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Abstract

Existing approaches for topic-controllable sum-001
marization either incorporate topic embeddings002
or modify the attention mechanism. The in-003
corporation of such approaches in a particular004
summarization model requires the adaptation005
of its codebase, a process that can be com-006
plex and time-consuming. Instead, we pro-007
pose a model-agnostic topic-controllable sum-008
marization method employing a simple tagging-009
based formulation that can effortlessly work010
with any summarization model. In addition, we011
propose a new topic-oriented evaluation mea-012
sure to quantitatively evaluate the generated013
summaries based on the topic affinity between014
the generated summary and the desired topic.015
Experimental results show that the proposed016
tagging-based formulation can achieve similar017
or even better performance compared to the018
embedding-based approach, while being at the019
same time significantly faster.020

1 Introduction021

The exponential rise in the volume of textual data022

available through various sources, ranging from023

social media to financial reports, makes it virtually024

impossible for humans to digest all the important025

information for their needs, without spending an026

enormous amount of effort. Automatic summariza-027

tion methods can mitigate this problem, by short-028

ening texts to a more concise form (Nallapati et al.,029

2016; Celikyilmaz et al., 2018; Liu and Lapata,030

2020; Song et al., 2019).031

Even though early methods had limited success032

on this task, mainly focusing on extractive summa-033

rization (Fang et al., 2017; Mao et al., 2019), the034

advent of deep learning led to much more powerful035

neural abstractive summarization (See et al., 2017;036

Song et al., 2019; Dong et al., 2019; Lewis et al.,037

2020; Zhang et al., 2020) methods. These methods038

go beyond extracting unaltered sentences from the039

input, allowing for generating the summary using040

novel words and phrases that are not necessarily 041

part of the input text. 042

Despite the success of deep learning models, 043

there is often the need to go beyond delivering a 044

generic summary of the document, and instead pro- 045

duce a summary that focuses on a specific topic 046

that pertains to the user’s interests. For example, 047

a newswire article may discuss two topics, such 048

as sports and politics, yet the user may be inter- 049

ested only in the sports aspect. Existing topic- 050

controllable summarization models address this 051

need either by incorporating topic embeddings 052

into the model’s architecture (Krishna and Srini- 053

vasan, 2018) or by modifying the attention mech- 054

anism (Bahrainian et al., 2021). However, they 055

are restricted to very specific neural architectures 056

and it is not straightforward to use them with any 057

summarization model. 058

At the same time, there is no clear way to 059

evaluate such approaches, since there is no eval- 060

uation measure designed specifically for topic- 061

controllable summarization. Indeed, existing meth- 062

ods just use the typical ROUGE score (Lin, 2004) 063

for measuring the summarization accuracy and 064

then employ user studies to qualitatively evaluate 065

whether the topic of the generated summaries in- 066

deed matches the users’ needs (Krishna and Srini- 067

vasan, 2018; Bahrainian et al., 2021). 068

Based on the aforementioned observations, we 069

propose a model-agnostic topic-controllable sum- 070

marization method that can be effortlessly com- 071

bined with any neural architecture. Given a topic 072

labeled collection, the proposed method works by 073

first extracting keywords that are semantically re- 074

lated to the topic the user requested and employ- 075

ing special tokens to tag them before feeding the 076

document to the summarization model. Experimen- 077

tal results show that this can be an effective and 078

efficient way to influence summarization models 079

towards the users’ needs. 080

Furthermore, we propose a topic-aware evalu- 081
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ation measure for quantitatively evaluating topic-082

controllable summarization methods in an objec-083

tive way without involving expensive and time-084

consuming user studies. In particular, we propose085

calculating prototype term weighting representa-086

tions, namely tf-idf, of different topics, and then087

calculating the cosine similarity between the gener-088

ated summaries and the prototype topic vectors.089

The contributions of this paper can be summa-090

rized as follows:091

• We propose a simple, yet effective and effi-092

cient model-agnostic way to perform topic-093

controllable summarization.094

• We adapt an existing topic-controllable095

method to work with Transformer-based ar-096

chitectures, scaling up from existing RNN-097

based formulations, establishing a strong, yet098

computationally demanding baseline for topic-099

oriented summarization.100

• We propose a topic-oriented measure to quan-101

titatively evaluate the generated summaries102

without the need for resorting to human stud-103

ies.104

• We provide an extensive empirical evaluation105

as well as a zero-shot experimental evalua-106

tion, demonstrating both the generality of the107

proposed method, as well as its effectiveness.108

The rest of the paper is organized as follows.109

In Section 2 we review the existing topic-oriented110

summarization related literature. In Section 3 we111

introduce the proposed methods while in Section 4112

we provide the experimental results. Finally, con-113

clusions are drawn and interesting feature research114

directions are discussed in Section 5.115

2 Topic-oriented Summarization116

Methods for topic-oriented summarization belong117

to two broader categories: a) methods that em-118

ploy topical information to enhance the quality of119

the generated summaries and b) topic-controllable120

methods that use topical information to control the121

output of the generated summaries.122

2.1 Improving summarization using topical123

information124

The integration of topic modeling into summariza-125

tion models has been initially used in the literature126

to improve the quality of existing state-of-the-art127

models (Ailem et al., 2019; Wang et al., 2020; Liu 128

and Yang, 2021). Statistical topic models such 129

as Latent Dirichlet Allocation (LDA) (Blei et al., 130

2003) or Poisson Factor Analysis (PFA) (Zhou 131

et al., 2012) are used to supply summarization mod- 132

els with global topic semantics, allowing the gener- 133

ation of more coherent and consistent summaries. 134

Ailem et al. (2019) use LDA to influence the 135

model to generate summaries based on both the 136

input text and the underlying document topics and 137

as a result to improve the quality of the gener- 138

ated summary. To achieve this, the decoder of 139

a pointer generator network is enhanced with the 140

information of the latent topics that are derived 141

from an LDA model. Thus, the integration of 142

topic modeling can capture hidden semantic struc- 143

tures based on word co-occurrences, allowing the 144

model to generate better summaries conditioned 145

on a more global context. Similar methods have 146

been applied by Wang et al. (2020) using PFA with 147

a plug-and-play architecture that can be adapted 148

to any Transfomer-based model. This architec- 149

ture consists of 3 independent modules: Semantic- 150

informed attention (SIA), Topic Embedding with 151

Masked Attention (TEMA), and Document-related 152

modulation (DRM). SIA is embedded as an addi- 153

tional head into the multi-head attention mecha- 154

nism. This added head is extracted from a fixed 155

semantic-similarity attention matrix for each topic. 156

TEMA uses topic embeddings as an additional de- 157

coder input based on the top-n topics from the input 158

document. Since a topic can be represented as a 159

distribution over all the tokens from the vocabulary, 160

topic embeddings can be derived from a mixture of 161

all the corresponding token embeddings. Finally, 162

DRM is used to modulate a hidden layer for each 163

decoder adding a topic feature bias vector. 164

Liu and Yang (2021) propose to enhance summa- 165

rization models using an Extreme Multi-Label Text 166

Classification (XMTC) model to improve the con- 167

sistency between the underlying topics of the input 168

document and the summary, leading to summaries 169

of higher quality. 170

Even though Wang et al. (2020) refers to the 171

potential of controlling the output conditioned on 172

a specific topic using GPT-2 (Radford et al., 2019) 173

with TEMA, all the aforementioned approaches 174

are focused on improving the accuracy of existing 175

summarization models. 176
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2.2 Topic-controllable summarization177

methods178

Some steps towards controlling the output of a179

summarization model conditioned on a thematic180

category have been made by Krishna and Srini-181

vasan (2018) proposing a controllable summariza-182

tion setting that builds upon the pointer generator183

network (See et al., 2017). The topical informa-184

tion is integrated into the model as a topic vector,185

which is then concatenated with each of the word186

embeddings of the input text. Each topic vector187

is computed as a Bag of Words (BoW) representa-188

tion that is derived from Vox Dataset (Vox Media,189

2017), a news dataset that contains articles from190

185 different news topics.191

Krishna and Srinivasan (2018) created a192

topic-oriented training dataset that builds upon193

CNN/DailyMail as follows. First, the dot-product194

between the BoW representation of the summary195

and all the BoW topic representations is computed.196

The topic with the highest similarity is assigned to197

the corresponding article while articles with more198

than one dominant topic are discarded. All the199

topic-assigned articles are used to compile a tem-200

porary intermediate dataset. To create the topic-201

oriented dataset, two articles a1 and a2 with dif-202

ferent topics, are randomly selected from the in-203

termediate dataset. A new article a′ is created204

by sequentially selecting sentences from both arti-205

cles. The new article a′ is assigned with the sum-206

mary from one out of two selected articles and the207

same process is repeated to create a new article208

a′′ which is now assigned with the remaining sum-209

mary. Then, the initially selected articles a1 and a2210

are discarded from the intermediate dataset. This211

process is continued until there are no articles in212

the intermediate dataset or all the remaining arti-213

cles belong to the same topic. Finally, the new214

topic-oriented dataset consists of super-articles that215

discuss two distinct topics but are assigned each216

time with one of the corresponding summaries so217

the model learns to distinguish the most important218

sentences for the corresponding topic during train-219

ing.220

Recently, Bahrainian et al. (2021) propose to221

incorporate the topical information from each doc-222

ument to modify the attention mechanism of the223

pointer generator network (See et al., 2017). The224

modification of the attention mechanism is intro-225

duced as topical attention generated by an LDA226

model. More specifically, each word is represented227

as a topic vector that is derived from LDA and then 228

is combined with the original attention weights of 229

the model to compute the final attention weights. It 230

is important to note that even though the model is 231

trained with the topical attention mechanism during 232

training, no topical information is used during infer- 233

ence. Thus, the aforementioned method allows for 234

controlling the topic of the generated summary only 235

from the perspective of the restriction of unwanted 236

topics during training, contrary to the proposed 237

method, which allows for guiding the generation 238

towards a topic, during inference. 239

3 Contributions 240

In this section, we present the main contributions 241

of this paper. More specifically, we introduce 242

two different topic-controllable methods to guide 243

the summary generation towards a specific topic: 244

a) tagging-based formulation and b) embedding- 245

based formulation. We also present the proposed 246

topic-oriented similarity measure which is used for 247

evaluating the topic affinity between the desired 248

topics and the generated summaries. 249

3.1 Tagging-based formulation 250

The proposed tagging-based method employs a triv- 251

ial, yet effective mechanism to shift the summary 252

generation towards the desired topic, assuming the 253

existence of a set of representative terms for each 254

thematic category. More specifically, after lemma- 255

tization, the most representative words for the de- 256

sired topic are tagged with special tag tokens before 257

feeding to the summarization model. As demon- 258

strated in Section 4, this can be an effective way 259

to intuitively guide the model towards the tagging 260

words during both training and inference. 261

To apply this mechanism, a topic-oriented train- 262

ing set is required. However, this is not a straight- 263

forward process due to the lack of appropriate topic- 264

oriented summarization datasets. Indeed, there are 265

no existing datasets for summarization that con- 266

tain multiple summaries for each input document, 267

according to the different topical aspects of the 268

text (Krishna and Srinivasan, 2018). Thus, we 269

adopt the same approach with (Krishna and Srini- 270

vasan, 2018) to create a topic-oriented dataset that 271

builds upon the CNN/DailyMail (Hermann et al., 272

2015). We apply the tagging mechanism to each 273

document of the topic-oriented dataset according to 274

the assigned topic of the corresponding summary. 275

More specifically, for each document of the com- 276
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piled dataset, we tag the terms that belong to the277

intersection of words between the lemmatized doc-278

ument and the top-N most representative terms for279

the corresponding topic.280

The most representative words can be extracted281

either by simple prototype term weighting represen-282

tations such as BoW or tf-idf, statistical topic mod-283

eling algorithms such as Labeled LDA (Ramage284

et al., 2009) or even more sophisticated keyword ex-285

traction models (Ding and Luo, 2021; Liang et al.,286

2021). In this work, we use tf-idf to demonstrate287

the efficacy of our method, even when a simple288

mechanism is employed.289

More specifically, we use tf-idf to extract docu-290

ment representations and then calculate the topical291

vectors. Given a corpus D, we can represent a doc-292

ument d as a vector xd which contains the tf-idf293

scores for each term of the document. The tf-idf294

score for each term t of a document d, belonging295

to a corpus D, is computed as:296

xdt = tf(t, d,D)× idf(t,D), (1)297

where tf(t, d,D) indicates the number of times298

that term t appears in document d, while idf(t,D)299

indicates the inverse document frequency of term t300

in corpus D which is computed as follows:301

idf(t,D) = log
|D|+ 1

df(t,D) + 1
+ 1, (2)302

where df(t, d) is the frequency of term t in D.303

Note that the length of each tf-idf vector is equal to304

the size of the vocabulary V of the corpus D, i.e.,305

xd ∈ R|V|, where |V| denote the cardinality of the306

vocabulary V . Finally, we normalized the extracted307

vectors to have unit length as:308

x
(n)
d =

xd

||xd||2
, (3)309

where ||x||2 is the l2 norm of the vector xd.310

Then, given a topic-assigned collection of doc-311

uments X , we can follow the aforementioned pro-312

cedure to extract a topical vector representation yc313

for each topic c, by grouping together documents314

of the same topic and averaging their tf-idf repre-315

sentation as follows:316

yc =
1

|Xc|
∑
x∈Xc

x (4)317

The topical vector extraction is summarized in318

Figure 1.319

Table 1: Representative terms for topics from 2017
KDD Data Science+Journalism Workshop (Vox Media,
2017)

Topic Terms

Politics policy, president, state, political,
vote, law, country, election

Sports game, sport, team, football, fifa,
nfl, player, play, soccer, league

Health Care patient, uninsured, insurer, plan,
coverage, care, insurance, health

Education student, college, school, educa-
tion, test, score, loan, teacher

Movies film, season, episode, show,
movie, character, series, story

Space earth, asteroid, mars, comet, nasa,
space, mission, planet, astronaut

Finally, we extract the top-N most important 320

terms for each topic according to the top tf-idf 321

scores of each topical vector. An example of some 322

indicative representative words for a number of 323

topics in a topical corpus is shown in Table 1. 324

Given the set of representative words for each 325

topic, a document, and the desired topic, the tag- 326

ging mechanism works as follows: 327

1. All the words of the input document are lem- 328

matized to their roots. 329

2. We identify the common words between the 330

existing lemmatized tokens and the represen- 331

tative words for the desired topic. 332

3. Finally, we tag each token of the input docu- 333

ment with a special token, i.e., [TAG], only if 334

the lemmatized form of this token is contained 335

in the set of the most representative words for 336

the corresponding topic. 337

For example, suppose that we pre-process the 338

sentence below, as a part of an input document, 339

from which we aim to guide the generation towards 340

the topic “Business & Finance”. 341

“By one estimate, American individuals 342

and businesses together spend 6.1 bil- 343

lion hours complying with the tax code 344

every year.” 345
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Figure 1: Topical vector extraction using tf-idf scores, given a topic-assigned document collection. First, we calculate
tf-idf scores for each document. Then, documents of the same topic are grouped and their tf-idf representation is
averaged.

Following the aforementioned procedure, we346

will enclose with special tokens, the words “busi-347

nesses”, “billion” and “tax” since they belong to348

the set of the most representative words for the349

desired topic.350

During training, the model learns to intuitively351

give more “attention” to the tagged words and as a352

result shift the generation towards the desired topic.353

The tagging mechanism can be used during infer-354

ence to guide the summary generation towards the355

user-requested topic provided by any set of repre-356

sentative terms. Also, since this method does not357

affect the architecture of the summarization model,358

it can easily be applied to any model’s architecture.359

3.2 Embedding-based formulation360

To establish a strong baseline for comparing the361

tagging-based method with existing methods in362

the literature, we adapted the method proposed363

in Krishna and Srinivasan (2018) to work with364

Transformer-based architectures. As described in365

Section 2, Krishna and Srinivasan (2018) use a366

pointer generator network (See et al., 2017) to con-367

catenate topic embeddings with token embeddings368

allowing for generating topic-oriented summaries.369

The topic embeddings are represented as one-hot370

encoding vectors with a size equal to the number371

of the total topics. During training, the model takes372

as inputs the corresponding topic embedding along373

with the input document.374

However, this method cannot be directly applied375

to pre-trained Transformer-based models due to376

the different shapes of initialized weights of the377

word and position embeddings. Unlike RNNs,378

Transformer-based models are typically trained for379

general tasks and then fine-tuned with less data for380

more specific tasks like Summarization. Thus, the 381

architecture of a pre-trained model is already de- 382

fined and cannot be altered easily to initialize the 383

pre-trained model’s weights with the exact same 384

shape of the concatenated word and topic embed- 385

dings. Another option would be to initialize the 386

model from scratch with random weights with the 387

appropriate shape of the concatenated word and 388

topic embeddings but this would be very compu- 389

tationally demanding as it would require a large 390

amount of data and time for training. 391

To this end, instead of concatenation, we pro- 392

pose to sum the topic embeddings following the 393

same concept with positional encoding where token 394

embeddings are summed with positional encoding 395

representations to create an input representation 396

that contains the position information. Instead of 397

one-hot encoding embeddings, we use trainable em- 398

beddings allowing the model for optimizing them 399

accordingly during training. The topic embeddings 400

have the same dimensionality as the token embed- 401

dings. 402

To sum the trainable topic embeddings with to- 403

ken and positional embeddings, we modify the in- 404

put representation as follows: 405

zi = WE(xi) + PE(i) + TE(i), (5) 406

where WE, PE and TE are the word embeddings, 407

positional encoding and topic embeddings respec- 408

tively, for token xi in position i. 409

Then, we use the same created topic-oriented 410

dataset from Krishna and Srinivasan (2018) to fine- 411

tune the summarization model for topic-oriented 412

summarization allowing for establishing a strong 413

comparison between the proposed tagging-based 414

method and the more powerful embedding-based 415
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one.416

3.3 Topic-focused evaluation measure417

As explained in Section 1, there is currently no418

structured way to evaluate the performance of topic-419

oriented summarization methodologies. To this420

end, we propose a new topic-oriented measure,421

Summarization Topic Affinity Score (STAS), to422

evaluate the generated summaries according to the423

semantic similarity between the vector representa-424

tion of the desired topic and the generated summary.425

More specifically, we compute the similarity be-426

tween the vector representation of the summary and427

the vector representation of the desired topic, di-428

vided by the maximum value of all the similarities429

between the vector representation of the summary430

and all the topic vector representations. Given the431

vector of the target topic xt and the vector repre-432

sentation of the predicted summary xs, STAS is433

computed as follows:434

STAS(xs,xt) =
s(xs,xt)

max{s(xs,xti) : i = 1...Nt}
,

(6)435

where Nt is the number of topic and s(xs,xt) indi-436

cates the cosine similarity between the two vectors437

xs and xt which is computed as follows:438

s(xt,xs) =
xtxs

∥xt∥∥xs∥
. (7)439

Thus, summaries that are similar to the requested440

topic are rewarded while summaries that are dis-441

similar are penalized.442

4 Experimental Evaluation443

In this section, we present the experimental results444

of the proposed method. First, we introduce the445

experimental setup used for the evaluation, includ-446

ing the dataset generation procedure, the evaluation447

metrics, and employed deep learning architectures.448

Then, we proceed by presenting and discussing the449

experimental evaluation using both the proposed450

tagging-based method, as well as the embedding-451

based method, appropriately adapted to work on452

Transformers.453

4.1 Experimental setup454

Datasets and Evaluation Metrics In order to cre-455

ate the topic-oriented dataset as described in Sec-456

tion 3, we use the Vox Dataset (Vox Media, 2017),457

which consists of 23,024 news articles of 185 dif-458

ferent topical categories. We discarded topics with459

relatively low frequency, i.e. lower than 20 articles, 460

as well as articles assigned to general categories 461

that do not discuss explicitly a topic, i.e. “The 462

Latest”, “Vox Articles”, “On Instagram” and “On 463

Snapchat”. 464

In the experiments, we investigate two different 465

setups: a) fine-tuning without pre-processing the 466

Vox dataset, keeping also noisy categories that do 467

not discuss a particular topic, and b) fine-tuning 468

after pre-processing the Vox dataset as described. 469

All summaries of the created dataset are assigned 470

with a topic according to the similarity between 471

the derived topical vector representations and the 472

vectorized summary. Thus, keeping noisy topics 473

might lead to false topic assignments to the training 474

summaries. 475

After pre-processing, we end up with 14,312 476

articles from 70 categories out of the 185 initial 477

topical categories. Then, following the same pro- 478

cedure as Krishna and Srinivasan (2018), we cre- 479

ate the topic-oriented dataset combining sentences 480

from article-pairs from the CNN/DailyMail (Her- 481

mann et al., 2015). We use the anonymized ver- 482

sion of CNN/Dailymail similar to See et al. (2017). 483

The final topic-oriented dataset consists of 132,766, 484

5,248, and 6,242 articles for training, validation, 485

and test, respectively. The average document and 486

summary length of the created dataset is 1,544 and 487

56 tokens, respectively. 488

All the tags for the tagging-based method were 489

applied to the dataset after lemmatization using 490

NLTK (Bird, 2006) based on the top-N=100 most 491

representative terms for each topic. We also use 492

the Vox Dataset (Vox Media, 2017) to extract the tf- 493

idf vector representations for each document in the 494

corpus. To this end, we employed the tf-idf vector- 495

izer provided by the Scikit-learn library (Pedregosa 496

et al., 2011). 497

All methods were evaluated using both the well- 498

known ROUGE (Lin, 2004) score, to measure the 499

quality of the generated summary, as well as the 500

proposed STAS measure. 501

Models and Training For all the conducted exper- 502

iments we have employed a BART-large (Lewis 503

et al., 2020) architecture, which is a transformer- 504

based model with a bidirectional encoder and an 505

auto-regressive decoder. BART-large consists of 506

12 layers for both encoder and decoder and 406M 507

parameters. We used the implementation provided 508

by Hugging Face for the BART-large architec- 509

ture (Wolf et al., 2020). 510
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We fine-tune all the models for 100,000 steps511

with a learning rate of 0.00003 and batch size512

4 with early stopping on the validation set. We513

use the established parameters for BART-large514

architecture using label smoothed cross-entropy515

loss (Pereyra et al., 2017) with the label smoothing516

factor set to 0.1.517

For all the experiments, we use PyTorch ver-518

sion 1.10 and Hugging Face version 4.11.0. All519

the models were trained using available GPUs in520

Google Colab1, with approximate average training521

runtime 9.5 and 18 hours for the tagging-based and522

embedding-based method, respectively. Both data523

and code will be publicly available.524

4.2 Results525

The evaluation results on the generated dataset526

are shown in Table 2. We report results using527

five different methods. First, we employ both the528

generic Pointer Generation method (“PG”) (See529

et al., 2017), as well as the topic-oriented PG530

(“Topic-Oriented PG”) (Krishna and Srinivasan,531

2018). We also use the generic BART (Lewis et al.,532

2020) model (“BART”) fine-tuned on the regular533

CNN/DailyMail dataset for summarization, as well534

as both the adapted embedding-based formulation535

(“BARTemb”) and the tagging-based formulation536

(“BARTtag”).537

The experimental results reported in Table 2 for538

the two different pre-processing setups indicate539

that topic-oriented methods indeed perform signif-540

icantly better compared to the baseline methods541

that do not take into account the topic requested by542

the user. Furthermore, the proposed BART-based543

formulation significantly outperforms the generic544

PG approach, regardless of the applied topic mech-545

anism (BARTemb or BARTtag). Also, the proposed546

tag-based mechanism seems to be more robust to547

noise, leading to slightly better results when no548

pre-processing is applied. On the other hand, when549

the data are pre-processed, both the embedding and550

the topic tagging approach lead to quite similar551

results. However, as we further demonstrate later,552

the proposed tagging method is significantly faster553

than embedding-based approaches, leading to the554

overall best trade-off between accuracy and speed.555

The results of the inference time for both meth-556

ods are shown in Table 3. The inference time of the557

proposed method is significantly smaller, improv-558

ing the performance of the model by almost one559

1https://research.google.com/colaboratory/

Table 2: Experimental results on the created topic-
oriented dataset based on CNN/DailyMail dataset. We
report f-1 scores for ROUGE-1 (R-1), ROUGE-2 (R-2)
and ROUGE-L (R-L).

R-1 R-2 R-L

PG (See et al., 2017) 26.8 9.2 24.5

BART (Lewis et al., 2020) 30.46 11.92 20.57

Topic-Oriented PG (Krishna and Srinivasan, 2018) 34.1 13.6 31.2

Proposed BARTemb (all topics) 37.64 16.94 26.20

Proposed BARTtags (all topics) 37.94 17.21 26.49

Proposed BARTtags (pre-processed topics) 39.30 18.06 27.49

Proposed BARTemb (pre-processed topics) 40.15 18.53 28.06

order of magnitude. Indeed, the proposed method 560

can perform inference on 100 articles in less than 561

40 seconds, while the embedding-based formula- 562

tion requires more than 300 seconds for the same 563

task. 564

Table 3: Inference time for 100 articles. All numbers
are reported in seconds.

Tagging Inference Total time

BARTemb - 303.0 303.0

BARTtags 7.1 32.0 39.1

In Table 4, we also provide an experimental eval- 565

uation using the proposed Summarization Topic 566

Affinity Score (STAS) measure. The effectiveness 567

of using topic-oriented approaches is further high- 568

lighted using the proposed method since the im- 569

provements acquired when applying the proposed 570

method are much higher compared to the ROUGE 571

score. Also, both the embedding and the tagging 572

method lead to similar results (∼68.5%) using 573

STAS measure, even though the tagging approach 574

is significantly faster and easier to apply. Note that 575

when no pre-processing is used, the tagging-based 576

approach is more robust to noise, leading to a better 577

STAS score (49.65%) compared to the embedding- 578

based approach (46.70%). 579

4.3 Zero-shot experimental evaluation 580

The tagging mechanism allows the model to intu- 581

itively guide the summary generation according to 582

the tagged words of the desired topic which can 583

also be an effective way to generalize to unseen 584

topics. To demonstrate the efficacy of the tagging- 585

based model on unseen topics, we fine-tune the 586

BART model on the same training set of the cre- 587

ated topic-oriented dataset but removing 5% of the 588

7

https://research.google.com/colaboratory/


Table 4: Evaluation based on the proposed Summariza-
tion Topic Affinity Score (STAS).

STAS (%)

BART (Lewis et al., 2020) (all topics) 33.99

Proposed BARTemb (all topics) 46.70

Proposed BARTtags (all topics) 49.65

BART (Lewis et al., 2020) (pre-processed topics) 51.86

Proposed BARTtags (pre-processed topics) 68.42

Proposed BARTemb (pre-processed topics) 68.50

topics. More specifically, we randomly remove 3589

topics out of the 70 topics (i.e., “Movies”, “Trans-590

portation” and “Podcasts”) of the training set and591

evaluate the model both on the test set of seen top-592

ics and on the zero-shot test, which consists of 264593

articles of unseen topics, as shown in Table 5.594

Table 5: Experimental results on both test set with seen
topics and zero-shot test set with unseen topics. We
report STAS measure scores and f-1 scores for R-1, R-2
and R-L.

R-1 R-2 R-L STAS (%)

BARTtag (seen topics) 38.31 17.27 26.48 68.21

BARTtag (unseen topics) 37.52 16.99 26.71 74.80

Even though the model has not seen the zero-595

shot topics during training, it can successfully gen-596

erate topic-oriented summaries for these topics597

achieving similar results in terms of ROUGE-1598

score (∼38% for both test sets) and even better599

results in terms of STAS measure on the zero-shot600

test (∼68%) compared to the test set with the seen601

topics (∼74%). This finding confirms the capa-602

bility of the tagging-based method to generalize603

successfully to unseen topics, provided that a set604

of representative terms is given.605

4.4 Examples of generated summaries606

We present some examples generated by the607

tagging-based model on the created dataset for dif-608

ferent topics as shown in Table 6. Indeed, the pro-609

posed model can shift the generation towards the610

desired topic of the super-article which contains611

different topics. Furthermore, the generation of612

the summary according to the corresponding topic613

is not affected by the presence of the other topic614

which is also discussed in the input article.615

Table 6: Generated summaries of our proposed tagging-
based model according to the two different topics of the
super-article containing articles of these topics. Part of
summaries is truncated due to size limitations.

Sports: Jenson Button and Fernando Alonso
failed to finish the Malaysian Grand Prix ... But-
ton lasted double the amount of time as his team-
mate.
Gun Violence: Adam Lanza killed his mother,
Nancy, inside the home before killing 20 first-
graders and six members of staff at Sandy Hook
Elementary School in 2012. ...
Transportation: Ford unveiled two prototype
electric bikes at Mobile World Congress in
Barcelona. ... The bikes are part of an experi-
ment by Ford called Angle on Mobility.
Neuroscience: Researchers from Bristol Uni-
versity measured biosonar bat calls to calculate
what members of group perceived as they for-
aged for food ...

5 Conclusions and Future Work 616

We proposed a model-agnostic topic-controllable 617

method that can work with any summarization 618

model to influence the summary generation towards 619

the desired topic. The proposed method works 620

by employing special tokens to tag semantically- 621

related words for each topic and then guide the 622

generation towards this topic. To establish a 623

strong baseline, we also adapt an existing topic- 624

controllable embedding-based method to a more 625

powerful Transformer-based model, scaling up 626

from traditional RNNs. We also proposed STAS, a 627

structured way to evaluate the generated summaries 628

according to the affinity of the requested topic with 629

the topic of the generated summary. Experimental 630

results under two different pre-processing setups 631

demonstrate that the proposed method can achieve 632

similar or even better performance than the adapted 633

embedding-based mechanism, while being signifi- 634

cantly faster and easier to apply. 635

Future research could examine other controllable 636

aspects, such as style (Fan et al., 2018) or enti- 637

ties (He et al., 2020). In addition, it would be very 638

interesting to extend the proposed method towards 639

working with any arbitrary topic, bypassing the re- 640

quirement of having a labeled document collection 641

of a topic to be able to guide the summary towards 642

this topic. 643
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