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Abstract

After initial release of a machine learning algo-
rithm, the model can be fine-tuned by retraining
on subsequently gathered data, adding newly dis-
covered features, or more. Each modification intro-
duces a risk of deteriorating performance and must
be validated on a test dataset. It may not always
be practical to assemble a new dataset for test-
ing each modification, especially when most mod-
ifications are minor or are implemented in rapid
succession. Recent work has shown how one can
repeatedly test modifications on the same dataset
and protect against overfitting by (i) discretizing
test results along a grid and (ii) applying a Bon-
ferroni correction to adjust for the total number
of modifications considered by an adaptive devel-
oper. However, the standard Bonferroni correc-
tion is overly conservative when most modifica-
tions are beneficial and/or highly correlated. This
work investigates more powerful approaches using
alpha-recycling and sequentially-rejective graphi-
cal procedures (SRGPs). We introduce two novel
extensions that account for correlation between
adaptively chosen algorithmic modifications: the
first leverages the correlation between consecutive
modifications using flexible fixed sequence tests,
and the second leverages the correlation between
the proposed modifications and those generated
by a hypothetical prespecified model updating pro-
cedure. In empirical analyses, both SRGPs con-
trol the error rate of approving deleterious modifi-
cations and approve significantly more beneficial
modifications than previous approaches.

1 INTRODUCTION

Before a machine learning (ML) algorithm is approved
for deployment, its performance is usually evaluated on
an independent test dataset. If the ML algorithm is modi-
fied over time, its performance may change. There are no
guarantees on how the performance may evolve when the
model developer is allowed to introduce modifications in an
unconstrained manner. For instance, algorithmic modifica-
tions that reduce computational costs may negatively impact
model accuracy or precision, and improvements along an
aggregate performance metric may come at the cost of lower
performance for certain minority subgroups and exacerbate
issues of algorithmic fairness. To check that the performance
of a proposed modification is acceptable for deployment,
the current approach is to run a hypothesis test on a new test
dataset, separate from the original one (Feng et al., 2020).
The null hypothesis is that the modification is not accept-
able; a modification is approved if we successfully reject
the null. Nevertheless, large high-quality test datasets are
often hard to acquire, particularly in the medical setting.

A major motivation for this work comes from the FDA’s
recent interest in letting medical device developers update
ML-based software, while still ensuring its safety and effec-
tiveness (U.S. FDA, 2019). As outlined in this discussion
paper, there are many modifications that may be of interest
to software vendors, including the addition/removal of fea-
tures, changing the model class, and retraining the model
on new data. In this work, we consider procedures for test-
ing modifications that are agnostic to the model class and
how the modification was trained, e.g. by an online learning
algorithm versus a human expert.

When labeled data are expensive and/or difficult to collect,
it is tempting to reuse an existing test dataset for determin-
ing the acceptability of an algorithmic modification. The
danger of test data reuse is that the model developer can
learn aspects of the test data when it is used in a sequential
and adaptive manner, creating dependencies between algo-
rithmic modifications and the holdout data. For instance,
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the model developer may inadvertently incorporate spurious
correlations in the test data to attain over-optimistic perfor-
mance estimates. This feedback loop introduces bias to the
performance evaluation procedure, and adaptively defined
hypothesis tests can have drastically inflated Type I error
rates (Gelman and Loken, 2017; Thompson et al., 2020).

Recent work tries to protect against inappropriate test data
reuse and overfitting by reducing the amount of information
released by the testing procedure (Russo and Zou, 2016).
The two main approaches are to either coarsen the test out-
puts along a grid of values (Blum and Hardt, 2015; Rogers
et al., 2019) or to perturb the test results with random noise
using differential privacy techniques (Dwork et al., 2015a;
Feldman and Steinke, 2018). However, existing methods re-
quire immensely large datasets to provide protection against
overfitting with theoretical guarantees (Rogers et al., 2019).
Our aim is to design valid test data reuse procedures for
smaller sample sizes that still have sufficiently high power
to approve good algorithmic modifications. Our focus is
on methods that coarsen the test results. In fact, we con-
sider the extreme case of coarsening where the procedure
releases a single bit of information, e.g. whether or not the
modification was approved.

When test results are coarsened, the adaptive modification
strategy can be described as a tree. As such, one can view
test data reuse as a multiple hypothesis testing problem:
If we control the family-wise error rate across the entire
tree, we control the probability of approving one or more
unacceptable modifications. Existing procedures perform
a Bonferroni correction with respect to the size of this tree
(Blum and Hardt, 2015; Rogers et al., 2019). Nevertheless,
the Bonferroni correction is known to be conservative. In-
stead, we can gain significant power using alpha-recycling
(Burman et al., 2009) and accounting for correlation be-
tween test statistics (Westfall and Stanley Young, 1993).
Indeed, we expect algorithmic modifications to be highly
correlated when there is significant overlap between their
training data and similarities in their training procedures.

In this paper, we design valid test data reuse proce-
dures based on sequentially rejective graphical procedures
(SRGPs) (Bretz et al., 2009, 2011a,b). Although SRGPs are
a well-established technique for testing many pre-specified
hypotheses, many of these procedures cannot be applied
when the hypotheses are adaptively defined in sequence. The
main challenge is that many nodes in the tree of hypotheses
are not observed. As such, we introduce two novel SRGPs
that are able to account for correlation between adaptively-
defined algorithmic modifications without needing to ob-
serve these “counterfactual” hypotheses. The first SRGP ac-
counts for correlation between observed nodes in the tree us-
ing a fixed-sequence testing procedure. The second SRGP is
based on the fact that analysts are not adversarial in practice,
i.e. they will not purposefully use prior results to overfit to
the test data (Mania et al., 2019; Zrnic and Hardt, 2019). To

leverage this fact, this second procedure requires the model
developer to pre-specify a hypothetical online learning pro-
cedure and then utilizes the similarity between the adaptive
and pre-specified modifications to improve testing power.
In empirical analyses, both procedures protect against over-
fitting to the test data, even for small sample sizes, and ap-
prove a higher proportion of acceptable modifications than
existing approaches. Code is publicly available at https:
//github.com/jjfeng/adaptive_SRGP.

2 PROBLEM SETUP

Suppose the test dataset is composed of n indepen-
dently and identically distributed (IID) observations
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ X ×Y drawn from the
target population. Consider a model developer who adap-
tively proposes a sequence of T algorithmic modifications
{f̂adapt1 , ..., f̂adaptT }, where each modification is a model
that predicts some value in Y given input X . Given criteria
for defining the acceptability of a modification, our goal is
to approve as many acceptable modifications as possible
while controlling the probability of approving an unaccept-
able modification. Because the decision to approve a mod-
ification can be framed as a hypothesis test, a procedure
for approving adaptively-defined modifications is equiva-
lent to testing a sequence of adaptively-defined hypotheses
Hadapt

1 , ...,Hadapt
T . Moreover, control of the online family-

wise error rate (FWER) in the strong sense, i.e. for any
configuration of the null hypotheses, implies control over
the rate of approving at least one unacceptable modification.

There are various ways to define acceptability and their
corresponding hypothesis test. For example, we may define
a modification f̂ to be acceptable as long as its expected
loss is smaller than that of the original model f̂0. So given a
real-valued loss function `, we would test the null hypothesis

Hadapt
j : E

(
`
(
f̂adaptj (X), Y

))
≥ E

(
`
(
f̂0(X), Y

))
at each iteration j = 1, ..., T . If we require monotonic
improvement in the model performance, we can test if the
j-th modification is superior to the most recently approved
modification f̂approvedj (X) by testing the null hypothesis

Hadapt
j : E

(
`
(
f̂adaptj (X), Y

))
≥ E

(
`
(
f̂approvedj (X), Y

))
.

Finally, one may also consider multidimensional charac-
terizations of model performance (e.g. model performance
within subgroups) and define acceptability as a combination
of superiority and non-inferiority tests (Feng et al., 2020).
The testing procedures described below only depend on the
p-values, so we leave the specific definition of acceptability
unspecified until the experimental section.

To limit the adaptivity of the model developer, we consider
procedures that sequentially release a single bit of infor-
mation for each test: One means that the modification is
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approved and zero means it is not. Consequently, modifica-
tions proposed by any adaptive strategy can be described
as a bifurcating tree, where f̂at is the nonadaptive model
tested at time t for the history of approvals at ∈ {0, 1}t−1,
Hat is the associated nonadaptive hypothesis test, and pat
is its marginal p-value. While one can regard this set of
(2T − 1) hypotheses tests as prespecified, we are only able
to observe a specific path along this tree. The unobserved
hypotheses are counterfactuals. As such, we need a multiple
testing procedure (MTP) that controls the FWER for any
adaptively chosen path along the tree without knowing the
exact nature of the counterfactual hypothesis tests.

A simple approach is to perform a uniform Bonferroni cor-
rection for the size of the entire tree. However, the standard
Bonferroni procedure has low power because it ignores cor-
relations between models and allocates substantial test mass
to hypotheses that are unlikely to be considered. Next we
describe procedures that can achieve much higher power.

2.1 SEQUENTIALLY REJECTIVE GRAPHICAL
PROCEDURES (SRGPS)

We can design more powerful test data reuse procedures
by building on sequentially rejective graphical procedures
(SRGPs), which use directed graphs to define a wide variety
of iterative MTPs such as gatekeeping procedures, flexible
fixed sequence tests, and fallback procedures (Bretz et al.,
2009). SRGPs traditionally assume the set of hypotheses
{Hj : j ∈ I} is prespecified and known. The graph initially
contains one node for each elementary hypothesisHj , where
each node is associated with a non-negative weight wj(I).
The initial node weights, which are constrained to sum to
one, control how the total alpha is divided across the ele-
mentary hypotheses and correspond to a set of adjusted sig-
nificance thresholds cj(I). We reject elementary hypothesis
Hj in the current graph if its marginal p-value pj is smaller
than cj(I). For instance, a standard Bonferroni correction
is represented by the initial weights of wj(I) = 1/|I| for
all j ∈ I and significance thresholds cj(I) = wj(I)α. In
addition, the graph contains directed edges where the edge
Hj to Hk is associated with weight gj,k(I) for j, k ∈ I
and edge weights starting from the same node must sum
to one. When an elementary hypothesis Hj is rejected, its
node is removed from the graph and its weight is propagated
to its children nodes. This redistribution of test mass, also
known as alpha-recycling, increases the power for testing
the remaining hypotheses and strictly improves upon sim-
pler procedures that do not use recycling. More specifically,
the weight of the edge from Hj to Hk, denoted gj,k(I), rep-
resents how much of Hj’s node weight will be redistributed
to Hk if Hj is rejected. So when Hj is removed, the new
weight for hypothesis Hk for k ∈ I ′ = I \ {j} is

wk(I
′) = wk(I) + gj,k(I)wj(I). (1)
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Figure 1: Example sequentially-rejective graphical proce-
dure (SRGP) for hypotheses {H1, H2, H3} with initial
graph on the left, the middle graph after H1 is rejected,
and the right graph after H3 is rejected. Node and edge
weights are blue and gray, respectively.

Outgoing edges for all remaining nodes are also renormal-
ized to sum back to one. The SRGP continues until no more
hypotheses can be rejected. See Figure 1 for an example.

Assuming all test reports are binary, we can describe adap-
tive test data reuse as the following prespecified SRGP. Let
It be the set of hypotheses remaining at time t, where I0 is
the initial set. We only consider SRGPs with nonzero edge
weights from hypothesis Hat to the sequence of hypotheses
that would be tested upon rejection of Hat but prior to the
next rejection (though one may also consider more complex
recycling procedures). For such SRGPs, the graph of hy-
potheses has the tree structure seen in Figure 2a, where the
only edges in the tree are between hypotheses Hat and Hat′

for t < t′ and

at′,j = at,j1{j < t}+ 1{j = t}. (2)

Note that the SRGP tree is not the same as the bifurcating
tree for generating hypotheses, as the former describes how
alpha is recycled.

The model developer must prespecify all initial node
weights wat(I0). A simple approach is to perform a uni-
form Bonferroni correction across all nodes in the graph.
We can achieve more power by assigning larger weights to
nodes that are more likely to be tested. For example, if the
model developer knows that all their modifications will be
approved, they should set the initial node weight for H()

and all edge weights along the top path in Figure 2a to one.

The model developer will only need to incrementally re-
veal the edge weights. Let τt denote the time of the latest
approval prior to time t. At time t, the developer must spec-
ify the edge weights gaτt ,at such that the outgoing weights
from aτt sum to no more than one. (Note that the edge
weight can be treated as a constant because the only relevant
edge weight at time t is gaτt ,at(It) and its value is equal
to gaτt ,at(It′) for all t′ < t.) As such, this procedure for
specifying node and edge weights corresponds to a fully
prespecified SRGP where a subset of the edge weights are
revealed sequentially. To make sure that this SRGP can be
executed in the adaptive setting, we must be able to cal-
culate the adjusted significance thresholds for the adaptive
hypotheses given the current set of node weights without
observing the counterfactual hypotheses.
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Figure 2: SRGPs for testing T = 4 adaptively-defined algorithmic modifications, where Hat is the hypothesis for testing
the adaptive modification given history at ∈ {0, 1}t−1. (a) A SRGP based on a weighted Bonferroni test. (b) A SRGP that
performs a flexible fixed sequence test within each shaded subgroup. (c) A SRGP that adjusts for the correlation between the
adaptively proposed modifications and those from a prespecified hypothetical updating procedure, denoted {fprest : t =
1, ..., T}. As an example, we indicate the correlation adjustments made along the path H(), H(0), H(0,1), H(0,1,0).

Algorithm 1 A sequentially rejective graphical procedure
(SRGP) that only outputs binary test reports for T adaptive
hypotheses given function compute_sig_threshold.
Require: Initialize I0 as the set of all nodes in the pre-

specified tree; initialize a1 = () and τ1 = 0; choose
node weights wat′ (I0) for all t′ = 1, 2, . . . , T and
at′ ∈ {0, 1}t

′−1; and set wa0(I0) = 0.
Ensure:

∑
t′,at′

wat′ (I0) = 1.
for t = 1, 2, ..., T do

Specify edge weight gaτt ,at that satisfies outgoing
edge weight constraints.

# Weight propagation
wat(It) = wat(It−1) + gaτt ,atwaτt (Iτt)
for all t′, at′ such that Hat′ ∈ It and at′ 6= at do

# Other weights remain unchanged
wat′ (It) = wat′ (It−1)

end for
Let pat be the marginal p-value from testing Hat .
Compute significance threshold cat(It) using

compute_sig_threshold(at, {wat′ (It) : t
′, at′})

if pat ≤ cat(It) then
Report that f̂adaptt has been approved.
# Remove node
It+1 = It \ {at}
τt+1 = t
at+1 = (at, 1)

else
Report that f̂adaptt has not been approved.
τt+1 = τt
at+1 = (at, 0)

end if
end for

The entire SRGP algorithm for testing adaptive algorith-
mic modifications is outlined in Algorithm 1. It accepts
some function compute_sig_threshold that outputs
the significance threshold for the adaptively chosen hypoth-
esis given node weights in the current tree. To prove that an
SRGP with function compute_sig_threshold con-
trols the FWER, we must show that it is a closed test proce-
dure that satisfies the consonance property.

The consonance property is defined as follows. Recall that
a closed test procedure uses the following recipe to control
the FWER at level α: it rejects an elementary hypothesis
Hj if the intersection hypothesis HK = ∩k∈KHk for every
subset K ⊆ I containing the elementary hypothesis Hj is
rejected at level α (Lehmann and Romano, 2005). A closed
test satisfies the consonance property if the following is
true for all J ⊆ I: if intersection hypothesis HJ is rejected
locally (i.e. its p-value is no more than α), there exists some
j ∈ J such that HK can be rejected locally for all K ⊆ J
with j ∈ K (Gabriel, 1969). In particular, it follows that the
corresponding elementary hypothesis Hj can be rejected by
the closed test procedure.

When the hypothesis tests are fully prespecified, the con-
sonance procedure lets us perform a closed test using a
sequentially rejective (or “shortcut”) procedure that itera-
tively rejects the elementary hypotheses without needing to
test every intersection hypothesis (Hommel et al., 2007). So
the main benefit of consonance in the non-adaptive setting
is that it makes closed testing computationally tractable. In
the adaptive setting, the consonance property is even more
important because we can perform closed testing without
observing counterfactual or future hypotheses. That is, the
consonance property of an SRGP in the adaptive setting is
not simply for computational efficiency, but is necessary for
being able to run the MTP at all.

Below, we will describe three SRGPs for testing an
adaptive sequence of algorithmic modifications, presented
in order of increasing complexity. Each differ in how



compute_sig_threshold is defined. To prove that the
procedures satisfy the consonance property, it is sufficient
to show that the following monotonicity condition holds
(Bretz et al., 2009): For every pair of subsets K,J ⊆ I
where K ⊆ J and j ∈ K, we have

cj(J) ≤ cj(K). (3)

All proofs are provided in the Appendix. The computation
time and memory for the proposed SRGPs are all O(T 2).
To see this, note that the procedures update no more than T
node weights at each iteration.

2.2 BONFERRONI-BASED SRGPS

We begin with the simplest SRGP that performs closed test-
ing with a weighted Bonferroni-Holm correction based on
node weights, which was originally proposed in Bretz et al.
(2009) to test a set of fully pre-specified hypotheses. Never-
theless, this procedure can also be applied in the adaptive
setting because the significance thresholds do not depend
on observing the counterfactual hypotheses. In particular,
this procedure tests the t-th adaptive hypothesis given his-
tory at by comparing its marginal p-value to the corrected
significance threshold cat(It) = wat(It)α. Because this
closed test satisfies the monotonicity condition, Algorithm 1
with this significance threshold controls the FWER for the
adaptive hypotheses at level α.

As a simple example, consider an SRGP that initially as-
signs Bonferroni-corrected weights to every node and se-
lects nonzero edge weights. This is more powerful than per-
forming a standard Bonferroni correction without any alpha-
recycling because the significance thresholds are monotoni-
cally non-decreasing at each iteration.

2.3 SRGPS WITH FLEXIBLE FIXED SEQUENCE
TESTS FOR CORRELATED MODIFICATIONS

When the algorithmic modifications are highly correlated, a
Bonferroni-based SRGP will be conservative. We can design
more powerful SRGPs by taking into account correlation
between the p-values. Bretz et al. (2011a) proposed a proce-
dure that calculates an inflation factor c(I) for intersection
hypothesis I such that the probability there exists an ele-
mentary hypothesis HN with marginal p-value pN less than
c(I)wN(I)α, under the null I , is no more than α. Millen and
Dmitrienko (2011) proposed a similar procedure but for test
statistics and critical values. Unfortunately, both procedures
require knowing the exact correlation structure between all
the hypotheses and checking that the monotonicity property
holds. This is not feasible in the adaptive setting. To resolve
these issues, we propose a new SRGP that (1) partitions the
hypothesis tree into sequences of observed hypotheses and
(2) uses a flexible fixed-sequence test within each subgroup
(Huque and Alosh, 2008).

We group together hypotheses that would be tested along
a streak of failures immediately following a successful ap-
proval (Figure 2b). For each history at ∈ {0, 1}t−1 with
at,t−1 = 1, we define a subgroup Gat as the set of hypothe-
ses with histories at′ = (at,~0) for any length zero vector,
i.e.{
Hat′ : at′,i = at,i1{i ≤ t− 1},∀i = 1, ..., t′ − 1,∀t′ ≥ t

}
.

To test intersection hypothesis I , we test each subgroup
Gat ∩ I at level

(∑
Ha

t′
∈Gat∩I

wat′ (I)
)
α. We reject HI

at level α if any of the subgroup-specific tests are rejected.
We can show that this controls the Type I error at level α us-
ing a union bound. To test a subgroup, we test its hypotheses
in the order they are revealed and spend up to the allocated
alpha weight. To satisfy the monotonicity property, the sig-
nificance threshold caj (I) for aj ∈ Gat ∩I is defined as the
maximum threshold that spends no more than the allocated
alpha up to time j for all subsets of hypotheses, i.e.

caj (I) = sup c̃

s.t. Pr
(
pak > cak(I)∀ak ∈ K, paj < c̃

∣∣HK∪{aj}
)

≤

[ ∑
ak∈((Gat∩I)\K)

k≤j

wak(I)

]
α ∀K ⊆ {ak : ak ∈ Gat ∩ I, k < j}.

(4)

This expression is complicated because it handles arbitrary
correlation structures between the p-values. It greatly sim-
plifies in certain cases. For example, if we are performing
one-sided Z-tests and the pairwise correlations of the model
losses are non-negative, (4) is equivalent to defining caj (I)
as the solution to

Pr

(
pak > cak(I)∀k = t, ..., j − 1, paj < caj (I)

∣∣∣∣∣
j⋂
k=t

Hak

)
= waj (I)α.

Using the flexible fixed sequence tests from above, we se-
quentially calculate the significance thresholds and test the
adaptive hypotheses. When a hypothesis is rejected, we re-
move its node and propagate its local weight to its children
nodes per (1). We can prove the monotonicity condition
holds to establish the following result:

Theorem 1. Algorithm 1 with significance thresholds cho-
sen using (4) controls the FWER for adaptively defined
hypotheses at level α.

2.4 SRGPS WITH PRESPECIFIED
HYPOTHETICAL MODEL UPDATES

The SRGPs in the above sections protect against the worst
case scenario where the model developer is adversarial. In
practice, the model developer may have a plan for how



they will update their model over time (i.e. continually refit
the model on accumulating data) and will only make small
adjustments based on test results. As such, we do not expect
the adaptively chosen model at iteration t to stray far from
the initial plan. In the most extreme case, we may find that
the model developer is not adaptive at all and follows the
prespecified procedure perfectly; instead of correcting for
(2T − 1) hypotheses, we would expect that the correction
factor to be O(T ) instead.

To leverage this similarity assumption, we propose a novel
SRGP that requires the model developer to prespecify a
procedure for generating hypothetical model updates. This
prespecified procedure describes the exact steps for how
modifications would be generated, e.g. the data stream used,
the number of training observations, and hyperparameter
selection. These hypothetical model updates are included as
additional nodes in the hypothesis graph and assigned posi-
tive node weights. Their sole purpose is to improve power
for approving the adaptively-defined model updates. These
model updates are never formally tested nor approved for
deployment. We also do not release any information about
their test performance, because doing so would increase the
amount of information leaked to the model developer and
the branching factor of the adaptive tree.

At each iteration, this SRGP constructs a confidence region
for the performance of the t-th prespecified model update
f̂prest by spending its allocated alpha, accounting for its
correlation with all prespecified models up to iteration t− 1.
It then tests the t-th adaptive model by accounting for its
correlation with the prespecified models up to iteration t.
As such, the power for testing the adaptive modifications
increase as their correlation with the prespecified updates
increases.

More formally, the critical value and significance threshold
at time t are calculated as follows. Let P0 denote the target
population and Pn denote the empirical distribution of the
test dataset. Here we consider a univariate performance
measure ψ, where ψ

(
f̂ , P

)
is the performance of model

f̂ with respect to distribution P . It is straightforward to
extend this procedure to multivariate performance measures
(see the Appendix for an example). Denote the deviation
between the estimated and true performance as

ξprest,n = ψ
(
f̂prest , Pn

)
− ψ

(
f̂prest , P0

)
.

For intersection hypothesis I , define Ĩ as union of I and
all prespecified nodes. Define critical value zprest (I) as the
largest z̃ such that

Pr
(
ξprest′,n > zprest′ (I) ∀t′ < t, ξprest,n ≤ z̃

)
≤ wpres

t

(
Ĩ
)
α.

(5)

The significance threshold cat(I) for testing Hat is defined

as the largest c̃ such that

Pr
(
ξprest′,n > zprest′ (I) ∀t′ ≤ t, pat ≤ c̃

∣∣∣Hat

)
≤ wat

(
Ĩ
)
α.

(6)

Crucially, these calculations do not depend on observing
counterfactual or future hypotheses. Using a union bound,
we can show that the Type I error for falsely rejecting the
intersection hypothesis I using the critical values defined
above is bounded by the sum of the right hand sides of
(5) and (6) for all (t, at) in I . Because the total weight in
the graph is always one, we achieve Type I error control at
level α. Using this idea, we can show that this SRGP indeed
controls the FWER:

Theorem 2. Algorithm 1 using significance thresholds de-
fined using equations (5) and (6) controls FWER at level α
for adaptively selected hypotheses.

3 SIMULATION STUDIES

We now present two simulation studies of model developers
who adaptively propose modifications to their initial ML
algorithm. The developers aim to improve the model’s area
under the receiver operating characteristic curve (AUC) and
quantify the performance increase as accurately as possible.
Because our adaptive test data reuse procedures only release
a single bit of information at each iteration, we must care-
fully design the hypothesis tests to obtain a numeric bound
on the performance improvement. In particular, we define
the j-th adaptive hypothesis test as

Hadapt
0,j : ψ

(
f̂adaptj ;P0

)
≤ ψ

(
f̂0;P0

)
+ δadaptj (7)

where ψ(f, P ) denotes AUC of model f for distribution P
and δadaptj ≥ 0 is the improvement difference that we are
trying to detect. To ensure the model performance tends to
improve with each approval, we set δadaptj+1 = δadaptj + 0.01
whenever the j-th null hypothesis is rejected. Note that one
could consider more complicated hypotheses, each with
their pros and cons. For example, one can check that the
modifications are strictly improving and test for an improve-
ment difference; however, this can be overly stringent.

The purpose of the first simulation study is to investigate
FWER control. We do this by simulating a model developer
who tries to overfit to the test data based on the informa-
tion released at each iteration. The purpose of the second
simulation study is to investigate power. Here the model de-
veloper generally proposes good algorithmic modifications
by continually refitting the model given an IID data stream.

In both simulations, we generate X ∈ R100 using a multi-
variate Gaussian distribution. Y is generated using a logistic
regression model where the coefficients of the first six vari-
ables are 0.75 and all other model parameter are zero. The



Figure 3: Comparison of multiple testing procedures (MTPs)
for approving algorithmic modifications generated by an
adversarial model developer. At each iteration, the model
developer tests a model that is overfit to the reusable test
dataset. We plot the AUCs of the most recently approved
model on the reusable test dataset and a completely held out
test dataset (left), the rate of incorrectly approving at least
one unacceptable modification (middle), and the detected
increase in AUC (right). ’Value’ is defined in the title of
each plot.

modifications are also logistic regression models. We evalu-
ate the two SRGPs proposed in this paper—SRGP with flexi-
ble fixed sequence tests (fsSRGP) and SRGP with hypothet-
ical prespecified model updates (presSRGP)—against rel-
evant baseline comparators, including the standard Bonfer-
roni procedure (Bonferroni), a weighted Bonferroni pro-
cedure (wBonferroni), and the Bonferroni-based SRGP
(bonfSRGP). For wBonferroni, we assigned weights to
favor hypotheses with more successful approval histories. In
particular, we split the adaptive hypotheses into two groups:
those with an approval history with no more than three failed
approvals and those with more than three. We then assigned
weights such that the hypotheses were equally weighted
within each group and the total weight for each group was
0.5. The weights in the SRGPs were defined such that the
first outgoing edge (a successful rejection of the hypothesis)
is 0.8 and for each subsequent edge, it was assigned 0.8 of
the remaining weight. Unless specified otherwise, all the
MTPs control the FWER at level α = 0.1. Details for deriv-
ing test statistics and significance thresholds are provided in
the Appendix.

3.1 VERIFYING FWER CONTROL

Here we show how MTPs that fail to control the FWER
can drastically elevate one’s risk of overfitting to the test
data, as compared to appropriately-designed adaptive test
data reuse procedures. In particular, we consider the naïve
procedure that tests every adaptive hypothesis at level α
(BinaryThres). The reusable test dataset has 100 obser-
vations and the model developer tests T = 50 modifications.
For the purpose of illustration, the initial model is set to the
oracle, so all proposed modifications are unacceptable.

The simulated model developer tries to find models that
overfit to the test data by searching within the neighborhood
of the currently approved model. In particular, the developer

iteratively perturbs the coefficient of each irrelevant variable
by 0.6 in the positive and negative directions. When any
such modification is approved, the model developer will
continue perturbing that coefficient in the same direction
until it fails to reject the null hypothesis. For presSRGP,
the prespecified model update at iteration t is the model with
coefficients exactly the same as the initial model except that
the coefficient for the (7 + bt/2c)-th variable is set to 0.6 if
t is even and -0.6 if t is odd.

Figure 3 shows the result from 100 replicates. Notably,
BinaryThres approves at least one inferior modification
with probability 75% and concludes that the modifications
by the last iteration improves the AUC by at least 0.02, even
though the AUC actually drops by 0.025 on average. All the
other MTPs appropriately control the FWER at the desired
rate of 10% and, thus, protect against over-fitting.

3.2 ASSESSING POWER

Here the simulated model developer has access to an IID
data stream and iteratively refits a logistic regression model
on this data. Because training on more data from the tar-
get population tends to improve model performance, the
modifications are usually beneficial. However, there is a risk
that the modification does not improve performance or that
the improvement is negligible, especially because there is
a potential for overfitting to the reusable test data set. By
testing hypotheses (7), we can restrict approval to only those
model updates with meaningful improvements in the AUC.

The test dataset has 800 observations and we allow T = 15
adaptive tests. At each time point, the model developer
receives a new observation and refits the model. To spend al-
pha more judiciously, the model developer will only submit
the refitted model if the power calculations suggest that the
probability for rejecting the null hypothesis exceeds 50%.
Specifically, they perform power calculations by setting the
true performance improvement to the CI lower bound, which
is estimated using split-sample validation. (For simplicity,
the power calculations do not perform any multiple test-
ing correction.) To run presSRGP, the prespecified model
updating procedure also selects updates based on a hypothe-
sis test similar to (7) but replacing the adaptive difference
sequence δadaptj with the prespecified difference sequence
δpresj = 0.0025(j − 1) as well as replacing the adaptive
modifications with the prespecified ones.

The procedures differed significantly in power (Figure 4).
presSRGP performed the best, followed by fsSRGP. In
particular, the total number of approved modifications and
the average AUC of the final approved model were higher
when using presSRGP compared to fsSRGP (p=0.05 and
0.03, respectively). Both presSRGP and fsSRGP signifi-
cantly outperformed the other methods (p ≤ 0.005 for all
comparisons).



Figure 4: Comparison of multiple testing procedures (MTPs)
for approving modifications trained on an IID data stream. A
single observation is collected at each time point. The model
developer retrains the model on all accumulated data and
adaptively decides whether to submit the model for approval.
The number of approved modifications (left), the detected
increase in AUC (middle), and the AUC of the most recently
approved modification (right) are plotted against time.

4 DATA ANALYSIS: PREDICTING
ACUTE HYPOTENSION EPISODES

We now apply our procedure for approving modifications
to a risk prediction model for acute hypotension episodes
(AHEs), one of the most frequent critical events in the inten-
sive care unit (ICU) (Walsh et al., 2013). The ICU is a clini-
cal environment that continuously generates high throughput
data. Thus, a model developer can readily collect new data
in this setting to retrain an existing model. To mimic this,
we use data from the eICU Collaborative Research Database
(Pollard et al., 2018). We randomly select 40 admissions to
train an initial model, reserve another 500 admissions to con-
struct the reusable test dataset, and use the remaining 589
admissions to simulate a data stream. Data from one admis-
sion is observed at each time point, and the model developer
is allowed to test a maximum of T = 15 modifications.

The task is to predict AHE 30 minutes in advance, where
we define AHE as any 5-minute time period where the
average mean arterial pressure (MAP) falls below 65 mmHg.
The input features to the model are baseline variables age,
sex, height, and weight; vital signs MAP, heart rate, and
respiration rate at the current time point; and the same set
of vital signs five minutes prior. The prediction model is a
gradient boosted tree (GBT) and is continually refit on the
incoming data.

Here we consider a more complex hypothesis test that
checks for calibration-in-the-large (Steyerberg, 2009) and
improvement in AUC. The j-th adaptive null hypothesis is

Hadapt
j : ψ

(
f̂adaptj ;P0

)
≤ ψ

(
f̂0;P0

)
+ δadaptj

or E
[
f̂adaptj (X)− Y

]
6∈ [−ε, ε],

(8)

where δadaptj is defined using the same procedure as that in
Section 3.2, f̂adaptj is the modification determined to have
sufficient power for rejecting the null, and margin of error ε
is 0.05. We will refer to E

[
f̂adaptj (X)− Y

]
as calibration-

Figure 5: Comparison of MTPs for approving updates to
a gradient boosted tree for predicting acute hypotension
episodes. At each time point, model developer observes data
from a new admission, retrains the model on all accumulated
data, and decides whether to submit the updated model for
approval. The test for approval checks that the model’s AUC
is improving and its calibration-error-in-the-large is close to
the ideal value of zero.

error-in-the-large. Details on calculating the test statistic
and significance thresholds are provided in the Appendix.

Results from 40 replicates are shown in Figure 5. We ob-
serve the same ranking of MTPs as that in Section 3.2.
The total number of approved models is highest using
presSRGP compared to the other MTPs (p ≤ 0.005
for all comparisons). Also, the AUC of the final model
approved was also higher using prespecSRGP com-
pared to Bonferroni, wBonferroni, bonfSRGP, and
fsSRGP (p = 0.002, 0.010, 0.020, 0.015, respectively).
Compared to the previous section, the relative improvement
between the methods is smaller because the GBTs improved
rapidly at early time points and slowed down thereafter.

To better understand how performance can vary across dif-
ferent datasets, we have included a second data analysis in
the Appendix based on a medical imaging task. There, we
find that fsSRGP and presSRGP outperform the rest of
the methods, and their approval rates are nearly indistin-
guishable.

5 RELATED WORK

Our paper relates to a large body of work on methods for
providing valid statistical inference and preventing false
discoveries. Much of this literature has focused on testing
prespecified hypotheses on the same dataset while control-
ling the FWER (Hochberg and Tamhane, 1987; Westfall
et al., 2010), false discovery rate (FDR) (Benjamini and
Hochberg, 1995), or some variant thereof (van der Laan
et al., 2004). More recent work consider testing a sequence



of adaptive hypotheses on prospectively-collected data from
a data stream and controlling online error rates (Foster and
Stine, 2008; Ramdas et al., 2018). This work considers the
setting where we adaptively test hypotheses on the same
dataset. To control for the bias of reusing the same dataset,
testing procedures must limit the amount of information
released about the test data (Russo and Zou, 2016). Tech-
niques based on differential privacy, which is a mathemat-
ically rigorous formalization of data privacy (Dwork and
Roth, 2014), do this by adding random noise (e.g. Laplace
or Gaussian noise) to the test statistic or, more generally,
the queried result (Dwork et al., 2015a). While theoretical
guarantees are available for differential privacy based meth-
ods for test data reuse (e.g., (Dwork et al., 2015b; Russo
and Zou, 2016; Rogers et al., 2016; Cummings et al., 2016;
Dwork et al., 2017; Feldman and Steinke, 2017, 2018; Shen-
feld and Ligett, 2019; Gossmann et al., 2021) and others),
the required size of the test dataset is prohibitively large for
many application domains or require injecting very large
amounts of noise (Rogers et al., 2019; Gossmann et al.,
2021). An alternative approach is to directly limit the num-
ber of bits of information released to the model developer
by discretizing the queried result along some grid (Blum
and Hardt, 2015). Existing methods essentially perform a
Bonferroni correction for the number of distinct hypotheses,
which also require unreasonably large test datasets for many
applications. To improve testing power, a number of works
have assumed that the adaptivity of the model developer is
limited (e.g. the models are highly correlated, or the model
developer is not entirely “adversarial”) to justify the use
of a less conservative correction factor (Mania et al., 2019;
Zrnic and Hardt, 2019). In contrast, the SRGPs proposed in
this work achieve higher power via alpha-recycling and ac-
count for the correlation structure without needing to make
assumptions about the model developer.

6 CONCLUSION

We show how to leverage SRGPs to design valid and power-
ful approaches for testing a sequence of adaptively-defined
algorithmic modifications on the same dataset. The overall
steps of this framework are (i) limit the amount of informa-
tion leakage by reporting only binary test results (approve
versus deny modifications), (ii) spend and recycle alpha
using an SRGP, and (iii) design consonant, closed-testing
procedures whose significance thresholds can be computed
without needing to observe the counterfactual hypotheses.
To account for correlation between the algorithmic modifi-
cations, we presented two new SRGPs. fsSRGP achieves
higher power by leveraging the correlation structure between
the observed algorithmic modifications. presSRGP asks
the model developer to generate a sequence of algorithmic
modifications using a prespecified learning procedure and
leverages the correlation between the adaptive and prespeci-
fied algorithmic modifications. In empirical studies, these

procedures approved more algorithmic modifications than
existing methods, with presSRGP achieving the highest
power.

A limitation of this work is that the model developers were
simulated, because there are no publicly available datasets
that document modification strategies taken by real-world
ML practitioners. In particular, we designed a modification
strategy based on one of the most commonly used strategies
in the literature: retraining the model on all previously accu-
mulated data (Breck et al., 2017; Amershi et al., 2019). To
provide a more complete picture, we have included sensitiv-
ity analyses in the Appendix to understand how variations in
the model developer’s strategy can impact the performance
of the proposed methods. Generally, we find that the addi-
tional gain in power using presSRGP and fsSRGP over
the other methods depends on the modification strategy. As
such, one direction of future work is to design modification
strategies that can be paired with these MTPs to maximize
power.

Other areas for future research include tuning the node and
edge weights in the SRGPs to optimize statistical power
and extending the SRGPs to control other error rates (e.g.
k-FWER and False Discovery Rate) (Robertson et al., 2020).
In addition, model developers are often interested in obtain-
ing more detailed test results like p-values and confidence
intervals. So an important next step is to design SRGPs that
release more information per iteration, perhaps by leverag-
ing differential privacy techniques.
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