.

4.1 Model parameterization

Let {xj}Nj=0 denote the Chebyshev nodes of the second kind (Chebyshev-Gauss-Lobatto points [32])
defined by xj = cos(jπ/N) ,j = 0, ... ,N . Our model is defined as the unique polynomial fθ that
interpolates the points

(x0,fθ(x0)),...,(xN ,fθ(xN )),

where we specify our model via the values {fθ(xj)} it takes on the discrete set of Chebyshev nodes3.

We consider two possible parameterizations of these node values:

• Explicit. Each value is treated as its own, independently trainable parameter, meaning the full set
of trainable parameters in the model is θ=[θ0,...,θN ]⊤, where θj :=f(xj).

• Implicit. Like standard PINNs, these define an MLP that specifies function values at discrete
node locations. Unlike standard PINNs, the MLP is only evaluated at these node locations, and

3BWLER effectively parameterizes the Lagrange interpolant in value space, i.e., directly in terms of the
function values at interpolation nodes, rather than in coefficient space as in classical polynomial bases. This avoids
the instability and ill-conditioning associated with solving for global polynomial coefficients [3].
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barycentric interpolation is used to define function values over the full domain. We also term this
a BWLER-hatted MLP.

Standard PINN
1: function EVALUATE(x, θ)
2: return MLPθ(x) ▷ forward

pass on x

3: function DIFFERENTIATE(x, θ, k)
4: return ∂kuθ(x)

∂xk ▷ autodiff

BWLER-hatted PINN
1: function EVALUATE(x, θ)
2: fj←MLPθ(xj) ▷ forward pass on grid
3: return BaryInterp(x,{fj}) (Algorithm 2)
4: function DIFFERENTIATE(x, θ, k)
5: fj←MLPθ(xj) ▷ forward pass on grid
6: d

(k)
j ←SpectralDeriv({fj},k) (Algorithm 3)

7: return BaryInterp(x,{d(k)j }) (Algorithm 2)

Algorithm 1: Evaluation and differentiation operations for a standard physics-informed neural network
(left) versus a BWLER-hatted neural network (right) – differences in blue.

As required for the physics-informed framework (see Section 2.1), our model has efficient and
auto-differentiable implementations of both evaluation and differentiation operations:

Evaluation. Given the node values {fθ(xj)}Nj=0, we compute the interpolant fθ(x) at any
point x ∈ Ω using the barycentric formula, Equation (3), where the barycentric weights for
Chebyshev–Gauss–Lobatto nodes are wj=((−1)j)/(1+δj0+δjN ).

Differentiation. Derivatives are computed efficiently via the Discrete Cosine Transform (DCT).
Given node values {fθ(xj)}Nj=0, the differentiation operation involves transforming to frequency
space via DCT, applying differentiation in frequency space (a diagonal operator), and transforming
back to physical space via inverse DCT [4]. This yields the derivative values f ′=[f ′(x0),...,f

′(xN )]⊤

at the Chebyshev nodes in O(N logN) operations. To compute the derivative at any point x∈Ω, we
apply the barycentric interpolation formula (Equation (3)), plugging in the derivative f ′ as the node
values. Higher-order derivatives can be obtained by repeating this process. Detailed descriptions
of the evaluation and differentiation operations are provided in Appendix B, including pseudocode
implementations (Algorithms 2, 3).

4.2 BWLER achieves exponential convergence on interpolation

In Figure 2 and Appendix C.1, we empirically evaluate BWLER in the 1-D interpolation setting,
comparing both explicit BWLER models and BWLER-hatted MLPs (where BWLER acts as a final
layer atop a standard MLP). We find that explicit BWLER, trained with Adam, closely follows the
exponential convergence behavior of the polynomial baseline from Section 3.3. Moreover, with
proper choice of N , BWLER-hatted MLPs substantially outperform standard MLPs on smooth targets,
improving L2RE by up to 100,000× (Appendix C.1.2).

In this setting, we can fully characterize the error convergence of BWLER; we prove that explicit
BWLER achieves exponentially decaying test error and convergence under gradient descent:
Theorem 4.1 (Exponential convergence of BWLER on interpolation, informal). We approximate
an analytic function f by fitting an (N+1)-parameter BWLER for t steps of gradient descent on M
sample points in [−1,1]. Then its sup-norm error decomposes into

∥f−f (t)
N ∥∞ ≤ O(ρ−N )︸ ︷︷ ︸

expressivity gap

+Õ
(
e−t/κ2

)
︸ ︷︷ ︸
optimization gap

, (4)

where ρ>1 only depends on the function smoothness, and κ is the interpolation matrix’s condition
number.

In Equation (4), the expressivity gap is unavoidable and comes from the standard Cheybshev
approximation bound (Theorem 2.2) and the optimization gap comes from gradient descent’s
convergence on least squares [5]. Intuitively, after we choose N large enough that BWLER can express
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the target function up to error ϵ, gradient descent will then converge exponentially to it in O(log(1/ϵ))
steps. See Theorem D.4 for the precise theorem statement and Appendix D.1 for the proof.

5 Physics-informed BWLER and the precision-conditioning tradeoff

We evaluate BWLER, first implicit (BWLER-hatted MLP), then explicit, on benchmark PDE
problems [31, 16], including linear (convection, wave), nonlinear (reaction), stiff (Burgers’),
and irregular-domain problems (Poisson). In doing so, we aim to disentangle the effects of
model architecture and PDE conditioning on precision and optimization behavior. Our key result
is Theorem 5.1, where we fully characterize the tradeoffs between maximum achievable precision
and training convergence for explicit BWLER in the linear PDE setting.

5.1 BWLER-hatted MLPs have smoother loss landscapes

Experimental setup. We start by evaluating BWLER-hatted MLPs on the three benchmark PDEs
from Rathore et al. [31]: convection, reaction, and wave equations. Each model is trained using the
Adam optimizer with identical network architecture and training settings. We compare three variants:
a standard MLP, an (implicit) BWLER-hatted MLP, and an explicit BWLER model.

To probe convergence behavior beyond early training dynamics, we train each model for 106 iterations
– significantly longer than prior work – to examine both the final precision after saturation and the
consistency of convergence trends. Full experimental details are provided in Appendix C.2.

Results. Table 1 reports final ℓ2 relative errors (L2RE) across all methods. BWLER-hatted MLPs con-
sistently outperform standard MLPs, improving L2RE by around 30× on the convection equation, 10×
on reaction, and 1800× on wave. We replicate findings from prior work [22, 31] that pure MLPs often
converge to suboptimal local minima when trained with Adam alone. For instance, on the convection
equation (Section 1), the baseline MLP only recovers a single oscillation of the ground truth periodic
solution; similarly, on the wave equation (Figure 6), the MLP recovers the high-level structure of the
solution but not the fine-grained details. In contrast, the BWLER-hatted model finds a solution qual-
itatively matching the ground truth, and precision improves consistently with Adam alone (Figure 6).

Improved loss landscape conditioning. Towards understanding why BWLER improves optimiza-
tion, we estimate the spectral density of the PINN loss’s Hessian after convergence, following Rathore
et al. [31]. We find that BWLER makes the loss landscape less ill-conditioned on the wave and reaction
equations, reducing the maximum eigenvalue by 10× and mean eigenvalue by 5–10× (Figures 8, 9).
See Appendix C.2 for discussion and ablations.

Precision limitations of BWLER-hatted MLPs. Although BWLER-hatted MLPs outperform stan-
dard PINNs, their precision nonetheless plateaus more than 10 orders of magnitude L2RE worse than
machine precision (Table 1) – mirroring the limitations seen in the interpolation setting (Section 3.2). We
attribute this stagnation to the underlying MLP parameterization. In Section 5.2, we show that switching
to an explicit representation and training with a preconditioned second-order method allows BWLER to
overcome this barrier, achieving high precision solutions on the convection and wave equations.

L2RE ↓ MLP BWLER-hatted MLP BWLER

Convection 1.14×100 3.91×10−2 (29.2×) 4.07×10−4 (2800×)

Reaction 4.02×10−3 3.91×10−4 (10.3×) 7.10×10−2 (0.057×)

Wave 5.22×10−1 2.88×10−4 (1800×) 9.99×10−1 (0.52×)

Table 1: L2 relative errors (L2RE) on benchmark PDEs: convection, reaction, and wave equations
from [31]. Multiplicative improvements (in parentheses) are relative to the MLP baseline. All models
are trained with Adam for 106 iterations.
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5.2 Explicit BWLER solves PDEs to high precision

Motivated by the precision limitations in the BWLER-hatted MLP setting, we next study explicit
BWLER models. This formulation eliminates the extra precision bottlenecks introduced by the
neural network parameterization – all ill-conditioning in the loss arises purely from the PDE and its
discretization – allowing us to probe the precision limits of the physics-informed framework.

Figure 3: Precision-conditioning tradeoff. We train explicit
BWLER models on the convection equation, using finite-difference
derivatives in time, and vary the stencil size. Smaller stencils improve
the problem’s conditioning, improving initial convergence rate, but in-
crease misspecification error, producing a precision saturation threshold.

Optimization challenges.
We begin by training explicit
BWLER models with Adam
alone on the three bench-
mark PDEs from Rathore
et al. [31] (Table 1, right-
most column). While
the models are expressive
enough to precisely repre-
sent the true solution, they
converge slowly under stan-
dard first-order optimizers.
On the reaction equation,
explicit BWLER underper-
forms even standard PINNs
by a factor of 20× in
L2RE, and makes almost no
progress during training on
the wave equation. Note that
although explicit BWLER with Adam outperforms standard PINNs by 2800× and BWLER-hatted
MLPs by 100× on the convection equation, this is mostly due to the extremely high number of training
steps (106 iterations with Adam). See Appendix C.2 for more detailed results.

Theory: convergence-conditioning tradeoff for 1-D linear differential operators. For explicit
BWLER, the PDE setting admits an error decomposition mirroring the interpolation setting of The-
orem 4.1. We present the 1-D linear setting, but note that the decomposition extends directly to
higher-dimensional linear problems.
Theorem 5.1 (Precision-conditioning tradeoff for physics-informed BWLER, informal). We consider
solving the d-th order PDE problem Lu=0, where u satisfies the usual analyticity assumptions, by
approximating L with a k-th order finite-difference scheme. Fitting an (N+1)-parameter BWLER via
t steps of gradient descent on this discretized operator yields

∥u−u(t)
N ∥∞ ≤ O(ρ−N )︸ ︷︷ ︸

expressivity gap

+ Õ
(
N−(k+1−d)

)︸ ︷︷ ︸
bias/misspecification gap

+Õ
(
e−t/κ(N)2

)
︸ ︷︷ ︸

optimization gap

, (5)

where ρ > 1 only depends on the function smoothness, and κ(N) is the condition number of the
discretized operator.

In Equation (5), the expressivity gap is the standard Cheybshev approximation bound (Theorem 2.2), the
misspecification gap comes from the order of the finite-difference approximation [13], and the optimiza-
tion gap is the standard gradient descent convergence rate on least squares [5]. Refer to Theorem D.8
and Appendix D for a formal theorem statement and proof.

Two precision-conditioning tradeoffs directly emerge from Theorem 5.1:

• Expressivity vs. optimization. The conditioning of order-d derivatives with spectral differentiation
scales as O(N2d) [32]. Decreasing the expressivity gap relies on increasing N , but this necessarily
worsens the problem’s conditioning and convergence rate.

• Misspecification vs. optimization. One way to improve the problem’s conditioning is to try
alternate derivative formulations, e.g. finite-difference schemes instead of spectral differentiation.
Although FD matrices are better-conditioned (for 3-point stencils, O(Nd) instead of O(N2d) [13]),
the misspecification gap increases in turn.
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We note that a similar decomposition can be stated for nonlinear problems with standard PINNs, but a
precise analysis of the precision-conditioning tradeoff is challenging [20, 28].

Training techniques towards efficient, high precision training. To navigate the precision-
conditioning tradeoff, we combine the following three techniques:

• Nyström-Newton-CG (NNCG) [31]. NNCG is a second-order method that approximates the
Newton step using a low-rank Nyström approximation to the Hessian. We tune the preconditioner
rank and the number of CG iterations per Newton step to control the convergence rate.

• Derivative quality tuning. BWLER allows us to freely swap out different derivative computation
methods. We experiment with spectral derivatives and finite differences where we vary the stencil
size (e.g. 3-point stencil yields a 1st-order approximation, while a global stencil recovers the spectral
derivative). See Appendix B for implementation details.

• Multi-stage training. Since BWLER is parameterized directly via its values on a discrete grid, we
can warm-start training using any pretrained PINN (including another BWLER or a standard MLP).

High precision solutions to benchmark PDEs. Table 2 reports final ℓ2 relative errors (L2RE) across
five benchmark PDEs. On the convection, reaction, and wave equations, explicit BWLER achieves
(near-)machine-precision solutions: 8–10 orders of magnitude improvements relative to the L2RE of
PINNs reported in the literature. On Burgers’ and an irregular-geometry Poisson problem, explicit
BWLER matches the precision of prior state-of-the-art PINNs. Appendix C.2 provides implementation
details, training diagnostics, and problem-specific strategies used to achieve these results.

We note that our results are not time- or parameter-matched: see Appendix C.2 for details. We view our
results as a proof-of-concept: they show that machine-precision solutions are in fact possible within
the PINN framework, but high precision requires careful codesign of models and optimizers, with the
precision-conditioning tradeoff in mind. We also note that existing training techniques (e.g. NTK loss
reweighting, temporal causality [37]) are complementary to our approach and likely could be leveraged
to speed up training.

L2RE ↓ SOTA (from literature) Explicit BWLER

Convection (c=40) 1.94×10−3 [31] 2.04×10−13 (9.51×109×)

Convection (c=80) 6.88×10−4 [37] 1.10×10−12 (6.25×108×)

Wave 1.27×10−2 [31] 1.26×10−11 (1.00×109×)

Reaction 9.92×10−3 [31] 6.94×10−11 (1.43×108×)

Burgers (1D-C) 1.33×10−2 [16] 4.63×10−3 (2.87×)

Poisson (2D-C) 1.23×10−2 [16] 1.08×10−2 (1.14×)

Table 2: L2 relative errors (L2RE) on benchmark PDEs problems. SOTA column reports (to our
knowledge) the best results from the literature. Note: results are not time- or parameter-matched.

6 Conclusion

Discussion. Our results demonstrate that incorporating barycentric interpolants into the PINN
framework dramatically improves attainable precision while maintaining the flexibility to handle
diverse PDEs and complex geometries. On 1-D interpolation tasks, explicit BWLER models recover
spectral convergence, reaching relative errors near 10−12. BWLER-hatted MLPs, our drop-in variant,
similarly boost precision by up to 10,000× over standard MLPs (Figure 2). On PDE benchmarks,
BWLER-hatted MLPs boost the precision of standard PINNs by up to 1800× (Table 1). Using a
second-order optimizer, we reach near-machine precision for convection, reaction, and wave equations
(between 10−13–10−11), 8–10 orders of magnitude better than prior state-of-the-art. To our knowledge,
this is the first instance of a PINN reaching machine-precision solutions even on 2-D problems.

Limitations. Despite these gains in precision, several limitations remain. First, the runtime cost
of training is substantial. Because of their ill-conditioned loss landscapes, explicit BWLERs require
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significantly longer to train than both traditional numerical solvers and prior PINN architectures.
Although our results establish a new precision ceiling for PINNs, they do not yet outperform classic
numerical methods in terms of precision per unit time. Second, BWLER thrives on PDEs with smooth
solutions but performance deteriorates on stiff PDEs with sharp features or on irregular domains, settings
where spectral methods traditionally struggle. Finally, our use of explicit grids may pose scalability
challenges in higher-dimensional problems, where mesh-free methods often hold an advantage.
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A Related work

A.1 High-precision machine learning for PDEs

The difficulty of achieving high precision in machine learning for scientific applications is well-
documented: despite progress from the scientific ML community in recent years, traditional numerical
methods still outperform existing PDE learning approaches in precision, even on simple benchmark
problems [26]. We are not aware of any physics-informed neural network approaches that obtain
machine-precision solutions, even on standard 2-D linear PDE benchmarks.

Recent work in the PINN literature has explored architectural modifications, addressed optimization
challenges, and proposed specialized training strategies [22, 37, 31]. The inherent precision limitations
of existing ML architectures is comparatively underexplored. [27, 38] focus on the regression setting
using MLPs and propose alternate training recipes towards higher precision. [24] identifies precision
bottlenecks resulting from the Transformer architecture and standard LR schedulers in the setting of
least squares.

Unlike prior work that focuses primarily on studying either PDE optimization or model architecture, in
this paper we attempt to study both jointly:

• We demonstrate that the MLP parameterization of standard PINNs limits precision in the
simple setting of 1-D function approximation, even without the additional challenges of PDE
constraints (Section 3).

• We propose BWLER, which decouples model parameterization from derivative computation
(Section 4). This allows us to separately study the precision limitations induced by the model
versus the PDE conditioning.

• Using BWLER, we detail an explicit tradeoff between precision and conditioning in the linear
PDE setting (Theorem 5.1). Along the way, we provide empirical evidence that our barycentric
interpolants represent a simple yet surprisingly effective baseline parameterization for high-
precision PDE learning; they achieve the high precision of traditional spectral methods
on benchmark PDEs with smooth solutions, while maintaining compatibility with physics-
informed frameworks (Tables 1, 2).

A.2 Hybrid approaches: combining PINNs with numerical methods

Recent work has explored integrating classical numerical techniques with machine learning-based
PDE solvers to improve robustness, accuracy, and convergence. We highlight two relevant approaches:

• Time-marching with PINNs. Recent works attempt to embed numerical solvers directly
into the training loop of PINNs, most commonly in handling time-dependent PDEs. For
example, [22, 37] propose to divide the time domain into multiple subdomains and per-
form curriculum learning within a PINN framework to boost performance. Another set
of approaches [9, 2, 10] directly incorporate time-stepping via classical integrators (e.g.,
Runge–Kutta) within a neural network framework to stabilize temporal dynamics, especially
for stiff or chaotic systems.

• ODIL. The ODIL framework [18, 19] formulates PDE learning as the minimization of
discretized residuals over mesh-based domains, preserving the structure and sparsity of finite
volume and finite difference discretizations while enabling gradient-based optimization with
neural networks.
Like ODIL, our method also reintroduces an explicit grid under the hood of a physics-informed
learning framework, but BWLER differs in two ways. (1) Just as ODIL exactly embeds finite
volume and finite difference methods into an auto-differentiable ML setup, BWLER respec-
tively embeds pseudo-spectral methods into physics-informed learning. This means that
unlike the lower-precision PDE discretizations of finite differences, BWLER leverages the
spectral convergence of polynomial approximation on smooth functions. (2) Additionally,
BWLER can be flexibly treated both as a self-standing architecture or as an additional layer
that goes atop existing PINN architectures.
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A.3 Spectral methods and barycentric interpolation

Classical spectral methods, including Chebyshev and Fourier-based solvers, have long been used for
high-accuracy PDE solutions on regular domains [4, 32]. These methods excel when the solution
is smooth and the domain is simple, offering exponential convergence rates in both function and
derivative approximation. Spectral element methods [8] extend these ideas to complex geometries by
combining high-order accuracy with domain decomposition, and remain state-of-the-art in areas like
fluid dynamics where both precision and geometric flexibility are critical [15, 39].

Recent frameworks like Chebfun [1] have revived interest in spectral approaches by enabling function-
level computation with near-machine precision. Barycentric Lagrange interpolation [3] provides a
numerically stable alternative to classical polynomial bases and serves as the foundation for many
pseudo-spectral techniques. Our work is, to our knowledge, the first to integrate barycentric interpola-
tion directly into a physics-informed learning framework.

Our approach closely parallels classical pseudo-spectral methods while introducing key flexibilities
from the machine learning paradigm. Like traditional pseudo-spectral solvers, we represent the solution
via its values at Chebyshev nodes, and we compute high-precision derivatives spectrally. However,
BWLER additionally inherits the generality of the physics-informed paradigm:

• Modern optimization and auto-differentiation. BWLER seamlessly integrates with auto-
differentiation frameworks on GPU-accelerated hardware. Instead of using classical iterative
solvers, we can leverage ML optimizers such as Adam [21], L-BFGS [23], and NNCG [31].

• Flexible derivative computation. While classical solvers typically rely on differentiation
matrices, BWLER allows switching between spectral (FFT-based) and finite difference
derivatives to match the problem structure. See Appendix B for details.

• Support for irregular geometries. BWLER’s barycentric formulation accommodates non-
rectangular domains and complex boundary conditions using the least-squares framework of
physics-informed learning. This avoids the manual domain transformations that traditional
spectral methods need [4, 8].
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B Method

In this section, we provide more details about the implementation of the BWLER architecture and
training.

B.1 BWLER architecture

We provide full algorithmic details of the BWLER architecture. We first focus on the 1-D case before
generalizing to higher dimensions. The core components are:

• Chebyshev setting (1-D, non-periodic). We describe barycentric interpolation and spectral
differentiation using the Chebyshev-Gauss-Lobatto grid. This forms the foundation for
interpolation and differentiation in non-periodic domains.

• Fourier setting (1-D, periodic). For periodic boundary conditions, we instead use Fourier
nodes and basis functions. We describe both interpolation and differentiation with trigono-
metric polynomial interpolants.

• Finite difference matrices. As an alternative to spectral differentiation, we optionally use
finite difference (FD) methods with Fornberg’s algorithm to generate sparse banded derivative
matrices.

• Domain transformation. All 1-D methods assume canonical domains ([−1,1] for Chebyshev;
[0,2π] for Fourier), but are extended to arbitrary physical domains via affine coordinate maps.

• Higher-dimensional extension. We extend all components to multiple dimensions using
tensor-product constructions, which factorize evaluation and differentiation along each axis.

This appendix provides explicit pseudocode for each of the above settings and highlights the computa-
tional properties relevant to their use in PINN frameworks.

B.1.1 Chebyshev setting, non-periodic

Evaluation. We begin with interpolation on the canonical Chebyshev-Gauss-Lobatto (CGL) grid.
We consider interpolating a 1-D function f : [−1,1]→R. Let

xj=cos
(

jπ
N

)
, wj=(−1)j

{
1
2 , j∈{0,N},
1, otherwise,

j=0,...,N.

Then for any query x∈ [−1,1], we recall the barycentric formula (Equation (3)) gives

fθ(x)=

N∑
j=0

wjfj
x−xj

N∑
j=0

wj

x−xj

.

Algorithm 2 represents a pseudocode description of the barycentric formula, which is how BWLER im-
plements the evaluation operation required for the physics-informed framework.
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Algorithm 2 BARYINTERP: Chebyshev barycentric interpolation

1: Input: x∈ [−1,1]; node values {fj}Nj=0

2: Output: interpolated value fθ(x)

▷ Compute CGL nodes and weights (if not precomputed)
3: for j=0 to N do
4: xj←cos

(
jπ
N

)
5: wj←(−1)j×

(
1
2 if j∈{0,N} else 1

)
▷ Handle exact node case

6: for j=0 to N do
7: if x=xj then
8: return fj

▷ Accumulate barycentric sums

Nsum←
N∑
j=0

wjfj
x−xj

, Dsum←
N∑
j=0

wj

x−xj

Return fθ(x)=
Nsum

Dsum

Differentiation. We compute first-order derivatives at the Chebyshev nodes inO(N logN) via the
FFT. Algorithm 3 represents a pseudocode implementation of BWLER’s differentiation operation.

Algorithm 3 CHEBFFTDERIVATIVE: spectral derivative at CGL nodes

1: Input: node values u=(u0,...,uN )
2: Output: derivative d=

(
f ′(x0),...,f

′(xN )
)

▷ Mirror data (even extension)

V ←
[
u0,u1,...,uN ,uN−1,...,u1

]
▷ Forward FFT

V̂ ← FFT(V )

▷ Differentiate in frequency space
3: for k=0 to 2N−1 do

4: keff←
{
k, k≤N,

k−2N, k>N,

5: Ŵk← ikeff V̂k

▷ Inverse FFT
W ← IFFT(Ŵ )

▷ Chain-rule correction
6: for j=1 to N−1 do
7: dj←−Wj /

√
1−x2

j

8: d0←
∑N

n=0n
2ûn, dN←

∑N
n=0(−1)n+1n2ûn

Return d
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B.1.2 Fourier setting, periodic

For periodic domains, we use N equispaced nodes

xj=
2πj

N
, j=0,...,N−1,

instead of Chebyshev-Gauss-Lobatto nodes. We consider interpolating a 1-D function f : [0,2π]→R.
To do so, we represent f by its discrete Fourier series.

Evaluation. For a trigonometric interpolant on equispaced nodes, evaluation can be performed using
the FFT. We provide a pseudocode implementation in Algorithm 4.

Algorithm 4 FOURIERINTERP: trigonometric interpolation

1: Input: query point x∈ [0,2π]; node values {fj}N−1
j=0

2: Output: interpolated value fθ(x)

▷ Precompute grid
3: for j=0 to N−1 do
4: xj← 2πj

N

▷ Compute Fourier coefficients
f̂ ← FFT

(
{fj}

)
/N

▷ Evaluate interpolant

fθ(x) =

N−1∑
k=0

f̂ke
ikx

Return fθ(x)

Differentiation. To perform differentiation on equispaced nodes, we define an explicit differentiation
matrix, following [32]. Specifically, the Fourier differentiation matrix on N equispaced points
xj=2πj/N is defined as:

(DN )ij =


0, i=j,

(−1)i−j

2
cot

(
π(i−j)

N

)
, i ̸=j.

(6)

We provide a pseudocode implementation of differentiation for trigonometric interpolants in Algo-
rithm 5.

Algorithm 5 FOURIERDERIVATIVEMATRIX: periodic derivative via explicit matrix

1: Input: node values u=(u0,...,uN−1)
▷ on equispaced grid xj=2πj/N

2: Output: derivatives d=(f ′(x0),...,f
′(xN−1))

▷ Assemble Fourier differentiation matrix (Equation (6))
3: for i=0 to N−1 do
4: for j=0 to N−1 do
5: if i=j then
6: (D)ij←0
7: else
8: (D)ij← (−1)i−j

2 cot
(π(i−j)

N

)
▷ Apply matrix to values

d←Du

Return d
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B.1.3 Finite–difference differentiation matrices

For arbitrary node distributions {xj}Nj=0, we employ Fornberg’s algorithm [13] to construct a sparse,
banded matrix D(m,k) ∈ R(N+1)×(N+1) that approximates the m-th derivative using a stencil of
half-bandwidth k. The entries satisfy

(D(m,k)u)i =

min(N,i+k)∑
j=max(0,i−k)

w
(m)
ij uj ,

and yield O(h2k−m) accuracy on non-uniform grids. In the periodic setting, we recover the standard
finite difference stencils on equispaced nodes.

The algorithm for performing differentiation using finite difference instead of spectral derivatives is
outlined in pseudocode in Algorithm 6.

Algorithm 6 FDDERIVATIVEMATRIX: Fornberg finite-difference derivative

1: Input: node locations {xj}Nj=0, values u∈RN+1, derivative order m, half-bandwidth k

2: Output: d=(f (m)(x0),...,f
(m)(xN ))

▷ Build differentiation matrix via Fornberg’s method
3: D(m,k)←FornbergMatrix({xj},m,k) [13]

▷ Apply to node values
4: d←D(m,k)u

Return d

B.1.4 Domain transformation to arbitrary intervals

All of the above 1-D formulas assume canonical domains ([−1,1] for Chebyshev, [0,2π] for Fourier).
To handle a physical interval [a,b], we apply an affine map x 7→ x̃:

x̃=


2(x−a)
b−a

−1, Chebyshev,

2π(x−a)
b−a

, Fourier.

All node locations, weights, and differentiation matrices are computed in x̃-space, and final function
values or derivatives are re-mapped to the physical coordinate x. This preserves both the interpolation
accuracy and spectral convergence properties on arbitrary intervals. We note that we must account for
the rescaling factor when mapping function values to and from the physical and canonical domains.

B.1.5 Extension to higher dimensions

Let x=(x1,...,xd)∈Ω⊂Rd. We construct a tensor-product interpolant:

f(x)=

N1∑
j1=0

···
Nd∑

jd=0

fj1,...,jd

d∏
ℓ=1

ϕ
(ℓ)
jℓ

(xℓ),

where each ϕ(ℓ) is the 1-D Chebyshev or Fourier barycentric basis on the ℓ-th axis. Evaluation and
differentiation factorize along each dimension:

∂k1
x1
···∂kd

xd
f(x)=

∑
j1,...,jd

fj1,...,jd

d∏
ℓ=1

(
ϕ
(ℓ)
jℓ

)(kℓ)(xℓ).

Thus, in practice, BWLER applies the 1-D interpolation or derivative operators sequentially (or,
for differentiation matrices, via Kronecker-product routines) to achieve efficient interpolation and
differentiation in higher dimensions.
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B.2 Training

Our training algorithm consists of two key components: the optimizer for updating model parameters
and the scheme for selecting collocation points where PDE constraints are enforced.

Optimizer. We experiment with two different optimizers:

• Adam [21]: The standard first-order optimizer in deep learning. By default, we use an initial
learning rate of 10−3 with cosine decay learning rate schedule with a minimum learning rate
of 10−6.

• Nyström-Newton CG [31]: A specialized second-order method designed for PINNs that
approximates the Hessian using Nyström sampling. We use the default hyperparameters
from Rathore et al. [31] except for the rank of the preconditioner and the number of CG steps
per Newton update, which we tune per problem. See Appendix C.2 for problem-specific
hyperparameters.

Collocation scheme. For selecting collocation points where the PDE residual is enforced, we explore
two strategies:

• Random sampling. Following standard PINN practice, we sample collocation points at each
iteration. We compare two distributions:

– Uniform sampling on [−1,1]: x∼Unif([−1,1])
– Chebyshev-weighted sampling: x=cos(θ) where θ∼Unif([0,π]), which has density
∝1/
√
1−x2

We default to the latter as it matches the node distribution in the model parameterization.
• Fixed nodal collocation. Unlike traditional PINNs which require dense sampling to ensure

the PDE holds everywhere, our polynomial representation allows us to enforce the PDE only
at the Chebyshev nodes {xj}Nj=0.

We find that nodal collocation suffices for the benchmark PDE problems we consider in this work.
See Appendix C.2 for more details about hyperparameters for specific experiments.

L2 Relative Error Formula. For assessing the quality of interpolants and PDE solutions of all
models used in this paper we leverage the standard ℓ2 relative error (L2RE):

L2RE(fθ,f)=
∥fθ−f∥2
∥f∥2

=

√√√√∑Ntest
i=1 (fθ(xi)−f(xi))

2∑Ntest
i=1f(xi)2

. (7)
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C Additional experimental details

C.1 1-D Interpolation

Here, we describe the experimental setup for our 1-D interpolation experiments (Section 3).

C.1.1 Task description

To study interpolation across functions of varying smoothness, we consider sinusoids f(x)=sin(kx),
x∈ [−1,1], with varying frequency k. These serve as a controlled test case for examining how model
precision scales with oscillatory complexity. We vary k∈{1,2,4,8,16,32}. For each target function,
we generate a training set of Ntrain=100 points sampled uniformly at random from the domain, and
evaluate on a dense equispaced test grid of Ntest=1000 points. We run our interpolation experiments
over five seeds, and report the median three results.

C.1.2 Model architecture and optimizer details

We compare standard MLPs, BWLER-hatted MLPs, and explicit BWLERs on the 1-D interpolation
task. We train all models to minimize MSE using the Adam optimizer and use a cosine decay learning
rate scheduler with a minimum learning rate of 10−6.

Standard MLPs We use fully-connected MLPs with tanh activations. We sweep network widths
within {24,...,28} and depths from 2−8 layers. We choose our initial learning rate by sweeping LR for
the smallest MLP, and adjust the LR for larger MLPs by decreasing the initial learning rate by

√
ab

whenever we scale up the width by a factor of a× and the depth by a factor of b×. Our base LR for the
smallest MLP is 0.05.

BWLER-hatted MLPs We apply our BWLER-hats atop standard fully-connected MLPs with
tanh activations, with width 256 and 3 hidden layers. We evaluate how precision scales with N , the
number of nodes in the BWLER-hat, as we vary N ∈{20,...,26}. We use an initial LR of 0.05 for our
BWLER-hatted MLPs.

Explicit BWLERs As with BWLER-hatted MLPs, we sweep N ∈ {20,...,26} and evaluate the
precision scaling. We use an initial LR of 0.01 for all our explicit BWLERs.

C.1.3 Chebyshev least squares

As a classical baseline for function interpolation, we fit Chebyshev polynomials via least squares
regression. Given a target function f , we construct a design matrix A∈RNtrain×(d+1), where each row
contains the values of the first d+1 Chebyshev polynomials T0(x),...,Td(x) evaluated at a training
point xi. We then solve the linear system Ac≈ f in the least-squares sense, where c∈Rd+1 are the
polynomial coefficients. Note that this baseline performs polynomial interpolation in coefficient space,
whereas explicit BWLER performs polynomial interpolation in value space [33].

We implement this using NumPy’s numpy.polynomial.chebyshev.chebfit function to fit the
coefficients on the training data, and chebval for evaluation on the test grid. This provides an efficient
and numerically stable method for approximating smooth functions, and serves as a reference for
assessing model convergence in Section 3. Interestingly, we find that as the least squares problem
becomes more ill-conditioned (i.e. as the degree of the polynomial N approaches the dataset size M ),
our explicit BWLER sometimes outperforms the least squares baseline on the test data (Figure 4). We
attribute this to the early-stopping regularization effect of gradient descent on ill-conditioned least
squares [5].
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Figure 4: Comparison of standard MLPs, BWLER-hatted MLPs, and explicit BWLERs on 1-D
interpolation with the target functions f(x) = sin(kx). From top to bottom: k = 1,2,4,16,32.
Chebyshev least squares baseline plotted in dotted line on rightmost plots.

C.2 PDEs

C.2.1 Benchmark problems

We perform our experiments on five benchmark PDE problems from prior work:

Convection Equation. The one-dimensional convection equation is a first-order hyperbolic PDE
commonly used to model phenomena in fluids, physics, and biology. We use the problem formulation
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from Rathore et al. [31] and Wang et al. [37]:
∂u

∂t
+c

∂u

∂x
=0, x∈(0,2π),t∈(0,1),

u(x,0)=sin(x), x∈ [0,2π],
u(0,t)=u(2π,t), t∈ [0,1].

The analytical solution is u(x,t)=sin(x−ct), where we set c=40,80 in our experiments.

Reaction Equation. The one-dimensional reaction equation is a non-linear ODE that models chemi-
cal reactions. We use the problem formulation from Rathore et al. [31]:

∂u

∂t
−ρu(1−u)=0, x∈(0,2π),t∈(0,1),

u(x,0)=exp

(
− (x−π)2

2(π/4)2

)
, x∈ [0,2π],

u(0,t)=u(2π,t), t∈ [0,1].

The analytical solution is u(x,t) = h(x)eρt

h(x)eρt+1−h(x) , where h(x) = exp
(
− (x−π)2

2(π/4)2

)
and ρ=5 in our

experiments.

Wave Equation. The one-dimensional wave equation is a second-order hyperbolic PDE that models
wave propagation. We use the problem formulation from Rathore et al. [31]:

∂2u

∂t2
−4∂

2u

∂x2
=0, x∈(0,1),t∈(0,1),

u(x,0)=sin(πx)+
1

2
sin(βπx), x∈ [0,1],

∂u(x,0)

∂t
=0, x∈ [0,1],

u(0,t)=u(1,t)=0, t∈ [0,1].

The analytical solution is u(x,t) = sin(πx)cos(2πt)+ 1
2 sin(βπx)cos(2βπt), where β = 5 in our

experiments.

Burgers’ Equation. The one-dimensional viscous Burgers’ equation is a nonlinear PDE often used
as a prototype for modeling shock waves. We follow the problem formulation from Hao et al. [16]:

∂u

∂t
+u

∂u

∂x
=ν

∂2u

∂x2
, x∈(−1,1), t∈(0,1),

u(x,0)=−sin(πx), x∈ [−1,1],
u(−1,t)=u(1,t)=0, t∈ [0,1].

We use ν= 0.01
π in our experiments.

Poisson Equation. We consider the Poisson equation

−∆u=0,

on an irregular domain with four circular holes, following the setup in Hao et al. [16]. The domain is
defined as a square with four circular cutouts:

Ω=Ωrec\
⋃
i

Ri, where Ωrec=[−0.5,0.5]2,

and the four circles are:

R1={(x,y) : (x−0.3)2+(y−0.3)2≤0.12},
R2={(x,y) : (x+0.3)2+(y−0.3)2≤0.12},
R3={(x,y) : (x−0.3)2+(y+0.3)2≤0.12},
R4={(x,y) : (x+0.3)2+(y+0.3)2≤0.12}.
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The boundary conditions are:

u=0, x∈∂Ri,

u=1, x∈∂Ωrec.

C.2.2 Results with BWLER-hatted MLPs

Experiment setup.

• Benchmark PDE problems. We compare standard MLPs vs. BWLER-hatted MLPs vs.
explicit BWLERs on the convection, reaction, and wave equation benchmarks from Rathore
et al. [31]. Details are described in Appendix C.2.1.

• Model settings. All the MLPs we use for the standard and BWLER-hatted MLP exper-
iments use 3 layers and a hidden dimension of 256. The BWLER-hatted MLPs and ex-
plicit BWLER models use the problem-specific BWLER hyperparameters described in Ap-
pendix C.2.3.

• Optimization settings. We train all models using Adam [21] for 106 iterations. We use an initial
learning rate of 10−3 and a cosine annealing learning rate schedule with a minimum learning
rate of 10−6. We use the standard momentum hyperparameters (β1,β2)=(0.9,0.999).

Figure 5: Standard MLP vs. BWLER-hatted MLP vs. explicit BWLER, evaluated on the reaction
equation. For all models, we train for 106 iterations with Adam.
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Figure 6: Standard MLP vs. BWLER-hatted MLP vs. explicit BWLER, evaluated on the wave equation.
For all models, we train for 106 iterations with Adam.

BWLER inherits the shortcomings of spectral methods. Although BWLER can be flexibly applied
to problems with complex boundary conditions and irregular domains, like standard PINNs, we do not
expect BWLER-hatting to provide a consistent boost in performance across all PDE problems. Since
BWLER’s performance guarantees depend on the smoothness of the target function, like standard
polynomial approximation methods, it exhibits similar shortcomings to spectral solvers.

To highlight this, we compare the performance of a standard MLP vs. a BWLER-hatted MLP and
explicit BWLER on Burgers’ equation, commonly used as a toy problem for shock capturing. This
is an adversarial test problem for spectral methods, as the solution is nearly discontinuous; standard
results about polynomial approximation imply approximation error should converge as O(1/N) [33],
where N is the number of nodes used in BWLER. We note that our explicit BWLER is equivalent
to treating the 1+1D Burgers’ equation spectrally in both space and time. This is unorthodox and
suboptimal; a more standard approach is treating space spectrally and performing time marching, e.g.
via Exponential Time Differencing [11].

We provide the results in Table 3, alongside the results for the convection, reaction, and wave equations
from Table 1 for comparison. We train with 106 iterations of Adam for all methods. We indeed
find that BWLER’s global treatment of the solution boosts performance for smooth solutions, like
the convection, reaction, and wave equations, but worsens performance for the nearly-discontinuous
solution of Burgers’ equation.

L2RE ↓ MLP BWLER-hatted MLP BWLER

Convection 1.14×100 3.91×10−2 (29.2×) 4.07×10−4 (2800×)

Reaction 4.02×10−3 3.91×10−4 (10.3×) 7.10×10−2 (0.057×)

Wave 5.22×10−1 2.88×10−4 (1800×) 9.99×10−1 (0.52×)

Burgers’ 4.99×10−3 2.43×10−1 (0.021×) 9.49×10−1 (0.005×)

Table 3: L2 relative errors (L2RE) on benchmark PDEs: convection, reaction, and wave equations
from Rathore et al. [31], and Burgers’ equation from Hao et al. [16]. Multiplicative improvements (in
parentheses) are relative to the MLP baseline, where a factor less than 1 means a worse performance
than the standard MLP. All models are trained with Adam for 106 iterations.
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Ablation: effect of BWLER-hatted MLP evaluation and differentiation. Note that when applying
BWLER-hatting to an MLP, we can independently choose to use either BWLER’s or the standard MLP’s
evaluate and differentiate operations. By default, our BWLER-hatted MLPs use BWLER for both
evaluation and differentiation when solving PDEs. Here, we ablate the effect of two BWLER-hatted
MLP variants:

• BWLER-hatted MLP, forward only. Uses BWLER’s interpolation for evaluation but auto-
differentiation of the MLP parameterization for the PDE derivatives.

• BWLER-hatted MLP, derivative only. Uses the standard MLP forward pass for evaluation but
spectral derivatives from BWLER for the PDE derivatives.

We compare to the standard BWLER-hatted MLP, which uses BWLER for both evaluation and
differentiation.

We evaluate on the convection equation from Rathore et al. [31], where the standard MLP only
recovers a single oscillation of the true PDE solution, but the standard BWLER-hatted MLP recovers a
qualitatively correct global solution (Table 1). Interestingly, we find both variants of BWLER-hatting,
forward only and derivative only, fail to recover the global solution that the standard BWLER-hatted
MLP does. This result supports our hypothesis that BWLER-hatting improves the ill-conditioning of
the loss landscape by enforcing global consistency. The locality of the MLP, even when used only for
evaluation alone or for differentiation alone, appears to disturb this effect, causing the ablation variants
to converge to suboptimal local minima just like the standard MLP.

L2RE ↓ MLP
BWLER-hatted

MLP (full)
BWLER-hatted

MLP (forward only)
BWLER-hatted

MLP (deriv only)

Convection 1.14×100 3.91×10−2 (29.2×) 9.59×10−1 (1.19×) 9.59×10−1 (1.19×)

Table 4: L2 relative errors (L2RE) of standard MLP and BWLER-hatted MLP variants on convection
PDE from Rathore et al. [31]. Multiplicative improvements (in parentheses) are relative to the MLP
baseline. All models are trained with Adam for 106 iterations.
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Hessian spectral density plots. Here, we include plots of the Hessian spectral density as described
in Section 5.1. We compare standard MLPs, BWLER-hatted MLPs, and explicit BWLERs on the
convection, reaction, and wave equations, trained for 106 iterations with Adam (Table 1). After
training, we take the final trained models and approximate the Hessian spectral density for each using
PyHessian [40]; it implements the stochastic Lanczos algorithm and uses Hessian-vector products.

We find that BWLER-hatting reduces the maximum eigenvalue by 10× and the mean eigenvalue by
5–10× on the reaction and wave equations (Figure 8, Figure 9). This supports our hypothesis that
BWLER’s evaluate and differentiate operations, which depend globally on function values across the
full domain, induce a less ill-conditioned loss landscape.

Interestingly, we find that BWLER-hatting worsens the conditioning on the convection equation
compared to the standard MLP (Figure 7) – but this is because the standard MLP converges to a
suboptimal local minima which is surprisingly effective at minimizing the PINN loss. See Figures 10
and 1 for visualizations.

Figure 7: Hessian spectral density for the convection equation.

Figure 8: Hessian spectral density for the reaction equation.

Figure 9: Hessian spectral density for the wave equation.
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Loss curves. We provide loss curves for the experiments comparing standard MLPs, BWLER-hatted
MLPs, and explicit BWLERs trained with Adam (Table 1).

Convection Equation.

Figure 10: Loss curves for standard MLP, BWLER-hatted MLP, and explicit BWLER trained with
Adam on convection equation with c=40 (Table 1).
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Reaction Equation.

Figure 11: Loss curves for standard MLP, BWLER-hatted MLP, and explicit BWLER trained with
Adam on reaction equation (Table 1).
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Wave Equation.

Figure 12: Loss curves for standard MLP, BWLER-hatted MLP, and explicit BWLER trained with
Adam on wave equation (Table 1).
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C.2.3 Results with explicit BWLERs

We describe the problem-specific BWLER architecture hyperparameter settings used in Tables 1, 2,
and the high-precision optimization settings for the five benchmark PDE problems in Table 2. For
each problem, we provide the loss curves, final learned solutions, and error residuals of the explicit
BWLER experiments from Table 2.

Convection Equation, c=40.

• Architecture. We use Nt = 81, Nx = 80, where we treat time with a Chebyshev basis and
space with a Fourier basis.

• High-precision optimization. We train with Nyström-Newton-CG for 350 steps, with a
preconditioner rank of 1000 and 100 CG iterations per step. On an A100, the total training
takes about 5 minutes (about 1.2 iterations per second).

Figure 13: Loss curves for explicit BWLER trained with NNCG on convection equation with c=40
(Table 2).

Figure 14: Explicit BWLER’s learned solution and error residual on convection equation with c=40
(Table 2).
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Convection Equation, c=80.

• Architecture. We use Nt=161, Nx=160, where we treat time with a Chebyshev basis and
space with a Fourier basis.

• High-precision optimization. We train with Nyström-Newton-CG for 2500 steps, with a
preconditioner rank of 1000 and 100 CG iterations per step. On an A100, the total training
takes about 30 minutes (about 1.4 iterations per second).

Figure 15: Loss curves for explicit BWLER trained with NNCG on convection equation with c=80
(Table 2).

Figure 16: Explicit BWLER’s learned solution and error residual on convection equation with c=80
(Table 2).
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Reaction Equation.

• Architecture. We use Nt=Nx=81, where we treat both time and space with a Chebyshev
basis.

• High-precision optimization. We train with Nyström-Newton-CG for 250,000 steps, with a
preconditioner rank of 16 and 16 CG iterations per step. On an A100, the total training takes
about 8.5 hours (about 8.2 iterations per second).

Figure 17: Loss curves for explicit BWLER trained with NNCG on reaction equation (Table 2).

Figure 18: Explicit BWLER’s learned solution and error residual on reaction equation (Table 2).
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Wave Equation.

• Architecture. We use Nt=Nx=41, where we treat both time and space with a Chebyshev
basis.

• High-precision optimization. We train with Nyström-Newton-CG for 200 steps, with a
preconditioner rank of 1000 and 1000 CG iterations per step. On an A100, the total training
takes about 42 minutes (about 12.5 seconds per iteration).

Figure 19: Loss curves for explicit BWLER trained with NNCG on wave equation (Table 2).

Figure 20: Explicit BWLER’s learned solution and error residual on wave equation (Table 2).
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Burgers’ Equation.

• Architecture. We use Nt=Nx=321, where we treat both time and space with a Chebyshev
basis. For the experiments in Table 1, we use spectral derivatives in both space and time. For
the experiment in Table 2, we use spectral derivatives in space, and finite difference derivatives
in time, using 1st-order, 3-point finite difference stencils.

• High-precision optimization. We train with Nyström-Newton-CG for 850 steps, with a
preconditioner rank of 1000 and 2000 CG iterations per step. On an A100, the total training
takes about 8.2 hours (about 35 seconds per iteration).

Figure 21: Loss curves for explicit BWLER trained with NNCG on Burgers’ equation (Table 2).

Figure 22: Explicit BWLER’s learned solution and error residual on Burgers’ equation (Table 2).
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Poisson Equation.

• Architecture. We use Nx=Ny=51, where we treat both dimensions with a Chebyshev basis.
• High-precision optimization. We train with Nyström-Newton-CG for 51,000 epochs with a

preconditioner rank of 1000 and 64 CG iterations per step. On an A5000, the total training
time is about 16 hours (about 1.2 seconds per iteration).

Figure 23: Loss curves for explicit BWLER trained with NNCG on Poisson equation (Table 2).

Figure 24: Explicit BWLER’s learned solution and error residual on Poisson equation (Table 2).
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D Theory

D.1 Formal statement and proof of Theorem 4.1

Definition D.1 (Interpolation and empirical Gram matrices). Fix the Chebyshev–Gauss–Lobatto
(CGL) nodes

xj=cos
(
jπ/N

)
, j=0,...,N,

and let {ℓj}Nj=0 be the corresponding Lagrange basis polynomials [33], defined by:

ℓj(x) =
∏

0≤k≤N
k ̸=j

x−xk

xj−xk
, j=0,...,N.

For any training set X̃={x̃i}Mi=1⊂ [−1,1], the interpolation matrix L∈RM×(N+1) is

Li,j = ℓj(x̃i).

Given a vector f={fj}Nj=0 of function values at the Chebyshev nodes, the evaluations of the degree-N

polynomial f(x)=
∑N

j=0fjℓj(x) at the training points satisfy
[
f(x̃1),...,f(x̃M )

]⊤
=Lf.

We also define the empirical value Gram matrix as:

GM
emp =

1

M
L⊤L.

Definition D.2 (Population (continuous) value Gram). The population Gram matrix is

Gpop =

[∫ 1

−1

ℓj(x)ℓk(x)
dx

2

]N
j,k=0

.

By exactness of Clenshaw–Curtis quadrature on the CGL nodes [33], Gpop=diag
(
wCC

0 ,...,wCC
N

)
,

where:

wCC
j =

{
π

(2N) j=0,N
π
N j=1,...,N−1,

so κ2(Gpop)=2.

Moreover, under uniform sampling, Gemp→Gpop (as M→∞) in spectral norm almost surely [35].
Lemma D.3 (Concentration of the empirical Gram). With Definitions D.1–D.2, fix 0< ε < 1 and
δ∈(0,1). There is a universal constant C>0 such that if

M ≥ C
(N+1)log2(N+1)log

(
(N+1)/δ

)
ε2

,

then with probability at least 1−δ,

(1−ε)Gpop ⪯GM
emp ⪯ (1+ε)Gpop, κ2(GM

emp)≤ 2
1+ε

1−ε
.

Proof. Each row ui=(ℓ0(x̃i),...,ℓN (x̃i)) of L satisfies

∥ui∥22 ≤ (N+1)Λ2
N ,

where ΛN , the Lebesgue constant, satisfies ([33, Thm. 16.1]):

ΛN = sup
x∈[−1,1]

N∑
j=0

|ℓj(x)|=O(logN).

Hence ∥ui∥22≤C ′(N+1)log2(N+1) for some constant C ′. By the matrix–Bernstein inequality [34],

∥Gemp−Gpop∥op ≤ ε

with probability ≥ 1− δ, provided M ≳ (N + 1) log2(N + 1) log((N + 1)/δ)/ε2. This implies
(1−ε)Gpop⪯Gemp⪯(1+ε)Gpop, and hence κ2(Gemp)≤2(1+ε)/(1−ε).
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We are now ready to state the full version of Theorem 4.1:
Theorem D.4 (Expressivity–optimization decomposition for interpolation with BWLER). Let f :
[−1,1]→R extend analytically to the Bernstein ellipse Eρ with ρ>1 and write Mf =maxz∈Eρ

|f(z)|.
Fix training nodes X̃ = {x̃i}Mi=1 ⊂ [−1, 1] and let L ∈ RM×(N+1) be the interpolation matrix
(Definition D.1). Define the condition number κ2(L) = λmax(L

⊤L)/λmin(L
⊤L) = κ(L)2 and the

CGL Lebesgue constant ΛN =supx∈[−1,1]

∑N
j=0|ℓj(x)|.

Initialize an (N+1)-parameter BWLER with parameters θ(0) = 0. Run t steps of gradient descent
on the loss functionL(θ)=M−1∥Lθ−fX̃∥22 with optimal step–size η=1/λmax(L

⊤L). Denote the
parameters of the t-th iterate BWLER polynomial by θ(t) and the polynomial itself byp(t)N :=pN (x;θ(t)).
Then for any training set:

∥f−p(t)N ∥∞ ≤
2Mf

ρN−1︸ ︷︷ ︸
expressivity

+∥θ⋆∥2ΛNexp
(
−t/κ2(L)

)︸ ︷︷ ︸
optimization

(†)

where θ⋆=(f(x0),...,f(xN ))⊤ interpolates f on the CGL nodes.

Proof. Gradient descent on the quadratic loss function yields ∥θ(t)−θ⋆∥2≤e−t/κ2(L)∥θ⋆∥2 [5]. For
any x∈ [−1,1]:

|p(t)N −p
∗
N |=

∣∣∣ N∑
j=0

(
θ
(t)
j −θ

⋆
j

)
ℓj(x)

∣∣∣
≤
( N∑
j=0

|ℓj(x)|
)
∥∆θ∥∞

≤ΛN∥∆θ∥2
≤ΛN∥θ⋆∥2e−t/κ2(L).

Taking the supremum in x and adding the standard Bernstein-ellipse expressivity bound (Theorem 2.2)
finishes the proof.

Corollary D.5 (Uniformly sampled nodes). Let 0<ε< 1
2 , δ∈ (0,1) and draw X̃ uniformly without

replacement from [−1,1]. If

M ≥ C(N+1)log2(N+1)log
(
(N+1)/δ

)
/ε2,

then by Lemma D.3, with probability≥1−δ:

κ2(L)≤2(1+ε)/(1−ε).

Inserting this in Equation (†) gives

∥f−p(t)N ∥∞≤
2Mf

ρN−1
+ΛN∥θ⋆∥2exp

(
−t 1−ε

2(1+ε)

)
.

Intuitively, Theorem D.4 and Corollary D.5 capture a precision-conditioning tradeoff involving N and
M :

• N too small (high bias). The expressivity term dominates, and error convergence is exponen-
tial (dependent on target function smoothness) as N increases.

• N ≪M but large. The empirical Gram is well conditioned (κ2(L) = O(1)) as soon as
M≳N log2N , so the training gap decreases exponentially.

• N+1=M random sampling (poor conditioning). When M=N+1 and the points {x̃i}
are drawn arbitrarily, L is square and generically invertible but has a condition number that
grows rapidly with N . As a result, gradient descent converges only at rate exp

(
−t/κ2(L)

)
with κ2(L)≫1, so achieving small training error requires a long training time, t≫κ2(L).
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D.2 Formal statement and proof of Theorem 5.1

We make the simplifying assumption that our collocation points for the PINN loss are chosen to be the
same Chebyshev–Gauss–Lobatto (CGL) nodes

xj=cos(jπ/N), j=0,...,N

as used in the BWLER parameterization. (This is the “fixed nodal collocation” scheme we describe
in Appendix B.) Define the Lagrange basis of the CGL nodes {ℓj}Nj=0, and let

ΛN = sup
x∈[−1,1]

N∑
j=0

|ℓj(x)|=O(logN)

be the Lebesgue constant [33].

Definition D.6 (Collocation matrix for a PDE). Given a linear differential operator

L=

d∑
α=0

aα(x)∂
α
x (8)

and its numerical surrogate L̃, define the square collocation matrix

Ãi,j=(L̃ℓj)(xi), b̃i=g(xi)(=Lu(xi)),

where the collocation points are the same CGL nodes xi. Also let κ2(Ã)=λmax(Ã
⊤Ã)/λmin(Ã

⊤Ã).

Definition D.7 (Operator mis-specification). For polynomials v of degree≤N , define:

εop(N) := sup
deg(v)≤N,∥v∥∞≤1

∥(L−L̃)v∥∞.

Intuitively, ϵop(N) represents the worst-case bias introduced by replacing the true differential operator
L with its numerical surrogate L̃.

We are now ready to state the full version of Theorem 5.1:

Theorem D.8 (Expressivity–bias–optimization decomposition for PDE learning with BWLER). Let
u : [−1,1]→R solve Lu= g with analytic data and extend analytically to the Bernstein ellipse Eρ

(ρ>1); set Mu=maxz∈Eρ
|u(z)|. Form the collocation system (Ã,̃b) from Definition D.6.

Initialize an (N+1)-parameter BWLER with parameters θ(0)=0 and run t steps of gradient descent
on the quadratic loss L(θ)= 1

N+1∥Ãθ− b̃∥22 using the optimal step size η=1/λmax(Ã
⊤Ã). Denote

the parameters of the t-th iterate by θ(t) and the resulting polynomial by

u
(t)
N (x)=

N∑
j=0

θ
(t)
j ℓj(x).

Moreover define

u∗(x) :=

N∑
j=0

u(xj)ℓj(x), ũ(x) :=

N∑
j=0

θ∗j ℓj(x),

where θ∗=argminθ∥Ãθ−b̃∥2. Then, when the collocation points coincide with the CGL grid:

∥u−u(t)
N ∥∞ ≤

2Mu

ρN−1︸ ︷︷ ︸
expressivity

+MuΛNεop(N)︸ ︷︷ ︸
bias/misspecification

+ΛN∥θ∗∥2exp
(
−t/κ2(Ã)

)︸ ︷︷ ︸
optimization

. (9)

Proof. 1. Expressivity term. This term accounts for the gap between the true solution to the true PDE,
u, and the best polynomial approximation to it, u∗. Let u∗ be the degree-N interpolant of the true
solution on CGL. Then Theorem 2.2 yields: ∥u−u∗∥∞≤2Mu/(ρ

N−1).
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2. Bias/misspecification term. This term accounts for the gap between the best polynomial ap-
proximation to the PDE solution, u∗, and the true solution to the numerical surrogate, ũ. At each
node,

ri=(L̃−L)u∗(xi), |ri|≤Muεop(N).

Hence ∥Ãθ∗−b̃∥∞=maxi|ri|, and interpolating these residuals off the grid gives

∥ũ−u∗∥∞ ≤ ΛNmax
i
|ri| ≤ ΛNMuεop(N).

3. Optimization term. This term accounts for the gap between the t-th iterate, u(t)
N , and the true

solution to the numerical surrogate PDE, ũ. Gradient descent on the quadratic loss function yields

∥θ(t)−θ∗∥2 ≤ exp
(
−t/κ2(Ã)

)
∥θ∗∥2.

For any x,

|u(t)
N −ũ(x)|=

∣∣∣ N∑
j=0

(θ
(t)
j −θ

∗
j )ℓj(x)

∣∣∣≤ΛN∥θ(t)−θ∗∥2,

so ∥ũ−u(t)
N ∥∞≤ΛN∥θ∗∥2e−t/κ2(Ã).

Combining the three bounds yields (9).

Corollary D.9 (Finite–difference surrogate of order k). Let L̃ replace each d-th derivative in L by a
k-th-order finite–difference stencil on the CGL grid [13]. Then

εop(N)=O
(
N−(k+1−d)

)
,

so Theorem D.8 yields

∥u−u(t)
N ∥∞ ≤

2Mu

ρN−1
+ Õ

(
N−(k+1−d)

)
+ΛN∥θ⋆∥2exp

(
−t/κ2(Ã)

)
.

Intuitively, Theorem D.8 and Corollary D.9 capture a precision–conditioning tradeoff involving the
accuracy of the derivative approximation:

• N too small (low precision ceiling). The expressivity term
2Mu

ρN−1
dominates. Even though

error decays exponentially in N , we use too few polynomial basis elements to resolve the
solution’s high-frequency features.

• Low–order finite differences (low precision ceiling, faster convergence). If L̃ uses a
kth–order stencil with k+1−d small, then the bias term

bias=MuΛNεop(N)=O
(
N−(k+1−d)logN

)
,

decays only algebraically and dominates.

• Spectral collocation (high precision ceiling, slower convergence). With L̃≈L and large
N , the optimization term ΛN∥θ∗∥2e−t/κ2(A) dominates. For a d-th order operator the CGL
collocation matrix has κ2(A) =O(N2d) [32], so GD converges at rate exp

(
−t/O(N2d)

)
,

requiring t≫N2d iterations.
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