Published at the MLDD workshop, ICLR 2023

GENERATING MULTI-STEP CHEMICAL REACTION
PATHWAYS WITH BLACK-BOX OPTIMIZATION

Danny Reidenbach!, Connor W. Coley?, Kevin Yang!
University of California Berkeley, 2Massachusetts Institute of Technology
dreidenbach@berkeley.edu

ABSTRACT

The practical usability of de novo small molecule generation depends heavily on
the synthesizability of generated molecules. We propose BBO-SYN, a genera-
tive framework based on black-box optimization (BBO), which predicts diverse
molecules with desired properties together with corresponding synthesis path-
ways. Given an input molecule A, BBO-SYN employs a state-of-the-art BBO
method operating on a latent space of molecules to find a reaction partner B,
which maximizes the property score of the reaction product C, as determined by a
pre-trained template-free reaction predictor. This single-step reaction (A+B—C)
forms the basis for an optimization loop, resulting in a synthesis tree yielding
products with high property scores. Empirically, the sampling and search strategy
of BBO-SYN outperforms comparable baselines on four synthesis-aware opti-
mization tasks (QED, DRD2, GSK3/, and JNK3), increasing product diversity
by 37% and mean property score by 25% on our hardest JNK3 task.

1 INTRODUCTION

Strong automated methods for molecular design have the potential to greatly accelerate early-stage
drug discovery and molecular optimization. However, while several current strategies can accelerate
the filtering of 1060 possible drug-like molecules (Reymond & Awalel 2012) or generate novel
molecules with desired properties (Kim et al.l 2020b; |[Engkvist et al., 2021), many methods may
overlook molecular synthesizability constraints, resulting in output molecules which are challenging
or impossible to synthesize in practice. Despite recent work on automated retrosynthetic planners
(Law et al., 2009; Segler et al., 2018a; |Coley et al., [2018a;2019a)), finding viable and economically
feasible synthesis pathways is still a labor- and time-intensive process

As many de novo generation methods can optimize for arbitrary properties given a scorer, some
works have designed rule- or model-based heuristic synthesizability scores to guide optimization
towards synthesizable molecules (Ertl & Schuffenhauer; [2009; (Coley et al., [2018b} [Segler et al.,
2018a). While such approaches are plausible in theory, generative models often exploit these heuris-
tics in practice. Additionally, heuristics only address half the problem: even given a perfect heuristic
for synthesizability, the corresponding chemical reaction steps would still be unknown.

In this work, we design a model for the task of synthesizability-constrained molecular design, which
we define as generating not only synthesizable molecules optimized for desired chemical properties
but also corresponding reaction pathways for actually creating those molecules (Gottipati et al.
2020). In doing so, we can significantly reduce the difficulty of physically synthesizing the predicted
molecules in practice.

We propose BBO-SYN, which leverages black-box optimization (BBO) to generate accurate synthe-
sis trees with final products possessing high desired property scores. Fig. P]illustrates the underlying
workflow of BBO-SYN and how it is used to generate a synthesis tree, like in Fig. [T BBO-SYN
uses a Monte Carlo Tree Search (MCTS) based latent space partitioning algorithm, LaP? (Yang
et al.,|2021), to find effective reactants for building synthesis trees. BBO-SYN improves over DAGs
(Bradshaw et al.| 2020), a template-free synthesis planner with discrete reactants, by converting
the reactant selection problem to an optimization problem over a continuous latent space. In this

'Retrosynthesis: Given a product molecule, predict the reaction tree and reactants to synthesize it.
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Figure 1: Example synthesis trees generated by BBO-SYN for JNK3 and GSK30 properties. Left-
side nodes are reactants found directly in the latent space via BBO-SYN . All products correspond
to the top-1 Molecular Transformer prediction, with associated reaction probabilities shown.

way, BBO-SYN can easily handle any number of potential reactants and is agnostic to the chosen
molecular representation. We use the same model-based chemical reaction predictor, Molecular
Transformer (Schwaller et al.,|2019)), as DAGs to encourage the production of viable reaction steps,
as depicted in Fig. [I] Fig. [I]illustrates the synthesis trees generated by BBO-SYN when optimizing
for two distinct chemical properties. BBO-SYN progresses by adding more reactants with each step
up the tree until reaching the final product. Finally, we show that BBO-SYN outperforms DAGs in
four synthesis-aware property optimization tasks (QED, DRD2, GSK34, and JNK3), increasing the
product diversity by 37% and the mean property score by 25% on our hardest JNK3 task.

2 RELATED WORK

2.1 BLACK BOX OPTIMIZATION

BBO methods constitute a flexible class of approaches that optimize a given function with little to
no assumptions on its internal structure. Classical approaches such as CEM (Rubinstein, [1999) and
CMA-ES (Hansen, [20006) learn a local model around promising trajectories; however, both greedily
focus on promising regions of the search space and may get trapped in local optima. Other recent
approaches, such as VOOT (Kim et al., |2020a) and DOO (Munos, 2011}, use a recursive region
partitioning scheme to alleviate the aforementioned issues. LA-MCTS (Wang et al.| 2020a) and
LaP3 (Yang et al., [2021), a latent-space-based extension, further improve upon prior methods by
adaptively partitioning the search regions based on sampled function values.

2.2 CHEMICAL REACTION PREDICTION

A strong chemical reaction prediction system is critical for predicting viable synthesis pathways.
There are two distinct methodologies for chemical reaction prediction: template-based and template-
free. Template-based methods use chemical reaction rules based on subgroup pattern matching
scraped from literature (Bggevig et al.| 2015} [Szymkuc et al., [2016; |Chen & Jung} 2021} Dai et al.,
2019; |Coley et al., [2017 [Zhang et al.,[2022b)). These methods provide approximations for feasible
reactions but are limited by the availability and specificity of applicable chemical reaction templates.
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Template-free methods directly model chemical reactions to generalize to unseen reactions but can
struggle with prediction accuracy compared to template-based methods especially when subject to
out-of-domain data. Some methods rely on editing the graphical representation of molecules (Coley
et al., 2019b; [Sacha et al.| [2021)), others model the problem as a sequence-to-sequence generation
problem (Schwaller et al.l[2019; Lin et al.,[2020; |Duan et al., [2020)), and more recent works leverage
both representations for more efficient reaction prediction (Tu & Coley|2022)). We employ template-
free methods for reaction prediction because such methods can in principle generalize beyond a
limited number of available reaction templates. BBO-SYN takes advantage of such generalizability
to optimize over its continuous molecular latent space.

2.3 CONTINUOUS MOLECULE REPRESENTATIONS

As it is computationally infeasible to enumerate every drug-like molecule for de novo generation and
molecular design, many methods choose to optimize over a fixed-sized continuous vector molecule
representation. Such representations unlock a wide array of complex and in some cases fully dif-
ferentiable optimization techniques that are intractable over a discrete set of molecules (Gomez-
Bombarelli et al., |2018)). For example, both SMILES-VAE (G6mez-Bombarelli et al., [2018)) and
MoIMIM (Reidenbach et al., [2022)) are models that generate novel molecules, optimized for molec-
ular properties directly in their respective latent spaces.

Following this logic, to take advantage of recent advancements in BBO, BBO-SYN employs LaP3
over a continuous latent space. We chose to work with HierVAE’s (Jin et al.,|2020) molecular repre-
sentation as it has been well-benchmarked on several property-guided optimization tasks. HierVAE
breaks down input 2D molecule graphs into common subgraph motifs, building a hierarchical auto-
encoder for autoregressive molecule generation. BBO-SYN expands on the prior idea of direct latent
optimization by leveraging BBO in an iterative mechanism designed explicitly for synthesizability-
constrained generation.

2.4 SYNTHESIZABILITY-CONSTRAINED GENERATION

As synthesizability-constrained generation is rooted in reaction prediction, there exist both template-
based and template-free methods. Several early methods, such as SYNOPSIS (Vinkers et al., 2003)
and DOGS (Hartenfeller et al., 2012)), combine discrete synthetic building blocks for molecular
design. RL methods such as PGFS (Gottipati et al.,|2020), REACTOR (Horwood & Noutahil |[2020),
and SynNet (Gao et al.l [2022) use reaction templates to form a discrete action space for an actor-
critic algorithm to generate optimal synthesis trees. Popular template-free methods include ChemBO
(Korovina et al.| 2020), which uses Bayesian optimization, and MoleculeChef (Bradshaw et al.,
2019), which leverages latent gradients over fused reactant embeddings. Building on MoleculeChef,
DAGs (Bradshaw et al., [2020) uses an iterative RL finetuning scheme over whole synthesis tree
embeddings for synthesizability-constrained molecular property optimization. While DAGs limits
its entire generative process to a small discrete set of reactants, BBO-SYN uses LaP?, an MCTS-
based latent search algorithm, to locate optimal reactants for building synthesis trees. Unlike DAGs,
BBO-SYN can be scaled to handle extremely large reactant sets with little increase in computational
cost due to its use of BBO and continuous molecular representations.

Due to the inherent tree structure of synthesizability-constrained generation, several methods use
MCTS to generate plausible synthesis trees. AutoSynRoute (Lin et al., 2020) and SMC (Zhang
et al.| [2022b)) use MCTS to explore pathways in template-free retrosynthesis and generate template-
based reaction networks based on stacks of linear reactions. Several methods combine MCTS with
RL to create dynamic synthesis solutions. |Segler et al.[(2018b) uses MCTS with an expansion policy
network to guide retrosynthetic pathways toward buyable reactants. Similarly, Wang et al.| (2020b)
integrates a learned value function with MCTS to discover efficient and safe synthesis pathways.
In contrast, BBO-SYN employs MCTS in a fundamentally different role in the inner optimization
loop for reactant selection. We note that modeling entire synthesis trees via MCTS is orthogonal to
our proposed method; combining BBO-SYN with existing MCTS approaches would likely further
improve performance in exchange for higher compute costs.
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Black Box
Optimizer

Figure 2: Internal diagram of BBO-SYN : (i) The input molecule A, is encoded and then (ii) passed
to the black-box optimizer. (iii) The optimizer generates k+1 latent points, which are then (iv)
decoded into SMILES. (v) The input and latent reactants are reacted together where (vi) each product
is scored by a given oracle function. (vii) The highest-scoring product and latent reactant are stored.
(viii) The scores for all products are returned to the BBO to score the latent points generated in step
iii to update for the next iteration. (ix) The optimal reactant B, and product A, are returned after
all BBO iterations are complete and A, becomes the input for the next synthesis iteration.

3 METHODS

3.1 OUTER SYNTHESIZABILITY OPTIMIZATION LOOP

We define our synthesis framework, BBO-SYN, as follows. BBO-SYN breaks down the task of
molecule generation into two distinct optimization steps: an outer iterative loop and an inner BBO
loop for latent reactant selection. The outer loop is where synthesis trees are built one node at a time,
as shown in Fig. [T} to enforce strict model-based synthesizability constraints. BBO-SYN begins by
encoding an input molecule and passing it to the black-box optimizer where LaP? is used in the
inner loop to generate reactant options directly in the latent space (Fig. 2]i-iii). Independent of the
underlying BBO method, BBO-SYN scores proposed latent reactants z for each input molecule A
according to: oracle(react(A, decode(z))) (Fig. [2]iv-vi). Every potential latent solution is decoded
and reacted with our input molecule via template-free reaction prediction. After each sub-iteration
of the black-box optimization, the product and accompanying reactant yielding the highest property
score are saved, and then all scores are returned to the optimizer to update and continue the next
sub-iteration (Fig. [2] vii-viii)P]

Once the outer procedure is complete, the best product is used as the input reactant for the next
BBO-SYN outer iteration, and the associated best reactant partner is returned (Fig. [2)ix). We show
that we can greedily build synthesis trees by reusing the intermediate products as new inputs to
generate a final optimal product for the desired chemical property. While greedy optimization might
not necessarily lead to truly optimal synthesis trees, we found it worked well enough in practice.

3.2 INNER BLACK-B0OX OPTIMIZATION LOOP

The inner optimization loop uses BBO to select reactants from a continuous latent space for the
building of optimal synthesis trees. Specifically, BBO-SYN uses LaP3, which iteratively samples
latent points to learn a recursive space partition focusing on good regions while also still exploring
bad regions using an upper confidence bound. While prior methods utilize MCTS to model entire
synthesis trees (corresponding to our outer loop), LaP? uses MCTS to learn a space partitioning
function which is used to produce optimal latent reactants for individual chemical reaction steps.

As synthesizability-constrained generation is driven by the choice of available reactants, we opted
to use a continuous molecular representation to efficiently handle a variable number of candidate
reactants without major changes to underlying methodology (Jin et al.l |2020). As it is challenging
to generate a smooth molecular latent space (Gomez-Bombarelli et al.l 2018} |Zhang et al., 2022a),
we use BBO to alleviate the structural and optimization difficulties of working in a non-smooth
space (Yang et al., [ 2021;|Wang et al.,2020a). BBO thus provides us with a powerful solution to the

>We used the default number of LaP? iterations according to https://github.com/yangkevin2/
neurips2021-lap3.
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reactant selection component of template-free synthesizability-constrained generation. Furthermore,
we stress BBO-SYN’s modularity as it does not depend on any one choice in reaction predictor,
molecular latent space, or optimization goal. Discrete methods such as DAGs must be retrained
from scratch for each alteration. BBO-SYN, on the other hand, can seamlessly take advantage
of future advances in adjacent areas of BBO, chemical reaction prediction, and latent molecular
representation.

4 EXPERIMENTS

4.1 BASELINES AND TASK SETUP

We compare BBO-SYN to various DAGs’ fine-tuned DoG-Gen models (Bradshaw et al.| 2020),
one per tested property holding fixed the initial set of starting molecules and the chemical reaction
predictor. DAGs was chosen as it is the most expressive template-free forward synthesis planner to
date that has been successfully applied to property-guided molecule generation. For the initial set
of starting molecules, we use a subset of the starting molecules from DAGs’ published validation
set of crafted synthesis trees Both methods use DAGs’ pre-trained Molecular Transformer model
weights for template-free chemical reaction prediction to ensure a fair comparison. Both methods
also only consider the top-1 Molecular Transformer generated products with no threshold for model
confidence. BBO-SYN limits the depth of generated synthesis trees to 4, as each optimization step
is computationally expensiveE]

Given that BBO-SYN'’s generated synthesis trees are conditioned on a specified starting point, we
filter the final DoG-Gen products to keep only the highest-scoring synthesis tree for each of the
shared starting pointsE] This alignment step is necessary as DoG-Gen is fine-tuned by repeatedly re-
training on its top-k seen trees and can only return a sorted list of every synthesis tree encountered
during its iterative refinement. In this way, we can condition the outputs of both methods on the
same discrete set of starting molecules.

Due to the different definitions and design choices of the components of the synthesis-aware gener-
ation task, a true head-to-head comparison is difficult to create. As a result, DoG-Gen is only used
as an anchor point to understand BBO-SYN’s performance. As BBO-SYN explores a continuous
reactant latent space, it is not confined to the same set of discrete reactants as DoG-Gen. Our bench-
marks are designed to mitigate the differences of continuous vs. discrete spaces as much as possible
and provide extensive ablations to understand how BBO presents a robust and scalable solution to
the synthesis-aware generation problem. Since the BBO-SYN latent spaces are trained to approxi-
mate the distribution of the discrete DoG-Gen reactants, and all synthesis trees start with one of the
discrete reactants, we opt to use the initial starting molecule as the main equalizing criteria in the
later comparisons.

4.2 REACTANT LATENT SPACE SET UP

We trained two distinct HierVAE (Jin et al.| 2020) models with a 32-dimensional latent space. The
first was trained solely on the DAGs published building blocks (4,343 molecules). The second latent
space was trained on all unique reactant and product molecules in the USPTO_MIT data set (Jin
et al., |2017) that was used to train the aforementioned Molecular Transformer. The second latent
space also included the above building blocks filtered for SMILES length [3,45], resulting in a
total of 404,898 molecules or potential reactants for forward synthesis. These two latent spaces are
henceforth referred to as the small and large latent spaces, respectively. We applied BBO-SYN to
optimize for various chemical properties over both latent spaces to understand how our framework
would operate in various environments.

3We use SMILES with length in [5,25], totaling 2246 molecules.
*99% of DoG-Gen trees had depth <= 4 with max depth of 10. Best DoG-Gen JNK3 trees were depth 4.
>Synthesis trees are scored by the property score of the final product molecule.
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4.3 METRICS

We focus on each method’s ability to generate diverse final product molecules with high property
scores. As such, we report the property score distributions of the final product molecules of all
generated synthesis trees. For all experiments, we used the TDC package (Huang et all, 2021)
for property oracle functions (QED, DRD2, JNK3, GSK3/3). We also report the internal diversity

(IntDiv,,), defined as 1 —

similarity 7" taken from MOSES (Polykovskiy et al.,[2020). A low percentage of diverse molecules
illustrates a method’s collapse to a select few solutions, i.e., a lack of generative robustness.

[GF my,maec T(mi1,m2))P for a set of molecules G and Tanimoto

4.4 RESULTS

Here we present the respective optimized product distributions for both DoG-Gen and BBO-SYN
for DRD2, GSK3/, and JNK3.
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Figure 3: Property scores of final predicted molecules for BBO-SYN and DoG-Gen property-guided
optimization. Both methods use the same initial building blocks and chemical reaction predictor.
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Figure 4: Internal diversity of top 5, 10, 25, 50, 75, 100 molecules. Solid and dashed lines corre-
spond to IntDiv; and IntDivs.

Fig. [3] shows that BBO-SYN significantly eliminates weaker products while maintaining top-end
performance. We see in Fig. @] BBO-SYN produces more unique high-scoring molecules for all
properties. We hypothesize that the large increase in diversity (37% for top 100 JNK3 molecules)
is due to BBO-SYN’s independent optimization for each input. Compared to DoG-Gen’s bulk fine-
tuning, BBO-SYN searches the reactant space in parallel to find the best reactants for each starting
molecule.

BBO-SYN finds a unique optimal product for nearly every input which is desirable when developing
novel molecules. By actively searching for promising reactants, BBO-SYN avoids converging to a
small set of solutions, as seen in DoG-Gen. Although BBO-SYN has a higher computational cost
due to the inner loop LaP3 optimization steps, we observed that giving DoG-Gen additional training
iterations to equalize the property oracle budget of BBO-SYN resulted in no discernible difference
in the resulting property distributions. We suspect that because DoG-Gen is repeatedly fine-tuned on
its top encountered synthesis trees, increasing DoG-Gen’s oracle budget only further increases the
apparent mode collapse. We also acknowledge the flaws of template-free reaction prediction as seen
in the low model confidence reactions in Fig. [I} While it does not impact the comparison between
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BBO-SYN and DoG-Gen as they use the same reaction prediction, in the future, reaction confidence
can be directly optimized by incorporating it into the BBO scoring function.

4.5 ANALYSIS AND ABLATIONS

Below we analyze the effect of the choice of BBO-SYN’s BBO method as well as the latent space
size on the property scores and diversity of the generated synthesis trees. Specifically, we compare
two BBO methods, a simple CMA-ES, and LaP3, over both the small and large latent spaces for a
series of property optimization tasks. We utilized a SMILES length penalty on all CMA-ES pro-
posed reactants to prevent exploding sequence lengths due to sampling from non-smooth regions of
the latent spaceE] No length penalties were needed for LaP3 .

1000 s BBO-SYN: CMA-ES
DoG-Gen
» 800
Q
3 600
[
°
= 400
200
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0.2 0.4 0.6 0.8
QED Score

Figure 5: Unique QED Synthesis Product Distributions. Even when LaP? is replaced with a weaker
optimization method, CMA-ES, BBO-SYN outperforms DoG-Gen when using the same set of start-
ing points and chemical reaction predictor.

Fig. [5] demonstrates that BBO-SYN needs only a simple CMA-ES to achieve strong performance
for QED. Compared to DoG-Gen, BBO-SYN increases the diversity of the top 100 molecules by
5%. However, the story changes when we compare CMA-ES and LaP* on the more challenging
properties: DRD2, GSK3/3, and JNK3.

CMA-ES struggles to generate molecules with JNK3 greater than 0.6, whereas that is where most
of the LaP? optimized results are located (Fig. Eka)). Similar behavior can be seen for GSK3/3 and
DRD?2 in Appendix Fig. O[a)- [I0[a) as CMA-ES tends to generate more broad distribution whereas
LaP3 is more concentrated around high scoring molecules. Fig. Ekb) shows the internal diversity
for the analyzed generated products. We point to the significant gap in property optimization per-
formance as the reason for CMA-ES achieving higher diversity, i.e., it is easy to generate diverse
products when they are not strongly optimized for a specific property.

For all three tested properties, the property scores and diversity of generated molecules also depend
on the number of reactants considered or, in the case of BBO-SYN , the size of latent space used.
Fig. [6(a) illustrates the impact of the number of available reactants on generating high-scoring
synthesis trees. LaP3 achieves significantly better property scores when given the large latent space
that was trained with 100x the molecules as the small. Interestingly CMA-ES seems to prefer the
small latent space for top-end performance. Fig. [6[b) shows how the internal diversity is correlated
with the width of the property distribution, and as a result, CMA-ES and LaP? on the large latent
space result in the best and worst, respectively. Similar results can be found in Appendix Fig. [O[I0]
for GSK33 and DRD2.

We note that a significant advantage of BBO-SYN over DoG-Gen is its ability to consider 100x
more reactants by using a different latent space, with negligible increase in computational cost. It is
infeasible to run DAGs with over 400k potential reactants.

However, LaP? ’s improved performance on the large latent space may come at the cost of complete
synthesizability. When using the large latent space, it is possible that chosen reactants may actu-
ally be intermediate products, resulting in convergent synthesis: molecule X can react with another
intermediate Y, rather than requiring Y to be a starting material. Convergent synthesis poses new
difficulties but may also increase the potential flexibility of the method. For example, by introducing

SProperty scores of product SMILES of length > 70 and reactant SMILES of length > 55 were reduced by
a factor of 10.
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molecules.

simple RL as seen in DAGs and PGFS, one could at each step allow BBO-SYN to choose between
adding to the tree directly (as we do currently) or picking two latent reactants to produce a conver-
gent reactant (Gottipati et al., 2020). While we do not explicitly attempt this, we expect that this
procedure should be feasible because BBO-SYN'’s large latent space is trained on USPTO reactants
and their single reaction step products.

Figure 7: Top 6 BBO-SYN generated products optimized for JNK3.

R G o o 0o o

Figure 8: Top 6 DoG-Gen generated products optimized for JNK3.

Lastly, we provide a qualitative comparison of the diversity of the top 6 generated products for
JNK3 in Fig. Here it can be seen that DoG-Gen mostly makes minor updates to the end of
the same underlying molecular scaffold, whereas BBO-SYN generates more geometrically different
molecules. Similar results for GSK3/3 and DRD2 can be found in Appendix Fig. [12]-[13}

5 CONCLUSION

In this work, we introduce BBO-SYN, a synthesizability-constrained generative framework that
leverages template-free chemical reaction prediction to build property-guided synthesis trees. BBO-
SYN uses LaP? over a latent space of viable reactant molecules to select optimal reactants to produce
products with high desired property scores. We show that BBO-SYN achieves state-of-the-art per-
formance on QED, DRD2, JNK3, and GSK3/ guided synthesis tasks by substantially increasing
product diversity while maintaining high property scores. BBO-SYN can uniquely handle any num-
ber of reactants with relative ease compared to discrete reactant systems. Furthermore, BBO-SYN’s
latent space, black-box optimization method, and reaction predictor can be easily swapped out for
orthogonal future advancements. The sampling efficiency of black-box optimization methods could
also be further explored and is a key component to extending BBO-SYN to more complex tasks such
as protein docking.
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6 APPENDIX

Below we present additional figures for the GSK3/3 and DRD2 black-box method and latent space

size ablations.
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Figure 9: Optimization of GSK33 for various latent space sizes and BBO methods. All use the same
initial starting molecules. (bc) Internal Diversity of top 5, 10, 25, 50, 75, 100 GSK33 optimized
molecules. Solid and dashed lines correspond to IntDiv; and IntDivs.
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Figure 10: (a) Optimization of DRD?2 for various latent space sizes and BBO methods. All use the
same initial starting molecules. (bc) Internal Diversity of top 5, 10, 25, 50, 75, 100 DRD2 optimized
molecules. Solid and dashed lines correspond to IntDiv; and IntDivs.

- LaP? small
- LaP? large
- CMA-ES small
CMA-ES large

80 100

20 40 60
Top K JNK3 Molecules
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correspond to IntDivs.
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Figure 12: Top 6 BBO-SYN generated products optimized for GSK32.
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Figure 13: Top 6 DoG-Gen generated products optimized for GSK3..
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Figure 14: Top 6 BBO-SYN generated products optimized for DRD2.

Figure 15: Top 6 DoG-Gen generated products optimized for DRD2.
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