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Abstract

Understanding cognitive processes in multi-agent interactions is a primary goal in
cognitive science. It can guide the direction of artificial intelligence (AI) research
toward social decision-making in multi-agent systems, which includes uncertainty
from character heterogeneity. In this paper, we introduce episodic future thinking
(EFT) mechanism for a reinforcement learning (RL) agent, inspired by cognitive
processes observed in animals. To enable future thinking functionality, we first
develop a multi-character policy that captures diverse characters with an ensemble
of heterogeneous policies. Here, the character of an agent is defined as a different
weight combination on reward components, representing distinct behavioral pref-
erences. The future thinking agent collects observation-action trajectories of the
target agents and uses the pre-trained multi-character policy to infer their characters.
Once the character is inferred, the agent predicts the upcoming actions of target
agents and simulates the potential future scenario. This capability allows the agent
to adaptively select the optimal action, considering the predicted future scenario
in multi-agent interactions. To evaluate the proposed mechanism, we consider the
multi-agent autonomous driving scenario with diverse driving traits and multiple
particle environments. Simulation results demonstrate that the EFT mechanism
with accurate character inference leads to a higher reward than existing multi-agent
solutions. We also confirm that the effect of reward improvement remains valid
across societies with different levels of character diversity.2

1 Introduction

Understanding human decision-making in multi-agent interactions is a significant focus in cognitive
science. It provides valuable insights into designing interactions among diverse AI agents within multi-
agent systems. Research has shown that humans employ counterfactual or future scenario simulation
to enhance decision-making [45, 17, 49]. While counterfactual thinking, simulating alternative
consequences of past events, has been extensively explored in multi-agent RL (MARL) [34, 9, 52, 3],
episodic future thinking [1, 24], the ability to anticipate future events, remains underexplored in
literature despite its importance in handling multi-agent interactions.

Human beings strive to anticipate future situations to prevent costly mistakes. One naive approach
to incorporate this ability into AI is through future trajectory prediction using model-based RL
[40, 19, 31, 54, 28, 26]. However, this approach is feasible only if the state transition model is known
or easily learnable, which is often not the case in multi-agent systems. The complexity arises from
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the interdependence of state transitions on the actions of both the agent and other agents, making
learning the state transition model challenging. Additionally, diverse agent characteristics exacerbate
this challenge by introducing a wide range of action combinations and subsequent states. Thus,
explicitly integrating character inference functionality regarding other agents into AI is more suitable
for accurate future state prediction and optimal decision-making.

Our goal is to develop an EFT mechanism for RL agents, enabling them to make adaptive decisions
in a society where agents have heterogeneous characteristics. We formalize this task as a Multi-agent
Partially Observable Markov Decision Process (MA-POMDP), a framework tailored to address the
RL problem wherein multiple agents operate under partial observation [35, 55]. This study defines a
character by reflecting the behavioral preferences of RL agents, which come from different weight
combinations on reward components. For instance, in a driving scenario, some drivers prioritize
safety, while others prioritize speed, leading to heterogeneous policies and behavioral patterns across
agents.

Implementing the EFT mechanism requires two functional modules: a multi-character policy and a
character inference module. The multi-character policy embeds behavioral patterns corresponding
to characters. It allows the agent to observe partial information of the state in continuous space and
handles a hybrid action space consisting of discrete and continuous actions. The character inference
module leverages the concept of inverse rational control (IRC) [18, 25] to infer target agents’
characters by maximizing the log-likelihood of their observation-action trajectories. Combining these
modules equips the agent with EFT functionality, enabling proactive behavior under heterogeneous
multi-agent interactions.

To activate the EFT mechanism, the agent initially acts as an observer, collecting observation-action
trajectories of target agents. Utilizing the character inference module and collected trajectories, the
agent infers target agents’ characters. With this knowledge and leveraging a multi-character policy,
the agent predicts others’ actions and simulates future observations with its action fixed as ‘no action.’
This mental simulation allows the agent to estimate the observation at the time point when all target
agents have taken actions, but the agent still needs to (i.e., has yet to). It enables the agent to select
the best action corresponding to the estimated future observation. In summary, the EFT mechanism
empowers the agent to behave proactively in heterogeneous multi-agent interactions.

Summary of contributions:

• We introduce character diversity in a multi-agent system by parameterizing the reward
function. We propose to build the multi-character policy and equip the agent with it to infer
the character of the target agent (Section 3).

• We introduce the EFT mechanism for social decision-making. The agent infers the characters
of other agents using the multi-character policy, predicts their future actions based on the
inferred characters, simulates the corresponding future observations and selects foresighted
actions. This mechanism enables the agent to consider multi-agent interactions in its
decision-making process (Section 4).

• We verify the proposed mechanism by increasing character diversity in society. Extensive
experiments confirm that the proposed mechanism enhances group rewards no matter how
high a character diversity level exists in society (Section 5).

2 Related Works

Episodic Future Thinking. Cognitive neuroscience aims to understand how humans use memory
in decision-making. Interestingly, the trend of the brain’s regional neural activation regarding
counterfactual reasoning (i.e., simulating alternative consequences of the last episode) and future
thinking (i.e., simulating episodes that may occur in the future) is similar [1]. In [56], the authors
study the relationship between future thinking and decision-making and confirm that humans perform
future-oriented decision-making. The decision-making abilities, such as strategy formulation, are
also significant in scenarios that require multi-agent interactions, e.g., social decision-making.

There are several studies to endow this ability with an AI agent [62, 37, 61, 30]. In [30] and [37], the
authors forecast the next state from a macroscopic standpoint without a prediction of each agent’s
behavior. In [61], the authors predict the behavior of an agent through a deep Bayesian network

2



considering the dynamics and the previous surrounding environment information. Even though these
studies can infer future information, no strategy formulation incorporated with prediction is suggested.
Namely, most existing approaches use future predictions as auxiliary information for the optimization
process without incorporating these predictions into the policy explicitly. In this study, we propose
the ETF mechanism can predict future observations based on the current state and predicted actions of
surrounding agents. Consequently, the agent equipped with this mechanism can select a foresighted
action corresponding to the anticipated future observation.

Model-based Reinforcement Learning. Model-based RL incorporates an explicit module repre-
senting system dynamics, contrasting with model-free RL. Within model-based RL, two approaches
exist: utilizing a known dynamic model and learning it during training [19, 32, 40]. Using the
dynamic model, the model-based RL approaches predict future trajectories, a pivotal step for network
optimization [15, 16, 5, 57, 14]. Notably, approaches such as Dreamer [15] and Model-Based Policy
Optimization (MBPO) [16, 14] demonstrate the practical application of these predictions. Dreamer
optimizes a value function using the return of the predicted future trajectories, and MBPO trains the
policy using the predicted future trajectories as augmented data samples. Furthermore, to tackle multi-
agent problems, [5] and [57] extend these concepts by integrating a global model or communication
block.

While these methods often exhibit outstanding performance, they assume ideal conditions such as a
small number of homogeneous agents and full observability. In reality, agents encounter incomplete
and noisy data, and accurately modeling system dynamics is challenging due to complex interactions
between multiple agents with unique behavioral characteristics. This work addresses a partially
observable agent in a multi-agent environment with heterogeneous characteristics across agents. We
allow the agent to infer other agents’ characters and make decisions based on predictions of upcoming
observations.

Machine Theory of Mind. Human decision-making in social contexts often involves considering
multiple perspectives, including the behavioral characteristics of others. This capacity, known as
Theory of Mind (ToM) in cognitive science, primarily involves deducing internal models of others and
predicting their future actions [2, 20]. AI research aimed at providing machines with this capability
has gained attention for enhancing multi-agent system performance, such as machine ToM [42, 41],
inverse learning [43, 18, 33], and Bayesian ToM [60]. These approaches aim to reconstruct the target
agent’s belief, reward function, or dynamic model based on its trajectories. However, they often
operate in simple settings, limiting their applicability to scenarios with a small number of agents, a
small discrete action space, or minimal character diversity across agents.

In contrast to previous work, this study explicitly develops a character inference module focusing on
establishing a link between trajectories and characters. This module allows the target agent’s behavior
to be explained by character, aligning with the researcher’s interests. Additionally, it extends the
action space from continuous to hybrid.

False Consensus Effect. Psychological research has identified a cognitive bias in humans to
assume that their character, beliefs, and actions are common among the general population
[10, 6, 7], termed the False Consensus Effect (FCE) [53, 12, 47]. Recent studies suggest that
AI may exhibit this false belief [42]. To underscore the importance of character inference in
heterogeneous multi-agent scenarios, we compare the performance of the EFT mechanism with
two types of agents: the proposed agent, equipped with the character inference module, and
the FCE-based agent, which assumes that target agents share the same character as the agent.

Figure 1: A block diagram of an agent i with a multi-
character policy π(ot,i; C), where C is character space.
The agent can infer the character c of others by using
the maximum likelihood estimation. Herein, K means
the dimension of character vector c.

3 Character Inference
Using Multi-character Policy

We aim to build an agent to make optimal deci-
sions under multi-agent interactions. It requires
the agent to be able to anticipate the near fu-
ture by predicting other agents’ actions. The
agent should possess the ability to infer the oth-
ers’ characters, leveraging observation of their
behaviors.
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Accurate character inference is a prerequisite for the EFT mechanism since the character is a crucial
clue to predicting future action. Therefore, this section proposes two functional modules for character
inference: a multi-character policy and character inference. An illustrative explanation of these
functionalities is presented in Figure 1.

3.1 Problem Formulations for Multi-agent Decision-making

We consider multi-agent scenarios where RL agents adaptively behave to each other. All agents have
to make decisions and execute actions simultaneously, unlike the extensive-form game [36] in which
the agents alternate executing the actions.

The multi-agent decision-making problem can be formalized as a MA-POMDP M =
〈E,S, {Oi}, {Ai}, T , {Ωi}, {Ri}, γ〉i∈E that includes an index set of agents E = {1, 2, · · · , N},
continuous states st ∈ S , continuous observations ot,i ∈ Oi, hybrid actions at,i = {act,i, adt,i} ∈ Ai,
where continuous action act,i ∈ Aci and a discrete action adt,i ∈ Adi = {w : |w| ≤W, w ∈ Z, W ∈
N}, where the size of discrete action space is |Adi | = 2W + 1, Z denotes the set of integers, and N
denotes the set of natural numbers. Let A := A1 ×A2 × · · · × AN . Subsequently, T : S ×A → S
is the state transition probability; Ωi : S → Oi is the observation probability; Ri : S ×Ai × S → R
denotes the reward function that evaluates the agent’s action at,i for a given state st and the outcome
state st+1; γ ∈ [0, 1) is the temporal discount factor.

An unordered set of the actions of all agents at time t is denoted as

at = 〈at,1, · · · , at,i, · · · , at,N 〉 = 〈at,i,at,−i〉 ∈ A,

where subscript −i represents the indices of all agents in E except i. Thus, at,−i =
〈at,1, · · · , at,i−1, at,i+1 · · · , at,N 〉 represents a set of all agents’ actions at time t without at,i. The
state transition probability denotes T (st+1|st,at). Note that state transition is based on the action
combination of all agents at, not on the action of a single agent at,i.

Next, ci = {ci,1, ci,2, · · · , ci,K} ∈ C ∈ RK denotes a K-dimensional character vector for the agent
i. Character ci can parameterize the reward function of the agent i, i.e., Rt,i = Ri(st, at,i, st+1; ci).
The agent aims to learn the optimal policy that returns the optimal action a∗t,i ∼ π∗(·|ot,i; ci) given
observation and character. Specifically, the objective of the agent aims to maximize the expected
discounted cumulative reward J (π) = Eπ

[∑
t γ

tRi(st, at,i, st+1; ci)
]

by building the best policy

π. This defines the state-action value function Qπ(s, a; ci) = Eπ
[∑

t γ
tRi(st, at,i, st+1; ci)|s0 =

s, a0 = a
]
. In the next section, we discuss the details of the multi-character policy in terms of neural

network design and its training.

3.2 Training a Multi-character Policy

The multi-character policy includes inputs in continuous space (e.g., observation ot,i and character
ci) and outputs in hybrid space (e.g., action at,i). To build the policy generalized over continuous
space, the actor-critic architecture is used. It approximates the policy πφ(·|ot,i; ci) and Q-function
Qθ(ot,i, at,i; ci), where φ denotes parameters of the actor network and θ denotes the parameters of
the critic network.

The loss functions used to train the actor and critic networks areL(φ) = −Qθ(ot,i, πφ(·|ot,i; ci)), and
L(θ) = |yt−Qθ(ot,i, πφ(·|ot,i; ci))|2, respectively. Herein, yt = Rt,i+Qθ′(ot+1,i, πφ′(·|ot+1,i; ci))
represents the Temporal Difference (TD) target, where θ′ and φ′ denote the target networks.

Next, we propose a post-processor g(·) to handle hybrid action space. Let a proto-action ādt,i be the
output of the actor network. The post-processor g(·) performs quantization process by discretizing
the continuous proto-action ādt,i into discrete post-action adt,i, i.e.,

adt,i = g(ādt,i,W ) = min
(⌊2W + 1

2W

(
ādt,i +

W

2W + 1

)⌋
,W
)
, (1)

where b·c denotes a floor function. The derivation of (1) is presented in Appendix D.
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Algorithm 1 Multi-character policy training

Initialization: Actor network φ, critic network θ
Require: Total episode M , total time steps per
episode T , discrete action space W , agent i
for episode m = 1, M do

Reset s1 and get o1,i ∼ Ωi(·|s1)
Sample character ci ∼ C
for timestep t = 1, T do

Get proto-action {act,i, ādt,i} ∼ πφ(·|ot,i; ci)
Get post-action
adt,i ← g(ādt,i,W )

Execute at,i = {act,i, adt,i}, Update st+1

Receive Rt,i, Get ot+1,i ∼ Ωi(·|st+1)
Calculate L(φ),L(θ), Update φ, θ

end for
end for
return φ, θ

We summarize the multi-character policy
training process in Algorithm 1. In the next
subsection, we introduce the character in-
ference module that infers the characters of
other agents.

3.3 Inferring Character of Target Agent

After completing the training on the multi-
character policy, our next objective is to infer
the character cj of the target agent j ∈ E.
The agent first collects observation-action tra-
jectories of the target for character inference.
Subsequently, it utilizes the multi-character
policy to identify the character cj that best
explains the collected data. To elaborate,
cj can be estimated by maximizing the log-
likelihood of observation-action trajectories
lnP (o1:T,j , a1:T,j |cj). This can be formu-
lated as follows.

ĉj = arg max
c

lnP (o1:T,j , a1:T,j |c) = arg max
c

T∑
t=1

[
lnπ(act,j |ot,j ; c) + lnπ(adt,j |ot,j ; c)

]
(2)

The derivation of (2) can be found in Appendix E. Algorithm 2 Character inference module

Require: Trained actor network φ,
length of trajectories T , trajectories
o1:T,j , {ac1:T,j , ad1:T,j}, and initial c ∼ C,
target agent j
repeat

Reset U(c) = 0
for t = 1, T do

Calculate U(c) using Eq. 2
end for
Update c← c + α∇cU(c)

until c converges
return ĉj ← c

To efficiently perform the inference task, we use
the gradient ascent method. It runs the iteration by
changing c toward the direction to increase U(c) =
lnπ(act,j |ot,j ; c) + lnπ(adt,j |ot,j ; c), which is sum-
marized in Algorithm 2.3

4 Foresight Action Selection Based
on Episodic Future Thinking Mechanism

This section presents the proposed EFT mechanism
that enables the agent to simulate the subsequent
observations and to select a foresighted action. The proposed EFT mechanism comprises a future
thinking module and an action selection module.

Figure 2: Diagram of POMDP with EFT mech-
anism. The future thinking and action selection
modules are included to obtain action from the ob-
servation. The solid lines and circles represent the
actual event. The dashed ones depict the virtual
event in the simulated world of the agent i.

The future thinking module includes two steps: ac-
tion prediction and the next observation simulation.
With these two steps, the agent can foresee the next
observation. This process is illustrated in Figure 2.
Subsequently, the action selection module enables
the agent to decide the current action corresponding
to the simulated next observation.

4.1 Future Thinking: Step I - Action Prediction

In this step, the agent with the multi-character policy
predicts the actions of the neighbor agents by using
pre-inferred characters and observations. The agent
can predict the action of the target agent j (∈ E, j 6=

3By specifying the distribution of π, (2) can be reformulated. In Appendix F, an example of the Gaussian
distribution of continuous action π(act,j |ot,j ; c) and the Dirac delta distribution of discrete action π(adt,j |ot,j ; c)
is provided.
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i)4 using the trained multi-character policy πφ and inferred character ĉj , i.e., ât,j ∼ πφ(·|ot,j ; ĉj).
Therefore, the predicted action set of others ât,−i is as follows.

ât,−i = 〈πφ(ot,1; ĉ1), · · · , πφ(ot,i−1; ĉi−1), πφ(ot,i+1; ĉi+1), · · · , πφ(ot,N ; ĉN )〉

4.2 Future Thinking: Step II - Next Observation Simulation

In this step, we introduce how the agent simulates its next observation by using the predicted action
ât,−i. Note that this prediction is the result of the mental simulation of agent i, when at,i = ∅ is
satisfied. Herein, ∅ denotes null action, meaning that no action is performed. This is to simulate the
observation of the time point when all target agents performed the action, but the agent has not yet.

Algorithm 3 Episodic future thinking mechanism

Require: Trained actor-network φ, discrete action
space parameter W , set of inferred characters ĉ−i,
character of agent ci, initial state s1
for t = 1, T do

Get observation ot,i ∼ Ωi(st)
// Start future simulation //

for j = 1, N(j 6= i) do
Get observation o1,j ∼ Ωj(st)
Predict action of agents j

ât,j ∼ πφ(·|ot,j ; cj)
Store ât,j in predicted action set ât,−i

end for
Simulate future observation of agent i

ôt+1,i = D(ot, ât,−i, at,i = ∅)
// End simulation //

Get proto-action {act,i, ādt,i} ∼ πφ(·|ôt+1,i; ci)

Get post-action adt,i ← g(ādt,i,W )

Execute at,i = {act,i, adt,i}, Update st+1

end for

The simulated next observation ôt+1,i can
be determined based on the predicted ac-
tion set ât,−i and the current observation
ot,i. The function of the next observa-
tion simulation D(·) is defined as ôt+1,i =
D(ot,i, ât,−i, at,i = ∅). The action selection
using the simulated next observation ôt+1,i

allows the agent to ignore the influence of
others’ actions. This is because the next state
is determined solely by its own action at,i in
the agent’s mental simulation, as ôt+1,i has
already applied the others’ actions ât,−i.

4.3 Action Selection

Once the agent has simulated the next ob-
servation ôt+1,i, the agent can make a fore-
sighted decision. The agent uses the multi-
character policy πφ with the input of the
simulated next observation ôt+1,i and its
own character ci, and finally gets the ac-
tion at,i = {act,i, ādt,i} = πφ(·|ôt+1,i; ci). In
other words, the agent can select an adaptive action with consideration for others’ upcoming behaviors.
The decision-making procedure with the proposed EFT mechanism is summarized in Algorithm 3.

5 Experiments

To select a suitable task that can verify the effectiveness of the proposed solution, we consider the
following requirements. There should be multiple approaches to achieving character diversity, as
well as interactions between agents. The agent should have only partial observations of the state, and
the action space should be both continuous and discrete.

We chose the autonomous driving task, which has numerous automated vehicles on the road. The
task can consider the driving character of the agent based on driving preferences (e.g., one agent
prioritizes safety, and the other prioritizes speed) [46, 4, 50, 23, 22]. Additionally, it is realistic for a
driver to behave under the partial observation of the road state, and the driver makes a decision in a
hybrid action space. To implement this task, we use the FLOW framework [58, 21, 8]. The scenario
includes multiple automated vehicles on the highway. The number of agents |E| = 21, and each
agent decides on acceleration and lane change control at a given observation. Here, we express the
driving character using weights of three reward terms, i.e., ci = [ci,1, ci,2, ci,3].5 The target agent j
is limited to the vehicles located in the observable area.

To confirm the scalability of the proposed solution, we also provide simulation results with a multiple
particle environment (MPE) [29] and starcraft multi-agent challenge (SMAC) [48], a popular MARL
testbed. All results in this section are averaged results of over 10 independent experiments. The

4If the agent i cannot observe the entire set of agents, a subset of the agent can be the targets of agent i, i.e.,
EOi ⊂ E.

5Details regarding the experiments are presented in Appendix G.
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markers indicate the average value, and the shaded area represents the confidence interval within one
standard deviation.

5.1 Performance Evaluation: Character Inference

To make the EFT mechanism more effective, an accurate character inference should be preceded. In
this subsection, we investigate the character inference module with two questions.

• How many iterations does it require to achieve an accurate inference (in terms of repetition
in Algorithm 2)?

• How long should the agent collect the observation-action trajectories of target agents (in
terms of trajectory length T in Algorithm 2)?

In Figure 3, the performance of the character inference module is presented. To ignore the effect of
the initial point in convergence, the initial point of the character is randomly selected. More results
regarding the initial point are provided in Appendix I.

BA

Figure 3: The performance of the character inference
module. A. L1-norm between estimated and true charac-
ters over the number of iterations (T = 1000). B. The
number of required iterations for convergence over the
length of the observation-action trajectory T .

Figure 3A illustrates the convergence of the esti-
mated character to the true one. The inaccuracy
of inference is evaluated based on the L1-norm
between the estimated character and the true
one. Thus, a lower L1-norm implies higher in-
ference accuracy. As the number of iterations
increases, the L1-norm quickly decreases to ap-
proximately zero, meaning that the estimated
value quickly converges to the true one. Specif-
ically, if the number of iterations is set to over
500, high accuracy of the character inference
can be achieved.

Figure 3B shows the trade-off between the length of observation-action trajectory T and the number
of iterations required for the convergence. The convergence criterion is set to L1-norm ≤ 5× 10−4.
The results demonstrate that the number of iterations for convergence decreases as longer trajectories
are provided. Thus, the length of trajectories and the number of iterations can be jointly determined
by considering system requirements.

5.2 Ablation Study: Character Inference and EFT Modules

We investigate the impact of two main modules (the character inference module and the EFT module)
on performance by increasing character diversity levels of the heterogeneous society. The following
three cases are compared.

• Proposed: the agent enables the EFT with the inferred character of other agents based on
the character inference module.

• FCE-EFT: the agent experiences the FCE by assuming that all other agents have equal
character to itself (i.e., cj = ci, ∀j ∈ E). So, no character inference is required. The agent
performs the EFT, but action prediction is performed based on the same character ci.

• without EFT (baseline) [11]: the agent performs neither character inference nor the EFT
mechanism. It treats the problem as a single agent RL and selects the best action given
observation. The policy is trained based on the TD3.

In Figure 4, the average rewards of entire agents are presented over increasing the number of character
groups.6 The higher number of character groups means that more diverse characters coexist in society,
and the higher reward implies better performance. Because the number of agents is fixed to |E| = 21,
the number of members per character group is |E|/n, where n denotes the number of groups. The
members belonging to the same group have the same character c. Note that a character of each group
is randomly sampled from character space C in every independent experiment.

6Each market point is the average value of 10 independent test experiments. To obtain all results presented in
Figure 4, we run 7× 3× 10 = 210 test experiments.

7



1 2 3 4 5 6 7
The number of character groups (n)

400

200

0

200

400

Re
wa

rd
 d

iff
er

en
ce

Proposed
FCE-EFT
Baseline

Figure 4: The amount of reward enhance-
ment for two EFT approaches by setting
without EFT as a baseline (i.e., the reward
of other approaches - the reward of without
EFT).

Figure 4 highlights the amount of reward enhancement
or degradation by equipping the proposed modules. The
proposed approach consistently outperforms the baseline
(without EFT), and the FCE-EFT is inferior to the base-
line when character diversity exists. These results verify
that the EFT mechanism with accurate character inference
always enhances the reward. However, the naive employ-
ment of the EFT mechanism with the incorrect character
degrades the reward. This is because incorrect charac-
ter inference leads to incorrect action prediction and next
observation simulation, which leads to improper action
selection of the agent, leading to low reward. Therefore,
accurate character inference is crucial in the EFT mecha-
nism.

5.3 Investigating the Effects of Trajectory Noise

To infer the character of the target agent, the EFT agent
needs to collect observation-action trajectories of the target agent. Since the observations made by
the EFT agent towards the target agent may not be perfect (i.e., they could be a noisy version of
the target agent’s true observations), we further investigate the performance of the proposed EFT
framework concerning the accuracy of the collected trajectories. This investigation consists of two
steps. First, we look deeply into the effect of trajectory accuracy on character inference, and thereafter,
we examine the EFT performance regarding character inference accuracy.

Table 1: Character inference accuracy over the standard
deviation of trajectory noise. (Accuracy: ACC)

Standard deviation of trajectory noise

0.01 0.05 0.1 0.2 0.3

ACC 99.6 98.3 91.8 81.1 69.5

±0.01 ±0.07 ±0.23 ±0.52 ±0.66

SNR[dB] 34.7 21.3 14.7 9.2 4.7

Qual Excellent Good Fair Poor Poor

30 40 50 60 70 80 90
Accuracy (%)

1000

0

1000

2000

3000

Re
wa

rd

n = 1
n = 2
n = 3
n = 4
n = 5

Figure 5: The average reward for increasing the accuracy
of character inference.

Character inference with trajectory accuracy.
Table 1 shows the character inference accuracy
as the noise level for a collected trajectory in-
creases. As expected, the character inference ac-
curacy decreases as the noise variance increases.
Please be aware that the considered standard de-
viation is not trivial given that our observation
range is [−1, 1]. Specifically, we provide the
signal-to-noise ratio (SNR) with a quality level
(Qual) across each standard deviation. We label
the quality of each level based on [13].

We believe that this result provides valuable in-
sights into the expected performance of our pro-
posed solution, particularly in scenarios where
observation prediction technology is deployed.

EFT performance with character accuracy.
In Figure 5, x and y axes are the accuracy of
character inference and average reward, and n
is diversity level. As expected, the result shows
that the performance of the EFT agent naturally
increases when the accuracy of predicted ob-
servation increases. Interestingly, the proposed
solution holds up the performance even at a char-
acter inference accuracy of approximately 90% (i.e., the error rate of 10%). It is also worth mentioning
that the performance has a similar trend across the diversity levels, which confirms that the proposed
method is robust against diversity levels.

5.4 Assessing Generalizability: Inference on Out-of-Distribution Character

It can be impractical and challenging to train all characters within a pre-defined range, and a trained
agent can confront an out-of-distribution (OOD) character in the deployment phase. This subsection
demonstrates the inference performance on the OOD range of pre-trained agents with specific
character samples. To this end, we consider the following two cases:
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1. train on [0.0, 0.6] and [0.8, 1.0], thereby inferring on {0.65, 0.7, 0.75},
2. train on [0.2, 0.8], thereby inferring on {0.0, 0.1, 0.9, 1.0}.

A B

Figure 6: The performance of the character inference module on
OOD character range.

Figure 6 shows the average of esti-
mated characters over true ones. The
gray dimmed area is the OOD range,
which is an unseen character range
in the training phase, and red and
blue circles present an OOD and in-
distribution estimated character value,
respectively. Figure 6 A represents
case 1, where the model appears to
perform well in predicting characters
in unseen regions. Figure 6 B repre-
sents case 2, which performs inference on the points outside of the trained range. It is observed that
the inference accuracy is slightly declined compared to case 1, but it can still successfully capture the
overall pattern by predicting the extreme values that are close to the true ones.

5.5 Performance Comparisons

We compare the performance of the proposed solution to the following popular MARL, model-
based RL, and agent modeling algorithms: MADDPG [29], MAPPO [63], Q-MIX [44], Dreamer [15],
MBPO [16], ToMC2 [59], and LIAM [38]. In baseline algorithms, we go through independent policy
training regarding the diversity level of society.7 Note that the proposed method does not need plural
training for different heterogeneity settings. See Appendix J for an additional explanation of the
baseline algorithms and standard deviation for Table 2.

Table 2: Performance comparison across diversity level.

Algorithm The number of character groups (n)
1 2 3 4 5

Proposed 2899 3047 2976 2948 3051
FCE-EFT 2899 2784 2646 2566 2629

MADDPG [29] 2763 3006 2800 2933 2856
MAPPO [63] 2753 2862 2597 2529 2763
Q-MIX [44] 2199 2310 2288 2118 1861

Dreamer [15] 2911 2813 2733 2631 2701
MBPO [16] 2089 1964 1523 1893 1633

ToMC2 [59] 3016 2812 2683 2691 2511
LIAM [38] 1913 1792 1771 1683 1733

Table 2 shows the average reward of
the entire agents as the number of
character groups increases. This re-
sult verifies that the proposed solu-
tion outperforms all popular MARL
algorithms. Note that the MARL al-
gorithms assume centralized training,
which requires access to the observa-
tions and actions of all agents in pol-
icy training. In contrast, our solution
trains the policy with only local ob-
servations and actions, which can be
a more practical solution. The Q-MIX
has the lowest performance since it
operates in a discrete action space,
whereas our task is in a hybrid action
space.

Table 2 also demonstrates the performance of popular model-based RL algorithms as the diversity
level increases. It is obvious that the performance gap between model-based RL and the proposed
solution increases as the diversity level increases. In addition, the standard deviation of model-based
RL algorithms (provided in Table J1 in Appendix J) is much larger than the proposed solution, which
shows the difficulty of learning a dynamic model without understanding others in multi-agent systems.
Specifically, Dreamer cannot adapt to high diversity levels, and it has a broader variance than other
algorithms. Additionally, the result of MBPO exhibits that it is hard to trust generated transitions from
a dynamic model.

In the case of agent-modeling algorithms, ToMC2 achieves the best score in the n = 1 scenario, but
its performance decreases as the diversity level increases; LIAM fails at all diversity levels. On the
other hand, the proposed solution is robust to changes in the surrounding agents and maintains high
performance across diversity levels. We conjecture why two baselines fail in this setup, as follows.

7For each algorithm, five independent trainings are performed since five heterogeneity settings are considered,
i.e., n = [1, 2, 3, 4, 5].
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ToMC2 requires retraining or adjusting the ToM module as surrounding agents change. The ToM
module is tailored to other agents for the prediction of information (e.g., goals, observations, and
actions). Next, LIAM also necessitates a new opponent modeling process for each test environment.
In addition, prior works on opponent modeling rarely involve more than four players.

5.6 Additional Evaluation on MPE and SMAC

Table 3: Performance comparison with MARL baseline algorithms
on MPE tasks. Performance of † denoted algorithm is based on [39].

Task MAPPO† MADDPG† Q-MIX† Proposed

Spread −149.26 −157.10 −154.70 −149.12
Adversary 9.61 7.80 8.11 10.01
Tag 13.78 6.65 15.00 14.57

Beyond the autonomous driving task,
we run the performance comparison
on the MPE and SMAC testbed.

Multiple Particle Environment. The
MPE tasks consider a small number
of agents (three or four) and groups
(one or two). Therefore, we set the
character for each group as a single
character, that is, the diversity level n = 1. Table 3 shows the performance comparison across
each task of MPE. Even though our method is specialized for a high level of character diversity
environment, the results demonstrate that the proposed solution is competitive in a simple environment
by achieving the best score in two out of three tasks. We provide additional information on the MPE
task in Appendix K.

Table 4: Performance comparison with MARL baseline algorithms
on SMAC tasks. Performance of † denoted algorithm is based
on [63].

Task MAPPO† MADDPG Q-MIX† Proposed

2s3z 100 90.3 95.3 98.8
3s5z_vs_3s6z 63.3 18.9 82.8 84.3
6h_vs_8z 85.9 68.0 9.4 93.8

StarCraft Multi-agent Challenge.
The setup of SMAC tasks is similar
to MPE tasks, i.e., the EFT agent does
not need to infer the character because
they have the same (character diver-
sity as n = 1). Table 4 exhibits the
performance on the SMAC tasks. The
proposed solution demonstrates supe-
rior performance across SMAC tasks,
particularly excelling in more complex scenarios like 3s5z_vs_3s6z and 6h_vs_8z. Although MAPPO
shows competitive performance, especially in simpler tasks like 2s3z, the proposed method proves
more effective overall in handling both simple and complex multi-agent tasks. Additional information
in terms of SMAC tasks can be shown in Appendix L.

6 Discussion

Conclusion. In this paper, we propose the EFT mechanism, which is a social decision-making
approach for a multi-agent scenario. The EFT mechanism enables the agent to behave by considering
current and near-future observations. To achieve this functionality, we first build a multi-character
policy that is generalized over character space. Then, the agent with the multi-character policy
can infer others’ characters using the observation-action trajectory. Next, the agent predicts the
others’ behaviors and simulates its future observation based on the proposed EFT mechanism. In the
simulation result, we confirm that the proposed solution outperforms existing solutions across all
diversity levels of the heterogeneous society.

Broader Impacts. The proposed EFT idea paves the way for research on multi-agent scenarios. The
proposed method enables the agent to simulate other agents’ upcoming actions, which is analogous
to humans’ decision-making. Furthermore, we believe the proposed method can be broadened by
combining counterfactual thinking, current information, and future thinking.

Limitations. Even though this work shows promising results with a novel method, there are a few
limitations to tackle. In our experiments, there is only one EFT agent, and all other agents do not
have the EFT functionality. This is an inevitable setting to make the problem tractable. Additionally,
we follow the non-stationary regarding the agent’s policy in the training phase and stationary in the
execution phase. Since the character is mapped into policy, this stationary property has a connection
to the character itself. To improve practicality, we should further investigate how the proposed
solution works when the other agent’s policy is non-stationary in the execution phase.
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Appendix A Summary of Notations

Notation Description Notation Description
E a set of agents i an agent i
S a state space st a state at time t
Oi an observation space of agent i ot,i an observation of agent i at time t
A an action space at,i an action of agent i at time t
act,i a continuous action of agent i at time t adt,i a discrete action of agent i at time t
āt,i a proto-action of agent i at time t a∗t,i a true action agent i at time t
at a joint action at time t at,−i a joint action except agent i at time t
T a state transition probabilities Ωi an observation transition probabilities of agent i
Rt,i a reward of agent i at time t γ a temporal discounted factor
C a character space D a dynamic model
ci a character vector of agent i

Appendix B System Specification

CPU AMD Ryzen 9 3950X 16-core
GPU GeForece RTX 2080 Ti
RAM 128 GB
SSD 1T

Appendix C Hyperparameters

C.1 Algorithm 1

Hyperparameter Value Hyperparameter Value
total episodes (K) 3500 total timesteps (T ) 3000
policy delay (d) 2 target noise variance (σ̄) 0.2
replay buffer size (|B|) 4× 106 train batch size (B) 128
discount factor (γ) 0.99 soft update rate (τ ) 1× 10−3

exploration variance 1 (σ1) 0.1 exploration variance 2 (σ2) 0.6
actor learning rate 5× 10−4 critic learning rate 5× 10−4

actor hidden node [64, 64] critic hidden node [64, 64]
activation function of actor hidden layer ReLU activation function of critic hidden layer ReLU
activation function of actor output layer tanh activation function of critic output layer linear

C.2 Algorithm 2

Hyperparameter Value Hyperparameter Values
optimizer Adam learning rate 10−3

the number of iterations (L) 200 the number of samples (N ) 3000
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Appendix D Post-processor Function in (1)

To build a post-processor function g(·), we first allocate the continuous action space

Ad = [−W,W ] into |Ad| = 2W + 1 discrete action values. In other words, a continuous number lies
in the range ādt ∈

[
w − W+w

2W+1 , w + W−w
2W+1

]
is assigned to a discrete action value w ∈ Ad ⊂ Z, i.e.,

adt = w, if w − W + w

2W + 1
< ādt ≤ w +

W − w
2W + 1

.

The condition can be written as the range of adt = w,

2W + 1

2W

(
ādt −

W

2W + 1

)
≤ w <

2W + 1

2W

(
ādt +

W

2W + 1

)
, (1)

and it can be reformulated as

w = min

(⌊2W + 1

2W

(
ādt +

W

2W + 1

)⌋
,W

)
,

where min(·,W ) hinders w from being outside of action space [−W,W ]. Here, the floor function is
used on the right side of the inequality equation (1). But the ceiling function on the left side of the
inequality equation (1) can be an alternative with the max function max(·,−W ).

The post-processor function adt = g(ādt ,W ) is finally formulated as follows.

g(ādt ,W ) = min

(⌊2W + 1

2W

(
ādt +

W

2W + 1

)⌋
,W

)
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Appendix E Derivation of (2)

ĉj = arg max
c

lnP (o1:T,j , a1:T,j |c)

= arg max
c

ln

∫
P (s1:T , o1:T,j , a1:T,j |c)ds1:T (2)

= arg max
c

ln

∫
P (s1:T |o1:T,j , at:T,j)×

P (s1:T , o1:T,j , a1:T,j |c)

P (s1:T |o1:T,j , at:T,j)
ds1:T (3)

= arg max
c

∫
P (s1:T |o1:T,j , at:T,j)× ln

P (s1:T , o1:T,j , a1:T,j |c)

P (s1:T |o1:T,j , at:T,j)
ds1:T (4)

= arg max
c

∫
P (s1:T |o1:T,j , at:T,j)× lnP (s1:T , o1:T,j , a1:T,j |c)ds1:T +H(s1:T |o1:T,j , at:T,j)

(5)

= arg max
c

∫
P (s1:T |o1:T,j , at:T,j)× lnP (s1:T , o1:T,j , a1:T,j |c)ds1:T (6)

The equality of (2) and (3) is because of multiplying the same value on the numerator and denominator.
The inequality of (3) and (4) is based on Jensen’s inequality, which means f(E[x]) ≥ E[f(x)] is
satisfied when f(·) is a concave function (in our case, f(·) is ln(·)). Subsequently, we can rewrite
−P (·) lnP (·) as a entropy H(·). The inequality of (5) and (6) is because the entropy H(·) is always
a positive value.

ĉj = arg max
c

∫
P (s1:T |o1:T,j , at:T,j)× lnP (s1:T , o1:T,j , a1:T,j |c)ds1:T

= arg max
c

∫
P (s1:T |o1:T,j , a1:T,j)

[
lnP (s1) +

T∑
t=1

ln Ωj(ot,j |st) +

T∑
t=1

lnπ(at,j |ot,j ; c)

+

∫ T∑
t=1

ln T (st+1|st, at,j ,at,−j)da1:T,−j

]
ds1:T (7)

= arg max
c

T∑
t=1

lnπ(at,j |ot,j ; c)×
∫
P (s1:T |o1:T,j , a1:T,j)ds1:T (8)

= arg max
c

T∑
t=1

lnπ(at,j |ot,j ; c) (9)

= arg max
c

T∑
t=1

[lnπ(act,j |ot,j ; c) + lnπ(adt,j |ot,j ; c)] (10)

We can decompose (6) as (7) by the Markov property. Next, we can ignore the Ω(·) and T (·) of
(7) because these terms are not related to c. Likewise, we can ignore the P (s1:T |o1:T,j , a1:T,j) of
(8). Consequently, (9) can be decomposed as the probabilities with respect to both continuous and
discrete action as (10) because we consider the hybrid action space.

18



Appendix F Loss Function for Character Inference

If π(act,j |ot,j ; c) is the Gaussian distribution and π(adt,j |ot,j ; c) is the Dirac delta distribution, each
term of the equation U(c) is defined as follows:

lnπ(act,j |ot,j ; c) =
1

2
ln 2πσ2

π +
|act,j − a

∗,c
t,j |

2πσ2
π

,

lnπ(adt,j |ot,j ; c) = 1[adt,j 6= a∗,dt,j ](|a∗,dt,j − ā
d
t,j |),

where a∗,ct,j and a∗,dt,j mean the actual action value sampled by observing the target agent, and 1[·]
means the indicator function. When the estimated deterministic action adt,j is different to the actual
action a∗,dt,j (i.e., adt,j 6= a∗,dt,j ), indicator function becomes 1; Conversely, when adt,j = a∗,dt,j , indicator
function becomes 0. If inferred character parameter ĉ is similar to the actual character parameter c,
the errors between the action produced by ĉ and the observed actual action would decrease.
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Appendix G Experiments: Autonomous Driving

To deal with a continuous state space, a hybrid action space, and the agents’ characters, we consider
the autonomous driving simulator.

In the demonstration task, the agents, the autonomous vehicles, drive the L-lane roundabout road.
The agents are randomly deployed on the road in every episode. The agents’ goal is to drive as close
to the desired velocity as possible, and the agents should control the acceleration and lane changes
to reach the goal. To address this task, we set the POMDP. Here, the state includes the velocity and
position of all vehicles, and the observation includes information about neighboring vehicles. The
action includes acceleration and lane change control in continuous and discrete space, respectively.
The reward function comprises three terms: considering the desired velocity, safety distance, and
meaningless lane change. We provide the specific POMDP model in the following subsection.

G.1 State

The state st ∈ S is defined as
st = [vTt ,p

T
t ,k

T
t ]T .

The state st means the total information of all vehicles on the road. Here, vt = [vt,1, vt,2, · · · , vt,N ]
represents the velocity of all vehicles, pt = [pt,1, pt,2, · · · , pt,N ] denotes the positions of the vehicles,
and kt = [kt,1, kt,2, · · · , kt,N ] denotes the lane position of all vehicle at a given time t.

G.2 Observation

The observation ot ∈ O comprises the partial state information that the agent can observe. We
assume that an agent i can observe the following and leading vehicles located in the same and next
lanes. Thus, we set the observation ot,i as follows:

ot,i = [vt,i,∆vt,i,∆pt,i, kt,i]
T ,

where vt,i denotes the velocity of an agent i, ∆vt,i is relative velocity between the agent
i and observable vehicles, ∆pt,i is relative position, and kt,i denotes the lane number at
given time t. Here, ∆vt,i = [∆vt,lL,∆vt,lS ,∆vt,lR,∆vt,fL,∆vt,fS ,∆vt,fR], and ∆pt,i =
[∆pt,lL,∆pt,lS ,∆pt,lR,∆pt,fL,∆pt,fS ,∆pt,fR], where subscripts l and f mean leading and fol-
lowing vehicles, and subscripts L, S, and R signify located left, same, and right lane, respectively.

G.3 Action

The action at,i ∈ A consists of a continuous action act,i ∈ Ac and a discrete action adt,i ∈ Ad at
time t. In this framework, a continuous action is acceleration control, and a discrete action is a lane
change. Acceleration control spaceAc is defined as a space from maximum acceleration to minimum
acceleration [amin, amax]; Lane change space Ad is defined as {−1, 0, 1}. In Ad, adt,i = −1 means
the agent moves a lane outwards (right side), conversely adt,i = 1 means the agent moves a lane
inwards (left side), and adt,i = 0 means the agent keeps the same lane.

G.4 Reward

As discussed in section 3.1, the character-based reward function is defined as Rt,i =
Ri(st, at,i, st+1; ci). In this experiment, the reward function Rt,i is defined as:

Rt,i = c1R1 + c2R2 + c3R3 + rfail,

where c = {c1, c2, c3} denotes a vector of the character coefficients and {R1,R2,R3} denotes a
vector of the reward terms, and rfail means a penalty for the unfeasible actions (i.e., trial to move a
non-existence lane and a lane where other vehicles are located.).

We use rfail term for punishing unfeasible action, which is designed for safety learning purposes. By
introducing this penalty, an agent can learn about unsafe decisions without experiencing an accident.
In other words, it allows the agent to use the safety assistant system fewer times, such as the ADAS
(Advanced Driver Assistance System).
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Subsequently, detailed equations of the reward terms are as follows.

The first reward term is defined as follows:

R1 = 1−
∣∣∣∣vt+1,i − v∗i

v∗i

∣∣∣∣ ,
where v∗i denotes the target velocity of the agent i. We consider that the agent can drive close to the
target velocity. When vt,i = v∗i , the reward term is maximized as the highest value 1; when vt,i 6= v∗i
the reward term is lower than 1.

Next, the second reward term is defined as follows:

R2(∆pt+1,fS) = min

[
0, 1−

(
s∗

∆pt+1,fS

)2
]
,

where s∗ denotes the safety distance between the vehicles, and we design this reward term to induce
the agent to drive with the following vehicle in mind when the agent changes the lane. In this reward
term, s∗ is defined as follows.:

s∗ = s0 + max

[
0, vt+1,fS

(
t∗ +

∆vt+1,fS

2
√
|Amin ×Amax|

)]
,

where s0 denotes the minimum gap between vehicles, t∗ denotes the minimum time headway, the
minimum time gap between two sequential vehicles required to arrive at the same location. This
safety distance is based on the Intelligent Driving Model (IDM) controller, which is one of the
adaptive vehicular control systems [1]. If s∗ ≤ ∆pt+1,fS (i.e., the agent keeps the safety distance
with a following vehicle when moving the lane),R2 becomes the 0; on the other hand,R2 becomes
the negative value.

The third term is defined as follows.

R3 = |adt,i|∆pt,lS ×min[0,∆pt+1,lS −∆pt,lS ]

This reward term is related to unnecessary lane changes, which is a movement to lanes with less driving
space than the current lane. When the agent changes the lane |adt,i| = 1 and ∆pt,lS < ∆pt+1,lS or
keeps the lane |adt,i| = 0, this penalty term can be neglected (i.e., R3 = 0). Conversely, when the
agent changes the lane |adt,i| = 1 and ∆pt,lS ≥ ∆pt+1,lS , this penalty term becomes the negative
value.
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Appendix H Behavioral Pattern over Character Coefficients
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Figure H1: Behavioral pattern of the agent over character coefficient cn. A: Tendency of the average velocity of
the agent over character c1 (c2 = c3 = 0). B: Tendency of the relative distance to the following vehicle over
character c2 (c1 = c3 = 0). C: Tendency of lane-changing frequency over c3 increases(c1 = c2 = 0).

To confirm behavioral differences over the character coefficient, we perform ablation studies on
reward function by isolating the independent effect of each character coefficient. It can provide insight
into how these characters impact the resulting trajectories. The behavioral differences resulting from
character coefficients’ changes are illustrated in Figure H1. The markers and shaded areas represent
the average value and confidence interval with two standard deviations, respectively.

As described in Appendix G, the reward function is defined as Rt,i = c1R1 + c2R2 + c3R3 + rfail,
whereR1,R2, andR3 is related to desired velocity, safe distance and, lane-changing, respectively.
Therefore, changes in each character coefficient affect average velocity, relative distance, and the
number of lane changes.

Figure H1A shows the average velocity of the agent as increasing c1. This result verifies that the
autonomous vehicle drives closer to the desired velocity (v∗i = 3.5m/s). Furthermore, the lower c1
widens the dispersion area of velocity.

Figure H1B represents the relative distance between the autonomous vehicle and the surrounding
vehicle over c2. The result confirms that the relative distance increases as c2 grows. This character
coefficient is straightforwardly related to a safe distance. The agent would pursue safe driving by
securing a larger driving space as c2 grows.

Figure H1C shows the number of lane changes as c3 increases. In the reward function, c3 puts weights
on the unnecessary lane-changing penalty. The unnecessary lane-changing implies movement to
lanes with less driving space than the current lane. As c3 decreases, the agent performs lane-chaining
action more frequently.
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Appendix I Performance of Character Inference

Figure I1: A. The converging trajectories of the character parameters. A black diamond indicates the initial
points, a red diamond indicates the estimated points, and a yellow star means the true point. B. The estimated
character parameters of the agent versus true character parameters. The orange line represents the identity line,
meaning perfect estimation; the blue circles depict the estimated values, and the blue line presents the confidence
interval for three standard deviations.

Figure I1A presents the contour plots of the log-likelihood function for the combination of character
parameters cj,k, where k ∈ [1, 2, 3]. It shows that the true value is well inferred no matter where the
initial value is located. The yellow star, red and black diamonds in these diagrams represent the true,
estimated, and initial points, respectively; the curve line presents the character inference trajectory
from an initial point to an estimated point.

Figure I1B shows the estimated character value by the agent i versus the true character value of the
target j. Each blue point and bar is the average value and the three-standard deviation considering ten
experiments. The orange line indicates that the estimated and true values are identical. It represents
that the character inference is successful without a large error between the estimated and true value,
and in particular, cj,1 and cj,3 are overall accurate with a small standard deviation. Conversely, the
inference about cj,2 becomes inaccurate when cj,2 ≥ 1.2. We conclude that the character inference
module generally infers the agent’s characters well over the observation-action trajectory of the target
agent.
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Appendix J Additional Simulation Results on Autonomous Driving Task

J.1 Original Plot of Figure 4
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Figure J1: Average reward of entire agents over an in-
creasing number of character groups.

Figure J1 shows the original version of Figure 4,
i.e., the average reward of entire agents. In a sin-
gle group scenario (i.e., the entire agents have
the same characters), the results of both the pro-
posed and the FCE-EFT solutions are identical.
This is because all agents have homogeneous
characters, which allows the FCE agent to have
the accurate characters of others. The reward
of without EFT is lower than two solutions in
a single group scenario. This confirms that the
proposed EFT mechanism can help the agent to
consider multi-agent interactions. Next, in two
or more group scenarios, the proposed solution
consistently achieves the highest reward, and
the FCE-EFT consistently achieves the lowest
reward.

J.2 Performance Comparison with Confidence Interval
Table J1: Table 2 with 1 std confidence interval.

Algorithm The number of character groups (n)
1 2 3 4 5

Proposed 2899 3047 2976 2948 3051
±217 ±162 ±196 ±91 ±109

FCE-EFT 2899 2784 2646 2566 2629
±217 ±161 ±196 ±103 ±125

MADDPG 2763 3006 2800 2933 2856
±126 ±103 ±106 ±98 ±121

MAPPO 2753 2862 2597 2529 2763
±206 ±201 ±144 ±131 ±190

Q-MIX 2199 2310 2288 2118 1861
±56 ±39 ±118 ±82 ±132

Dreamer 2911 2813 2733 2631 2701
±312 ±283 ±351 ±521 ±433

MBPO 2089 1964 1523 1893 1633
±804 ±735 ±948 ±792 ±821

ToMC2 3016 2812 2683 2691 2511
±109 ±273 ±309 ±458 ±397

LIAM 1913 1792 1771 1683 1733
±330 ±410 ±367 ±381 ±429

MARL algorithms:

MADDPG [29]: It is a multi-agent version
of Deep Deterministic Policy Gradient
(DDPG) [27]. In training, it uses a cen-
tralized Q-function that uses observations
and actions of all agents.

MAPPO [63]: It is a multi-agent version of
Proximal Policy Optimization (PPO) algo-
rithm [51]. It considers a centralized critic
that uses the local observations across all
agents.

Q-MIX [44]: It uses a mixer and individual
Q-networks. The mixer network uses the
Q-values (output of individual Q-network)
of all agents as inputs and calculates a
global Qtot as an output. Since it can only
handle the discrete action space, we quan-
tize the continuous actions.

Model-based RL algorithms:

Dreamer [15]: It trains an agent that solves
long-horizon tasks purely through latent
imagination. This solution first builds a
reward and transition model and then approximates a policy using a value function. This value
function is based on leveraging the error between the imagined return and the estimated state value.

MBPO [16]: It provides a simple data augmentation process of employing short model-synthesized
rollouts branched from the actual trajectory. We train a policy using a blend data, comprising
synthesized and actual trajectories.

Agent modeling algorithms:

ToMC2 [59]: By incorporating the theory of mind concept, socially intelligent agents are developed
that can determine when and to whom they should share their intentions.

LIAM [38]: By using autoencoder structures to extract representations from the ego agent’s local
information, it models the behaviors of other agents in a partially observable environment.
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Appendix K Multiple Particle Environment

K.1 Task Description

We select the three MPE tasks: Spread, Adversary, and Tag.

• Spread: In this task, there are three agents. Their objective is to reach three landmarks
without collision with each other. A reward function is the sum of negative distances from
landmarks to agents and collision penalty term.

• Adversary: This task includes two cooperating agents and a third adversary agent; there
are true goal and false goal spots. The adversary can observe relative distances without
communication about the goal spots. The cooperative agents aim to reach the goal spot
while avoiding an adversary. The reward function is a sum of the negative distance to the
goal spot and the distance from the adversary to the true goal. We use an adversary agent
controlled by a pre-trained [39].

• Tag: This task is dubbed a predator-prey task. The environment includes two types of agents
and obstacles: a single good agent, three adversary agents, and two obstacle blocks. The
adversaries are slower than a good agent and receive a reward when tagging a good agent.
We employ a pre-trained prey agent from [39].

K.2 Performance Comparison with Confidence Interval

Table K1: Performance comparison with MARL baseline algorithms.

Task MAPPO† MADDPG† Q-MIX† Proposed

Spread −149.29 −157.10 −154.70 −149.12
±0.94 ±2.30 ±4.90 ±1.38

Adversary 9.61 7.80 8.11 10.01
±0.07 ±1.43 ±0.37 ±0.33

Tag 13.78 6.65 15.00 14.57
±4.40 ±3.90 ±2.73 ±2.95
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Appendix L StarCraft Multi-Agent Challenge

L.1 Task Description

This task includes various scenarios where two armies are controlled by allied agents and the game’s
AI. Each agent operates under partial observability and can only perceive the environment within
its sight range. More precisely, observations include attributes like distance, health, and unit type of
nearby allies and enemies. Next, the agents can take actions such as moving in a direction, attacking
specific enemies, or healing allies. The objective is to maximize the win rate across episodes. Agents
receive rewards based on hit-point damage, enemy kills, and a bonus for winning, while losing results
in a negative reward.

We select the three scenarios of the SMAC task: 2s3z, 3s5z_vs_3s6z, and 6h_vs_8z.

• 2s3z: This scenario considers the same number of agents for both alley and enemy. More
precisely, each team includes 2 Stalkers and 3 Zealots.

• 3s5z_vs_3s6z: It deploys the 3 Stalkers and 5 Zealots as allies and 3 Stalkers and 6 Zealots
as enemies.

• 6h_vs_8z: This combat is performed by 6 Hydralisks against 8 Zealots.

L.2 Performance Comparison with Confidence Interval

Table L1: Performance comparison with MARL baseline algorithms.

Task MAPPO† MADDPG Q-MIX† Proposed

2s3z 100 90.3 95.3 98.8
±1.5 ±5.3 ±2.5 ±2.3

3s5z_vs_3s6z 63.3 18.9 82.8 84.3
±19.2 ±4.8 ±5.3 ±9.1

6h_vs_8z 85.9 68.0 9.4 93.8
±30.9 ±34.7 ±2.0 ±6.7
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NeurIPS Paper Checklist

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have claimed our motivation, scope, and contribution in the section of
Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations can be shown in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Mathematical proof can be shwon in Appendix D and E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the hyperparameter for the reproducibility of the proposed
solution in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Task descriptions and experimental settings can be shown in the Section 5 and
Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use confidence intervals and IQR to confirm the statistical reliability of
experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computation resource can be shown in the Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impact can be shown in the Appendix 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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