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Abstract

This study presents a reproducibility analysis of ModernTCN, a recently proposed convolu-
tional architecture for time series analysis. ModernTCN aims to address the limitations of
traditional Temporal Convolutional Networks (TCNs) by enhancing the effective receptive
field (ERF) and capturing long-range dependencies. We validate the experimental setup
and performance claims of the original paper, and extend the evaluation to include addi-
tional datasets and tasks, such as short-term forecasting on ETT, classification on Speech
Commands and PhysioNet, and ablation studies on the cross-variable component. Our re-
sults show that while ModernTCN achieves competitive performance, its state-of-the-art
claims are tempered by sensitivity to experimental settings and data handling. Further-
more, ModernTCN’s performance on Speech Commands lags behind convolutional methods
with global receptive fields, and it exhibits less parameter efficiency. However, ablation
studies on the PhysioNet dataset confirm the importance of the cross-variable component
in handling missing data. This study provides a comprehensive evaluation of ModernTCN’s
contributions, reproducibility, and generalizability in time series analysis.

1 Introduction

Time series analysis is a fundamental problem with broad applications across various domains, including
weather forecasting (Bi et al., 2023), anomaly detection in spacecraft monitoring (Su et al., 2019b), medical
symptom classification (Kiyasseh et al., 2021), and missing data imputation (Luo et al., 2018). ModernTCN
(Luo & Wang, 2024) is a general time series model that can be applied across these diverse tasks. It mod-
ernizes the traditional Temporal Convolutional Network (TCN) by enlarging kernel size, drawing inspiration
from computer vision advances (Liu et al., 2022a; Ding et al., 2022a). Additionally, it proposes a block
structure inspired by Transformer architectures (Vaswani et al., 2017). The model also incorporates tech-
niques from transformer-based time series models, such as patching and variable independence approaches
(Nie et al., 2023).

ModernTCN (Luo & Wang, 2024) claims state-of-the-art performance across five time series tasks: long-term
forecasting, short-term forecasting, imputation, classification, and anomaly detection. The primary purpose
of this study is to validate these claims through comprehensive reproducibility experiments, examining the
model’s effectiveness and generalizability

Luo & Wang (2024) posit that convolution-based models have lost prominence in the 2020s due to their
limited effective receptive fields (ERFs), which restrict their ability to capture long-term dependencies.
However, this perspective overlooks significant advancements in convolutional models that emerged earlier
than ModernTCN. Works such as CKConv (Romero et al., 2021b), S4 (Gu et al., 2021), and others (Romero
et al., 2021a; Knigge et al., 2023; Li et al., 2023; Poli et al., 2023; Shi et al., 2023; Qin et al., 2023) have
demonstrated convolutional models with global receptive fields, extending even to 4 million tokens (Fu
et al., 2023; Nguyen et al., 2023). To bridge this gap, our study includes comparisons with several of
these overlooked convolutional approaches (specifically CKConv, FlexConv, CCNN, and S4) to evaluate how
ModernTCN’s performance and receptive field capabilities compare in practice.

The contributions of this study are:
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• Validating the experimental setup and performance claims of ModernTCN across multiple time series
tasks, identifying issues with data handling and experimental methodology.

• Extending experiments to bridge the gap between ModernTCN and convolutional models with global
receptive fields.

• Conducting ablation studies on irregularly sampled data to verify the importance of the cross-variable
component in handling missing values.

• Providing implementations1 for effective receptive field (ERF) visualizations that were missing in
the original source code2.

2 Scope of Reproducibility

This study focuses on the reproducibility and validation of the claims made by the ModernTCN paper (Luo
& Wang, 2024). The scope of this study includes:

• State-of-the-Art Performance - ModernTCN claims to achieve state-of-the-art results across
time series tasks. To validate, we scrutinize the experimental setup and reproduce the results.

• Enhanced Effective Receptive Fields (ERFs) - ModernTCN claims that it effectively models
long-range dependencies by enlarging the kernel size, thereby significantly increasing the ERFs com-
pared to previous convolution-based models. To validate, we visualize the ERF and compare it with
a convolutional model that has a global receptive field.

• Efficiency and Performance Balance - ModernTCN claims to provide a better balance of ef-
ficiency and performance compared to transformer-based and MLP-based models. We extend the
comparison to convolution-based models with global receptive field.

• Handling Missing Data - ModernTCN claims its cross-variable component (ConvFFN2) effec-
tively captures dependencies between missing and remaining variables in imputation tasks. To
validate, we ablate the component on irregularly sampled time series classification.

By addressing these claims, the study aims to provide a comprehensive evaluation of ModernTCN’s contri-
butions to the field of time series analysis, ensuring the reproducibility and generalizability of its reported
results.

3 Methodology

3.1 ModernTCN

input DWConv
ConvFFN1
Groups:M

ConvFFN2
Groups:D output

Figure 1: Diagram of the ModernTCN block. Adapted from Luo & Wang (2024).

ModernTCN (Luo & Wang, 2024) introduces a convolutional approach with large kernel sizes inspired by
advances in computer vision (Liu et al., 2022c; Ding et al., 2022b; Liu et al., 2022b). It leverages modern
convolution techniques, incorporating depthwise and pointwise convolution layers organized similarly to
Transformer blocks (Vaswani et al., 2017). The depthwise convolution (DWConv) layer is responsible for
learning temporal information among tokens on a per-channel basis, akin to the self-attention module in

1The official source code for this study can be found in the supplementary materials.
2The official source code for ModernTCN can be found at https://github.com/luodhhh/ModernTCN
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Transformers. A large kernel is used in DWConv to enhance the effective receptive field, allowing the model to
capture long-term dependencies more effectively. The ConvFFN module consists of two pointwise convolution
layers that adopt an inverted bottleneck structure. This module is applied twice in the architecture, first
along feature dimensions and then between variables, to learn new feature representations.

The pipeline of ModernTCN is as follows:

1. Input: The process begins with the input time series Xin ∈ RM×L, where M is the number of
variables and L is the input length.

2. Patchify Embeddings: The input is transformed into a higher-dimensional space by patching in
a variable-independent manner, resulting in Xemb ∈ RM×D×N , where D is the feature dimension
and N is the number of patches.

3. Backbone: As shown in Figure 1 each ModernTCN block consists of:

• DWConv Layer: Processes temporal information independently for each variable and each
feature, maintaining dimensions M × D.

• ConvFFN Module: This module consists of two pointwise convolution layers and adopts an
inverted bottleneck structure. It is applied twice:
– ConvFFN1: Processes each variable independently with groups=M, learning new feature

representations independently for each variable. Until this point, the entire pipeline main-
tains variable independence.

– ConvFFN2: Processes across variables with groups=D, capturing dependencies between
different variables. This is the first component in the pipeline that allows cross-variable
information mixing.

These blocks are stacked and organized in a residual manner as shown in Figure 1.

4. Flatten and Prediction Head:

• Forecasting: The output is reshaped and passed through a prediction head to produce the
final time series output X̂ ∈ RM×T , where T is the prediction length.

• Imputation and Anomaly Detection: The output is reshaped to X̂ ∈ RM×L.
• Classification: The representation is flattened to and passed through a projection layer with

a SoftMax activation to yield the classification result X̂ ∈ R1×Cls, where Cls is the number of
classes.

5. RevIN: For all tasks except classification, Stationary Technique RevIN (Kim et al., 2021) is applied.
It normalizes the input time series per variable with zero mean and unit standard deviation before
patching and embedding. After the forward process, the mean and deviation are added back to the
final prediction per variable.

This architecture leverages the decoupling of temporal, feature, and variable dimensions to improve both
performance and efficiency in time series analysis, while the enlarged kernel size in DWConv enhances its
ability to capture long-term dependencies.

3.2 Tasks and Datasets

Time series analysis encompasses a variety of tasks, each designed to extract different insights from sequential
data. This study focuses on five primary tasks: long-term forecasting, short-term forecasting, imputation,
classification, and anomaly detection. An overview of all the datasets used is given in Table 1.

Long-term forecasting involves predicting future values over an extended time horizon, often requiring
the model to capture complex temporal dependencies. ModernTCN (Luo & Wang, 2024) uses datasets such
as ETT (Zhou et al., 2021), Electricity (UCI), Traffic (PeM), Weather (Wet), Exchange (Lai et al., 2018),
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Table 1: Dataset descriptions. The dataset size is organized in (train, validation, test). The column length
refers to prediction length for forecasting tasks, input length for imputation, series length for classification,
and sliding window length for anomaly detection. Partially adapted from Wu et al. (2023).

Tasks Dataset Dim Length Dataset Size Information (Frequency)

Long-term
forecasting

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)
ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (hourly)

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (hourly)
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Transportation (hourly)

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)
Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (daily)

ILI 7 {24, 36, 48, 60} (617, 74, 170) Illness (weekly)

Short-term
forecasting

original

M4-Yearly 1 6 (23000, 0, 23000) Demographic
M4-Quarterly 1 8 (24000, 0, 24000) Finance
M4-Monthly 1 18 (48000, 0, 48000) Industry
M4-Weekly 1 13 (359, 0, 359) Macro
M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

Extended ETTm1 7 {6, 12, 24} (34465, 11521, 11521) Electricity (15 mins)
ETTh1 7 {6, 12, 24} (8545, 2881, 2881) Electricity (hourly)

Imputation

ETTm1, ETTm2 7 96 (34465, 11521, 11521) Electricity (15 mins)
ETTh1, ETTh2 7 96 (8545, 2881, 2881) Electricity (15 mins)

Electricity 321 96 (18317, 2633, 5261) Electricity (15 mins)
Weather 21 96 (36792, 5271, 10540) Weather (10 mins)

Classification
original

EthanolConcentration 3 1751 (261, 0, 263) Alcohol industry
FaceDetection 144 62 (5890, 0, 3524) Face (250Hz)
Handwriting 3 152 (150, 0, 850) Handwriting

Heartbeat 61 405 (204, 0, 205) Heart beat
JapaneseVowels 12 29 (270, 0, 370) Voice

PEMS-SF 963 144 (267, 0, 173) Transportation (daily)
SelfRegulationSCP1 6 896 (268, 0, 293) Healthcare (256Hz)
SelfRegulationSCP2 7 1152 (200, 0, 180) Healthcare (256Hz)
SpokenArabicDigits 13 93 (6599, 0, 2199) Voice (11025Hz)

UWaveGestureLibrary 3 315 (120, 0, 320) Gesture

Extended
Speech Commands MFCC 20 161 (24483, 5246, 5246) Voice(16000Hz)

Speech Commands Raw 1 16000 (24483, 5246, 5246) Voice(16000Hz)
PhysioNet 75 72 (28235, 6050, 6050 Healthcare

Anomaly
detection

SMD 38 100 (566724, 141681, 708420) Server machine
MSL 55 100 (44653, 11664, 73729) Spacecraft

SMAP 25 100 (108146, 27037, 427617) Spacecraft
SWaT 51 100 (396000, 99000, 449919) Infrastructure
PSM 25 100 (105984, 26497, 87841) Server machine

and ILI (CDC), covering real-world applications from different domains. In these multivariate forecasting
tasks, the model predicts future values for all variables in the time series simultaneously.

Short-term forecasting focuses on predicting values over a shorter time frame, typically requiring the
model to capture immediate trends and patterns. ModernTCN uses the M4 dataset (Makridakis, 2018),
which contains univariate time series with different frequencies from different domains. We extend the
experiments to ETT (Zhou et al., 2021) by adapting it for short term multivariate forecasting.

Imputation aims to fill in missing values in a time series, which is crucial for handling incomplete data and
ensuring data quality. ModernTCN (Luo & Wang, 2024) uses ETT (Zhou et al., 2021), Electricity (UCI),
and Weather (Wet) datasets for this task.

Classification is sequence-level that verifies the model’s capacity in high-level representation learning.
ModernTCN (Luo & Wang, 2024) uses 10 multivariate datasets from the UEA Time Series Classification
Archive (Bagnall et al., 2018). We extend to Speech Commands (Warden, 2018) and PhysioNet (Reyna
et al., 2019), following the experimental setup from CKConv (Romero et al., 2021b). Speech Commands
enables us to compare ModernTCN with other convolution-based models that has global receptive fields.
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PhysioNet’s irregular sampling and high proportion of missing values present a challenging classification
task.

Anomaly detection seeks to identify unusual patterns or outliers in a time series, which is essential
for detecting abnormal events and potential issues. ModernTCN (Luo & Wang, 2024) evaluates anomaly
detection performance on SMD (Su et al., 2019a), MSL (Hundman et al., 2018), SMAP (Hundman et al.,
2018), SWaT (Mathur & Tippenhauer, 2016), and PSM (Abdulaal et al., 2021), covering service monitoring,
space & earth exploration, and water treatment applications.

3.3 Experimental Setup

For the reproduction of the experiments from ModernTCN, the optimal settings specified in the paper (Luo
& Wang, 2024) and the source code3 are used.

Drop Last Trick. As pointed out by Qiu et al. (2024), many implementations of existing methods often
employ a "Drop Last Trick" during the testing phase (Nie et al., 2022; Wang et al., 2022; Zhou et al., 2022;
2021), which involves discarding the last batch if it contains fewer instances than the batch size. This
approach may lead to unfair comparisons by excluding part of the test data. Upon reviewing the source
code, we found this trick is employed for long-term forecasting and imputation tasks. Given that most
datasets in the long-term forecasting experiments use a batch size of 512, this could result in discarding up
to 511 data points from the test set. This is a significant number relative to the size of the test sets for
long-term forecasting, as shown in Table 1. Therefore, we additionally experiment without employing this
trick to assess its impact on the results and ensure a fair comparison.

Data Leakage from Test to Validation. As detailed in Table 1, the M4 dataset (Makridakis, 2018) for
short-term forecasting and the UEA dataset (Bagnall et al., 2018) for classification are provided with only
train and test splits. Upon reviewing the source code, we identify that the test set is used for validation.
This practice introduces data leakage as the model gains indirect exposure to the test data, leading to an
overestimation of its generalization capabilities. Consequently, the reproduction results for these datasets
are excluded from the main results section and are instead presented in Appendix C.1 and Appendix C.2.
Notably, this issue is not isolated to the ModernTCN implementation but also appears in the source code
for TimesNet (Wu et al., 2023), from which ModernTCN’s implementation is partially derived.

Point Adjustment in Anomaly Detection. Reconstruction-based anomaly detection identifies anomalies
when reconstruction errors between input sequences and their model-generated reconstructions exceed a
threshold. ModernTCN uses sliding windows of 100 timestamps as input sequences, but calculates the
threshold using both training and test sets, introducing information leakage. We reproduce the experiments
using thresholds calculated from training data only. Additionally, the evaluation employs "point adjustment"
(PA), which considers an entire anomaly segment correctly detected if just one point within it is flagged -
a protocol that Kim et al. (2022) demonstrated can severely overestimate performance. To illustrate this
limitation, we implemented a naive baseline that periodically flags every 100th timepoint as anomalous,
which should perform well under PA despite having no actual anomaly detection capability.

Extending short-term forecasting to ETT. Inspired by the appendices in Luo & Wang (2024), we
evaluate short-term multi-variate forecasting on the ETT dataset (Zhou et al., 2021). While ModernTCN
(Luo & Wang, 2024) keeps the input sequence length constant at 2x the prediction length, we explored the
input sequence length as a hyperparameter, experimenting with 2x, 3x, and 4x the prediction length. We
consider three prediction lengths: 6, 12, and 18 time points, selecting the best-performing input length for
reporting. We employ the optimal hyperparameters from the long-term forecasting experiments for these
datasets, adjusting only the input and prediction lengths. For comparison, based on the long-term forecasting
results without the "Drop Last Trick" from Qiu et al. (2024), we decided to include three top-performing
models: TimesNet (convolution-based) (Wu et al., 2023), PatchTST (transformer-based) (Nie et al., 2023),
and DLinear (MLP-based) (Zeng et al., 2023). Each model is run with its respective optimal long-term
forecasting parameters, with adjustments made to the input and prediction lengths.

3The official source code for ModernTCN can be found at https://github.com/luodhhh/ModernTCN
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Extending classification to Speech Commands. For the classification task, we employ the Speech
Commands dataset (Warden, 2018). This dataset has two versions: Speech Commands Raw and Speech
Commands MFCC. The Speech Commands Raw version consists of 105,809 one-second audio recordings
of 35 spoken words sampled at 16kHz. Following the preprocessing steps of Kidger et al. (Kidger et al.,
2020), we extract 34,975 recordings from ten spoken words to construct a balanced classification problem.
The Speech Commands MFCC utilizes mel-frequency cepstrum coefficients extracted from the raw data,
resulting in time series of length 161 and 20 channels. This dataset is frequently used by convolution-based
models with global receptive fields (Romero et al., 2021b;a; Knigge et al., 2023; Gu et al., 2021).

Extending to irregularly sampled data. The PhysioNet 2019 challenge on sepsis prediction provides
an irregularly sampled, partially observed dataset with 40,335 time series of variable lengths, capturing
ICU patient data (Reyna et al., 2019). Each series includes 5 static features, like age, and 34 dynamic
features, such as respiration rate, with only 10.3% of values observed. Following Kidger et al. (2020);
Romero et al. (2021b), we analyze the first 72 hours of patient data to predict sepsis development over their
entire stay, which can last up to a month. This setup tests the model’s ability to handle sparse and irregular
data. ModernTCN (Luo & Wang, 2024) conducts an ablation study on the cross-variable component for
imputation tasks, demonstrating significant performance degradation when this component is removed. To
explore this component’s impact on handling missing values, we perform the same ablation study on the
PhysioNet dataset for classification.

Optimal parameters for extended datasets. For the optimal parameters on Speech Commands and
PhysioNet, we adhere to the classification settings recommended in the appendix of ModernTCN (Luo &
Wang, 2024). The models are trained using Cross Entropy Loss with the ADAM optimizer (Kingma & Ba,
2014), starting with an initial learning rate of 10−3. The training process is conducted over 100 epochs
with early stopping to prevent overfitting. While ModernTCN typically employs 2 blocks, we additionally
experimented with 3 blocks and reported the configuration yielding the best performance. The channel
number D is calculated as min{max{2⌈log M⌉, dmin}, dmax}, where dmin is 32 and dmax is 512. The FFN ratio
is set to r = 1, with both the patch size and stride configured to P = 1 and S = 1 in the patchify embedding
process. The ideal depthwise convolution kernel size is not specified for classification, so we explored kernel
sizes of 13, 31, 51, and 71. These are the commonly utilized kernel sizes in ModernTCN (Luo & Wang,
2024).

All experiments are repeated 5 times with different seeds, and the mean of the corresponding metric is
reported as the final result.

4 Experimental Results

4.1 Results Reproducing the Original Paper

4.1.1 Long-Term Forecasting

The results are presented in Table 2. Our rerun results generally align with those reported in the original
paper, with minor differences likely attributable to unspecified library versions in the source code. However,
when eliminating the "Drop Last Trick" during testing, performance notably degrades. For fair comparison,
we included three top-performing models from Qiu et al. (2024): convolution-based TimesNet (Wu et al.,
2023), transformer-based PatchTST (Nie et al., 2023), and MLP-based DLinear (Zeng et al., 2023). The
results demonstrate that while ModernTCN shows competitive performance, PatchTST outperforms other
models in most scenarios, achieving the best results in 11 out of 18 metrics across the datasets.

4.1.2 Imputation

ModernTCN (Luo & Wang, 2024) highlights the model’s strong performance in imputation tasks, achieving
significant reductions in MSE and MAE compared to previous baselines. Our rerun of the experiments
yielded results consistent with the original findings (Table 3). Eliminating the "Drop Last Trick" produced
results similar to both the rerun and reported outcomes, unlike in long-term forecasting. This consistency is
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Table 2: Long-term forecasting task. All results averaged from 4 different prediction lengths: {24, 36, 48,
60} for ILI and {96, 192, 336, 720} for others. Lower MSE/MAE indicates better performance. Reported:
scores from Luo & Wang (2024). Rerun: naively reproduced results. No Drop Last: results without the
"Drop Last Trick". Bold indicates best performance and underline indicates second best performance among
models without the "Drop Last Trick".

ETTh1 ETTh2 ETTm1 ETTm2 Electricity Weather Traffic Exchange ILI
Model 1st/2nd MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Reported - 0.404 0.420 0.322 0.379 0.351 0.380 0.253 0.314 0.156 0.253 0.224 0.264 0.396 0.270 0.302 0.366 1.440 0.786
Rerun - 0.404 0.421 0.322 0.379 0.355 0.383 0.255 0.319 0.159 0.256 0.224 0.267 0.401 0.274 0.305 0.368 1.490 0.797
No Drop Last 7/8 0.419 0.429 0.347 0.394 0.356 0.383 0.254 0.318 0.163 0.259 0.226 0.267 0.410 0.280 0.343 0.392 2.000 0.892
PatchTST 11/6 0.411 0.428 0.347 0.389 0.349 0.381 0.255 0.313 0.163 0.261 0.225 0.262 0.405 0.283 0.352 0.397 1.770 0.859
TimesNet 0/1 0.459 0.455 0.394 0.416 0.430 0.428 0.294 0.332 0.186 0.287 0.261 0.287 0.626 0.328 0.421 0.442 2.174 0.951
DLinear 2/3 0.420 0.432 0.492 0.478 0.354 0.377 0.259 0.324 0.167 0.264 0.239 0.290 0.434 0.295 0.349 0.411 2.185 1.040

likely due to the smaller test batch size in imputation tasks, which avoids dropping too many points in the
case of an incomplete last batch.

Table 3: Imputation task. We randomly mask {12.5%, 25%, 37.5%, 50%} time points in length-96 time series.
The results are averaged from 4 different mask ratios. A lower MSE or MAE indicates better performance.
Reported: scores from Luo & Wang (2024). Rerun: naively reproduced results. No Drop Last: results
without the "Drop Last Trick".

ETTh1 ETTh2 ETTm1 ETTm2 Electricity Weather
Model MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Reported 0.050 0.150 0.042 0.131 0.020 0.093 0.019 0.082 0.073 0.187 0.027 0.044
Rerun 0.050 0.150 0.042 0.131 0.021 0.094 0.020 0.083 0.073 0.186 0.027 0.044
No Drop Last 0.050 0.150 0.042 0.131 0.021 0.094 0.020 0.083 0.073 0.186 0.027 0.044

4.1.3 Anomaly Detection

As shown in Table 4, the rerun results generally align with those reported in the original paper. When
eliminating data leakage by calculating thresholds using only training data, we observe a slight perfor-
mance degradation. Most notably, our naive baseline—which simply flags every 100th timepoint as anoma-
lous—outperforms ModernTCN across most datasets, achieving the highest average F1 score. This finding
raises significant questions about the effectiveness of sophisticated models for anomaly detection when eval-
uated using point adjustment protocols, supporting the critique by Kim et al. (2022) that such evaluation
methods can severely overestimate model performance.

Table 4: Anomaly Detection task. P: precision, R: recall, F1: F1-score (all values in %). Reported: scores
from Luo & Wang (2024). Rerun: naively reproduced results. No Leakage: results calculating the thresholds
using only training data. Naive: baseline approach. Bold: best score between valid models (No Leakage and
Naive). Avg.: average F1 score across all 5 datasets.

Model SMD MSL SMAP SWaT PSM Avg.P R F1 P R F1 P R F1 P R F1 P R F1
Reported 87.86 83.85 85.81 83.94 85.93 84.92 93.17 57.69 71.26 91.83 95.98 93.86 98.09 96.38 97.23 86.62
Rerun 87.43 81.64 84.44 89.59 74.94 81.61 90.82 55.93 69.23 95.77 90.28 92.94 98.65 94.57 96.57 84.96
No Leakage 78.42 83.76 81.00 86.07 77.12 81.35 92.31 55.42 69.26 93.45 93.16 93.30 98.62 94.58 96.56 84.29
Naive 79.86 91.40 85.24 90.14 80.76 85.19 93.27 94.48 93.87 93.05 96.93 94.95 97.32 94.55 95.91 91.03

4.2 Results Beyond the Original Paper

4.2.1 Short-Term Forecasting on ETT

Referring to the results presented in Table 5, ModernTCN exhibits competitive performance, particularly
within the ETTm1 dataset, where it achieves the best results for very short-term forecasting (6x15m and
12x15m). This aligns with findings from Yang et al. (2024), which demonstrated ModernTCN’s effectiveness
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for ultra-short-term multi-step prediction tasks. However, when considering both ETTh1 and ETTm1
datasets across all horizons, PatchTST generally demonstrates superior performance for longer forecasting
horizons.

Table 5: Short-Term Forecasting Results on ETT (ETTh1 and ETTm1). 6x1h, 12x1h, and 18x1h refer to
steps ahead forecasting for ETTh1, while 6x15m, 12x15m, and 18x15m refer to steps ahead forecasting for
ETTm1.

6x15m 12x15m 18x15m 6x1h 12x1h 18x1h
Model MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ModernTCN 0.127 0.216 0.204 0.269 0.220 0.296 0.300 0.350 0.300 0.346 0.308 0.351
PatchTST 0.240 0.312 0.244 0.295 0.139 0.222 0.253 0.321 0.278 0.333 0.288 0.344
TimesNet 0.129 0.218 0.231 0.295 0.256 0.326 0.316 0.367 0.337 0.383 0.348 0.393
DLinear 0.146 0.233 0.287 0.323 0.303 0.347 0.284 0.339 0.292 0.341 0.300 0.347

4.2.2 Classification on Speech Commands

ModernTCN was evaluated on the Speech Commands dataset using the recommended parameters from Luo
& Wang (2024). Since the optimal DWConv kernel size for classification tasks wasn’t specified, we explored
sizes of 13, 31, 51, and 71. As shown in Table 6, performance doesn’t show a clear trend across the selected
kernel sizes. The best results (kernel size 13 for Speech Commands and 31 for Speech Commands Raw) are
used in Table 7 for comparison with other models.

Table 6: Performance of Different Kernel Sizes on Speech Commands - Accuracy

13 31 51 71
Speech Commands MFCC 0.837 0.825 0.794 0.818

Speech Commands Raw 0.384 0.400 0.399 0.388

The classification results, as shown in Table 7, indicate that ModernTCN’s performance consistently lags
behind continuous kernel convolution methods (Romero et al., 2021b;a; Knigge et al., 2023) and the S4 model
(Gu et al., 2021) on the Speech Commands dataset. ModernTCN also exhibits less parameter efficiency, as
evidenced by the higher parameter counts compared to the other methods in Table 7. However, in terms
of training time, ModernTCN is faster overall, taking roughly 12 seconds per epoch and finishing around
35 epochs with early stopping, compared to CCNN{4,140} Knigge et al. (2023), which takes 13 seconds per
epoch but requires around 110 epochs.

Following the ERF visualization methodology from Kim et al. (2023) and Ding et al. (2022a) as adapted in
Luo & Wang (2024), we sample 50 sequences from the Speech Commands MFCC validation set to visualize
the relative gradient contribution of each input timepoint to the center of the feature map after applying a
certain number of model blocks. The visualization in Figure 2 shows these contributions for input sequence
length 161, with lighter areas indicating stronger influence. CCNN{4,140} (Knigge et al., 2023) achieves a
significantly larger ERF with fewer parameters (200K vs. 5M). This advantage is reflected in the classification
performance in Table 7. See Appendix A for detailed methodology.

Table 7: Classification Results on Speech Commands - Accuracy

Model Size Speech Commands MFCC Speech Commands Raw
S4 (Gu et al., 2021) 300K 0.940 0.983
CKCNN-Seq (Romero et al., 2021b) 98K 0.953 0.717
FlexTCN-6 (Romero et al., 2021a) 375K 0.977 0.917
CCNN{4,140} (Knigge et al., 2023) 200K 0.950 0.983
CCNN{6,380} (Knigge et al., 2023) 2M 0.980 0.984
ModernTCN 5M/1M 0.837 0.400

4.2.3 Irregularly Sampled Time Series Classification

Since the optimal DWConv kernel size is not specified for the time series classification task, we experimented
with different kernel sizes (13, 31, 51, and 71) and found very similar results across configurations (Table 8).
The ModernTCN model achieved a peak AUC score of 0.866 on the PhysioNet sepsis prediction dataset, as
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(a) CCNN after 1 block (b) CCNN after 3 blocks

(c) ModernTCN (kernel size 13) after 1 block (d) ModernTCN (kernel size 13) after 3 blocks

(e) ModernTCN (kernel size 71) after 1 block (f) ModernTCN (kernel size 71) after 3 blocks

Figure 2: Comparison of effective receptive fields (ERF) for different models. Each row shows a different
model configuration, while columns show the ERF after 1 block (left) and 3 blocks (right).

detailed in Table 8. While this result is below the 0.895 AUC attained by CKConv (Romero et al., 2021b),
it still demonstrates competitive performance on irregularly sampled time series data.

To further investigate the contribution of the cross-variable component (ConvFFN2), we conducted an
ablation study (Table 8). In ModernTCN (Luo & Wang, 2024), this component is posited to improve
imputation performance by capturing cross-variable dependencies. Therefore, we hypothesized it should
also be important for irregularly sampled data, which is sparse and has missing values. The removal of the
ConvFFN2 component resulted in a performance decrease across all tested kernel sizes. This suggests its
importance in effectively handling missing data.

Table 8: Ablation Study of ConvFFN2 on PhysioNet Dataset (AUC)

Kernel Size 13 Kernel Size 31 Kernel Size 51 Kernel Size 71
ModernTCN 0.865 0.866 0.859 0.864
Ablated 0.851 0.842 0.853 0.849

5 Discussion

This reproducibility study evaluated the claims of the ModernTCN paper (Luo & Wang, 2024), revealing
a nuanced performance profile. While ModernTCN demonstrates competitive results across multiple time
series tasks, its claim of consistent state-of-the-art performance is tempered by sensitivity to experimental
setup and data handling. When eliminating methodological issues like the "Drop Last Trick" in long-term
forecasting, ModernTCN is outperformed by PatchTST in most scenarios. Our anomaly detection exper-
iments revealed that a naive baseline outperforms ModernTCN. On the other hand, ModernTCN’s strong
performance on imputation tasks was successfully reproduced, with results remaining consistent even after
addressing methodological issues.

The paper’s assertion regarding enhanced effective receptive fields (ERFs) is not fully supported by our
findings. Our ERF visualizations and Speech Commands experiments demonstrate that while ModernTCN
claims to effectively enhance receptive fields, it achieves significantly smaller ERFs and lower performance
on Speech Commands compared to continuous kernel approaches like CCNN (Knigge et al., 2023). Regard-
ing efficiency, ModernTCN shows faster training times compared to CCNN but requires significantly more
parameters (5M vs 200K), indicating a trade-off between computational speed and parameter efficiency.

Lastly, the cross-variable component (ConvFFN2) proves valuable for handling missing data, as confirmed
by our ablation study on PhysioNet.

9
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5.1 What was easy?

The extensive experiments and detailed reporting in the ModernTCN paper made reproduction straightfor-
ward. Most hyperparameters were clearly specified for each task, and the great majority of the code was
well-written, clear, and well-documented, facilitating a smooth execution of the experiments.

5.2 What was difficult?

The missing ERF visualization code presented a challenge. Additionally, the experimental setup for anomaly
detection was not thoroughly detailed in the original paper. The work by Kim et al. (2022) was instrumental
in helping us understand and address the issues in that task. The extensive experimental scope, coupled with
the additional experiments conducted in this study, also presented a significant time investment, requiring
substantial computational resources and meticulous attention to detail.

5.3 Contact with the authors

The authors were contacted via email to request the code for ERF visualization and to discuss the flaws in
the experimental setup. Unfortunately, no response was received.

10
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A Visualizing the ERF

Formally, let I(n × m × l) be the input time series, where n is the number of samples, m is the number of
variables, and l is the input sequence length. Let F (n × m × d × l′) be the final output feature map, we
desire to measure the contributions of every time point on I to the central points of every channel on F , i.e.,
F:,:,:,l′/2, which can be simply implemented via taking the derivatives of F:,:,:,l′/2 to I with the auto-grad
mechanism. Concretely, we sum up the central points, take the derivatives to the input as the time-wise
contribution scores and remove the negative parts (denoted by P). Then we aggregate the entries across
all the examples and the input variables, and take the logarithm for better visualization. Formally, the
aggregated contribution score matrix A(l) is given by

P = max(
∂(

∑n
i

∑m
j

∑d
k Fi,j,k,l′/2)

∂I , 0), (1)

A = log10(
n∑
i

m∑
j

Pi,j,: + 1). (2)

Then we respectively rescale A of each model to [0, 1] via dividing the maximum entry for the comparability
across models.

B Full Results

B.1 Long-Term Forecasting

Table 9: Long-term forecasting results. "Reported": scores from ModernTCN paper. "Rerun": our repro-
duced results. "N.D.L.": No Drop Last, results with test loader not dropping incomplete last batches. "Len"
indicates prediction length in time steps (96, 192, 336, and 720 for most datasets; 24, 36, 48, and 60 for ILI).
Lower MSE/MAE indicates better performance.

ETTh1 ETTh2 ETTm1 ETTm2 Electricity Weather Traffic Exchange ILI

M
od

el

Len MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

R
ep

or
te

d 96 0.368 0.394 0.263 0.332 0.292 0.346 0.166 0.256 0.129 0.226 0.149 0.200 0.368 0.253 0.080 0.196 1.347 0.717
192 0.405 0.413 0.320 0.374 0.332 0.368 0.222 0.293 0.143 0.239 0.196 0.245 0.379 0.261 0.166 0.288 1.250 0.778
336 0.391 0.412 0.313 0.376 0.365 0.391 0.272 0.324 0.161 0.259 0.238 0.277 0.397 0.270 0.307 0.398 1.388 0.781
720 0.450 0.461 0.393 0.433 0.416 0.417 0.351 0.381 0.191 0.286 0.314 0.334 0.440 0.296 0.656 0.582 1.774 0.868

R
er

un

96 0.369 0.394 0.264 0.333 0.297 0.348 0.169 0.256 0.131 0.227 0.150 0.204 0.371 0.256 0.081 0.197 1.348 0.718
192 0.406 0.414 0.318 0.373 0.334 0.370 0.227 0.299 0.146 0.243 0.195 0.247 0.384 0.267 0.167 0.290 1.448 0.820
336 0.392 0.412 0.314 0.376 0.371 0.395 0.276 0.329 0.166 0.264 0.237 0.283 0.404 0.273 0.314 0.402 1.389 0.781
720 0.450 0.461 0.394 0.432 0.419 0.419 0.349 0.390 0.194 0.288 0.315 0.335 0.446 0.298 0.659 0.583 1.775 0.868

N
.D

.L
. 96 0.376 0.397 0.274 0.340 0.295 0.346 0.168 0.255 0.133 0.228 0.148 0.203 0.382 0.265 0.081 0.198 1.935 0.818

192 0.410 0.417 0.335 0.384 0.334 0.370 0.226 0.299 0.152 0.248 0.194 0.246 0.395 0.270 0.168 0.290 2.109 0.951
336 0.435 0.433 0.368 0.412 0.374 0.395 0.273 0.327 0.174 0.268 0.244 0.284 0.408 0.277 0.307 0.399 2.008 0.895
720 0.456 0.466 0.410 0.442 0.420 0.419 0.351 0.391 0.198 0.290 0.318 0.336 0.452 0.309 0.814 0.679 1.949 0.904

B.2 Imputation
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Table 10: Imputation task results with varying percentages of missing data (12.5%, 25%, 37.5%, 50%).
"Original": reproduced results. "N.D.L.": No Drop Last, results with test loader not dropping incomplete
last batches. "Miss %" indicates percentage of missing data. Lower MSE/MAE indicates better performance.
All settings from original paper’s repository.

ECL Weather ETTh1 ETTh2 ETTm1 ETTm2

M
od

el

Miss % MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

O
ri

gi
na

l 12.5 0.0588 0.1702 0.0241 0.0394 0.0338 0.1263 0.0378 0.1220 0.0158 0.0831 0.0175 0.0765
25.0 0.0694 0.1812 0.0250 0.0410 0.0436 0.1427 0.0398 0.1271 0.0184 0.0887 0.0186 0.0800
37.5 0.0805 0.1956 0.0272 0.0443 0.0540 0.1571 0.0434 0.1342 0.0219 0.0961 0.0207 0.0851
50.0 0.0842 0.1986 0.0314 0.0523 0.0675 0.1747 0.0481 0.1424 0.0270 0.1064 0.0231 0.0914

N
.D

.L
. 12.5 0.0588 0.1702 0.0239 0.0396 0.0338 0.1263 0.0378 0.1220 0.0158 0.0831 0.0175 0.0761

25.0 0.0694 0.1812 0.0252 0.0412 0.0436 0.1427 0.0398 0.1271 0.0184 0.0888 0.0187 0.0803
37.5 0.0805 0.1956 0.0273 0.0442 0.0540 0.1571 0.0434 0.1342 0.0219 0.0961 0.0205 0.0848
50.0 0.0842 0.1986 0.0313 0.0521 0.0675 0.1747 0.0481 0.1424 0.0270 0.1064 0.0230 0.0910

C Excluded Results

The results presented in this section were excluded from our main analysis due to methodological concerns
regarding validation procedures. As detailed in the Experimental Setup section, both the M4 dataset for
short-term forecasting and the UEA dataset for classification are provided with only train and test splits,
with no designated validation set. Upon reviewing the source code, we identified that the test set was used
for validation in both cases, introducing data leakage as the model gains indirect exposure to the test data
during training through early stopping and hyperparameter selection.

A methodologically sound approach would involve creating a validation split from the training data. For
instance, N-BEATS (Oreshkin et al., 2020) addresses this issue with M4 by first creating a validation split
from the training set, finding optimal training settings on that validation set, and then training on the full
training set using these optimal settings. However, we chose not to implement this approach for several
reasons:

First, many of these datasets are already small for deep learning approaches. For example, M4-Weekly (359
samples), M4-Hourly (414 samples), and several UEA classification datasets like EthanolConcentration (261
samples) and Heartbeat (204 samples) have limited training samples to create a validation split from.

Second, implementing a proper validation approach like N-BEATS (Oreshkin et al., 2020) for ModernTCN
would yield worse results (at best the same results) than the reported, as the training is on full training set in
both cases. On top of that, those reported results are already worse than the reported results in N-BEATS
Oreshkin et al. (2020).

Rather than allocating resources to rerun these experiments with proper validation procedures, we extended
our study to new datasets such as multivariate short-term forecasting on ETT, time series classification on
Speech Commands, and the PhysioNet 2019 sepsis challenge. These extensions allowed for more methodolog-
ically sound comparisons and a more comprehensive evaluation of ModernTCN’s capabilities across diverse
time series tasks.

The tables below present the reproduced results for completeness, but we emphasize that these should be
interpreted with caution due to the methodological concerns outlined above.

C.1 M4 Dataset Results
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Table 11: Short-term forecasting task. Results are weighted averaged from several datasets under different
sample intervals. Lower metrics indicate better performance. Reported refers to the scores reported in the
ModernTCN paper. Rerun refers to the scores obtained by rerunning the model with the settings specified
in the source code.

Yearly Quarterly Monthly Others Weighted Average
Model SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA

Reported 13.226 2.957 0.777 9.971 1.167 0.878 12.556 0.917 0.866 4.715 3.107 0.986 11.698 1.556 0.838
Rerun 13.231 2.957 0.777 10.001 1.170 0.881 12.598 0.920 0.868 4.835 3.175 1.009 11.732 1.561 0.841

C.2 UEA Dataset Results

Table 12: Classification task. Accuracy metric is used. Reported refers to the scores reported in the Mod-
ernTCN paper. Rerun refers to the scores obtained by rerunning the model with the settings specified in
the source code. Datasets: EthanolConcentration (EC), FaceDetection (FD), Handwriting (HW), Heart-
beat (HB), JapaneseVowels (JV), PEMS-SF (PS), SelfRegulationSCP1 (SR1), SelfRegulationSCP2 (SR2),
SpokenArabicDigits (SAD), UWaveGestureLibrary (UWL).

EC FD HW HB JV PS SR1 SR2 SAD UWL Averaged
Reported 0.363 0.708 0.306 0.772 0.988 0.891 0.934 0.603 0.987 0.867 0.742
Rerun 0.319 0.687 0.284 0.771 0.981 0.832 0.928 0.617 0.981 0.859 0.726

D Short-Term Forecasting on ETT

(a) ModernTCN (b) PatchTST (c) DLinear (d) TimesNet

Figure 3: Short-term forecasting on ETTm1 with prediction length 12 and input length 48.
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(a) ModernTCN (b) PatchTST (c) DLinear (d) TimesNet

Figure 4: Short-term forecasting on ETTh1 with prediction length 18 and input length 72.
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