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Abstract

Unbalanced data poses a challenge when training machine learning algorithms; the algo-
rithm often overfits on the dominant class and neglects the smaller classes. While methods
such as oversampling aim to rebalance the data, this can lead to overfitting. When a certain
class is underrepresented, either because it is a rare disease or few images exist, methods are
needed to adequately account for this. The generalized extreme value (GEV) activation has
recently been proposed as a solution to highly unbalanced data; however, the GEV activa-
tion is only available for binary classification. We extend this to the multiclass case with the
multiclass GEV (mGEV) activation. We conduct experiments on X-ray images, with three
classes, showing much-improved performance over the commonly used softmax activation.
Code for the mGEV activation is available at [https://github.com/JTBridge/GEV].
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1. Introduction

When developing multiclass classification algorithms, the datasets used are often highly
unbalanced, with one class far outweighing others. Methods available to overcome this
problem often rely on oversampling the dataset or weighting the loss function (Menon
et al., 2021; Cui et al., 2019). The generalized extreme value (GEV) activation (Bridge
et al., 2020) was proposed as an alternative. When the data is balanced, the GEV becomes
approximately equivalent to the sigmoid activation. However, trainable parameters within
the GEV allow it to change shape and better model the longtailed distribution. The most
significant limitation of this approach is that it is only available on binary classification
problems, limiting its applicability. We aim to extend the GEV activation to the multiclass
case and propose the multiclass GEV (mGEV) activation function in this work.

2. Methods

The backbone classification network in this work consists of InceptionV3 (Szegedy et al.,
2016), followed by a pooling layer and a dense layer with an activation function. For the
activation function, we compare the proposed mGEV activation with the commonly used
softmax activation. The original GEV activation function (Bridge et al., 2020) is given by
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Figure 1: Examples images of (a) normal, (b) non-COVID pneumonia, and (c) COVID-19.

where µ, σ, and ξ are parameters to be learned in the deep learning framework. According
to the extreme value theorem, the properly normalized maximum of a sample of independent
and identically distributed random variables can only converge to the GEV distribution.
The GEV distribution is often used in finance to model tail risks. Like the sigmoid acti-
vation, the GEV activation rescales the values between zero and one to give a probability.
However, the parameters allow the curve to better model the longtailed distribution that
occurs with extreme data. To extend the GEV to the multiclass problem, we propose fitting
a curve for each class that produces a probability for each class. The probabilities are then
normalized using

mGEV (GEV ) =
GEV

ΣiGEV
.

This only increases the number of parameters by 2×Nclasses+1 over the softmax activation
function. Like the softmax activation, the mGEV activation can potentially suffer from
vanishing gradients; we mitigate this risk by applying L1 and L2 regularization to the
parameter ξ of 1e− 5 each and clipping the input from the full-connected layer to between
-20 and 20.

3. Experiments

We demonstrate the proposed mGEV activation on a publicly available dataset the same
data as used in the COVID vs. other experiments in the original GEV paper (Bridge
et al., 2020), consisting of normal and non-COVID pneumonia (Kermany et al., 2018) with
COVID-19 X-rays added (Cohen et al., 2020). We split the normal and pneumonia classes
to create a three-class problem rather than binary. Example images are shown in Figure 1.
For testing we used, 234 normal, 390 pneumonia, and 100 COVID-19 X-rays; this left 1349,
3883, and 29 images for training; we used 30% of these for validation.

Results show that the mGEV activation gives improved overall performance over the
commonly used softmax activation, with an increase in recall for the under-represented
classes and only a minor decrease for the over-represented class. Increases in macro averages
for precision, recall, and F1-Score show that overall the method improves performance,
giving more balanced results. Full results are shown in Table 1.
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Table 1: Results on the hold-out testing set showing the recall, precision, and F1-Scores.
Normal Pneumonia COVID-19 Macro Average

Softmax
Recall 0.54 1.00 0.77 0.77

Precision 0.99 0.75 1.00 0.91
F1-Score 0.70 0.86 0.87 0.81

mGEV
Recall 0.68 0.99 0.82 0.83

Precision 0.97 0.80 1.00 0.92
F1-Score 0.80 0.89 0.90 0.86

4. Conclusions

Here, we have extended the GEV activation to the multiclass case. Overall model perfor-
mance was improved, with an improvement in recall for the under-represented classes. As
this method replaces the activation function only, it can be combined with other methods
which rebalance data or the loss function (Menon et al., 2021; Cui et al., 2019) a combination
may improve performance further. More work is needed to assess the situations in which
the mGEV activation should be used and how much benefit it has in other applications.
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