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Abstract

In the recent studies of data augmentation of neural
networks, the application of test time augmentation
has been studied to extract optimal transformation
policies to enhance performance with minimum
cost. The policy search method with the best level
of input data dependency involves training a loss
predictor network to estimate suitable transforma-
tions for each of the given input image in indepen-
dent manner, resulting in instance-level transforma-
tion extraction. In this work, we propose a method
to utilize and modify the loss prediction pipeline
to further improve the performance with the cyclic
search for suitable transformations and the use of
the entropy weight method. The cyclic usage of
the loss predictor allows refining each input image
with multiple transformations with a more flexible
transformation magnitude. For cases where mul-
tiple augmentations are generated, we implement
the entropy weight method to reflect the data un-
certainty of each augmentation to force the final
result to focus on augmentations with low uncer-
tainty. The experimental results show convincing
qualitative outcomes and robust performance for
the corrupted conditions of data.

1 INTRODUCTION

Study of test time augmentation (TTA) is a field of data
augmentation, which involves transforming an input image
to augment different forms of itself for neural network pre-
diction during the test time. This generates multiple softmax
outputs, which can be integrated by averaging them to ex-
tract the final single output. Such a method has been known
to result in more robust and better performance from the
neural networks [Krizhevsky et al., 2012, Ashukha et al.,
2020]. Conventionally, which transformations to use are

heuristically set in global-level (i.e. performing the same
types of augmentation to all the input data) for the domain.

However, there are limitations for conventional TTA. The
major concern is the cost. TTA policy refers to the scheme
of how many augmentations of what transformations with
what magnitude for each augmentation would be utilized
[Molchanov et al., 2020]. While increasing the number of
augmentation in the policy usually results in better per-
formance, the cost requirement has to increase in a mul-
tiplicative manner. Because of such poor cost efficiency,
many TTA applications can be found in tasks where accu-
racy plays an important role, such as artificial intelligence
competitions and medical or biological image processing
[Krizhevsky et al., 2012, Perez et al., 2018, Matsunaga et al.,
2017, Moshkov et al., 2020].

Another concern involves the inflexibility of the policy.
While the suitable policy should maintain intra-class in-
variance (i.e. invariance of the label under transformation)
and inter-class distinctiveness (i.e. ability to maintain dis-
tinctive features to distinguish between classes) of input data
to the model [Sato et al., 2015, Shanmugam et al., 2020],
in conventional scheme, the policy is found heuristically
and applied in global-level. This could bring disruption and
inconvenience to the policy establishment. For example,
a horizontal flip is known to be a common and effective
TTA transformation with intra-class invariance and inter-
class distinctiveness for most images from ImageNet dataset
[Krizhevsky et al., 2012, Deng et al., 2009]. However, from
MNIST dataset [Deng, 2012], while visually symmetric
numbers (“1",“8") could be acceptable to such transforma-
tion, orientation-sensitive images (“7",“6",“2",“5") could
lose their intra-class invariance and inter-class distinctive-
ness from the flipping, losing features to classify them as
their original labels.

To overcome such limitations, trainable TTA policy search
methods were introduced. These approaches aim to structure
the most suitable TTA policy as an optimization problem,
finding the most helpful augmentations from various candi-
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dates of transformations and their magnitudes. From Greedy
Policy Search (GPS) [Molchanov et al., 2020], multiple aug-
mentations can be generated in the policy, where each aug-
mentation is regarded as a sub-policy, capable of consisting
of multiple transformations with corresponding magnitudes.
While GPS has a global-level TTA scheme, some of the
studies aim to find more specific levels of data dependency
of TTA policy, namely class-level and instance-level (i.e.
applying transformations to the input image depending on
individual input data condition).

Trainable TTA policy has also contributed to the robustness
of neural network prediction. Contrary to the promising per-
formance of neural networks, it has been studied that they
could be vulnerable to perturbations or corruptions in data
[Goodfellow et al., 2015, Hendrycks and Dietterich., 2019].
Many studies in data augmentation methods have achieved
strong robustness [Dan et al., 2020, Cubuk et al., 2019, Lim
et al., 2019] against the damages. Previous works [Kim et al.,
2020, Molchanov et al., 2020] showed that TTA could also
improve the robustness. With a suitable TTA policy, corrup-
tion in the image could be suppressed by modifying the test
image directly via suitable transformations. Kim et al. [Kim
et al., 2020] has recently introduced the first instance-level
TTA policy search method, where which transformation to
proceed is determined by the condition of each instance of
input image. With the application of a loss predictor, their
work was able to achieve robustness improvement with only
a small amount of additional computation cost.

In this work, we introduce cyclic TTA with entropy weight
method (EWM) in classification task by implementing mul-
tiple transformations and reflecting uncertainty directly to
each prediction result from augmentations. As we follow
that the instance-level TTA is the effective level of the data
dependency, we believe that there is more potential room
for improvement to the loss prediction pipeline [Kim et al.,
2020] in terms of flexibility. With an iterative maneuver of
the loss predictor, each image can be assigned with mul-
tiple transformations with a more flexible magnitude. For
multiple augmentations case, we also introduce the imple-
mentation of modified EWM to attenuate the softmax output
with high data uncertainty. Because the cost for the calcula-
tion of the entropy is relatively minor, the EWM can easily
be adapted to improve the robustness of network prediction.

2 RELATED WORKS

Test time augmentation: TTA for neural network predic-
tion has been used for a while. Many innovative neural
network performances on ImageNet dataset [Deng et al.,
2009] used TTA method [Krizhevsky et al., 2012, Szegedy
et al., 2015, Simonyan and Zisserman, 2015, He et al., 2016]
for their records, using augmentations of numerous cropped
patches from the original images. This helped to result in
accuracy improvement with the multiplicative cost increase.

For TTA’s capability to directly modify the data during test
time, TTA has been studied to possess more potentials, such
as uncertainty estimation to data distillation [Wang et al.,
2019, M.S. and Berens, 2018, Radosavovic et al., 2018].
TTA policy search is one of the attempts to find the solution
to the cost limitation and further improvement of its effec-
tiveness. Sato et al. [Sato et al., 2015] were one of the first
to analyze TTA policy, building an optimal decision rule to
achieve improvement in generalization. GPS [Molchanov
et al., 2020] was introduced as a learnable global-level TTA
policy search method, greedily building a global-level policy.
GPS showed excellent improvement in accuracy and robust-
ness, performing multiple transformations with flexible mag-
nitude to each sub-policy. Shanmugam et al. [Shanmugam
et al., 2020] proposed a TTA policy with class-level data de-
pendency. Their work involves training a set of parameters
to learn the relation between class and each augmentation
and to use it as a post-processing method to extract one final
prediction from the multiple predictions. Recently, Kim et
al. [Kim et al., 2020] proposed a TTA policy with instance-
level data dependency. They had trained a loss predictor
to be capable of predicting which transformation would be
suitable for the target network (i.e. the main classifier used
for the task). Their contribution is that such a pipeline is
very cost-efficient, even with a single suitable augmentation
could increase the robustness effectively. However, unlike
GPS, such a pipeline could not implement multiple transfor-
mations with flexible magnitudes on a single image, each
sub-policy to intake a single transformation from a set of
predefined transformations.

Robustness to Corruption: While modern neural networks
achieve high performance, exceeding human capabilities,
many studies show that they can easily malfunction for cor-
ruptions and perturbations from various sources from real-
life implementations [Goodfellow et al., 2015, Hendrycks
and Dietterich., 2019]. Hendrycks et al. [Hendrycks and
Dietterich., 2019] introduced a benchmark for corruptions
with ImageNet data, namely ImageNet-C, simulating 19
different types of corruption for network robustness evalua-
tion. Many data augmentation approaches [Dan et al., 2020,
Cubuk et al., 2019, Lim et al., 2019] were introduced to en-
hance the robustness, resulting in significant improvement
for various kinds of corruptions.

Uncertainty Estimation: Uncertainty estimation acts as an
indicator for the confidence of network prediction. Many
applications in deep learning involve implementation of
the uncertainty to provide additional information for the
final prediction [Gal, 2016]. In the field of active learning,
where uncertain data are queued to be labeled from a set
of unlabeled data, a loss value can be used as a means for
estimation of the uncertainty. In the case of active learn-
ing classification [Yoo and Kweon, 2019], a separate loss
predictor module can be trained to estimate expected loss
magnitude with much less cost, providing a faster and more



efficient method to find samples with high expected loss
value to queue and select the uncertain unlabeled data. In
this case, the loss value can be regarded as an indication of
how uncertain the data is for the target network (the clas-
sifier), for samples with high loss values bring relatively
major change to the condition of the neural network.

From another point of view, according to the previous study
[Malinin et al., 2020], overall uncertainty measurement from
neural network prediction can be divided into knowledge
uncertainty and data uncertainty. In this paper, we focus on
the data uncertainty, irreducible uncertainty due to the nature
of complexity or noise in the data. In the classification task,
data uncertainty can be calculated as the expected entropy
value of softmax outputs. The expectancy can be calculated
by averaging the entropy values from multiple predictions
(softmax outputs) by multiple models from an input data.

Entropy Weight Method: In the field of decision making,
EWM is used to reflect the degree of disorder of a system
[Amiri et al., 2014, Liu et al., 2010]. Many studies in wa-
ter quality assessment use EWM to reflect the uncertainty
among the samples to diminish the importance weights of
uncertain assessment parameters. The weights indicate the
importance of parameters for the quality assessment and
are calculated to be large for low entropy and vice versa.
For example, a type of substance (i.e. a parameter) detected
with a uniform amount from the majority of samples would
gain less weight than other parameters, due to the high en-
tropy from the uniformity. With some adaptive modification
from previous EWM, we observe that a network predic-
tion might be similarly regarded as the sample from the
field of decision making. By reflection of the entropy to the
network predictions, we seek to improve the robustness of
the predictions with only a small extra cost to calculate the
entropy.

3 METHOD

Our method includes cyclic modification of the loss predic-
tion pipeline and implementation of the EWM. In section
3.1, we introduce our baseline, the previous loss prediction
pipeline illustrated in Figure 1, and the modifications for
our method. The cyclic application of the loss predictor will
be explained in section 3.2. The iterative manner of trans-
formations tries to find an optimal condition for a given
input image. Compare to the previous work, such applica-
tion contributes to additional flexibility of transformations
in TTA policy. The difference between the former method is
illustrated in Figure 2. In section 3.3, the modifications and
implementation of EWM are explained. In case of multiple
augmentations case, where more than one augmentation are
used for TTA policy, we aim to reflect the data uncertainty
to each augmentation. For uncertainty estimation, we refer
to the well-stated definition of the uncertainty by Malinin
et al. [Malinin et al., 2020], considering the entropy from

softmax output could represent the data uncertainty (with a
difference in that we only use a single network prediction to
calculate the data uncertainty).

3.1 LOSS PREDICTION FOR THE
TRANSFORMATION ESTIMATION

Kim et al. [Kim et al., 2020] introduced an innovative loss
prediction pipeline for instance-level image augmentation
during test time. As presented in Figure 1, a loss predictor
aims to find a suitable transformation among predefined
transformations for an input image to be prepared for the
target network (i.e. classifier). During the test time, an input
image is resized and evaluated by the loss predictor. The loss
predictor predicts the expected losses for each of the presum-
able target network predictions with transformed augmen-
tations from the predefined set of transformations. In other
words, the loss predictor tells of what transformation would
result in the best outcome for the target network, as the least
predicted loss value would refer to the transformation with
the best condition. The transformation corresponding to the
minimum predicted loss is selected as the top 1 choice for
the sub-policy. In the case of a single augmentation, such a
pipeline guides an input image to go through the suitable
transformation, making the classifier to predict from the
transformed condition of the image.

Training the loss predictor: Training the loss predictor
requires the target network to make predictions with an
input image in multiple augmented forms in the manner
of predefined transformations. During the training, the tar-
get network is frozen, only making predictions. For each
prediction, cross-entropy loss values from the multiple aug-
mented images are calculated. The loss values from the
augmentations are softmax normalized and are fed to the
loss predictor as the target values, as Spearman correlation
ranking loss [Engilberge et al., 2019]. Ultimately, the loss
predictor learns to find which transformation is required to
result in the smallest loss value, as the image is evaluated
by the target network. Being able to predict with suitable
transformation to extract the smallest loss value, the input
image has more chances to be classified with the correct
answer.

For training the loss predictor on the ImageNet dataset,
training data used for training the target network are reused.
Although training the loss predictor with a separate valida-
tion set seems to be more suitable, for the loss values by
the target network prediction from training data would not
perfectly simulate the actual test condition, regardless, it
has been reported that they do not make much difference in
performance.

Additionally, in order to build robustness to corruptions,
random sequences of corruption, from the previous study by
[Hendrycks and Dietterich., 2019], were given to the input



Figure 1: Illustration of the loss prediction pipeline [Kim et al., 2020]. (a) Loss prediction for which transformation T
to take on the corrupted image of "chiton" during testing. τa,b indicates the predefined transformation of type a with its
magnitude b. (b) Training algorithm of the loss predictor θLP . During the training, an input image x is transformed into
all of the predefined transformations τ to produce loss values yloss(τ(x)) by making predictions with the target network
θtarget. These loss values are given to the loss predictor θLP as target values after softmax normalization and as Spearman
correlation ranking loss [Engilberge et al., 2019]. The loss predictor intakes the resized input image to learn the correlation
between the target network results from the transformed images and the downsized original image condition.

images, simulating various types of real-life conditions of
the images.

Loss predictor architecture: For the network architecture
of the loss predictor, EfficientNet-B0 [Tan and Le., 2019]
is used as the backbone. Architectural modifications were
taken to utilize multi-level features of input as the active
learning loss predictor [Yoo and Kweon, 2019]. The loss
prediction pipeline is stated to be cost efficient because the
cost for the loss prediction with such a network architecture
is relatively negligible to that of the target networks used for
the classification [Kim et al., 2020]. Downsizing the image
into 64 by 64 pixels has allowed such cost efficiency and
aimed for the loss predictor to learn low level features as
well.

Transformation candidates: As for the predefined trans-
formations, in our method, we have modified the transfor-
mation magnitudes to simulate more flexible outcome. The
types of transformation include: Identity, Rotation, Zoom,
Auto Contrast, Blurring, Sharpening, and Color Saturation.
Including the magnitude configurations for each transfor-
mation, our method composes 12 different transformation
candidates. In Appendix A, we explain the details about
the transformations. Overall, the loss predictor suggests one
of these transformations with the least expected loss value,
which then the transformations takes place to be ready for
the target network prediction.

Multiple augmentations: In the case of k > 1 number
of augmentations are used, the top k transformations from
the loss predictor suggestion are selected to generate the
corresponding k number of augmentations. In case of not

using the EWM, classification results from the augmented
images are integrated in a conventional manner, averaging
the softmax outputs.

3.2 CYCLIC TTA

Cyclic loss prediction: Contrary to the former study, our
work utilizes the loss predictor in a cyclic manner as shown
in Figure 2. Once the image is transformed according to
the prediction by the loss predictor, instead of being di-
rectly processed by the target network, the modified image
is again fed to the loss predictor, forming a cycle. The image
goes through the cycle continuously, until the exit signal
is activated. We set two conditions for the exit signal to be
activated. The first is when the loss predictor predicts the
input image should perform identity transformation. This
indicates that the image no longer requires additional trans-
formations to result in better condition, ideally presuming
an optimal condition of the image. The second condition
is when the number of cyclic iteration reaches the prede-
fined hyper parameter of maximum number of the iteration.
Because our loss predictor is not perfect to predict the suit-
able transformation, to prevent rarely happening unbounded
continuity of the cyclic loss predictions, we set certain limi-
tation to the number of cycle the loss predictor iterates. Such
simple modification can expand the transformation space
into a much larger volume of possible combinations from
the set of predefined transformations. Given that T and m
refers to the number of transformation candidates and the
maximum number of iteration respectively, transformation
space in our method can be written as Tm − Tm−1 + 1.



While our baseline had m = 1 to have the T number of
transformation possibilities, it can be shown that larger m
in our method opens for more potential candidates for the
input image to be transformed into.

For a severely corrupted input image, a single iteration of
transformation might not be sufficient to suppress the cor-
ruption. For example, if an image should be corrupted by
a severe Gaussian noise, following the former method, a
blurring transformation would be selected and performed
to remove the noise. However, it is possible to leave the
residual noise component, for the magnitude of the transfor-
mation is predefined and only performed once. On the other
hand, cyclic iterations of transformation could continuously
try to remove the noise until the loss predictor predicts the
condition of the image to be well suited for the classifica-
tion. In such behavior, it is possible for the cyclic TTA to
provide more flexible and multiple types of transformation
maneuver as a preprocessing for the task.

Training the loss predictor for cyclic TTA involves dealing
with multiple number of corruptions to the input data. The
input data are applied with multiple number of corruptions,
with similar behavior as the loss predictor from [Kim et al.,
2020], the loss predictor is trained to predict what transfor-
mation could suppress the corruptions and to result in the
least expected loss.

Multiple augmentations: In case of k > 1 augmentations
are to be used, we prepare k number of original images to
be processed. In the first iteration of t = 1, each image
is transformed according the top k transformations from
the loss prediction respectively. Starting from the second
iteration, unless the exit signal is activated for each augmen-
tation, each image will proceed as normal cyclic behavior,
each selecting the top 1 suggestion from their each loss
predictions. In short, each of k augmentations starts with
different transformation at t = 1 and proceeds the cyclic
TTA independently. Ideally, if the loss predictions were to
be very accurate, all k transformed images would present
similar features, assuming that there is only one optimal
condition of the input image to be prepared for the classifi-
cation. In the end, k number of target network predictions
are generated as softmax outputs. Assuming the EWM is
not used, these are averaged to extract a final prediction for
each input image.

Cyclic TTA cost: As previously mentioned, the cost for
the loss prediction is relatively trivial to that of the target
network prediction. For example, our experiments on Ima-
geNet involves a target network takes 4.1 GFLOPs, whereas
loss predictor with downsized input image only requires
2.6 MFLOPS. Although our cyclic loss prediction requires
multiple iteration of the loss prediction and transformation,
because the number of iteration can be controlled with a
hyper parameter of maximum number of iteration and the
cost of the loss prediction is relatively small, such pipeline

can sustain somewhat similar cost efficiency compare to that
of our baseline.

3.3 ENTROPY WEIGHTED SUMMATION

Average integration: In conventional case of using multi-
ple augmentations for TTA, the integration of the softmax
outputs is performed by averaging them. In case of classi-
fication task with n classes and m augmentations are used,
conventional method to extract the final prediction score for
class j (≤ n) can be calculated as

pfinalj = 1
m ·

m∑
i=1

pi,j , (1)

where i represents the augmentation index and pi,j indicates
softmax output element of class j from augmentation i.
Then, the final classification is decided by choosing the class
index j with the maximum value of pfinalj . Such integration
implies weighting each prediction with the same importance.
On the contrary, we see that certain augmentations can be
more important to provide correct prediction [Shanmugam
et al., 2020]. For example, for cropping multiple image
patches from an original input image, augmentations can be
generated each with a different view. Certain patches might
not contain essential features, for parts of the original image
could be excluded from cropping. In this case, considering
these augmentations as the same importance as the others
with more correct information could bring disturbance to the
final prediction. The illustrations of such cases are present
in Appendix C.

EWM integration: Inspired by previous works from the
field of decision making [Amiri et al., 2014, Liu et al., 2010,
Zhu et al., 2020], we state that each prediction made by
corresponding augmentation can be regarded as a sample
data with a probability distribution for which decision to
make with corresponding implicit uncertainty. We modify
the previously established EWM to implement in the neu-
ral network prediction. While EWM calculates the entropy
among samples of data to calculate weights for evaluation
parameter, we calculate the entropy Ei of augmentation i as

Ei = −
n∑

j=1

pi,j · ln pi,j . (2)

The entropy is then used to extract the weight wi with soft-
max normalization for each augmentation i:

wi =
(

eEi∑m
i=1 eEi

)−1

. (3)

By having the reciprocal of softmax entropy to calculate
weights, each weight represents how much each augmenta-
tion is certain for its prediction. As for the integration of the



Figure 2: Top: Comparison between the previous method (left) and the cyclic (right) loss prediction pipeline. Tt indicates
the suggested transformation at iteration t. Bottom: Expanded illustration of the cyclic loss prediction. The input image of a
"king snake" is corrupted with snow corruption. The image goes through iterative loss prediction cycles until it meets the
exit signal. tτidentity

indicates the iteration when the loss predictor suggests identity transformation, which is an exit signal.

predictions from the m augmentations, the final prediction
score for class j element is calculated as

pfinalj =

m∑
i=1

wi · pi,j . (4)

As same as the conventional method, final classification re-
sult is done by choosing the class index with the maximum
value of pfinalj . Considering the definition of the data un-
certainty by Malinin et al. [Malinin et al., 2020], modified
EWM can be regarded as the reflection of data uncertainty
to each augmented data, focusing more on less uncertain
augmentation and vice versa. Ideally, calculation for more
accurate level of data uncertainty involves using more than
one neural network. Regardless, with such reflection of the
uncertainty, our experiments show that the network predic-
tion can extract more robust predictions to the corrupted
data in case of using multiple number of augmentations.

4 EXPERIMENTS

4.1 IMAGENET CLASSIFICATION

We experiment the effect of cyclic behavior of the loss pre-
dictor and EWM on ILSVRC 2012 dataset [Deng et al.,
2009]. ImageNet contains 1.2 million images with 1000
classes of real life objects. In addition to the clean condition
of the data, we also evaluate our method on ImageNet-C
dataset [Hendrycks and Dietterich., 2019], where various
types of corruption are simulated with 5 different severity.

The corruptions from the ImageNet-C include 19 different
types of algorithmically generated corruptions from noise,
blur, weather, digital, and extra categories. While typical
error rate is used for the evaluation in clean data, to eval-
uate the robustness of neural network performance, mean
corruption error (mCE) metric is used [Hendrycks and
Dietterich., 2019]. Overall, in order to evaluate a single iter-
ation of mCE, 50,000 (ImageNet validation data size) × 5
× 19 samples with size of 224 × 224 are used.

In Table 1, we show performance with using ResNet-50
[He et al., 2016] as the target networks for the pipeline.
The networks are trained in two different fashions: standard
and Augmix [Dan et al., 2020]. Performances from each
data augmentation are presented. For comparison, the typi-
cally used TTA methods are selected (the typical TTA meth-
ods are described in detail in Appendix A). These methods
are widely and frequently used conventional TTA methods
shown to improve accuracy in many cases [Krizhevsky et al.,
2012, Szegedy et al., 2015, Simonyan and Zisserman, 2015,
He et al., 2016]. Additionally, we compare our methods
to the previous method [Kim et al., 2020], making a sin-
gle transformation prediction for each image. For each test
case, relative costs are presented. These costs only concern
the computation load for the classification, for the load for
transformations and loss prediction is relatively menial. For
the integration method of how multiple predictions extract
the final single prediction, we compare conventional aver-
age integration to our EWM method. Performance on the
clean condition and the corrupted conditions are labeled as
Clean and mCE respectively. Smaller value indicates better



performance.

4.2 EVALUATION

From the results from the clean condition of ImageNet, we
observed that the loss prediction pipeline has a little and
inconsistent impact on the error rate. In most cases, identity
transformation is selected by the loss predictor, indicating
the data are already in good condition for prediction. For the
corrupted data, as the single prediction reduces the mCE,
cyclic TTA contributes to further improvement. For the
target network trained with Augmix, the network has already
built strong robustness from the corruption. In this case, both
loss prediction pipeline shows minor improvement.

For EWM, while cases of clean data are minorly affected
as well, it showed general improvement in the corrupted
data. For convention TTA with EWM, as the number of
augmentations increases from horizontal flip to 10 crops,
the improvement in mCE has increased. This indicates that,
as more augmentations are used, more candidates to reflect
the uncertainty are available to extract certain and correct
answers.

4.3 CYCLIC USAGE OF ORACLE-TTA

Kim et al. [Kim et al., 2020] suggested a hypothetically
perfect loss predictor named Oracle-TTA to simulate the
performance upper bound for the loss prediction pipeline.
Oracle-TTA is assumed to be able to accurately predict
which transformation is required for the input image to re-
sult in the smallest loss value. Hypothetical performance
using the Oracle-TTA suggests the potentials in the pipeline.
As for comparison, we suggest that the cyclic usage of the
Oracle-TTA can further improve the upper bound, for the
flexibility in the transformation can provide more optional
conditions to the input image for the target network. In ap-
pendix D, we compare the upper bound for cyclic TTA to
that of our baseline. The performance records show that,
with a well trained loss predictor, more rooms for improve-
ments are available as the number of maximum transforma-
tion for the cyclic TTA increases.

4.4 DISCUSSION

In Appendix B, we illustrate the visual comparison of im-
age conditions between center crop, single iteration, and
cyclic iteration methods. We examined that corrupted im-
ages can restore some of their features to become closer to
their clean condition via multiple iterations of transforma-
tions. Additionally, even clean images with ambiguity tend
to restore their features, becoming to have similar features
to the images of the same class. In our experiment, we have
analyzed the results to conclude that the cyclic TTA was
more effective on corrupted images with higher corruption

severity and less effective on that of lower corruption sever-
ity than our baseline. This is because data with the high
severity clearly requires more transformations to restore
their features. Moreover, being less well on the lower sever-
ity indicates that current cyclic TTA is not well on stopping
the iteration at the right time. Without limiting the number
of cyclic iteration (the maximum number of iteration), we
see that sometimes the image is nearly destroyed, losing
much of its features. This indicates that if the loss predic-
tion pipeline is not perfectly well-functional, presence of
further unwanted corruption is possible. These indicate that
maximum number of iteration parameter should be propor-
tional to the wellness of the loss predictor and additional exit
signals should be required to prevent additional unwanted
corruptions.

From our experiment, we have observed that well functional
loss predictor contributes to even better performance in the
cyclic TTA pipeline than in our baseline. On the other hand,
the poor performance leads to even more deteriorating re-
sult in the cyclic TTA performance, which refers that the
accuracy of the loss predictor can lead to more drastic reflec-
tion to the performance in the cyclic maneuver. With such
observation, it is evident that, the key factor to reach the
cyclic Oracle-TTA performance is to train a loss predictor
with high accuracy, which involves finding a suitable trans-
formations candidates those are well learnable by the loss
predictor and finding a suitable training configuration for
the loss predictor.

From the EWM performance difference in the clean and the
corrupted condition, we suggest that the measurement of the
data uncertainty is more evident in corrupted condition for
the given target network. Considering the data uncertainty
should be extracted from multiple number of the target
network predictions [Malinin et al., 2020], it is possible
that the calculated entropy could not have reflected the data
uncertainty to an accurate level. From examining the entropy
values from “10 crops" case, while the clean data generated
relatively uniform entropy values among the augmentations,
in the corrupted case, often outlying entropy values was
found, which refers to the uncertain augmentations. This
indicates that while such data uncertainty reflection could
be effective in case of evident distortion in the input image,
more precise and accurate measurement of the uncertainty
should be required to take the advantage in clean condition
of the data.

5 CONCLUSION

In this work, we have introduced the cyclic modification
of the loss prediction pipeline to implement flexible trans-
formations to the input image and the implementation of
EWM for TTA policy. Given that the loss predictor learns
the implicit features of the corrupted condition of the image
to predict the most suitable transformation, we state that



Train Time Augmentation TTA Method Cost
Average EWM (Ours)

Clean mCE Clean mCE

Standard

Center Crop 1 24.14 75.79

Horizontal Flip 2 23.76 74.77 23.78 74.75

5 Crops 5 23.57 74.37 23.47 74.22

10 Crops 10 23.04 73.57 23.05 73.34

Single
1 24.15 74.14

2 24.04 73.36 24.03 73.26

3 23.84 73.23 23.85 73.08

Cyclic (Ours)
1 24.15 73.69
2 24.04 73.13 24.06 73.08

3 23.81 72.74 23.81 72.68

Augmix

Center Crop 1 22.39 65.07

Horizontal Flip 2 22.15 64.35 22.16 64.31

5 Crops 5 21.69 63.56 21.68 63.35
10 Crops 10 21.56 63.05 21.49 62.76

Single
1 22.37 64.34

2 22.31 63.82 22.30 63.77

3 22.33 63.86 22.34 63.73

Cyclic (Ours)
1 22.37 64.14
2 22.33 63.77 22.31 63.74

3 22.33 63.68 22.31 63.62

Table 1: Performance comparison of the previous methods with the proposed method on ImageNet and ImageNet-C.
Fourth column indicates averaging for integrating the predictions from multiple augmentations. Fifth column shows the
performance with the EWM. Single TTA method refers to the previous method by [Kim et al., 2020]. Cyclic refers to our
method. It is bold when either cyclic method or EWM method shows performance improvement of 0.2% or more.

the multiple iterations to find the suitable condition of the
corrupted image can be considered as a part of iterative
optimization process, and able to restore part of its original
quality for network prediction. Our main contribution is
to suggest that the cyclic loss prediction pipeline can ex-
pand the transformation space of the input image and the
upper bound of the loss prediction pipeline via achieving
the flexibility of the transformations.

For EWM, we show that direct reflection of data uncertainty
could be effective against the corrupted condition of data. As
augmentations are given, each of them can contribute with
variable weights, for their importance for network prediction
are different.

Although we have suggested that such a pipeline holds much
potential for performance improvement, there is much gap
from the ideal Oracle-TTA performance. Therefore, our
future work will be of configuring and training the loss pre-
dictor with high performance. As for the transformation
candidates, even though we have used a similar set of prede-

fined transformations to our baseline, in order to search for
a better condition of the input image, it is possible for more
transformations with a wider range of magnitude are more
suitable. Thus, we plan to experiment with generative mod-
els to restore the corrupted condition with respective to the
target network. We expect to proceed the transformations
without setting the predefined set in future works.
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