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Abstract
We introduce SelfCite, a novel self-supervised ap-
proach that aligns LLMs to generate high-quality,
fine-grained, sentence-level citations for the state-
ments in their generated responses. Instead of
only relying on costly and labor-intensive annota-
tions, SelfCite leverages a reward signal provided
by the LLM itself through context ablation: If a
citation is necessary, removing the cited text from
the context should prevent the same response; if
sufficient, retaining the cited text alone should pre-
serve the same response. This reward can guide
the inference-time best-of-N sampling strategy
to improve citation quality significantly, as well
as be used in preference optimization to directly
fine-tune the models for generating better cita-
tions. The effectiveness of SelfCite is demon-
strated by increasing citation F1 up to 5.3 points
on the LongBench-Cite benchmark across five
long-form question answering tasks. The source
code is available at https://github.com/
facebookresearch/SelfCite.

1. Introduction
Assistants built using large language models (LLMs) have
become ubiquitous in helping users gather information and
acquire knowledge (OpenAI, 2022; 2023). For instance,
when asked about recent news, an assistant can read through
dozens of relevant articles—potentially more than a user
could comb through themselves—and use these articles as
context to provide a clear, specific answer to the user’s
query. While this ability can greatly accelerate information
gathering, LLMs often produce hallucinations—content that
sounds plausible but is actually fabricated (Ji et al., 2023).
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Even when provided with accurate context, models may
misinterpret the data or include details that are not supported
by the context (Shi et al., 2024; Chuang et al., 2024).

Although completely eliminating hallucinations remains dif-
ficult, existing approaches have sought to enhance the relia-
bility of LLMs by providing context attributions–commonly
referred to as citations–which are fine-grained references
to relevant evidences from the context, alongside generated
responses for user verification (Menick et al., 2022; Slobod-
kin et al., 2024; Zhang et al., 2024). While they have shown
promise in generating citations, an outstanding challenge is
their reliance on annotated data either from human (Menick
et al., 2022; Slobodkin et al., 2024) or costly proprietary
APIs (Zhang et al., 2024) to train models to generate ci-
tations. Collecting annotations can be time-consuming or
costly, especially with long-context documents.

To address this challenge, we introduce SelfCite, a novel
alignment approach designed to autonomously enhance the
quality of citations generated by LLMs without the need for
any annotations in the alignment process. Drawing inspira-
tion from model interpretability techniques (Lei et al., 2016;
Cohen-Wang et al., 2024), SelfCite leverages the inherent
capabilities of LLMs to provide feedback through context
ablation—a process to evaluate the necessity and sufficiency
of a citation. If removing the cited text prevents the LLM
from assigning high probability to the same response, we
can infer that it is necessary for the LLM. Conversely, if
the response remains highly probable despite removing all
context other than the cited text, this indicates that the ci-
tation is sufficient for the LLM to make the claim. This
self-evaluation mechanism enables SelfCite to calculate a
reward signal without relying on the annotation processes.

Building on this intuition, we design a reward that can be
cheaply computed by the LLM itself, composed by prob-
ability drop and probability hold in context ablation. By
integrating this reward function into a best-of-N sampling
strategy, SelfCite achieves substantial improvements in ci-
tation quality. Furthermore, we employ this reward for
preference optimization using SimPO (Meng et al., 2024),
which not only maintains these improvements but also elim-
inates the need for the computationally expensive best-of-N
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sampling. We outperform the previous state of the art on the
LongBench-Cite benchmark (Zhang et al., 2024) by up to
5.3 points in F1 scores, and showing a promising direction to
bootstrap the citation quality from LLMs via self-rewarding.

2. Method
In this section, we describe the SelfCite framework. We
begin by introducing the task of generating responses with
context attributions (2.1), referred to as citations for brevity.
We then design a reward for providing feedback on citation
quality without human annotations (2.2) as illustrated in
Fig. 1. Finally, we discuss two approaches for utilizing this
reward to improve citation quality: best-of-N sampling (2.3)
and preference optimization (2.4).

2.1. Problem Formulation

We first formalize the task of generating responses with
context attributions and the metrics to self-evaluate context
attributions within the SelfCite framework, inspired by pre-
vious papers (Zhang et al., 2024; Cohen-Wang et al., 2024)
but adapted to our proposed self-supervised reward.

Setup. Consider employing an autoregressive language
model (LM) to generate a response to a specific query given
a context of relevant information. Specifically, given an LM
pLM, let pLM(ti | t1, . . . , ti−1) denote its output distribution
over the next token ti based on a sequence of preceding
tokens t1, . . . , ti−1. Next, let C represent the context of
relevant information. This context is partitioned into |C|
sentences: c1, c2, . . . , c|C|. Each sentence cj is prepended
with a unique identifier (e.g., sentence index j) as a way for
the model to reference the sentence when generating cita-
tions. The context C is followed by a query Q, a question
or instruction for the model. A response R is then sampled
from the model pLM.

Generating Responses with Context Attributions. In
SelfCite, following prior work on generating responses
with context attributions (Zhang et al., 2024), each state-
ment ri in the response R is followed by a citation se-
quence ei consisting of the identifiers of sentences from
the context C. Thus, the entire response sequence R is
{r1, e1, r2, e2, . . . , rS , eS}, where S is the total number of
generated statements. The citation ei is intended to ref-
erence sentences that support the generation of ri. For-
mally, for each response statement ri, the model outputs
a citation sequence ei = {e1i , e2i , . . . , emi }, where each
eji ∈ {1, 2, . . . , |C|} corresponds to a specific sentence num-
ber in the context C, and m sentences are cited. Note that
this citation sequence may be empty. The entire response
R consisting of statements ri followed by citations ei is

sampled from the LM pLM as follows:

ri ∼ pLM
(
· | c1, . . . , c|C|, Q, r1, e1, . . . , ri−1, ei−1

)
,

ei ∼ pLM
(
· | c1, . . . , c|C|, Q, r1, e1, . . . , ri−1, ei−1, ri

)
.

The objective of optimizing the LM is to ensure that the
citation sequence ei accurately reflects the evidence from
the context that supports the generation of ri. In the SFT
setting (Zhang et al., 2024), the probability of a “ground
truth” annotated responses and citations {r̂1, ê1, ..., r̂S , êS}
will be maximized, given the input C and Q, but it is not
trivial to do further alignment with feedback after the SFT
data is used up. To achieve this, we introduce SelfCite that
can evaluate the quality of these citations based on context
ablation as a reward for further preference optimization.

2.2. Self-Supervised Reward via Context Ablation

We measure the quality of a citation sequence ei by the
changes in the LM’s probability of generating ri when the
cited sentences are either removed from or isolated within
the context. To simplify the notation, let all the cited context
sentences be Ei = {ce1i , ce2i , . . . , cemi }. We define two key
metrics: necessity score and sufficiency score, and finally
combine them into the final reward, as shown in Fig. 1.

Necessity Score: Probability Drop. This metric quanti-
fies the decrease in the probability of generating ri when
the cited sentences in Ei are all removed from the context
(denoted as set minus \ operator). Formally, it is defined as:

Prob-Drop(ei) = log pLM(ri | C)− log pLM (ri | C \ Ei) .

To keep the equation concise, we ignore Q and
{r1, e1, ..., ri−1, ei−1} in the equation, but they are staying
in the context history when computing the probabilities. A
larger probability drop indicates that the removal of Ei sig-
nificantly diminishes the likelihood of generating ri, thereby
validating the necessity of the cited evidence.

Sufficiency Score: Probability Hold. Conversely, this
metric measures if the probability of generating ri is still
kept large when only the cited sentences are kept in the
context, effectively testing the sufficiency of the citation to
support the response statement. Formally:

Prob-Hold(ei) = log pLM (ri | Ei)− log pLM(ri | C).

A more positive value of probability hold indicates that the
cited sentences alone are sufficient to support the generation
of ri, while removing all the other irrelevant context. Please
note that the values of probability drop or hold can be either
positive or negative. For example, if the citation is not
relevant to ri or even distracting, it is possible for p(ri | Ei)
to be lower than p(ri | C).
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Why do cacti 
have spines?

Query ( ) 🔎Q

A cactus is a member of the plant family 
Cactaceae...Spines provide protection from 
herbivores and camouflage in some species 
and assist in water conservation. They…

Context ( ) 📚C

Cacti have spines for 
multiple reasons...as a 
defense mechanism against 
herbivores and to assist in 
water conservation...

Generated response ( ) 💡R
A cactus is a member of the plant family 
Cactaceae...Spines provide protection from 
herbivores and camouflage in some species 
and assist in water conservation. They…

Context without cited sentences ( ) 📚C∖E

Prob. of statement 💡 with  📚 +  🔎  r C Q

   (💡|📚, 🔎) = 0.97pLM

Prob. of statement 💡 with  📚 +  🔎  r C∖E Q

   (💡|📚, 🔎) = 0.01pLM

.generate()

A cactus is a member of the plant family 
Cactaceae...Spines provide protection from 
herbivores and camouflage in some species 
and assist in water conservation. They…

Context with only cited sentences ( ) 📚E

Why do cacti 
have spines?

Query ( ) 🔎Q

Why do cacti 
have spines?

Query ( ) 🔎Q

Prob. of statement 💡 with  📚 +  🔎  r E Q

   (💡|📚, 🔎) = 0.98pLM

.eval()

Probability drop = 0.97 - 0.01

LLaMA

Necessity Score:

Probability hold = 0.98 - 0.97

Sufficiency Score:

A large drop means the  
citation is necessary

More positive value means  
the citation is sufficient

.eval()

Citation  is generated for 
a specific statement  💡 

E
r

SelfCite Reward =  
Necessity Score + Sufficiency Score

Figure 1. The SelfCite framework calculates rewards based on two metrics: necessity score (probability drop) and sufficiency score
(probability hold). First, the full context is used to generate a response. Then, the framework evaluates the probability of generating
the same response after (1) removing the cited sentences from the context and (2) using only the cited sentences in the context. The
probability drop and hold are computed from these probability differences, and their sum is used as the final reward.

Final Reward. To comprehensively evaluate the necessity
and sufficiency of the generated citations, we add the two
metrics together, where the opposing terms cancel out:

Reward(ei) = Prob-Drop(ei) + Prob-Hold(ei)
= log pLM (ri|Ei)− log pLM (ri|C \ Ei) . (1)

The combined reward measures if the citations are both
necessary and sufficient for generating the response ri.

2.3. Best-of-N Sampling

To leverage the self-supervised reward computed via con-
text ablation, we employ a best-of-N sampling strategy,
which is a common way to test the effectiveness of a re-
ward design (Gao et al., 2023a; Lightman et al., 2024) as
a performance oracle without any confounders from train-
ing. For convenience, we first generate the full response
R = {r1, e1, . . . , rS , eS} which includes a set of statements
(ri) paired with citations (ei), and then locate the position
of ei, i.e., where the citation tags <cite>...</cite>
are generated. Within the citation tags of ei, we re-
sample N candidate citation sequences (e(1)i , . . . , e

(N)
i ),

by making the model to continue the generation from
{C,Q, r1, e1, . . . , ri}, and then select the best citation (e∗i )
that maximizes the combined reward metric, Eq. (1). The
corresponding procedure is shown in Algorithm 1. After
obtaining all the selected citations {e∗1, . . . , e∗S}, we replace
the original citation sequence ei with the optimal citation
e∗i for each response statement ri, while keeping the re-
sponse statements {r1, . . . , rS} unchanged. This process is
repeated for each statement in the response R to obtain the
final, citation-improved output R∗ = {r1, e∗1, . . . , rS , e∗S}.
To prevent the model from citing too many sentences, we
exclude the candidate ei if the cited text (Ei) is longer than
Lmax = 384 tokens in total, unless Ei are all from a single
long sentence.

Algorithm 1 SelfCite Best-of-N Sampling for Citations
Require: LM pLM, context C, query Q, response R, # of

candidates N , length limit Lmax, T (·) counts # of tokens
in a text, #(·) counts # of sentences in a citation.
for ri ∈ R do
Reward(k) = −∞ for k = 1, . . . , N
for k = 1, . . . , N do
e
(k)
i ∼ pLM(· | ri, C,Q)

if T (E(k)
i ) <= Lmax or #(e(k)i ) = 1 then

Reward(k)

= log pLM
(
ri|E(k)

i

)
− log pLM

(
ri|C \ E(k)

i

)
end if

end for
k∗ = argmaxk Reward(k)

e∗i = e
(k∗)
i

end for
return R∗ = {r1, e∗1, . . . , rS , e∗S}

2.4. Preference Optimization

Best-of-N sampling is a straightforward way to obtain better
citations, but at the additional inference cost of generating
candidates and reranking. Thus, we try to internalize the
ability of generating better citations back to the LM itself.

Given documents and queries, we can prompt the LM
to generate the responses along with the citations R =
{r1, e1, ..., rS , eS}. By further applying best-of-N sam-
pling, we can obtain new responses of the same statements
but with better citations R∗ = {r1, e∗1, ..., rS , e∗S}. Such
preference data can be used in direct preference optimiza-
tion (DPO) (Rafailov et al., 2024) to align the model based
on the preference between the original outputs and im-
proved outputs. Instead of using DPO, we choose its variant
SimPO (Meng et al., 2024) here, as SimPO does not require
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a reference model and allows 2× memory saving for 25.6K
long-context fine-tuning. Through this self-supervised pro-
cess, which does not require ground-truth answers or human
annotations, the model learns to generate more accurate and
contextually grounded citations on its own.

3. Experiments
We evaluate the effectiveness of SelfCite by applying the
best-of-N sampling and preference optimization methods to
existing models that generate responses with citations.

3.1. Model Details

We use LongCite-8B, the Llama-3.1-8B model (Dubey et al.,
2024) fine-tuned on LongCite-45K SFT data (Zhang et al.,
2024) as the start point for both best-of-N sampling and
preference optimization. We adopt the same text segmen-
tation strategy from Zhang et al. (2024): each document
is split into individual sentences using NLTK (Bird, 2006)
and Chinese punctuations, and each sentence is prepended
with a unique identifier in <C{i}> format. These identifiers
serve as the citation indices, enabling the model to cite rel-
evant context right after the statements with the format of
<statement> {content ...} <cite>[i1 − i2][i3 −
i4]...</cite></statement>. This format allows the
model to cite a single sentence (e.g. i1 = i2) or a span (e.g.
i1 < i2) efficiently within several tokens. The responses
are generated via top-p sampling (Holtzman et al., 2020)
with p=0.7 and temperature=0.95. We set p=0.9 and temper-
ature=1.2 when doing best-of-N sampling for the citation
strings to increase the diversity. We set N=10 in all the
experiments considering the limited diversity in citations.1

3.2. Preference Optimization

LongCite-45K. Best-of-N sampling (Section 2.3) requires
no training, so no training data is used. For preference
optimization with SimPO (Section 2.4), we use 2K doc-
ument–question pairs from LongCite-45K (Zhang et al.,
2024) as the training set but we do not use its ground-truth
responses with high-quality citations for SFT. Instead, we
generate model responses from the documents and queries,
then apply best-of-N to refine citations. We label the orig-
inal responses as rejected and replace their citations with
BoN-refined ones to create the chosen responses, forming
preference pairs to build the dataset for SimPO.

Data Construction and Length Balancing Since best-of-
N responses tend to have slightly longer citations, directly
fine-tuning on them can lead the model to adopt a short-

1After deduplicating repeated citation candidates, on average
there are only 4.8 candidates left per statement in the BoN experi-
ment on LongBench-Cite, with a standard deviation of 3.2.

cut—generating longer citations instead of improving cita-
tion quality. To prevent this, we introduce length balancing:
if an original response has a shorter citation length than the
best-of-N response, we insert random citations from nearby
sentences. This encourages the model to focus on where to
cite rather than simply citing more. Details are provided in
Appendix C, with an ablation study in Section 4.2.

3.3. Evaluation

Benchmark. We evaluate our approach on LongBench-
Cite (Zhang et al., 2024), a comprehensive benchmark
specifically designed for long-context QA with citations
(LQAC). Given a long context C and a query Q, the model
must produce a multi-statement answer with each statement
cites relevant supporting sentences in C. Unlike chunk-level
citation schemes (Gao et al., 2023b) which cites short para-
graphs, LongBench-Cite adopts sentence-level citations to
ensure semantic integrity and finer-grained evidence track-
ing. LongBench-Cite assesses two main aspects:

• Citation Quality: Whether each statement is fully sup-
ported by relevant and only relevant sentences. GPT-4o
measures citation recall (extent to which a statement
is fully or partially supported by the cited text) and ci-
tation precision (whether each cited text truly supports
the statement). These are combined into a citation F1
score. Additionally, we track average citation length
(tokens per citation) to promote fine-grained citations
over unnecessarily long passages.

• Correctness: How accurately and comprehensively
the response answers the query disregarding the cita-
tions. This is scored by GPT-4o in a zero-/few-shot
fashion based on the query and reference answers.

The benchmark contains five datasets, including single-doc
QA MultiFieldQA-en/zh (Bai et al., 2023), multi-doc QA
HotpotQA (Yang et al., 2018) and DuReader (He et al.,
2018), one summarization dataset GovReport (Huang et al.,
2021), and LongBench-Chat (Bai et al., 2024) which cov-
ers diverse real-world queries with long contexts such as
document QA, summarization, and coding.

Baselines. SelfCite is compared with these baselines.

• Prompting: Zhang et al. (2024) propose the base-
line of prompting LLMs with an one-shot example.
This can be applied to proprietary models including
GPT-4o (OpenAI, 2023), Claude-3-sonnet (Anthropic,
2024), and GLM-4 (GLM et al., 2024), as well as
open-source models including GLM-4-9B-chat (GLM
et al., 2024), Llama-3.1-{8,70}B-Instruct (Dubey et al.,
2024), and Mistral-Large-Instruct (Mistral, 2024).

• Contributive context attribution: Contributive con-
text attribution seeks to directly identify the parts of
the context that cause the model to generate a par-
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Table 1. Citation recall (R), citation precision (P), citation F1 (F1), and citation length evaluated on LongBench-Cite benchmark. The best
of our results are bolded. The best of previous state of the art are underlined. † indicates the results taken from Zhang et al. (2024).

Model Longbench-Chat MultifieldQA HotpotQA Dureader GovReport Avg. Citation
R P F1 R P F1 R P F1 R P F1 R P F1 F1 Length

Proprietary models

GPT-4o† 46.7 53.5 46.7 79.0 87.9 80.6 55.7 62.3 53.4 65.6 74.2 67.4 73.4 90.4 79.8 65.6 220
Claude-3-sonnet† 52.0 67.8 55.1 64.7 85.8 71.3 46.4 65.8 49.9 67.7 89.2 75.5 77.4 93.9 84.1 67.2 132
GLM-4† 47.6 53.9 47.1 72.3 80.1 73.6 47.0 50.1 44.4 73.4 82.3 75.0 82.8 93.4 87.1 65.4 169

Open-source models

GLM-4-9B-chat† 25.9 20.5 16.7 51.1 60.6 52.0 22.9 28.8 20.1 45.4 48.3 40.9 5.7 8.2 6.3 27.2 96
Llama-3.1-8B-Instruct† 14.1 19.5 12.4 29.8 44.3 31.6 20.2 30.9 20.9 22.0 25.1 17.0 16.2 25.3 16.8 19.7 100
Llama-3.1-70B-Instruct† 25.8 32.0 23.2 53.2 65.2 53.9 29.6 37.3 28.6 38.2 46.0 35.4 53.4 77.5 60.7 40.4 174
Mistral-Large-Instruct† 19.8 23.9 19.0 71.8 80.7 73.8 34.5 40.9 32.1 58.3 67.0 60.1 67.9 79.6 72.5 51.5 132

Contributive context attribution (with Llama-3.1-8B-Instruct)

ContextCite (32 calls) 56.7 76.8 58.0 76.1 87.2 78.9 40.5 54.7 43.9 58.0 82.4 65.0 67.1 88.8 75.6 64.3 92.7
ContextCite (256 calls) 63.5 83.1 64.7 78.8 89.8 81.8 46.5 60.8 49.2 61.7 89.1 70.1 69.1 93.5 78.8 68.9 100.8

Fine-tuned models

LongCite-9B† 57.6 78.1 63.6 67.3 91.0 74.8 61.8 78.8 64.8 67.6 89.2 74.4 63.4 76.5 68.2 69.2 91
LongCite-8B† 62.0 79.7 67.4 74.7 93.0 80.8 59.2 72.1 60.3 68.3 85.6 73.1 74.0 86.6 78.5 72.0 85
+ SimPO w/ NLI Rewards 64.4 87.1 69.8 70.1 92.4 77.4 58.8 78.1 63.2 69.4 91.1 77.2 83.7 93 87.5 75.0 105.9

Ours: SelfCite

LongCite-8B (Our repro.) 67.0 78.1 66.6 74.8 90.7 79.9 60.8 77.9 64.1 67.1 87.2 73.7 81.6 89.3 84.5 73.8 83.5
+ BoN 68.4 81.3 71.2 76.1 92.8 81.2 67.2 81.0 68.8 70.6 90.9 76.9 87.6 92.4 89.3 77.5 93.4
+ SimPO 68.1 79.5 69.1 75.5 92.6 81.0 69.4 82.3 71.5 72.7 91.6 78.9 86.4 92.9 89.1 77.9 105.7
+ SimPO then BoN 73.3 79.4 72.8 76.7 93.2 82.2 69.4 83.0 71.1 74.2 92.2 80.3 86.7 92.7 89.2 79.1 94.7

Llama-3.1-8B-Instruct (fully self-supervised setting)
+ SFT on ContextCite 52.3 70.6 56.5 79.1 90.5 82.0 54.5 72.3 56.3 54.9 79.0 61.6 63.7 84.9 72.3 65.7 83.0

+ BoN 54.8 67.6 58.1 80.4 90.5 83.0 58.3 70.0 57.5 57.6 79.0 63.1 67.2 84.8 74.6 67.3 80.4
+ SimPO 63.3 74.3 64.6 80.2 88.9 82.4 59.7 76.9 61.0 59.0 80.9 65.4 68.5 86.6 76.1 69.9 90.2
+ SimPO then BoN 66.0 82.4 71.1 81.5 90.7 83.2 61.3 70.0 59.9 62.1 81.4 67.4 68.8 86.2 76.1 71.5 87.4

ticular statement. We consider ContextCite (Cohen-
Wang et al., 2024), a contributive context attribution
method that performs several random context ablations
to model the effect of ablating different parts of the con-
text on a generated statement. We use NLTK to split
Llama-3.1-8B-Instruct’s responses into statements, and
then apply ContextCite with 32 and 256 times of ran-
dom context ablations to get the citations, with the
details described in Appendix B.

• Fine-tuned models: LongCite-8B and 9B released by
Zhang et al. (2024), trained on LongCite-45K, fine-
tuned from Llama-3.1-8B (Dubey et al., 2024) and
GLM-4-9B (GLM et al., 2024), respectively. Addition-
ally, we consider a baseline of finetuning LongCite-8B
using SimPO with the NLI rewards which resembles
Huang et al. (2024a), with the details in Appendix E.

3.4. Main Results

Citation Quality. Table 1 presents our main results. Our
best-of-N sampling (BoN) consistently improves both cita-
tion recall and citation precision across tasks, increasing
the overall F1 score from 73.8 to 77.5. Using SimPO to
internalize BoN’s gains—eliminating the need for costly
BoN sampling—achieves a similar improvement, with an
F1 of 77.9. Applying BoN again to the SimPO fine-tuned
model further boosts F1 by 5.3 points to 79.1, the highest

across the datasets, suggesting room for further gains. Our
results surpass LongCite-8B/9B at similar citation lengths
and outperform proprietary model prompting while produc-
ing shorter citations.

To better contextualize the gains of our proposed reward, we
additionally implement a variant of SimPO using NLI-based
citation precision/recall rewards from Huang et al. (2024a)
by using the same training pipeline and initialization as our
SimPO, modifying only the reward function (see details in
Appendix E). As shown in row of SimPO w/ NLI Rewards,
this baseline improves LongCite-8B on 3 out of 5 datasets,
but is still consistently outperformed by SelfCite. This
result highlights that while NLI-based rewards are helpful,
our SelfCite reward provides a more accurate signal for
optimizing citation quality.

Besides the fine-tuned baselines, we additionally compare
our method to ContextCite for reference, a method very dif-
ferent from SelfCite–it does not directly generate citations,
it estimates the importance scores of the context sentences
after the response is generated (in Appendix B we show
how to convert continuous importance scores into citations).
Both SelfCite and ContextCite rely on the idea of context
ablation, but our approach is significantly better. A key
reason is that ContextCite estimates sentence importance
from scratch using linear regression, while we rerank ex-
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Table 2. Answer correctness when responding with or without ci-
tations. † indicates results taken from Zhang et al. (2024). The
header contains abbreviations for the same five datasets in Table 1.

Model Long. Multi. Hot. Dur. Gov. Avg

Answering without citations

LongSFT-8B† 68.6 83.6 69.0 62.3 54.4 67.6
LongSFT-9B† 64.6 83.3 67.5 66.3 46.4 65.6
Llama-3.1-8B-Instruct 66.0 83.7 65.8 62.8 66.1 68.9

Answering with citations

LongCite-8B (Our repro.) 67.6 86.7 69.3 64.0 60.4 69.6
+ SimPO 67.4 86.7 67.5 66.0 61.3 69.8

Llama-3.1-8B-Instruct 58.4 75.3 67.3 59.3 56.4 63.3
+ SFT on ContextCite 58.8 83.4 65.8 57.8 57.5 64.6

+ SimPO 56.8 80.9 65.3 59.5 60.9 64.7

isting LLM-generated citation candidates, leading to more
efficient and accurate citation quality estimation.

Finally, we evaluate the latest released Claude Citations
API, as shown in Appendix D that SelfCite achieves strong
results very close to this commercial-level API, validating
the effectiveness of SelfCite.

Fully Self-Supervised Setting. In our main experiment,
we start from the Llama-3.1-8B model fine-tuned on the
LongCite-45K SFT data, which effectively kick-starts its
ability to generate structured citations for best-of-N sam-
pling. The subsequent SimPO alignment stage is entirely
self-supervised. We are also curious if it is possible to start
from a fully self-supervised SFT model and then apply our
self-supervised alignment after that. To begin with, we auto-
matically generate 11K citation SFT data using ContextCite
(see Appendix B for details) to replace the LongCite-45K
annotations in the training data, as shown in the results at
the bottom of Table 1. We can see that SFT on ContextCite
can achieve decent initial results (65.7 F1) but still far from
LongCite-8B (73.8 F1). BoN helps improving F1 to 67.3.
After SimPO training, it achieves 69.9 F1, and additionally
applying BoN can boost its F1 by 5.8 to 71.5, significantly
closing the gap to LongCite-8B, showing our alignment
method not only improve the supervised models, but also
enhance the models purely trained from self-supervision.

Answer Correctness. For best-of-N sampling, only the
citation parts are modified, so the responses it generates
to answer the questions are the same as those of the origi-
nal LongCite-8B model, maintaining the same correctness.
For the SimPO fine-tuned models, we test their answer cor-
rectness by the evaluation in Zhang et al. (2024), which
contains two settings: answering with/without citations. If
answering with citations, the model will be prompted to
generate answers with structured citations, making the task
more complex, and the citation parts will be removed when
evaluating the answer correctness. The results in Table 2
show that the SimPO fine-tuning does not change the cor-
rectness of the LongCite-8B model much. The correctness

is similar to LongSFT-8B/9B (Zhang et al., 2024), which are
ablation baselines fine-tuned on LongCite-45k QA pairs but
without the citation parts. The same observation still holds
when starting from Llama-3.1-8B-Instruct, either SFT with
ContextCite data or the further SimPO step do not change
the answer correctness significantly. Under the same answer
correctness, the additional “citations” can benefit the verifia-
bility of the answers, enabling a user to easily double-check
the answer, even in cases where the answers are wrong.

Chunk-level Citation Evaluation. Additionally, we eval-
uate our methods on the traditional chunk-level citation
benchmark ALCE (Gao et al., 2023b). However, due to the
mismatch of data distributions and different task settings dur-
ing training (sentence-level) and evaluation (chunk-level),
we consider this as a zero-shot evaluation, and the results
are shown in Appendix F, due to the limited space.

4. Analysis
4.1. Ablation Study on Rewards

To better understand our final reward design, we explore var-
ious reward strategies in the BoN sampling process. Here,
all BoN candidates are pre-generated and fixed, the re-
ward is the only factor affecting results. Table 3 presents
our ablation results on HotpotQA, while citation lengths
are computed across all LongBench-Cite datasets for di-
rect comparison with Table 1. We evaluate four alterna-
tive reward designs. BoN by LM log prob re-ranks can-
didates simply by the probability of the citation string,
<cite>[i1 − i2][i3 − i4]...</cite>, which is similar
to beam search but less costly. We observe that this strategy
slightly boosts recall while reducing precision, resulting in
a minor reduction in F1. BoN by max citation length always
selects the candidates with the longest citations, i.e. citing
the greatest number of sentences. Although it improves re-
call, it significantly reduces precision from 77.9 to 73.6 and
inflates the citation length from 83.5 to 139.8. By contrast,
both BoN by Prob-Drop and BoN by Prob-Hold improve
recall without sacrificing precision. Finally, by combining
both Prob-Drop and Prob-Hold into our final SelfCite re-
ward, we achieve the best outcome, increasing both recall
and precision and a 4-point improvement in F1.

We also explored different token-length limits for citations
in the bottom of Table 3, as discussed in Section 2.3. By
default, we exclude candidates citing more than 384 tokens,
unless the citation contains only a single sentence. Lowering
the cap to 256 tokens slightly hurts F1, while raising it to 512
tokens has negligible impact. Completely removing length
limits inflates citation length to 121.9 tokens and yields
worse precision (79.3) but slightly improved recall (67.9).
We also notice that the 256 length limit still outperforms the
LongCite-8B baseline (66.4 vs 64.1) while having almost
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Table 3. Ablation study on HotpotQA citation recall, precision,
and F1 (R, P, F1) and citation length for BoN decoding methods.

Decoding Methods HotpotQA Citation
R P F1 Length

LongCite-8B (Our repro.) 60.8 77.9 64.1 83.5

+ BoN by LM log prob 62.7 75.5 63.4 74.6
+ BoN by max citation length 66.5 73.6 65.1 139.8
+ BoN by Prob-Drop 65.6 78.1 66.6 92.9
+ BoN by Prob-Hold 66.2 78.1 67.0 93.4

+ BoN by SelfCite 67.2 81.0 68.8 93.4
w/ lower length limit (256) 65.8 78.8 66.4 84.5
w/ higher length limit (512) 67.0 82.2 68.5 99.2
w/o length limit (∞) 67.9 79.3 68.1 121.9

Table 4. Ablation study on HotpotQA citation recall, precision,
and F1 (R, P, F1) and citation length for finetuned models.

Fine-tuning Methods HotpotQA Citation
R P F1 Length

LongCite-8B (Our repro.) 60.8 77.9 64.1 83.5

+ SimPO 69.4 82.3 71.5 105.7
+ SimPO + BoN 72.0 82.7 72.9 126.9

+ SimPO w/ or w/o length balancing

w/ length balancing 69.4 82.3 71.5 105.7
w/o length balancing 64.4 62.9 60.5 152.9

+ SimPO w/ varying data sizes

1K examples 62.5 78.9 65.7 90.1
2K examples 69.4 82.3 71.5 105.7
4K examples 68.5 80.4 70.3 134.1
8K examples 64.6 79.5 65.9 158.1

+ SFT on BoN responses 68.8 77.3 68.4 98.7

+ SimPO by denoising perturbed citations

On original responses 40.5 50.5 41.6 88.8
On BoN responses 42.6 50.7 42.3 79.7

equally long citation length (84.5 vs 83.5), showing that the
improvement of SelfCite correlates less with the citation
length. Overall, using a 384-token limit achieves a good
balance for short citation lengths and strong performance.

4.2. Citation Length Balance

As noted in Section 3.2, BoN selects slightly longer cita-
tions, making it easy for a model trained directly on BoN-
preferred data to adopt the shortcut of generating longer ci-
tations without improving quality. To counter this, we apply
length balancing, injecting random citations into examples
where length bias exists to equalize the number of cited
sentences. Table 4 (see w/ vs. w/o length balancing) high-
lights its critical role in length balancing. Without length
balancing, the model overextends citations (average length
152.9), leading to lower precision (62.9) and F1 (60.5). In
contrast, enabling length balancing maintains high precision
(82.3) and recall (69.4), achieving a better F1 of 71.5 while
keeping citation length reasonable (105.7). These results
confirm that length balancing prevents shortcut learning,
ensuring the model truly learns to cite accurately.

4.3. Training Size of SimPO

In prior study (Zhou et al., 2023), 1K examples are suffi-
cient to align user preferences effectively. Table 4 presents
SimPO results with 1K to 8K examples. 1K examples al-
ready bring a moderate improvement, raising F1 from 64.1
to 65.7, with gains in precision and recall. Using 2K exam-
ples further boosts F1 to 71.5, while 4K leads to saturated
improvement. However, at 8K examples, performance de-
clines, and citation length rises to 158.1. We attribute this
to SimPO’s off-policy nature, especially because it lacks a
reference model to constrain the output distributions to be
similar to the collected data. As training steps grow, the
model may drift from the collected data, potential overfitting
to the biases in preference data. Thus, further fine-tuning
may degrade citation quality. To address this, we show
initial results from iterative SimPO in Section 4.6.

4.4. SimPO vs. SFT on Best-of-N responses

We also show the effect of applying standard supervised
fine-tuning (SFT) on the responses selected by best-of-N
sampling, which is a simplified alternative of preference
optimization. As the result shown in the last row in Table 4,
SFT also improves the F1 score from 64.1 to 68.4, but it
still falls behind 71.5 of SimPO. This result confirms that it
is necessary to train the model via SimPO with preference
data, which enables the model to distinguish between bad
and good citations, and thus improve the citation quality.

4.5. Off-policy Denoising Perturbed Citations

We explored a purely off-policy alternative approach. Specif-
ically, given a model-generated response, we randomly shift
its citation spans to create perturbed variants. SimPO train-
ing pairs were then constructed by preferring the original ci-
tation over the perturbed one, encouraging the model to “de-
noise” citations by restoring their original spans. However,
as shown at the bottom of Table 4, this approach degrades
performance, both when applied to original and best-of-N
responses. We attribute this to a mismatch between the train-
ing data and the model’s natural error distribution—since
random shifts do not reflect typical citation errors, they fail
to provide useful guidance for improvement.

4.6. Iterative Preference Optimization

It has been discussed that an on-policy alignment process
can be beneficial to avoid reward exploitation (Bai et al.,
2022) and maintains consistency between the generated
data and the model’s evolving output distribution. We thus
experiment with iteratively performing SimPO, similar to
the concepts of recent studies (Pang et al., 2024; Yasunaga
et al., 2024), to maintain the consistency between the gen-
erated data and the model’s evolving output distribution.
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Figure 2. Iteratively applying SimPO for three iterations.

Specifically, after fine-tuning with SimPO, we generate a
new dataset via BoN, which is also 2K in size but not over-
lapped with previous iterations. We continue training the
model and repeat the process for three rounds. As shown in
Figure 2, while the largest improvement occurs in the first
round, improvements continue over three iterations, which
further validates the reliability of our reward signal. Itera-
tive SimPO is still not perfect since it remains an off-policy
method. Given that our reward can be cheaply computed, we
believe that on-policy methods like PPO (Schulman et al.,
2017) could further enhance performance. We leave the
exploration of such approaches for future work.

4.7. Latency of Best-of-N

Table 5 reports the average per-example latency on
LongBench-Cite. As expected, Best-of-N (BoN) introduces
additional latency due to the need to generate and rerank
multiple citation candidates. In our setup, we use N = 10
candidates, but the sampling time is not 10× longer than
direct decoding. This is because we only re-sample short
citation spans (typically 5–10 tokens), not the full responses,
resulting in relatively lightweight sampling overhead.

However, the increased latency from BoN is not a major
concern, because our SelfCite SimPO model also achieves
the same performance as BoN in a single pass, without addi-
tional latency. For scenarios requiring maximum efficiency,
we recommend using the SimPO model directly.

4.8. Qualitative Study

Finally, we examine an example that requires citing multi-
ple context sentences to support a complex response. As
shown in Table 6, the response integrates information from
sentences 302, 303, and 306. Direct sampling (2) omits sen-
tence 302 while incorrectly including 305. In contrast, the
best-of-N candidate (1) correctly includes 302 and excludes
305, achieving a slightly higher reward (0.578 vs. 0.547),
demonstrating the effectiveness of our reward design. We
also present candidates (3) and (4), which cite more irrele-
vant sentences and miss key citations, leading to even lower
rewards. Additional qualitative examples are provided in
Appendix H.

Table 5. Average latency per example on LongBench-Cite (8 ×
A100 GPUs, batch size 1, model parallel).

Method Avg Latency (s)

LongCite-8B 24.3
SelfCite BoN Sampling 149.0
SelfCite BoN Reranking 34.0
SelfCite SimPO model 26.2

5. Related Work
Citations for Language Models. Recent work has ex-
plored various approaches to teaching language models to
generate citations, including fine-tuning with direct human
feedback or annotations (Nakano et al., 2021; Menick et al.,
2022; Slobodkin et al., 2024), rewards from external NLI
models (Huang et al., 2024a;b), and prompting-based meth-
ods (Gao et al., 2022; 2023b) to explicitly incorporate rel-
evant retrieved documents. Given the high cost of human
annotation, Zhang et al. (2024) introduced CoF (“Coarse to
Fine”), an automated multi-stage pipeline that simulates hu-
man annotation. This approach leverages proprietary LLMs
for query generation, chunk-level retrieval, and sentence-
level citation extraction, achieving high citation quality
through supervised fine-tuning. However, it depends on
larger proprietary models two proprietary APIs—GLM-4
for the LLM and Zhipu Embedding-v2 for retrieval2— with
carefully designed prompting, effectively distilling the ca-
pabilities of these proprietary models into much smaller
models in 8B/9B. In contrast, our SelfCite aims at com-
pletely eliminating the reliance on annotations for citation,
either from human or proprietary APIs. Instead, our method
enables a small 8B model to assess citation quality itself
using self-supervised reward signal from context ablation,
effectively self-improving without external supervision. We
additionally provide Table 9 to contrast the key differences
between SelfCite and prior papers in Appendix G.

Contributive Context Attribution. Besides being self-
supervised, SelfCite also adopts the view that citations
should reference the sources from the context that a model
actually uses when generating a statement–known as con-
tributive attribution (Worledge et al., 2023)–rather than any
sources that merely support the claim. Our reward signal
naturally aligns with this attribution framework, as con-
text ablation identifies the sources that cause the model
to produce a statement. Existing contributive attribution
methods for LLMs typically require extensive context abla-
tions or other computationally expensive techniques, such
as gradient-based analysis during inference (Cohen-Wang
et al., 2024; Qi et al., 2024; Phukan et al., 2024). In contrast,

2https://open.bigmodel.cn/pricing
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Table 6. An example of differences in the citation from baseline vs BoN. Related information are highlighted in the context/response.

Sent. ID Context Sentences (only showing a paragraph due to limited space)

302 (✓) In general, consumer advocates believe that any comprehensive federal privacy policy should complement, and not
supplant, sector-specific privacy legislation or state-level legislation.

303 (✓) Finding a global consensus on how to balance open data flows and privacy protection may be key to maintaining trust
in the digital environment and advancing international trade.

304 (✗) One study found that over 120 countries have laws related to personal data protection.

305 (✗) Divergent national privacy approaches raise the costs of doing business and make it harder for governments to
collaborate and share data, whether for scientific research, defense, or law enforcement.

306 (✓) A system for global interoperability in a least trade-restrictive and nondiscriminatory way between different national
systems could help minimize costs and allow entities in different jurisdictions with varying online privacy regimes to
share data via cross-border data flows.

Query Please write a one-page summary of the above government report.

Response
(only single
statement due
to space)

[...] The report concludes by noting that finding a global consensus on how to balance open data flows and privacy
protection may be key to maintaining trust in the digital environment and advancing international trade. The report
suggests that Congress may consider comprehensive privacy legislation and examine the potential challenges and
implications of building a system of interoperability between different national privacy regimes. [...]

BoN Candidates Citation Strings (green: correct; red: wrong) Missing Citations SelfCite Reward

(1) Best candidate [302-303][306-306] – 0.578
(2) Direct sampling [303-303][305-306] (302) 0.547
(3) Other candidate [303-304][308-308][310-311] (302, 306) 0.461
(4) Other candidate [303-303][309-309][311-311] (302, 306) 0.375

SelfCite simply generate the citation tags, and refine citation
candidates by preference optimization with reward signals
from context ablations, effectively teaching the model to
perform contributive context attribution itself.

We also note that there is a distinction between corrobora-
tive citation—highlighting sources that support a claim, as
used in benchmarks like LongBench-Cite—and contributive
attribution, as emphasized in ContextCite. While SelfCite
applies a contributive alignment method (via ablations) in
the context of a corroborative evaluation framework, we
find the two objectives to be at least partially aligned: cita-
tions that genuinely influence the generation are often also
semantically supportive. Although this alignment is not
guaranteed, our empirical results show that enforcing con-
tributive attribution leads to clear improvements on corrob-
orative benchmarks, suggesting that current corroborative
methods (e.g., LongCite) still have significant headroom for
improvement—even under a slightly mismatched objective.

Self-Supervised Alignment and Reward Modeling. An-
other relevant area is self- or weakly-supervised approaches
for aligning LLMs without human supervision (Kim et al.,
2023; Yuan et al., 2024), reducing the need for explicit hu-
man feedback (Ouyang et al., 2022), or curating high-quality
data for supervised fine-tuning (Zhou et al., 2023). SelfCite
shares the same spirit by computing simple probability dif-
ferences under context ablation as rewards, eliminating the
need for additional annotation process.

6. Conclusion and Limitations
In this work, we introduced SelfCite, a self-supervised
framework that aligns LLMs to generate more accurate,
fine-grained citations by directly leveraging their own proba-
bilities for necessity and sufficiency rewards through context
ablation. With best-of-N sampling and preference optimiza-
tion, SelfCite significantly improves citation correctness on
the LongBench-Cite benchmark without requiring human
annotation, offering a promising self-improving direction
towards verifiable and trustworthy LLMs.

SelfCite also has limitations: 1) While achieving good re-
sults with SimPO, integrating other preference optimization
or reinforcement learning (RL) algorithms, e.g., PPO (Schul-
man et al., 2017), remains under explored. However, as prior
study (Mudgal et al., 2024) shows BoN closely approxi-
mates the upper-bound scores of RL, we mainly validate
our reward design using BoN, following the established
practices (Gao et al., 2023a; Lightman et al., 2024), and
further verify it with a training-based method, SimPO. 2)
The SelfCite framework assumes the output probabilities
of LLMs are available, which may not work for some pro-
prietary LLMs. 3) While we focus on self-supervision in
preference optimization for improving the quality of exist-
ing citations generated by LLMs, better unsupervised ways
to kick-start LLMs’ ability in generating structured citations
can be further explored.
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Impact Statement
This paper introduces SelfCite, a self-supervised framework
for improving citation accuracy in large language models
(LLMs). Our method enhances the verifiability and trustwor-
thiness of LLM-generated content by aligning citations with
relevant supporting evidence in a scalable manner, with-
out relying on costly human annotations. By improving
citation quality, SelfCite contributes to the broader goal of
reducing misinformation and hallucinations in AI-generated
responses. Ensuring that LLMs provide accurate and prop-
erly attributed information is particularly crucial in high-
stakes domains such as healthcare, law, and journalism,
where incorrect or unverified information can have signifi-
cant real-world consequences. Overall, SelfCite aligns with
the broader ethical goal of making machine learning sys-
tems more transparent and accountable, reducing the risk of
unchecked misinformation while maintaining the efficiency
and scalability required for real-world applications.
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A. Implementation Details
For SimPO fine-tuning, we randomly sample 2K document and question pairs from the LongCite-45k data, generate the
best-of-N responses with our Algorithm 1 to obtain the preference data, and train for one epoch. We sample another 100
examples as development set to pick the best learning rate from {1e-7, 3e-7, 5e-7, 7e-7}. We keep other hyperparameters
the same as the original SimPO (Meng et al., 2024). We follow the same prompt format used in Zhang et al. (2024)3 to
keep the comparison fair. For the iterative SimPO experiment, in each iteration, we sampled a new, non-overlapping subset
of 2K examples to ensure no data repetition across iterations. For self-supervised SFT, we generate 11K citation data
unsupervisedly from ContextCite outputs as described in Appendix B, trained with a larger learning rate 7e-6.

We use the SimPO source code 4 built from Huggingface Transformers (Wolf et al., 2020) for the finetuning experiments, as
well as Liger-Kernel (Hsu et al., 2024)5 to enable memory efficient training for long-context examples in LongCite-45K
without tensor parallelization. We run all the finetuning experiments on with 8×A100 GPUs of 80 GB memory on a single
node. The batch size is set to 1 per GPU due to the long context examples. We set our max context length to 25600 to
prevent OOM. For the data examples longer than 25600, we perform truncation, start from truncating the sentences that
are the most far away from the sentences cited by the ground truth annotation, so as to keep the impact of truncation to be
minimum.

When evaluating the citation length, as well as calculating the token length limit of 384 for excluding long BoN candidates,
we follow Zhang et al. (2024) to use GLM4-9B’s tokenizer to count tokens.

In the ablation study of off-policy denoising in Section 4.5, the citation examples for denoising are collected by randomly
shifting existing citation spans by 3-10 positions in sentence indices.

B. Obtaining Citations from ContextCite
In this section, we first describe how the ContextCite method (Cohen-Wang et al., 2024) estimates continuous attribution
scores for each sentence in the context. We then explain a simple heuristic for extracting citations (i.e., selecting a subset of
context sources) from these scores.

B.1. ContextCite

Given a language model pLM, a context C, a query Q and a generated response R, ContextCite aims to quantify how each
source in the context C = {c1, c2, . . . , c|C|} contributes to the generated response R (in our case, the sources are sentences).
To do so, ContextCite performs several random context ablations. We begin by introducing some notation to describe
these ablations. Let v ∈ {0, 1}|C| be an ablation vector whose i-th entry toggles whether source ci is included (vi = 1)
or excluded (vi = 0). We write ABLATE(C, v) to denote a modified version of the original context C in which sources
for which vi = 0 are omitted. ContextCite seeks to understand how the probability of generating the original generated
response,

f(v) := pLM(R | ABLATE(C, v), Q),

changes as a function of the ablation vector v.

Attribution via Surrogate Modeling. Directly measuring f(v) for all 2|C| ablation vectors is infeasible for large |C|.
Hence, ContextCite seeks to identify a surrogate model f̂(v) that is easy to understand and approximates f(v) well. To
simplify this surrogate modeling task, ContextCite applies a logit transform to f , which maps values in (0, 1) to (−∞,∞)):

g(v) := σ−1(f(v)) = log
( f(v)

1− f(v)

)
.

ContextCite then approximates g(v) using a sparse linear function,

ĝ(v) = ŵ⊤v + b̂.

Notice that resulting weights ŵ ∈ R|C| encode the importance of each source ci to the probability of generating the original
response; they can be interpreted directly as attribution scores (higher scores suggest greater importance).

3https://github.com/THUDM/LongCite
4https://github.com/princeton-nlp/SimPO
5https://github.com/linkedin/Liger-Kernel
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Finding a Surrogate Model via LASSO. To learn the parameters ŵ and b̂ of the surrogate model, ContextCite randomly
samples a small number of ablation vectors and measures the corresponding probabilities of generating the original response.
It then uses this “training dataset” to fit a sparse linear model with LASSO. Concretely, it learns a surrogate model with the
following three steps:

1. Sample n ablation vectors {vi}ni=1 uniformly at random from {0, 1}|C|.

2. For each sample vi, compute g(vi) = σ−1(f(vi)) by running the LM with only the sources specified by vi and
measuring the (sigmoid) probability of R.

3. Solve a Lasso regression problem to find ŵ and b̂:

ŵ, b̂ = argmin
w, b

1

n

n∑
i=1

(
g(vi)− w⊤vi − b

)2
+ λ∥w∥1,

where λ controls sparsity (larger λ drives more coefficients to zero).

In Cohen-Wang et al. (2024), typical choices of n range from 32 to 256, balancing cost (requires n LM forward passes) and
accuracy. If there are multiple statements {r1, r2, ..., r|R|} in R, the same method can also be applied by focusing only on a
subset of tokens in R.

B.2. Heuristic Citation Extraction

In our setting, we would like a discrete list of cited sentences for each generated statement, rather than a score for every
sentence. We will now describe how to convert the attribution scores ŵ into a discrete subset C ′ ⊆ C of citations. Let t be a
threshold, p be a cumulative probability mass cutoff, and k be a maximum citation limit.

Thresholding and Merging.

1. Filtering: Include only those sources ci whose attribution score ŵi ≥ t.

2. Merging Adjacent Sources: If multiple consecutive sources in the original text each exceed t, merge them into a
single “span” Sj . We assign this merged span the maximum score among its constituents:

ŵ(Sj) = max
ci ∈Sj

ŵi.

Here, adjacency is defined by the original ordering in C. For instance, if c2 and c3 both pass the threshold and appear
consecutively, we merge them into a single span Sj .

Softmax Normalization. Let {Sj} be the set of spans (or single sources) that survived the threshold. We normalize their
scores into a probability distribution:

ŵ′(Sj) =
exp

(
ŵ(Sj)

)∑
i exp

(
ŵ(Si)

) ,
so that

∑
j ŵ

′(Sj) = 1.

Top-p Selection. To avoid including too many low-value sources, we adopt a greedy approach:

Add spans in order of descending ŵ′(Sj), stopping once
∑

Sj∈C′

ŵ′(Sj) ≥ p.

Top-k Filtering. Finally, if |C ′| > k, we take only the k highest-scoring spans.

We set t = 1.5, p = 0.7, k = 4 in the experiment. When generating supervised fine-tuning (SFT) data, we discard any
example for which more than 30% of its statements have no any citations that can survive threshold t. This ensures the dataset
emphasizes cases where the LM’s response can be tied to explicit context sources. We take the LongCite-45K document and
question pairs to generate the responses by Llama-3.1-8B-Instruct itself, and then obtain citations with ContextCite (256
calls), transformed into the statement/citation format of LongCite-45K. Finally, we collect ∼ 11K examples used for SFT.

14



SelfCite: Self-Supervised Alignment for Context Attribution in LLMs

Table 7. Citation recall (R), citation precision (P), citation F1 (F1), and citation length evaluated on LongBench-Cite benchmark. The best
results are bolded. † indicates the results taken from Zhang et al. (2024).

Model Longbench-Chat MultifieldQA HotpotQA Dureader GovReport Avg. Citation
R P F1 R P F1 R P F1 R P F1 R P F1 F1 Length

Proprietary models

GPT-4o† 46.7 53.5 46.7 79.0 87.9 80.6 55.7 62.3 53.4 65.6 74.2 67.4 73.4 90.4 79.8 65.6 220
Claude-3-sonnet† 52.0 67.8 55.1 64.7 85.8 71.3 46.4 65.8 49.9 67.7 89.2 75.5 77.4 93.9 84.1 67.2 132
GLM-4† 47.6 53.9 47.1 72.3 80.1 73.6 47.0 50.1 44.4 73.4 82.3 75.0 82.8 93.4 87.1 65.4 169

Ours: SelfCite

LongCite-8B (Our repro.) 67.0 78.1 66.6 74.8 90.7 79.9 60.8 77.9 64.1 67.1 87.2 73.7 81.6 89.3 84.5 73.8 83.5
+ BoN 68.4 81.3 71.2 76.1 92.8 81.2 67.2 81.0 68.8 70.6 90.9 76.9 87.6 92.4 89.3 77.5 93.4
+ SimPO 68.1 79.5 69.1 75.5 92.6 81.0 69.4 82.3 71.5 72.7 91.6 78.9 86.4 92.9 89.1 77.9 105.7
+ SimPO then BoN 73.3 79.4 72.8 76.7 93.2 82.2 69.4 83.0 71.1 74.2 92.2 80.3 86.7 92.7 89.2 79.1 94.7

Topline

Claude Citations 61.2 81.7 67.8 76.8 98.4 84.9 61.9 94.1 72.9 88.5 99.7 93.2 79.4 99.2 87.7 81.3 88.8

C. Length Balancing
To prevent the model from simply generating longer citations rather than focusing on citation correctness, we apply a
length balancing procedure to align the total citation length in our two training responses: a chosen prediction and a reject
prediction. First, we find the citation string (e.g., [435-437]) enclosed in <cite>...</cite> tags for each statement.
We then measure each string’s total citation “coverage”, which means the total number of cited sentences in these intervals.

If a reject prediction has a total coverage lower than the corresponding chosen prediction, we insert additional citations
around nearby sentence indices to match the chosen coverage. Conversely, if the reject coverage is larger, we randomly
remove some of its intervals. We ensure new or inserted citations do not overlap existing intervals and keep them within
a small window of 5–10 sentences away from the original citations to maintain realism. Finally, the reject and chosen
will have matched coverage. This approach discourages the model from trivially learning to cite more sentences, instead
prompting it to learn where and how to cite evidence more accurately. Our ablation in Section 4.2 shows that this length
balancing technique significantly improves final citation quality.

D. Comparison with Claude Citations API
On January 23rd, 2025, Claude announced an API specialized for providing citations along with responses: Claude
Citations6. We also try to evaluate this API on the LongBench-Cite benchmark. Since the implementation details and
resource requirements (e.g., training data) of Claude Citations are not publicly available yet, and it relies on a significantly
larger and more powerful LLM, Claude-3.5-Sonnet, which potentially has over 100 billions of parameters, we consider it as
a topline of the benchmark rather than a baseline.

When evaluating it on Chinese examples from LongBench-Cite, we found that the API does not split Chinese text properly.
As a result, it cites large passages when processing Chinese examples, leading to an average citation length of approximately
800 tokens per citation.

To address this issue, we pre-segment the text ourselves using exactly the same method as our approach following
LongCite (Zhang et al., 2024), which uses NLTK and Chinese punctuation segmentation. We then run the Claude Citations
API, as it supports both non-segmented and pre-segmented document inputs. The evaluation was conducted using the latest
version of claude-3-5-sonnet-20241022.

As shown in Table 7, Claude Citations achieves an overall F1 score of 81.3, which is higher than all other models we have
tested. However, the performance of Claude Citations is not consistent over all datasets. For example, it is worse than
SelfCite on LongBench-Chat and GovReport. The main improvement of Claude is from the DuReader dataset, while the
results on other datasets are comparable to the results of SelfCite. Given the fact that SelfCite leverages a much smaller 8B
model compared to the Claude-3.5-Sonnet model, the result of SelfCite is very impressive, demonstrating its potential to
serve as a strong alternative to proprietary solutions.

6https://www.anthropic.com/news/introducing-citations-api
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E. Baseline: SimPO with NLI Rewards
To provide a stronger fine-tuned baseline, we implement a SimPO variant that adopts NLI-based citation rewards, fol-
lowing the design proposed by Huang et al. (2024a). For fair comparison, we keep our full SelfCite SimPO training
pipeline—initializing from LongCite-8B and training on the LongCite-45k dataset—and modify only the reward function as
a controlled experiment. This NLI-based reward combines two components:

• Citation Recall Reward: This measures whether the full set of cited sentences entails the model-generated statement.
It is equivalent to the Citation Recall Reward proposed by Huang et al. (2024a).

• Citation Precision Reward: This estimates whether each cited sentence is necessary by ablating one sentence at a
time and testing whether the remaining span still entails the statement. If entailment fails after removing a sentence, it
indicates that the sentence contributes uniquely to the justification. To reduce latency, we ablate all sentences when the
citation contains 5 or fewer; otherwise, we randomly sample 5 for ablation. When there are N ablations, each ablation
makes a reward of 1

N , and finally all ablations sum up to 1.0. It resembles the Citation Precision Reward proposed by
Huang et al. (2024a).

We make both rewards positive and capped at 1.0, effectively constructing preference pairs for SimPO. We do not consider the
Correctness Recall Reward from Huang et al. (2024a), because the LongCite-45k training set does not contain ground-truth
answers. All entailment scores are computed using the public NLI model google/t5 xxl true nli mixture7.

F. Zero-shot Evaluation on Chunk-level Citation Benchmark ALCE
We additionally include the zero-shot evaluation on the chunk-level citation benchmark ALCE (Gao et al., 2023b) and report
the results in Table 8. We find that our baseline model, LongCite-8B, although under a zero-shot setting (it is trained on
sentence-level citation but test on chunk-level citations), already outperforms the prompting-based approach from Gao
et al. (2023b) by a substantial margin in both citation recall and precision. Incorporating NLI-based rewards from Huang
et al. (2024a) into our SimPO training yields further improvements. Most notably, our method—SimPO with SelfCite
rewards—achieves the best performance among models trained on the same LongCite-45k dataset.

The last row of the table presents the best result reported by Huang et al. (2024a), who fine-tuned their model using
supervised data. However, this setting is not directly comparable to ours for several reasons:

1. They optimize directly for the ALCE evaluation metric by using the same NLI evaluator model
(google/t5 xxl true nli mixture) to provide both training rewards and evaluation scores.

2. Their model is trained on the in-distribution QA training sets in ALCE, with exactly the same chunk-level format as the
benchmark. In contrast, our SelfCite model is trained on out-of-distribution sentence-level citations from LongCite-45k.

3. Their method involves distillation from ChatGPT in the first stage, whereas ours does not rely on external supervision.

Despite this domain and format mismatch, SelfCite demonstrates strong generalization and consistently outperforms both
LongCite-8B and the NLI-based SimPO baseline. This highlights the robustness and effectiveness of our approach even in
cross-domain, cross-format transfer settings.

G. Comparison with Prior Studies
We further provide a comparison table in Table 9 to contrast the key differences between SelfCite and other prior studies on
producing citations from LLMs. Among all methods, SelfCite is the only approach that supports sentence-level citation
generation in a single pass, leverages preference optimization, and scales to 128K-token contexts—all without requiring
additional supervision. In contrast, prior work such as ALCE (Gao et al., 2023b) and Huang et al. (2024a) use chunk-level
citations for shorter context (≤8K) and require prompt-based or supervised NLI signals. ContextCite (Cohen-Wang et al.,
2024), while being sentence-level, relies on a computationally expensive (at least 32 inference calls) process for random
context ablation and trains a linear model for estimating the importance scores. This comparison underscores the practical
advantages and technical contributions of SelfCite.

7https://huggingface.co/google/t5_xxl_true_nli_mixture
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Table 8. Evaluation on the chunk-level citation benchmark ALCE (Gao et al., 2023b). Our model (SimPO w/ SelfCite) is trained on
sentence-level, out-of-distribution LongCite-45k data but still generalizes well to the chunk-level ALCE benchmark.

Model ASQA ELI5

EM Rec. Cite Rec. Cite Prec. Correct Cite Rec. Cite Prec.

Gao et al. (2023b) (Prompting)

Llama-2-13B-chat 34.66 37.48 39.62 12.77 17.13 17.05
Llama-3.1-8B-Instruct 42.68 50.64 53.08 13.63 34.66 32.08

Finetuned on LongCite-45k (Out-of-Distribution)

LongCite-8B 42.11 62.27 57.00 15.37 30.54 29.15
+ SimPO w/ NLI Rewards 41.20 65.65 60.20 15.30 33.06 31.05
+ SimPO w/ SelfCite 42.57 71.68 62.05 15.17 37.09 35.62

Finetuned on ALCE train set (In-Distribution Supervision)

Huang et al. (2024a) 40.05 77.83 76.33 11.54 60.86 60.23

Table 9. Key differences among prior methods on producing citations from LLMs. CC stands for ContextCite.

Method
Sentence-level

citations?
One pass

generation?
Preference

optimization?
Handle 128K
long-context?

External
supervision?

ALCE (Gao et al., 2023b) ✗ (chunk-level) ✓ ✗ (prompting) ✗ (8K) 2-shot prompting
Huang et al. (2024a) ✗ (chunk-level) ✓ ✓ ✗ (8K) NLI + ground truth
CC (Cohen-Wang et al., 2024) ✓ ✗ (at least 32 calls) ✗ (not generative) ✓ N/A
LongCite (Zhang et al., 2024) ✓ ✓ ✗ (SFT only) ✓ SFT data
SelfCite (Ours) ✓ ✓ ✓ ✓ N/A

H. More Qualitative Examples
We further show more qualitative examples in Table 10,11, and 12, to represent the cases where SelfCite is better as well as
where the LongCite-8B direct sampling baseline is better. In Table 10, SelfCite BoN avoid the cited irrelevant sentence (42,
47-50) by the baseline, while further including a correct citation (23) that are not found by the baseline. In Table 11, both
SelfCite BoN and the baseline cites too many irrelevant sentences (391-393) but SelfCite BoN’s citation is slightly better. In
Table 12, SelfCite BoN wrongly includes 30 and misses 70, but the baseline is slightly better and only wrongly includes 71.
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Table 10. An example of differences in the citation from baseline vs BoN. Related information are highlighted in the context/response.

Sent. ID Context Sentences (only showing cited sentences due to space)

23 (✓) We explored using a simple and cost-effective procedure to instruction finetune our continually pretrained long
models without any human-annotated data.

42 (✗) Collecting human demonstration and preference labels for LLM alignment is a cumbersome and expensive process
(Ouyang et al., 2022; Touvron et al., 2023).

45 (✓) In this work, we found that a simple and cheap approach which leverages a pre-built large and diverse short-prompt
dataset works surprisingly well on long-context benchmarks.

46 (✓) Specifically, we take the RLHF dataset used in LLAMA 2 CHAT and augment it with synthetic self-instruct (Wang et
al., 2022) long data generated by LLAMA 2 CHAT itself, in the hope that the model can learn a diverse set of skills
through the large amount of RLHF data and transfer that knowledge to long-context scenarios via self-instruct data.

47-50 (✗) The data generation process focuses on QA-format tasks: starting from a long document in our pretraining corpus,
we select a random chunk and prompt LLAMA 2 CHAT to write question-answer pairs based on information in the
text chunk. [...]

Query What aspects of the LLAMA Long model proposed above have changed relative to the LLAMA-based model? What
improvements have been made?

Response
(single state-
ment due to
space)

[...] 3. Instruction Tuning: The paper proposes a simple and cost-effective procedure to instruction finetune the
continually pretrained long models without any human-annotated data. This involves using a pre-built large and
diverse short-prompt dataset and augmenting it with synthetic self-instruct long data generated by LLAMA CHAT
itself. [...]

Citation Strings (green: correct; red: wrong)

Baseline [42-42][45-50]
SelfCite BoN [23-23][45-45][46-46]
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Table 11. An example of differences in the citation from baseline vs BoN. Related information are highlighted in the context/response.

Sent. ID Context Sentences (only showing cited sentences due to space)

299 (✗) Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to
form polypeptide chains.

300 (✓) Ribosomes consist of two major components: the small and large ribosomal subunits.

301 (✓) Each subunit consists of one or more ribosomal RNA (rRNA) molecules and many ribosomal proteins (RPs or
r-proteins).

302 (✓) The ribosomes and associated molecules are also known as the translational apparatus.

383 (✗) Ribosomes are minute particles consisting of RNA and associated proteins that function to synthesize proteins.

384 (✗) Proteins are needed for many cellular functions such as repairing damage or directing chemical processes.

385 (✗) Ribosomes can be found floating within the cytoplasm or attached to the endoplasmic reticulum.

390 (✓) Each subunit is made of one or more rRNAs and many r-proteins.

391 (✗) The small subunit (30S in bacteria and archaea, 40S in eukaryotes) has the decoding function, whereas the large
subunit (50S in bacteria and archaea, 60S in eukaryotes) catalyzes the formation of peptide bonds, referred to as the
peptidyl-transferase activity.

392 (✗) The bacterial (and archaeal) small subunit contains the 16S rRNA and 21 r-proteins (Escherichia coli), whereas the
eukaryotic small subunit contains the 18S rRNA and 32 r-proteins (Saccharomyces cerevisiae; although the numbers
vary between species).

393 (✗) The bacterial large subunit contains the 5S and 23S rRNAs and 34 r-proteins (E. coli), with the eukaryotic large
subunit containing the 5S, 5.8S, and 25S / 28S rRNAs and 46 r-proteins (S. cerevisiae; again, the exact numbers vary
between species).

Query The large subunit and small subunit that use two types of RNA are major components that make up what?

Response
(single state-
ment due to
space)

[...] The ribosome consists of two major components: the small and large ribosomal subunits. Each subunit consists
of one or more ribosomal RNA (rRNA) molecules and many ribosomal proteins (RPs or r-proteins). The ribosomes
and associated molecules are also known as the translational apparatus. [...]

Citation Strings (green: correct; red: wrong)

Baseline [299-302][383-385][390-393]
SelfCite BoN [300-302][390-393]

19



SelfCite: Self-Supervised Alignment for Context Attribution in LLMs

Table 12. An example of differences in the citation from baseline vs BoN. Related information are highlighted in the context/response.

Sent. ID Context Sentences (only showing cited sentences due to space)

28 (✓) The Aegis BMD system exists in several variants.

29 (✓) Listed in order of increasing capability, these include (but are not necessarily limited to) 3.6.X variant, the 4.0.3
variant, the 4.1 variant (also known as the Aegis Baseline [BL] 5.4 variant), the 5.0 CU (Capability Upgrade) variant
(also known as the BL 9.1 variant), the 5.1 variant (also known as the BL 9.2 variant), and the 6.X variant (also
known as the BL 10 variant).

30 (✗) Figure 1 summarizes the capabilities of some of these variants (using their designations as of 2016) and correlates
them with the phases of the European Phased Adaptive Approach (or EPAA; see discussion below) for European
BMD operations.

61 (✓) The BMD interceptor missiles used by Aegis ships are the Standard Missile-3 (SM-3), the SM-2 Block IV, and the
SM-6.

62 (✓) The SM-3 is designed to intercept ballistic missiles above the atmosphere (i.e., exo-atmospheric intercept), in the
midcourse phase of an enemy ballistic missile’s flight.

70 (✓) The SM-2 Block IV is designed to intercept ballistic missiles inside the atmosphere (i.e., endo-atmospheric intercept),
during the terminal phase of an enemy ballistic missile’s flight.

71 (✗) It is equipped with a blast fragmentation warhead.

Query Please write a one-page summary of the above government report.

Response
(single state-
ment due to
space)

[...] The Aegis BMD system exists in several variants with increasing capability, including the 3.6.X, 4.0.3, 4.1, 5.0
CU, 5.1, and 6.X variants. The system uses the Standard Missile-3 (SM-3), SM-2 Block IV, and SM-6 interceptor
missiles. The SM-3 is designed to intercept ballistic missiles above the atmosphere in the midcourse phase, while the
SM-2 Block IV and SM-6 are designed to intercept ballistic missiles inside the atmosphere in the terminal phase. [...]

Citation Strings (green: correct; red: wrong)

Baseline [28-29][61-62][70-71]
SelfCite BoN [28-30][61-62] (missing: 70)
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