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Abstract

Model architecture design requires decisions such
as selecting operators (e.g., attention, convolution)
and configurations (e.g., depth, width). However,
evaluating the impact of these decisions on model
quality requires costly pretraining, limiting ar-
chitectural investigation. Inspired by how new
software is built on existing code, we ask: can
new architecture designs be studied using pre-
trained models? We present grafting, a simple
approach for editing pretrained diffusion trans-
formers (DiTs) to materialize new architectures
under small compute budgets. We study the im-
pact of grafting on model quality using the DiT-
XL/2 design. We develop a family of hybrid de-
signs via grafting: replacing softmax attention
with gated convolution, local, and linear attention;
and MLPs with variable-width and convolutional
variants. Notably, many hybrid designs achieve
good quality (FID: 2.38–2.64 vs. 2.27 for DiT-
XL/2) using < 2% pretraining compute. Next, we
graft a text-to-image model (PixArt-Σ), achieving
a 43% speedup with < 2% drop in GenEval score.
Finally, we present a case study where we restruc-
ture DiT-XL/2 by converting every pair of sequen-
tial transformer blocks into parallel blocks via
grafting, reducing model depth by 2x, achieving
better quality (FID: 2.77) than models of compa-
rable depth. Together, we show that new diffusion
model designs can be explored by grafting pre-
trained DiTs, with edits ranging from operator
replacement to architecture restructuring. Code
and grafted models: grafting.stanford.edu.
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1. Introduction
Model architecture design plays a central role in machine
learning, alongside data, algorithms, systems, compute, and
benchmarks. It entails several key decisions, including the
choice of computational operators (e.g., attention, convolu-
tion) and structural configurations (e.g., model depth, width).
Despite this, insight into architectures—what works and
what doesn’t—is difficult to obtain due to the prohibitive
costs of training models from scratch, especially in today’s
foundation model era. As a result, studying new architec-
tures remains a challenge, particularly for generative models.
Much like how new software is built on existing code rather
than written from scratch, we ask whether pretrained models
can serve as scaffolds for studying new architectures. In
this work, we investigate architectural editing of pretrained
models to study new architecture designs. We focus on diffu-
sion transformers (DiTs), a class of generative transformers
widely used for image and video generation (Peebles & Xie,
2023; Brooks et al., 2024; Gupta et al., 2023).

A pretrained model implements a computational graph to
perform tasks such as image or video generation. Given a
new architectural idea and a pretrained model, we investi-
gate whether the idea can be materialized by modifying the
pretrained model’s computational graph under small com-
pute budgets. For example, one might hypothesize that a
convolutional design could replace Multi-Head Attention
(MHA) or Multi-Layer Perceptron (MLP) in a DiT. A simple
way to materialize this idea is to replace MHA or MLP oper-
ators with a convolutional operator, while preserving model
functionality. This raises two key questions: (Q1) opera-
tor initialization: How should a new operator be initialized
before being integrated into the graph? (Q2) error accumu-
lation: How can we mitigate error propagation as multiple
operators are integrated into the graph?

To address these questions, we present grafting, a simple
two-stage approach to architecture editing (Fig. 1). Grafting
proceeds as follows: (i) operator initialization via activa-
tion distillation: This stage performs activation distillation,
using regression to transfer the functionality of the original
operator to the new operator. (ii) lightweight finetuning:
This stage mitigates error propagation due to integrating
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Figure 1. Grafting overview. (a,b) Model architecture design via grafting. Studying new model architecture designs requires costly
pretraining. Grafting materializes new architectures by editing pretrained models under small compute budgets (Sec. 3). (c) Class-
conditional image generation. Samples generated by hybrid architectures obtained via grafting (Sec. 4). (d) High-resolution text-to-image
generation. Samples generated using a grafted PixArt-Σ model (Sec. 5). (e) Depth → width case study. Samples generated using a model
restructured via grafting (depth: 28 → 14) (Sec. 6).

multiple new operators by finetuning using limited data. We
validate our grafting approach in increasingly challenging
generative modeling setups:

Result I: Grafting renders hybrid architectures with
competitive quality for class-conditional image gener-
ation (Sec. 4). For softmax attention, we explore several
interleaved designs: local gated convolution (Hyena-SE, and
our proposed Hyena-X/ Hyena-Y), local attention (sliding
window), and linear attention (Mamba-2). For MLPs, we
explore several interleaved designs: variable-width MLPs
(width ratios=3, 6), and a convolutional variant (Hyena-
X). Interestingly, FID scores across these hybrids range
from 2.38 to 2.64 (DiT-XL/2 256x256: 2.27), showing that
grafting can construct high-quality hybrids. Grafting is
lightweight: each experiment completes in under 24 hours
on 8×H100 GPUs, using <2% of pretraining compute.

Result II: We construct efficient hybrid architectures
for high-resolution text-to-image generation via graft-
ing (Sec. 5). We validate grafting in a challenging real-
world setting: Text-to-image generation (2048x2048) using
PixArt-Σ. This setting reflects key real-world challenges: it
operates on long sequences (16,384 tokens), involves a mul-
timodal setup with text conditioning, and lacks training data.
We target self-attention layers for grafting, as they account
for over 62% of generation latency and use 12k synthetic
data. The grafted model achieves a 1.43× speedup with less

than a 2% drop in GenEval score (47.78 vs. 49.75). These
results show that grafting is effective for high-resolution,
text-to-image DiTs and works under realistic constraints.

Case Study: Converting model depth to width via graft-
ing (Sec. 6). Motivated by our MLP grafting results, we re-
structure DiT-XL/2 to trade depth for width by parallelizing
pairs of transformer blocks, as modern GPUs favor paral-
lel over sequential computation. This reduces model depth
by 2× (28→14). The resulting model achieves FID=2.77,
outperforming other models of comparable depth. To our
knowledge, this is the first attempt to convert sequential
transformer blocks into parallel in DiTs.

2. Prerequisites
Diffusion models (DMs). DMs generate data samples by
iteratively denoising random noise. This sampling process
inversely mirrors the forward data corruption mechanism:
zt = αtz + σtϵ where z = E(x) ∼ q(z) with E repre-
senting a pretrained encoder and x the data variable. The
noise term ϵ follows the prior distribution N (0, I). The
transition kernel from time 0 to t is given by qt(zt|z) =
N (zt;αtz, σ

2
t I). The choice of αt and σt defines the diffu-

sion variant, including variance-preserving (Ho et al., 2020),
or flow matching (Lipman et al., 2022). The training objec-
tive (Ho et al., 2020) is as follows:
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LDM (ϕ) = Eq(t)q(z,c)N (ϵ;0,I)[∥ϵ− ϵϕ(zt, t, c)∥22], (1)

where q(t) is the time sampling distribution, and q(z, c) is
the joint distribution of latent z and condition c.

Diffusion transformers (DiTs). DiTs model the diffu-
sion process by patchifying the input—noised images or
latent—into a sequence of 1D tokens with positional em-
beddings. These tokens are processed through transformer
blocks comprising self-attention, feedforward layers, resid-
ual connections, and normalization layers. DiTs also incor-
porate conditioning signals, such as noise timestep (t), class
labels (c), or natural language prompts, enabling control-
lable generation (Peebles & Xie, 2023; Chen et al., 2023).

3. Grafting Diffusion Transformers
3.1. Two-Stage Grafting Approach

Grafting aims to materialize new architectures by editing a
pretrained model’s computational graph, replacing existing
operators with alternatives. This raises two core questions:

(Q1) How should a new operator be initialized before being
integrated into the computational graph? Stage 1: Acti-
vation distillation. We cast initialization as a supervised
regression task. Operators in a DiT block process [B,N,D]
inputs (batch, sequence, hidden) and output tensors of the
same shape. Given a pretrained operator f l

ϕ at layer l, we
learn a new operator glθ that approximates f l

ϕ (Hinton et al.,
2015). Since DiT activations are continuous and smooth,
this can be posed as a regression problem:

L(θ) = Eq(t)q(z,c)qt(zt|z)
[
Lreg(g

l
θ(zt, t, c), f

l
ϕ(zt, t, c))

]
(2)

where q(z, c) is the joint distribution of latent representation
z and condition c, q(t) is the time sampling distribution,
and qt(zt|z) is the transition kernel from time 0 to t. Lreg

is a regression objective such as L2. In practice, a good
initialization requires as few as 8k samples.

(Q2) How can we mitigate error propagation as multiple op-
erators are integrated into the computational graph? Stage
2: Lightweight finetuning. As more operators are replaced,
initialization errors propagate, leading to deviations from
the pretrained model’s behavior. We apply end-to-end fine-
tuning with limited data to mitigate cumulative errors from
Stage 1. The fine-tuning objective is given in Equation 1.
In practice, we find that competitive performance can be
recovered using only 10% of the pretraining data.

Self-grafting baseline. As a control, self-grafting replaces
each operator with a randomly initialized version, preserv-
ing the architecture while isolating the effect of grafting.

Ratio IS ↑ FID ↓ sFID ↓ Prec. ↑ Rec. ↑
Baseline – 278.20 2.27 4.60 0.83 0.57

MHA Grafting
Random Init 100% 1.66 289.23 154.00 0.00 0.00

Self-grafting 100% 287.81 2.49 4.71 0.83 0.56

Hyena-SE 50% 274.73 2.73 5.05 0.82 0.56
75% 231.15 3.62 6.04 0.81 0.54

100% ✗ ✗ ✗ ✗ ✗

Hyena-X 50% 273.30 2.74 5.03 0.83 0.56
75% 229.11 3.69 6.10 0.81 0.53

100% ✗ ✗ ✗ ✗ ✗

Hyena-Y 50% 273.37 2.72 5.02 0.83 0.55
75% 228.99 3.66 5.95 0.81 0.53

100% ✗ ✗ ✗ ✗ ✗

SWA 50% 280.62 2.67 4.90 0.83 0.56
75% 249.99 3.09 5.54 0.82 0.55

100% ✗ ✗ ✗ ✗ ✗

Mamba-2 50% 285.08 2.65 4.84 0.83 0.55
75% 257.66 3.02 5.48 0.82 0.53

100% ✗ ✗ ✗ ✗ ✗

MLP Grafting
Random Init 100% 1.27 314.72 204.99 0.00 0.00

Self-grafting 100% 277.72 2.54 4.52 0.83 0.57

Width=3 50% 272.14 2.53 4.51 0.83 0.57
75% 279.72 2.61 4.61 0.83 0.56

100% 252.11 2.66 4.57 0.81 0.57

Width=6 50% 278.00 2.38 4.50 0.83 0.58
75% 277.94 2.37 4.48 0.82 0.58

100% 276.86 2.42 4.50 0.82 0.58

Hyena-X 50% 265.60 2.64 4.66 0.83 0.56
75% 226.13 3.26 4.79 0.81 0.55

100% ✗ ✗ ✗ ✗ ✗

Table 1. Generation quality when replacing MHA and MLP
operators in DiT-XL/2 with efficient alternatives via grafting.
For each alternative, key architectural parameters: kernel size
K = 4 (Hyena variants), window size w = 4 (SWA), state size
ds = 64, expand factor E = 2 (Mamba-2) and MLP expansion
ratio is denoted by r. DiT-XL/2 uses 16 attention heads and r = 4.
The best-performing setup for each alternative is highlighted

4. Experiments I: Hybrid Architectures via
Grafting

Design space and experiment setup. The space of archi-
tectural alternatives is vast, raising a practical question: how
should we define a representative set of designs to explore
under grafting? We focus on two sources of motivation: em-
pirical observations and prior architectural work. First, our
attention locality analysis (see Supp. A) reveals that several
MHA operators in DiTs exhibit strong local interactions.
This suggests that local operators—such as convolutions or
sliding-window attention—may serve as effective replace-
ments for global attention. For MLPs, we draw inspiration
from prior work on efficient architectures (Fu et al., 2023;
Komatsuzaki et al., 2023; Kaplan et al., 2020). To organize
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convolution operators used as drop-in replacements for MHA.

this exploration, we define four design axes: (1) which oper-
ator to replace (e.g., MHA, MLP); (2) what to replace it with
(e.g., convolutions); (3) how to select layers for replacement
(e.g., all layers); and (4) replacement ratio (full vs. partial).
As the design space grows exponentially with depth (2L for
L layers), we apply simple heuristics such as full and inter-
leaved replacement for layer selection strategies—motivated
by striped transformer designs (Poli et al., 2024; Ku et al.,
2025).

We introduce Hyena-X and Hyena-Y—two efficient
gated convolution operators designed as drop-in replace-
ments for MHA. While our study includes several off-the-
shelf alternatives, we also contribute new operator designs
motivated by attention locality analysis. This allows us to
test novel architectural ideas via grafting, broadening our
study. Both Hyena-X and Hyena-Y are local gated con-
volutions composed of dense, short causal depth-wise 1D
convolutions. Fig. 3 illustrates their structure. We also adapt
Hyena-X as an MLP alternative by applying it along the
channel dimension. Hyena-X and Hyena-Y scale linearly
with sequence length, compared to the quadratic scaling of
MHA. Operator details are provided in the Supp.

Results. We report results in Tab. 1.

(i) MHA results. Replacing MHA operators in DiT-XL/2
via grafting yields strong quality-efficiency tradeoffs. We
discuss our key insights below:

• Surprising effectiveness of operators with smaller re-
ceptive fields under interleaved grafting. Our findings
highlight that at 50% interleaved replacement, several
alternatives—including SWA, Hyena-X/Y, and Mamba-
2—consistently achieve FID scores within 0.5 of the base-
line (2.27).

• Replacement strategy: Interleaved vs. Full. Performance
generally declines when increasing interleaved replace-
ment from 50% to 75%. However, SWA remains effective
at 75% interleaved replacement (FID=3.09). At 100% re-
placement, performance sharply degrades (all FIDs > 50).
This trend aligns with our locality analysis, indicating that
only a subset of layers are local and amenable to grafting.

• Ablations on data scale (Fig. 2). Under 50% MHA
replacement: Increasing fine-tuning data from 10% to
20% improves FID across all variants (e.g., Hyena-X:
2.74→2.61; SWA: 2.67→2.62; Mamba-2: 2.65→2.55).

(ii) MLP results. Replacing MLP operators via grafting is
effective. We discuss our key insights below:

• Variable expansion ratio MLPs are effective under full re-
placement. MLP alternatives with expansion ratio r=3 and
r=6 demonstrate good quality under all replacement ratios.
Even under full (100%) replacement, both variants main-
tain good performance, with r=3 achieving FID=2.66.
This highlights that MLP width is a robust dimension for
grafting.

• Convolutional alternatives. Hyena-X which combines
dense and local channel mixing, performs competitively
at 50% replacement (FID=2.63) but degrades at higher
ratios, suggesting that such operators are only effective at
moderate ratios.

Takeaway 1: Grafting is effective for constructing effi-
cient hybrid architectures with good generative quality
under small compute budgets. Interleaved designs are
particularly effective.

5. Experiments II: Grafting Text-to-Image
Diffusion Transformers

Motivation. We apply grafting to a more challenging set-
ting: text-to-image generation (2048×2048) with PixArt-
Σ (Chen et al., 2024). This presents three challenges: (1)
long sequences (16,384 tokens), (2) a multimodal setup with
text conditioning, and (3) lack of publicly available training
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Model Ratio Obj(1) Obj(2) Count Colors Pos ColorAttr Overall ↑ Latency (ms) ↓
Baseline - 81.45 61.62 46.25 77.13 10.75 21.50 49.75 235.46

Hyena-X 29% 80.31 59.34 49.69 68.62 11.50 18.75 48.04 194.95 (1.21×)

Hyena-X 50% 80.00 57.07 48.13 70.74 11.25 19.50 47.78 164.58 (1.43×)

Table 2. GenEval results and inference latency for PixArt-Σ and the grafted variants. The 50% grafted model achieves a 1.43×
speedup while retaining strong text-image alignment (GenEval overall score: 47.78 vs. 49.75). Latency is measured for a single forward
pass on an Nvidia H100 (batch size=2).

Method Depth A.R Iters IS ↑ FID ↓ sFID ↓ Prec. ↑ Recall ↑ Speedup ↑ Params ↓
DiT-L/2 (Peebles & Xie, 2023) 24 42.7 1,000K 196.26 3.73 4.62 0.82 0.54 — 458M
U-ViT-L (Bao et al., 2023) 21 48.8 300K 221.29 3.44 6.58 0.83 0.52 — 287M
DiT-B/2 (Peebles & Xie, 2023) 12 64.0 1000K 119.63 10.12 5.39 0.73 0.55 — 130M
BK-SDM (Kim et al., 2024) 14 82.3 100K 141.18 7.43 6.09 0.75 0.55 2× 340M
TinyDiT-D14 (Fang et al., 2024) 14 82.3 500K 198.85 3.92 5.69 0.78 0.58 2× 340M
TinyDiT-D14 w/ MKD (Fang et al., 2024) 14 82.3 500K 234.50 2.86 4.75 0.82 0.55 2× 340M
DiT-XL/2 (Peebles & Xie, 2023) 28 41.4 7,000K 278.20 2.27 4.60 0.83 0.57 1× 675M
Grafting (Ours) 14 164.6 100K 231.91 3.12 4.71 0.82 0.55 2×¶ 712M
Grafting (Ours) 14 164.6 230K 251.77 2.77 4.87 0.82 0.56 2×¶ 712M

Table 3. Generative quality vs. model depth. We report generative quality metrics (IS, FID, sFID, Precision, and Recall). A.R. (Aspect
Ratio) is defined as model width divided by depth (e.g., 1152/14 = 82.3). Parameters (Params) are reported in millions. For pruning and
grafting setups, we report speedup with respect to DiT-XL/2 (depth=28). Off-the-shelf DiT-L/2, U-ViT-L, and DiT-B/2 scores, along with
pruning baselines (BK-SDM, TinyDiT-D14, and TinyDiT-D14 w/ MKD), are sourced from (Fang et al., 2024). MKD refers to Masked
Knowledge Distillation, a recovery method used in TinyDiT (Fang et al., 2024). ¶ Speedup is measured for a single forward pass on
an Nvidia H100 (batch size=2). More details are provided in Sec. D. Our grafted models achieve better generative quality at depth=14,
surpassing baselines in FID, IS, Precision, and Recall.

data. These factors make PixArt-Σ a representative setting
for evaluating grafting under real-world constraints.

Experiment setup. We replace self-attention layers (MHA)
in PixArt-Σ with Hyena-X via grafting, as MHA accounts
for over 62% of generation latency. Hyena-X was cho-
sen based on its good performance in the ImageNet setup,
achieving FID 2.61 with 20% data. Interleaved grafting is
applied at layers 8, 10, 12, 14, 16, 18, and 20–27; empir-
ically, we found that layers 20–27 can be grafted without
significant quality drop. We follow the two-stage grafting
procedure. Stage 1 (activation distillation): 8k uncurated
synthetic image-text pairs (from a total of 12k) are used to
initialize Hyena-X blocks. Stage 2 (finetuning): The full
12k dataset is used to finetune the grafted model using LoRA
(rank=64).

Results. The grafted model achieves a 1.43× speedup in
wall-clock time, with a small drop in GenEval score (47.78
vs. 49.75). Attribute-specific metrics remain comparable,
and qualitative samples show good alignment and quality.
Some localized artifacts are observed in textured regions
likely due to LoRA’s adaptation capacity and low-quality
synthetic data (see failure cases in Supp E.2).

Takeaway 2: We graft high-resolution text-to-image
DiTs, constructing hybrid architectures with meaning-
ful speedups and minimal quality drop.

6. Case Study: Converting Model Depth to
Width via Grafting

Can we rewire two sequential transformer blocks to
run in parallel? Our MLP grafting results showed that
MLPs are amenable to grafting, even at 100% replacement
with an expansion ratio of r = 6, demonstrating that wider
computation within an operator is feasible. This success,
combined with the fact that modern GPUs favor parallel
over sequential computation, motivates a broader question:
can we convert deeper, sequential DiT computations into
wider, parallel ones via grafting while maintaining quality?
To explore this, we rewire DiT-XL/2 by parallelizing every
pair of sequential transformer blocks—each pair receives
the same input, and their outputs are merged via a linear
projection. This reduces model depth by 2× (28 → 14) with
a 6% increase in parameters (See Fig. 4).

We trade depth for width via grafting, achieving better
quality than models of comparable depth. We report
results in Tab. 3. To contextualize this, we compare against
two categories: (i) DiTs trained from scratch at lower depth,
and (ii) pruning methods (Kim et al., 2024; Fang et al.,
2024). Our grafted model achieves better generative quality
compared to these baselines.

Takeaway 3: Grafting enables architectural restruc-
turing at the transformer block level, allowing model
depth to be traded for width.
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Figure 4. Convert model depth → width via grafting: (a) Two
sequential transformer layers. (b) Rewiring in parallel via grafting
(includes skip connections).

7. Related Work
Diffusion model architectures. Recently, many architec-
tural innovations have been proposed for diffusion models
for image and video generation (Xie et al., 2024; Yan et al.,
2024; Fei et al., 2024a; Hu et al., 2024; Teng et al., 2024;
Zhu et al., 2024; Seawead et al., 2025; Xing et al., 2024; Gao
et al., 2024; Wang et al., 2024a). Many recent works focus
on improving the attention mechanism in diffusion models
to enhance efficiency and scalability. One major direction
is the use of modern linear attention variants, such as Dif-
fuSSM (Yan et al., 2024), DiS (Fei et al., 2024a), Zigma (Hu
et al., 2024), DiM (Teng et al., 2024), and DIG (Zhu et al.,
2024). Recently, text-to-image diffusion models such as
SANA (Xie et al., 2024) have also adapted linear attention
variants to support high-resolution generation. Another re-
cent direction explores the mixture-of-experts (MoE) idea.
DiT-MoE (Fei et al., 2024b) introduces sparse diffusion
transformers with shared expert routing and expert-level
balance loss, enabling efficient scaling to 16.5B parame-
ters while achieving competitive performance. We note that
methods like STAR (Thomas et al., 2025) have also success-
fully discovered architectures via evolutionary methods for
autoregressive language modeling. While effective, these
approaches require training from scratch, making such stud-
ies expensive and inaccessible to practitioners. In contrast,
grafting focuses on architecture editing of pretrained mod-
els to materialize new architectures under small compute
budgets.

Architectural editing of pretrained generative models.
Another line of work focuses on linearizing large language
models by replacing softmax attention with efficient opera-
tors, such as linear attention (Zhang et al., 2025; Wang et al.,
2024b; Bick et al., 2024). Similar ideas have also been
adopted for diffusion models in (Liu et al., 2024a;b; Becker

et al., 2025), though these works focus only on ultra-high-
resolution settings. These prior efforts typically focus on
replacing a single operator type (primarily attention) or are
limited to specific application domains. Grafting presents a
more general and comprehensive approach for architectural
editing. It extends beyond single-operator replacement to
enable modifying multiple operator types, exploring diverse
architectural alternatives (e.g., both MHA and MLP replace-
ments), and restructuring architectures (e.g., converting
model depth to width). Recently, FFN Fusion (Bercovich
et al., 2025) explored parallelizing transformer blocks in
LLMs, aiming to reduce sequential computation.

8. Discussion
We introduced grafting, a simple approach for materializing
new architectures by editing pretrained diffusion transform-
ers. We applied it to construct hybrid models by replacing
self-attention and MLPs with efficient alternatives, achiev-
ing competitive quality (FID 2.38–2.64 vs. 2.27 baseline)
using small compute budgets. We further grafted a high-
resolution text-to-image model (PixArt-Σ), achieving a 43%
speedup with less than 2% drop in GenEval score. Finally,
we used grafting to restructure DiT-XL/2 by converting se-
quential computation into parallel, reducing model depth
by 2×, achieving better quality (FID 2.77) among 14-layer
DiTs. These results position grafting as a lightweight ap-
proach for architectural exploration under small compute
budgets. We hope that our insights and results will encour-
age the community to explore new architecture designs, with
grafting as a practical tool.

Applications and future work. Grafting holds promise
for diverse applications where efficiency is important.
This includes adapting models from low-resolution to
high-resolution settings, extending capabilities from short-
form video understanding/generation to long-form (Chan-
drasegaran et al., 2024; Chen et al., 2025), or improving
user experience in interactive applications like image editing
where even modest gains (e.g., 10% speedup) are highly
valued. Code and grafted models: grafting.stanford.edu.
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Supplementary Material
• Section A : Locality Analysis of Self-attention

• Section B : Standard Deviation of Experiments

• Section C : Hybrid Architecture Experiments: Additional details

– Section C.1 : Experiment details and additional samples
– Section C.2 : Modulated Regression Targets for MHA

• Section D : Depth to Width Grafting Experiments: Additional details

• Section E : Text-to-Image Generation Experiments: Additional details

– Section E.1 : Experiment details
– Section E.2 : Generated samples and failure cases

• Section F : Hyena-X and Hyena-Y operators: Additional details

• Section G : FLOP calculation

A. Locality Analysis of Self-attention

Figure A.1. Locality of self-attention in DiT-XL/2 quanti-
fied using band-k metric. We plot band-k values for all 28
layers of DiT-XL/2, averaged over timesteps and samples.
At k=32, 15 out of 28 layers exhibit values exceeding 0.5,
indicating that several MHA operators model local interac-
tions.

MHA scales quadratically with sequence length, making it a
computational bottleneck. A natural idea is to replace it with
local operators, such as convolution or local attention. However,
this will fail if the model relies on long-range dependencies: for
example, replacing all MHA operators in DiT-XL/2 with a sliding
window attention degrades FID from 2.27 to 199.3. To guide
grafting, we quantify attention locality using a simple band-k
metric. Given an attention matrix A ∈ RN×N , we define a
bi-directional band indicator matrix Bk ∈ RN×N as:

(Bk)i,j =

1, if |i− j| ≤ k

0, otherwise

Then, locality within a band of size k is computed as:

Lk =
1

N

∑
i,j

Ai,j(Bk)i,j (3)

We compute Lk for all 28 MHA operators in DiT-XL/2 using
50-step DDIM sampling on 250 ImageNet samples (sequence length 256, cfg scale 1.5), averaging across timesteps and
samples. As shown in Fig. A.1, MHA is largely local: for k=32, 15 layers attend more than 50% within the band. Early
layers are less local. Our analysis provides guidance for replacing MHA with efficient alternatives.

B. Standard Deviation of Experiments
To compute variance associated with our reported results, we repeat two representative experiments—MHA (Hyena-Y) and
MLP (width=6)—using three different random seeds (seed = 0, 200, 300). We follow the exact grafting setup used
in the main paper for these experiments. We report the mean and standard deviation of IS, FID, sFID, Precision and Recall
in Tab. B.1. We observe that the standard deviations are within an acceptable range.
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Setup IS FID sFID Precision Recall

MHA/ Hyena-Y 273.19 ± 0.46 2.73 ± 0.01 5.06 ± 0.04 0.83 ± 0.00 0.55 ± 0.00

MLP/ higher width (r = 6) 277.91 ± 0.95 2.41 ± 0.01 4.48 ± 0.02 0.82 ± 0.00 0.58 ± 0.00

Table B.1. Mean and standard deviation of IS, FID, sFID, Precision and Recall calculated for three runs with different seeds (0,200,300).

C. Hybrid Architecture Experiments: Additional details
C.1. Experiment details and additional samples

We provide all hyperparameters used for these experiments in Tab. C.1. To ensure a fair comparison, we used identical
hyper-parameters across every hybrid experiment. Each hybrid experiment requires less than 24 hours of wall clock time on
8xH100 GPUs. We include additional qualitative samples generated using our hybrid architectures obtained via grafting in
Fig. C.1.

Stage 1: Activation Distillation

Initial Learning Rate 1× 10−3

Weight Decay 0

Epochs 200

Batch Size 64

Clip Norm 10.0

Optimizer AdamW (betas = (0.9, 0.999))

Loss Function L1 (MHA), L2 (MLP)

Stage 2: Lightweight Finetuning

Initial Learning Rate 1× 10−4

Weight Decay 5× 10−5

Iterations 50,000 (100 epochs)

Batch Size 256

Optimizer AdamW (betas = (0.9, 0.999))

Scheduler Linear Warmup over 1K steps, then constant lr

Training Data 10% of ImageNet-1K (128k samples)

Table C.1. Hyperparameters for MHA/MLP grafting experiments using DiT-XL/2 (ImageNet-1K).

C.2. Modulated Regression Targets for MHA

For Stage 1, we explored a modulation-aware regression variant for MHA experiments that incorporates the learned scalar
(gate msa) applied to the attention output. In the standard setup, we regress from input x to the raw output of the attention
block y = MHA(·). In the modulation-aware formulation, the target becomes y = gate msa⊙ MHA(·). Tab. C.2 compares
these two variants with L1 and L2 loss. Modulation-aware regression increases target scale, which adversely affects L2
loss performance due to its sensitivity to large values. L1 performs similarly in both settings. We adopted the standard
(modulation-agnostic) formulation for all experiments for simplicity.

D. Depth to Width Grafting Experiments: Additional details
We provide all hyperparameters in Tab. D.1 and additional samples in Fig. D.1. As one can observe, these grafted models
produce realistic samples.

E. Text-to-Image Generation Experiments: Additional details
E.1. Experiment details

We provide all hyperparameters used in our PixArt-Σ grafting experiments in Tab. E.1.
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Modulation-aware IS FID sFID Precision Recall
Baseline 278.20 2.27 4.60 0.83 0.57

L2 ✓ 246.17 3.00 7.11 0.79 0.58

✗ 269.31 2.58 5.75 0.82 0.58

L1 ✓ 272.86 2.51 5.29 0.82 0.57

✗ 273.03 2.51 5.48 0.83 0.58
Table C.2. Comparison of modulation-aware and standard regression targets for Stage 1. The modulation-aware setup includes the learned
scalar (gate msa) as a multiplicative factor in the regression target. L2 loss is sensitive to the amplified target scale and performs worse,
while L1 loss remains robust and performs similarly in both cases. We adopt the standard formulation by default.

Hyena-Y

SWA

Hyena-X

Width

Width

Hyena-X MLP

Mamba-2

Figure C.1. Figure B.1: Additional generated samples from grafted DiT-XL/2 models using various architectural edits. Each row
corresponds to a different hybrid variant. FID scores (lower is better, ImageNet-1K 256×256) are shown in parentheses. MHA variants
(top 4 rows): Hyena-X (2.61), Hyena-Y (2.61), SWA (2.62), Mamba-2 (2.55) MLP variants (bottom 3 rows): Lower width (2.53), Higher
width (2.38), Hyena-X MLP (2.64). These results highlight the flexibility of grafting in constructing high-quality hybrid architectures by
replacing MHA and MLP operators.

Figure D.1. Figure B.2: Depth-to-width grafting. Samples from a DiT-XL/2 model in which every pair of transformer blocks is merged
into a parallel block, effectively reducing depth by 2× while increasing width (FID=2.77).
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Stage 1: Activation Distillation

Initial Learning Rate 1× 10−4

Regression Objective L1

Epochs 200

Batch Size 64

Optimizer AdamW (betas = (0.9, 0.999))

Stage 2: Lightweight Finetuning

Learning Rate 5× 10−5

Weight Decay 0

Iterations 360k (360 epochs)

Batch Size 256

Optimizer AdamW (betas = (0.9, 0.95))

Scheduler Warmup over 1K steps, then half every 100k steps

Training Data 20% of ImageNet-1K (256k)

Table D.1. Hyperparameters for depth-to-width grafting experiments using DiT-XL/2 (ImageNet-1K).

E.2. Generated samples and failure cases

We show additional high-resolution samples generated by the grafted PixArt-Σ model in Fig. E.1, illustrating the model’s
ability to preserve generative quality across diverse prompts despite substantial architectural edits.

Figure E.2 illustrates two types of failure modes observed in grafted PixArt-Σ outputs. Each column pair shows the output
of PixArt-Σ (left) and the grafted model (right) for the same text prompt. In the top row, the original model generates
images that are reasonably aligned with the prompts, while the grafted model fails to preserve this alignment—indicating
limitations during the LoRA-based finetuning stage. In the bottom row, the synthetic supervision itself is of low quality,
resulting in poor outputs from both the original and grafted models. To better understand this issue, Figure E.3 presents
additional examples of low-quality synthetic data produced by PixArt-Σ and used for grafting. These samples often exhibit
artifacts and unrealistic physics. While synthetic data enables low-cost adaptation, these results highlight the importance of
improved data curation and filtering to avoid propagating errors during the grafting process.

The image captures a scene of stark 
beauty in the ...

One watercolor illustration of a 
man on a white back …  

The image captures a closeup view 
of a vibrant red …

A young rabbit in adventure clothes 
sets off for a new …

In the professional oil painting 
studio there is an …

Handmade vintage sock monkey 
doll, attention to ...

Today marks the beginning of 
autumn, summer has not …  

Fresh coriander leaves plant on 
white background, …

A fantasy illustration of stoic robot 
named Rob, a …

Paint a captivating watercolor 
clipart of a Lovebird, …

Figure E.1. Additional 2048x2048 samples generated using our grafted PixArt-Σ model.
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The image presents a delightful assortment of four donuts, each with its 
own unique topping, set …

Playing classical guitar, Aesthetic flower, Full body shot, anime style, 
vector …

A dog chasing its tail looks cute and funny, abstract photography, 
stippling, UHD, high ...

This image captures a moment on a city street, frozen in black and white. 
Dominating the left …

Figure E.2. Failure cases in text-to-image generation. Each column pair shows outputs from PixArt-Σ (left) and the grafted model
(right) for the same prompt. In the top row, the prompt specifies four donuts with unique toppings and a full-body anime-style character
playing classical guitar. The grafted outputs deviate from these prompts—showing incorrect object counts (e.g., five donuts) and degraded
structure (e.g., distorted hands), reflecting text-image misalignment and visual artifacts introduced during grafting. In the bottom row,
the supervision itself is poor: prompts such as a dog chasing its tail in UHD stippling style and a black-and-white street photo are not
faithfully captured by either model. These examples highlight challenges arising both from LORA finetuning and low-quality synthetic
data.

F. Hyena-X and Hyena-Y operators: Additional details
Informed by our band-k analysis of MHA operators, we introduce a collection of efficient operators designed to exploit the
locality in attention matrices. Given an input x ∈ Rℓ×d, a generic Hyena operator performs the following transformation:

qcs =
∑
s′

T c
ss′

∑
c′

xc′

s′W
c′c

kcs =
∑
s′

Hc
ss′

∑
c′

xc′

s′U
c′c

vcs =
∑
s′

Kc
ss′

∑
c′

xc′

s′P
c′c

ycs =
∑
c′

∑
s′

(qc
′

s Gc′

ss′k
c′

s′v
c′

s′)M
c′c

where W,U, P,M ∈ Rd×d are parametrized as dense or low-rank matrices, and T,H,K,G ∈ Rℓ×ℓ are Toeplitz matrices
corresponding to convolutions with the filters hT , hH , hK , hG, respectively. In the original formulation (Poli et al., 2023),
the filters hT , hH , hK are short and explicitly parametrized, whereas hG is implicitly parametrized.

We build on this formulation and propose Hyena-X and Hyena-Y, two Hyena operators designed for grafting. Hyena-X
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Figure E.3. Examples of low-quality samples generated by PixArt-Σ used for grafting. These images contain unrealistic features,
inconsistent physics, and visual artifacts. Their presence in the grafting dataset can degrade downstream generation quality, highlighting
the importance of data curation when using synthetic data.

removes the implicit convolution entirely by setting G = I . In contrast, Hyena-Y introduces two changes: (i) it removes
all three featurizer convolutions (T , H , K), and (ii) replaces the implicit long convolution in G with a short, explicit
convolution. This modified structure preserves local inductive bias while significantly reducing computational cost. An
illustration is provided in main paper. These operators allows us to realize speedups across a range of inputs resolutions:
both Hyena-X and Hyena-Y are faster than Mamba-2 operators on all input sequence lengths, including lower resolution
regimes.

G. FLOPs expressions
Notations are provided in Tab. G.1.

G.1. MHA

• Input projections (Q, K, V): 6LD2

• Softmax attention computation: 4L2D + 2HL2

• Output projection: 2LD2

G.2. SWA

• Input projections (Q, K, V): 6LD2

• Sliding window attention (Bidirectional): 4L(2w + 1)D + 2HL(2w + 1)

• Output projection: 2LD2

G.3. Hyena-SE

• Input projections: 6LD2

• Featurizer: 3LDK × 2
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Stage 1: Activation Distillation

Initial Learning Rate 1× 10−4

Weight Decay 1× 10−5

Epochs 100

Clip Norm Value 0.1 (Layers 20-27), 0.01 (Other layers)

Batch Size 16

Optimizer AdamW

Scheduler Reduce lr by 0.5 at epochs = 50, 100, 150

Stage 2: Lightweight Finetuning

Initial Learning Rate 1× 10−5

Weight Decay 0

Iterations 18,000

Batch Size 64 (with gradient accumulation)

Optimizer AdamW

Scheduler linear warmup (500 steps), then constant lr

LoRA rank 64

Table E.1. Hyperparameters used for PixArt-Σ grafting experiments.

• Inner filter convolution: LDK × 2

• gates: LD × 2

• Output projection: 2LD2

G.4. Hyena-X

• Input projections: 6LD2

• Featurizer: 3LDK × 2

• gates: LD × 2

• Output projection: 2LD2

G.5. Hyena-Y

• Input projections: 6LD2

• Inner filter convolution: LDK × 2

• gates: LD × 2

• Output projection: 2LD2

G.6. Hyena-X (MLP)

• Dense input projections: 6LD2r

• Featurizer: 3LDK × 2

• Gates: LD × 2

• Dense output projections: 2LD2r
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Symbol Description

L Sequence length

D Hidden dimension

H Number of attention heads

K Kernel size for convolutions

w Window size for sliding window attention

r MLP expansion ratio

E Expansion factor in Mamba-2

dstate State size in Mamba-2

Table G.1. Notation used in FLOPs expressions.

MHA Alternatives ∆ FLOPsop. ∆ FLOPsfeat. ∆ Params
Softmax Attention (H=16) — — —
Hyena-SE (K=4) -99.03% +0.26% +0.43%
Hyena-X (K=4) -99.81% +0.26% +0.33%
Hyena-Y (K=4) -99.03% 0.00% +0.11%
SWA (w=4) -96.48% 0.00% 0.00%
Mamba-2 (ds=64, E=2) -75.17% +155.77% +56.05%
MLP Alternatives
MLP (r = 4) — — —
Lower width (r=3) -25.00% — -25.00%
Larger width (r=6) +50.00% — +49.99%
Hyena-X (r=2, K=4) +0.14% — +0.03%

Table G.2. Relative changes in FLOPs and parameters for all MHA and MLP alternatives, compared to the baseline DiT-XL/2 operator
(MHA with H=16 and MLP with r=4). For MHA, total cost is split into ∆FLOPsop. (softmax attention, gating) and ∆FLOPsfeat.

(QKV/output projections, convolutions). We do not use this decomposition for MLP variants. Mamba-2 incurs higher ∆FLOPsfeat. due to
additional projections. We use sequence length N=256 and hidden dimension D=1152. Operator-specific notation (e.g., K, r, H , w,
ds, E) is defined in Tab G.1.

G.7. Mamba-2

• Projections: 8LD2E

• Short convolution: 6LDE

• Featurization: 2LDE(1 + 2dstate) + 2LDE

• Associative scan: 2LDEdstate

• Output layer: 2LD2E
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