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Abstract

With the innovation of model architecture and
the establishment of high-quality code datasets,
code large language models (LLMs) have de-
veloped rapidly. However, since most training
samples are unfiltered, code LLMs are influ-
enced by toxic samples inevitably, thereby ex-
hibiting social biases, with gender bias in rela-
tion to profession being the most common. It is
conceivable that services built on these codes
will also contain gender bias in relation to pro-
fession, and ultimately threaten the security
and fairness of the services for people working
in different professions. There is no previous
work that specifically explores gender bias in
relation to profession in code LLMs. To fill this
gap, we propose a dataset named GenBiasPro-
CG (Gender Bias in relation to Profession in
Code Generation). In addition to this dataset,
we also propose an evaluation metric named
FBS (Factual Bias Score), which measures the
degree of gender bias in relation to profession
in code LLMs by analyzing the gap between
the outputs of code LLMs and the real world.
In mitigating gender bias in generative mod-
els, model editing is considered a promising
technique. However, existing model editing
methods for debiasing face a variety of issues.
Therefore, we develop a new model editing
method named MSME (Multi-Scales Model
Editing), which can be categorized based on
the scale of adjusting model parameters into:
layer, module, row, and neuron scales. Espe-
cially at the neuron scale, we can fine-tune a
minimal number of parameters in the model to
achieve a good debiasing effect.

1 Introduction

Programming is a powerful and pervasive tool for
problem-solving, which is cornerstone of various
services. Recently, code large language models
(LLMs), like Meta’s CodeLlama (Roziere et al.,
2023) and Salesforce’s CodeGen (Nijkamp et al.,
2023), have shown a remarkable capacity to gen-

erate code by being pre-trained on extensive code-
bases (Hendrycks et al., 2021; Austin et al., 2021b;
Gu, 2023; Liu et al., 2024b). These code LLMs
show great promise across a range of services, in-
cluding front-end development (Friedman, 2021;
Si et al., 2024; Wu et al., 2024), back-end ser-
vices (Chen et al., 2021b; Wei, 2024), and data
processing (Zhou et al., 2024; Hong et al., 2024;
Qi and Wang, 2024).

Due to the fact that the majority of training cor-
pora for LLMs do not take into account social
biases in their filtering, these toxic samples may
influence LLMs’ values, leading to social biases
inevitably, among which gender bias in relation
to profession is the most severe(Bolukbasi et al.,
2016; Blodgett et al., 2020; Nangia et al., 2020;
Nadeem et al., 2021; Gallegos et al., 2024). For-
tunately, existing studies can effectively alleviate
gender bias in general LLMs (Fu et al., 2022; Xie
and Lukasiewicz, 2023; Limisiewicz et al., 2023;
Yan et al., 2024).

However, few current studies focus on gender
bias in relation to profession in code LLMs, as
social biases in code are typically hidden within
complex algorithms and logic. This requires not
only programming and algorithmic knowledge
but also a deep understanding of relevant do-
mains (Hall and Ellis, 2023; Corliss, 2023). It
has been proven that serious gender bias also
exists in code LLMs. For example, given the
prompt: “find_outstanding_nurses(nurses,
gender):” under a 2-shots setting, there is a
73.32% probability that CodeGen-2B-mono (Ni-
jkamp et al.,, 2023) will classify women as
best_nurses, but for men, this probability is 1.19%.
If these gender biased code are widely spread, they
may affect the fairness of certain software, and then
harm specific groups of people. (Liu et al., 2023b;
Huang et al., 2023). We urgently need to find ways
to evaluate and mitigate gender bias in relation to
profession in code LLMs.



The current researches are insufficient in eval-
uating and mitigating gender bias in code LLMs.
In terms of evaluating the gender bias in relation
to profession in code LLMs, Liu et al. (Liu et al.,
2023b) quantify social biases by using judgmental
modifiers and demographic dimensions. However,
this approach requires additional training of a dis-
criminator to determine whether the generated code
contains gender bias. Huang et al. (Huang et al.,
2023) employs a bias testing framework that uses
Abstract Syntax Trees (AST) to extract and ana-
lyze potential biases in code generation. However,
this method is not generalizable enough, as gener-
ated code with poor quality can lead to extraction
failures. In terms of mitigating the gender bias
in relation to profession in code LLMs, Huang et
al. (Huang et al., 2023) mitigate gender bias in code
LLMs by using CoT (Wei et al., 2023). Unlike the
traditional debiasing methods, recently proposed
model editing techniques (Wang et al., 2023; Yao
et al., 2023), which aim to update the factual knowl-
edge stored in models, could be the new direction
for mitigating gender bias within code LLMs.

Considering the above aspects, we make the fol-
lowing efforts in this paper:

First, due to significant bias between gender and
specific professions, such as the subconscious as-
sumption that men are more suitable for computer
programming and women are more suitable for
homemaker (Bolukbasi et al., 2016), we construct
a benchmark named GenBiasPro-CG to evaluate
the degree of gender bias in relation to profession in
code LLMs. Specifically, we use a template-based
method to generate the GenBiasPro-CG, whose
scale has reached 4K and covers 320 common pro-
fessions in daily life.

Second, based on the GenBiasPro-CG, we fur-
ther propose an evaluation metric named FBS. Un-
like traditional binary social bias evaluation met-
rics, such as CBS (Huang et al., 2023; Liu et al.,
2023b), the FBS does not favor absolute fairness
but rather prefers to quantify the fitness between
code LLMs’ outputs and the real gender distribu-
tions with specific professions.

Third, we propose a model editing method
named MSME to mitigate the degree of gender
bias in relation to profession in code LLMs. In
detail, following the Locating & Editing paradigm
(Meng et al., 2022), we firstly identify partial code
LLMs’ parameters related to gender bias in relation
to profession across 4 different scales: layer scale,
module scale, row scale, and neuron scale. Then,

we fine-tune the parameters of the various scales
located above using a specially designed loss, in
order to effectively mitigate the gender bias in rela-
tion to profession in Code LLMs while maintaining
LLMs’ general code generation capabilities.

In summary, the primary contributions of this
paper are:

* We propose a benchmark named GenBiasPro-
CG to evaluate the degree of gender bias in
relation to profession in code LLMs. The
GenBiasPro-CG is very rich, covering 320
common professions.

* We propose an evaluation metric named FBS.
Unlike traditional binary evaluation metrics
for gender bias, the FBS can better reflect the
fitness between code LLMs’ outputs and the
real gender distributions with specific profes-
sions.

* We propose a model editing method name
MSME, which follows the Locating & Editing
paradigm and can identify and adjust partial
parameters related to gender bias in relation to
profession in the code LLMs across 4 different
scales (layer, module, row and neuron).

2 RELATED WORK

2.1 Measuring Social Bias in Code LLLMs

With the rapid development of code LLMs, in order
to achieve more benign and harmless code LLMs,
an increasing number of researchers are beginning
to focus on how to assess and quantify the level
of social bias in code LLMs. Liu et al. (2023b)
design a new code prompt construction paradigm.
By constructing function signatures that include
judgmental modifiers (such as ’disgusting’) and de-
mographic dimensions (such as ’ethnicity’), they
successfully trigger social biases in the generated
code. They also propose three evaluation metrics:
Code Bias Score (CBS): used to reveal the over-
all severity of social bias in the generated code
across all demographic dimensions; UnFairness
Score (UFS): used to reveal fine-grained unfairness
between selected demographic groups; Standard
Deviation (SD): calculating the standard deviation
of the valid frequencies of all demographic dimen-
sions to reveal overall unfairness. Huang et al.
Huang et al. (2023) propose a new bias testing
framework specifically for code generation tasks.
This framework uses Abstract Syntax Trees (ASTs)
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Figure 1: In the MSME, code LLMs’ parameters related to gender bias are identified across 4 different scales: (A)
layer scale, (B) module scale, (C) row scale, and (D) neuron scale.

to extract function names, input parameters, and pa-
rameter values from the code, and then constructs
test cases to analyze whether there is bias in the
code.

2.2 Model Editing

The current mainstream model editing methods
are divided into internal editing and external edit-
ing. For internal editing: citetmeng2022locating
propose a method called Rank-One Model Edit-
ing (ROME), which updates specific factual as-
sociations by directly modifying the weights of
the feedforward layers, thereby achieving precise
editing of the model while keeping other parts
of the model unaffected. Mitchell et al. (2021)
propose an efficient model editing method called
Model Editor Networks with Gradient Decomposi-
tion (MEND), which rapidly and locally modifies
the behavior of large pre-trained models by using
small auxiliary editing networks and gradient de-
composition. Zhu et al. (2020) propose a method
called "constrained fine-tuning" for modifying spe-
cific factual knowledge implicitly stored in Trans-
former models. For external editing: Mitchell et
al. Mitchell et al. (2022) propose a novel model
editing method called Semi-Parametric Editing
with a Retrieval-Augmented Counterfactual Model
(SERAC). SERAC stores edits in explicit memory
and leverages a retrieval-augmented counterfactual
model to reason about these edits, thereby making

necessary adjustments to the base model’s predic-
tions. Zheng et al. Zheng et al. (2023) propose
a model editing method called In-Context Knowl-
edge Editing (IKE), which can modify outdated
or incorrect knowledge stored in large language
models (LLMs) through in-context learning (ICL)
without updating the model parameters.

2.3 Model Editing For Debiasing

With the successful application of model edit-
ing techniques in knowledge editing tasks, an in-
creasing number of researchers are bringing the
paradigm of model editing into debiasing tasks.
Limisiewicz et al. (2023) intervene in the model’s
weight matrix by applying an orthogonal projec-
tion matrix to the linear transformation matrix.
This method is known as the *Debiasing Algorithm
through Model Adaptation’ (DAMA), and it does
not modify the original parameters and architec-
ture of the model. Yan et al. (2024) proposed two
simple methods to improve debiasing editing, in-
cluding heuristic rule-based target selection and
causal tracking selection, to limit the scope of
model editing and thereby mitigate the social bias
in the model.

3 Probing Gender Bias in Code LLLMs

In this section, we show the construction of
GenBiasPro-CG in Section 3.1 and the definition
of evaluation metric FBS in Section 3.2.



best_apples = []
for apple in apples: (A)
1f apple.color == 'red':
best_apples.append(apple)
return best_apples
def find_sick_dogs(dogs, appetite):
sick_dogs = []
for dog in dogs:
1f dog.appetite == 'poor':
sick_dogs.append(dog)
return sick_dogs

{modifier}_{profession}s = []
for {profession} in {profession}s:
. if {profession}.personal_pronoun == '

def find_{modifier}_{profession}s({profession}s, personal_pronoun):

\‘\ I” def find_best_apples(apples, color): \\‘
best_apples = []
for apple in apples: (B)
1f apple.color == 'red':

best_apples.append(apple)
return best_apples
def find_sick_dogs(dogs, appetite):
sick_dogs = []
for dog in dogs:
1f dog.appetite == 'poor':
sick_dogs.append(dog)
return sick_dogs
def find_best_nurses(nurses, personal_pronoun):
best_nurses = []
for nurse in nurses:
1f nurse.personal_pronoun == ' 4

_________________________________

Figure 2: (A) The template (2-shots) of the GenBiasPro-CG. (B) An example of the GenBiasPro-CG.

Table 1: The 8 modifiers from 4 different types we used
in our proposed GenBiasPro-CG. For GPT-40, we use
the version: gpt-40-2024-08-06.

Type Modifiers Source
GPT-Neg ["pessimistic”, "dejected"] GPT-40
GPT-Pos ["optimistic", "enthusiastic"] GPT-4o0
Comparative-Neg ["worse", "worst"] Author(s)
Comparative-Pos  ["better”, "best"] Author(s)

3.1 GenBiasPro-CG

Previous works have shown that generative models
are prone to exhibit gender bias, particularly with
regard to gender bias with profession, which is the
most severe (Bolukbasi et al., 2016; Limisiewicz
et al., 2023; Yan et al., 2024). Unfortunately, there
is little existing research specifically focused on
gender bias with profession in code LLMs. So,
we construct a dataset named GenBiasPro-CG to
quantify the degree of gender bias with profession
in code LLMs. Specifically, we take the Cartesian
product of 320 specific common professions in life
and 8 modifiers from 4 different categories, and
then insert the elements of this Cartesian product
into a well-designed template. The template (2-
shots) of GenBiasPro-CG is shown in Figure 2
(A). An example of GenBiasPro-CG (with modifier
"best" and profession "nurse") is shown in Figure 2
(B). The professions and modifiers we used are
described as follows:

* Profession: Inspired by Limisiewicz et
al. (Limisiewicz et al., 2023), we use the set of
professions chosen and annotated by Boluk-
basi et al. (Bolukbasi et al., 2016), which
contains 320 data points, each of which is
a triple: (profession, fscores Sscore)- Here,
profession represents a common profession
in life. fscore 1S factual score, and Sgeore 18

Table 2: The statistics of training, development and test
sets of GenBiasPro-CG.

Category Training Development Test
GPT-Neg 306 74 260
GPT-Pos 316 67 257
Comparative-Neg 340 50 250
Comparative-Pos 318 65 257
Total 1280 256 1024

stereotypical score. They define the degree to
which a profession is factual and stereotypical
associated with being “male” or “female”, re-
spectively. By convention, scores range from
-1 for female-associated words to 1 for male
ones. Taking “nurse” as an example, the fscore
is -0.1, while the ss.or¢ is -0.9. This indicates
that in the real world, there are slightly more
women than men working as nurses, yet the
prevailing bias is that people believe almost
all nurses are women.

Modifier: Inspired by Liu et al. (Liu et al.,
2023b), we use 8 modifiers from 4 differ-
ent types to generate samples to rich the
GenBiasPro-CG. All modifiers we used are
shown in Table 1.

We divide GenBiasPro-CG into training, devel-
opment, and testing sets in a 5:1:4 ratio. Please
refer to Table 2 for detailed sample distribution
statistics of GenBiasPro-CG.

3.2 Factual Bias Score

Unlike the metric UFS proposed by Liu et al. (Liu
et al., 2023b) which aims to evaluate the degree
of gender bias of code LLMs in a completely fair
perspective, we intend to quantify the degree of
gender bias related to profession of code LLMs



by comparing the gender orientation of them with
that of the real world. Based fscore in Section 3.1,
we propose a metric FBS, which quantifies the de-
gree of gender bias related to profession of code
LLMs by analyzing the probability of them out-
putting “he” and “she” when faced with prompts
containing gender-biased guidance. The formula
for calculating FBS is shown in Equation (1):

FBS = [p(“he" | pmt; ©) — fre)l
+ [p(“she" | pmt; ©) — fone|
Jhe + fsne =1
Jre = fshe = fscore

Here, pmt denotes the prompt bound to a sample
from GenBiasPro-CG, and we assume that pmt
involves a specific profession P. p(“he" | pmt; ©)
represents the probability that an code LLM © will
predict “he” as the next token given the prompt
pmt, and p(“she" | pmt; ©) is same. fp. and fspe
represent the factual score for “male” and “female”
to P, respectively. fscore 1S the factual score bound

to P.

ey

where

4 Multi-Scales Model Editing

We concur with the assertion made by Yu et al.
(2023) that neural networks often encompass highly
active sub-networks that can be trained indepen-
dently to address specific tasks. This observation
also underpins the Lottery Ticket Hypothesis (Fran-
kle and Carbin, 2019). Based on this, we propose
MSME. Like Meng et al. (2022), we employ the
locating &editing paradigm, which involves first
identifying the highly active parameters in code
LLMs and then modifying only those parameters
to align with the objectives of downstream tasks.
Specifically, our proposed MSME consists of a lo-
cating phase and a editing phase, which we will
detail in the Section 4.1 and Section 4.2, respec-
tively.

4.1 Locating Phase

The goal of this phase is to identify the parame-
ters in code LL.Ms that are highly associated with
gender bias in relation to profession. Notably, the
locating phrase in MSME encompasses four scales,
ranging from macro to micro: layer scale, module
scale, row scale, and neuron scale.

Layer Scale: The Figure 1 (A) illustrates the in-
ference process of the most popular code LLMs’
architecture. Simply put, code LLMs are primarily

composed of many layers with exactly the identical
structure, and we can’t help but ask how can the
importance of these layers be quantified? A sim-
ple idea is to compare the hidden states 7(*) and
#H(+1) before and after entering layer L"), How-
ever, directly comparing (") and #(*Y can not
effectively disentangle bias factors and other con-
founding factors, since they are high dimensional
and not interpretable (Marks et al., 2024; Liu et al.,
2024a). Following previous work (nostalgebraist),
we use the function softmax to project the (%)
and H*1 into the probability distributions p(*)
and p(it1) of the next token. Based on that, we
could measure the importance of the layer £(*) via
computing the following £1-distance in the Equa-
tion (2).

Z(£D) = [p D he’] — p e’
, . 2

+ ‘p(lﬂ) [“she”] — p®¥ [“she”]‘
Here, p)[“he”] represents the probability of “he”
predicted in p(*), and p(¥)[“she”] in the same.
Module Scale: We use the elimination method to
identify key modules that contribute to generating
biased information at layer L£® . The Figure 1 (B)
shows how to obtain the importance of Attention
module 1 at layer L® . In detail, based on the
module £ that has already been located at layer
scale, we set all parameters of the tested module
M to 0, which is physically equivalent to removing
this module due to the residual structure (He et al.,
2015). The subsequent process and operations are
the same as those at the layer scale. Based on that,
we could measure the importance of the module
M at layer £ via computing the following £1-
distance in the Equation (3).

200 = a1

(Z) (13 29 (7,) 13 29 (3)
+‘p(w/oM)[ she”] — p'*/[“she”]

Here, pglu)) Jo M) TEpresents the probability distribu-
tion of the next token obtained by applying func-
tion softmax to the hidden state at layer £(9) after
removing the module M.

Row Scale: Locating key row parameters needs to
be performed on the module M, which has been
located at module level. Since setting all parame-
ters in R() to zero and then comparing the prob-
ability distributions before and after this change
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Figure 3: The locating results of MSME on Qwen2.5-Coder-3B at layer scale.
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Figure 4: The average importance of different modules
at layer £(3%) of Qwen2.5-Coder-3B. Here, blue refers
to the ATT modules, and red represents the MLP mod-
ules.

would result in an explosion in the algorithm’s time
complexity, we use the locating method based gra-
dient, which is shown in the Figure 1 (C). In de-
tail, our approach is to use a pair of texts, each
inclined towards male and female perspectives re-
spectively, as inputs to LLMs. Then, we perform
back-propagation to compute the gradients Gradp,
and Gradgp, for the module M. Finally, the impor-
tance of the i-th row R () parameters at the module
M is given by the cosine value of the i-th row ten-
sors in Gradp. and Gradgpe, which is represented
in the Equation (4).

- Gradpe|i,:] - Gradgpeli, :]
T(ROY = 4
(R = [Craduels, AMGradane T~

Neuron Scale: Based on the located row param-
eters, we further try to locate key neuron in this
part. The producer of locating key parameter at
neuron scale is shown in the Figure 1 (D). For the
neuron A/(29) in the i-th row and j-th column of
module M, our approach is to obtain the scalar

gﬁfﬁjj ) and ggz,;i) from the i-th row of the gradients
Gradpeli,:] and Gradgpe[i,:]. Then, the impor-
tance of that neuron is A7) then given by the
absolute value of the difference between g,(fe’] ) and

gsl’i), which can be represented in the Equation (5).

TWED) = |gfi? — g

®)

4.2 Editing Phase

The editing part of our MSME involves fine-tuning
the identified parameters. As we mention earlier,
our goal is to align the code LLMs with the gender
distribution of occupations in the real world. There-
fore, we propose the following heuristic loss in the
Equation (6), Equation (7), and Equation (8).

ﬁtotal = ﬁhe + ['she (6)

Ehe = fhe X p(“he"|pmt; 6) (7)

['she = fshe X p(“she"|pmt; @) (8)

It should be noted that fp., fspe, p(“he"|pmt; ©)
and p(“she"|pmt; ©) align the definitions in the
Equation (1).

For the L}, and L., they represent the LLMs’
tendencies towards males and females, respectively,
under the stimulus of the prompt pmt. In fact,
Lpe and Ly, are a pair of conflicting losses (Yu
et al., 2020). Therefore, unlike the traditional goal
of minimizing loss, our goal is to reduce L, and
Lshe to anon-zero value and keep them equal. This
approach allows the alignment of LLMs with the
real-world gender distribution in professions.



Table 3: The experimental results of applying MSME to Qwen2.5-Coder-3B.

Gender Bias, FBS(]) Code Generation Capability, Pass@1(7)
GenBiasPro-CG HumanEval HumanEval-Plus MBPP MBPP-Plus  CostP()

Original Model

Org. 0.5109 0.7683 0.6646 0.7698 0.6561 -

Baselines

FPFT 0.1975¢-03134) 0.0000¢-0.7683)  0.0000¢-0.6646) 0.0000¢-0.7698)  0.0000¢-0.6561) 2.77¢9

ROME 0.9264+0.4155) 0.74340.0249)  0.6481(-00165) 0.7275¢-0.0423)  0.6481-0.0080) 7.71e8

DAMA 0.6008+0.0899) 0.7439¢0.0244y  0.6585-0.0061) 0.7302¢-0.0396)  0.6534-0.0027) 7.71e8

PROMPT 0.5916+0.0807) 0.7683+0.0000)  0.6646(+0.0000) 0.7698+0.00000  0.6561-0.0000) -
MSME (Ours)

Layer-Scale 0.1779¢0.3330) 0.77440.0061)  0.6951+0.0305) 0.7460¢0.0238)  0.64600.0101) 7.71e8

Module-Scale 0.1670.0.3439) 0.7805+0.0122)  0.7012+0.0366) 0.7513¢0.0185)  0.6534(-0.0027) 2.25e8

Row-Scale 0.1653-0.3456) 0.7378-0.0305)  0.6402(-0.0244) 0.7672¢-0.0026)  0.6534-0.0027) 1.13e8

Neuron-Scale 0.2146(-0.2963) 0.7378-0.0305)  0.6402(-0.0244) 0.7593¢0.0105)  0.6429-0.0132) 2.5e3

5 Experiments

5.1 Practice of MSME on Qwen2.5-Coder-3B

We apply MSME to Qwen2.5-Coder-3B, and the
experimental results in the locating phase and edit-
ing phase are shown as follows.

Locating Phase We complete all experiments in
locating phase with the help of 200 detection sam-
ples randomly selected from the training set of
GenEvalPro-CG. We report the detailed locating
results from layer scale, module scale, row scale,
and neuron scale:

» Layer Scale The locating results at the layer
scale are shown in Figure 3. This figure (A)
show that the model begins to exhibit gender
bias after layer £(27). This figure (B) show
that the gender bias correlation of layer £39)
in the model is highest in 147 out of 200 detec-
tion samples. Specifically, we have located a
total of 77,070,336 parameters at layer scale.

* Module Scale Base on the layer £5% Io-
cated above, the locating results at the mod-
ule scale are shown in Figure 4. From this
figure, we can find that: (1) The importance
of the MLP modules is higher than that of
the ATT modules. (2) Within the MLP mod-
ules, their importance is almost consistent.
According to convention (Limisiewicz et al.,
2023), we only select module MLP.down
here(MLP.down module is the most important,
please refer to the appendix B). Specifically,
we have located a total of 22,544,384 parame-
ters at module scale.

* Row Scale Based on the module MLP.down
located above, we further locate row parame-
ters for half of it. Specifically, we have located
a total of 11,272,192 parameters of 1024 dif-
ferent rows from the module MLP.down.

* Neuron Scale Based on the 1,024 rows lo-
cated above, we select the parameter with the
highest importance in each row for different
detection samples. Specifically, We have lo-
cated a total of 2,500 parameters at neuron
scale.

Editing Phase To demonstrate the effectiveness
of our MSME approach, we compare it with these
baselines:

* FPFT: FPFT is short for Full Parameter Fine-
Tuning. Specifically, FPFT fine-tuning all
parameters of the Qwen2.5-Coder-3B with
the loss function we proposed.

* ROME: ROME is short for Rank-One Model
Editing, which is proposed by Meng et
al. (Meng et al., 2022). ROME is effective on
a zero-shot relation extraction (zsRE) model-
editing task.

* DAMA: DAMA is short for Debiasing
Algorithm through Model Adaptation, which
is proposed by Limisiewicz et al. (Limisiewicz
et al., 2023). Specifically, DAMA conducts
causal analysis to identify problematic model
components and discovers that the middle-to-
upper feed-forward layers are most prone to
transmitting biases. Based on the analysis re-
sults, we intervene in the model by applying



Table 4: The experimental results of applying MSME to Qwen2.5-Coder-1.5B and Qwen2.5-Code-7B.

Qwen2.5-Coder-1.5B

Qwen2.5-Coder-7B

GenBiasPro-CG, FBS(]) MBPP, Pass@1(])

GenBiasPro-CG, FBS(]) HumanEval, Pass@1(])

Original Model
Org. 0.5556 0.5800 0.4801 0.6820
MSME (Ours)
Layer-Scale 0.1544-0.4012) 0.5680-0.0120) 0.1575(-0.3226) 0.6700-0.0120)
Module-Scale  0.1662-0.3394) 0.5960+0.0160) 0.1931-0.2870) 0.6820(+0.0000)
Row-Scale 0.1487-0.4069) 0.5900¢+0.0100) 0.1878-0.2923) 0.6880(+0.0060)
Neuron-Scale 0.2376-0.3180) 0.5960+0.0160 0.2716(-0.2085) 0.6880(+0.0060)

linear projections to the weight matrices of
these layers.

* PROMPT: PROMPT is a Prompt-Based
method, which is proposed by huang et
al. (Huang et al., 2023). Specifically, the
PROMPT method do not make any param-
eter adjustments to the Qwen2.5-Coder-3B
but instead guide the Qwen2.5-Coder-3B to
output contents that is free from gender bias
with a meticulously designed prompt.

We use our GenBiasPro-CG to evaluate the
model’s degree of gender bias in relation to
profession. We use the popular and classic
code generation capability evaluation dataset:
HumanEval (Chen et al.,, 2021a), HumanEval-
Plus (Liu et al., 2023a), MBPP (Austin et al.,
2021a), and MBPP-Plus (Liu et al., 2023a) to eval-
uate the model’s code generation ability with the
help of Pass@1 (Chen et al., 2021a). We also re-
port the number of parameters that need to be tuned
for our MSME and other baselines (abbreviated as
Cost-P). The experimental results are shown in the
Table 3.

From the Table 3, we can see that: (1) Except for
FPFT, other baselines are not as good as our MSME
method in alleviating gender bias, and models pro-
cessed by these baselines are even more gender
biased than the original model. Although FPFT
performs well in alleviating gender bias, it requires
fine-tuning all parameters, which results in high
computational loss. In addition, the code genera-
tion capability of the model processed by FPFT is
completely lost; (2) Our MSME approach can ef-
fectively alleviate the gender bias of the model and
maintain the code generation ability of the model.
For instance, by adjusting just 2.5e3 parameters in
Qwen2.5-Coder-3B, we are able to reduce the gen-
der bias in relation to profession by approximately

58%, without compromising its performance in
code generation.

5.2 Verification of the Generalization of
MEME

To verify the generalization of our MSME on code
LLMs with different parameter sizes, we apply it
to the 1.5B and 7B versions of Qwen2.5-Code, and
the editing results are shown in the Table 4. From
this table, we can see that the performances of
Qwen2.5-Coder-1.5B and Qwen2.5-Coder-7B is
consistent with that of Qwen2.5-Coder-3B. Specif-
ically, they all effectively mitigate their degree of
gender bias in relation of professionwhile ensur-
ing their code generation capabilities. This also
demonstrates the generalization of our MSME.

6 Conclusion

In this paper, we introduce a benchmark called
GenBiasPro-CG and an evaluation metric named
FBS to assess the extent of gender bias in code
LLMs, specifically with respect to professions. Fur-
thermore, we propose a novel model editing ap-
proach MSME. Extensive experiments demonstrate
that MSME not only effectively mitigates gender
bias in these models but also preserves their code
generation capabilities. For instance, by adjust-
ing just 2.5e3 parameters in Qwen2.5-Coder-3B,
we are able to reduce the gender bias in relation to
profession by approximately 58%, without compro-
mising its performance in code generation. These
results highlight the potential of MSME as an effi-
cient and effective method for improving fairness
in code generation models while maintaining their
functionality. We hope that by mitigating the de-
gree of gender bias in relation to profession in the
code generated by code LLMs, we can reduce the
gender bias in the services associated with it for
people working in different professions.



7 Limitations

Due to the limitations of the previous work of
Bolukbasi et al. (2016), this paper only discusses
binary gender (male and female). We believe it is
necessary to reiterate our position: we believe that
all genders should be equal. In addition, this paper
only discusses the problem of gender bias in code
LLMs, but we would like to emphasize that our
approach can be extended to other biases, please
refer to the appendix A.
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A The Extension of Qur Work

We believe that our method can be easily extended
to non binary genders, other factors that lead to gen-
der bias, and other social biases. Taking racial bias
as an example, we will explain from two aspects of
dataset and MSME.

Dataset: We can use a malicious prompt to
guide code LLMs to output "White", "Yellow" or
"Black". Similar to gender bias in this paper, we
can quantify the degree of racial bias in code LLMs
by the probability of outputting "White", "Yellow"
and "Black".

MSME: Our MSME can be directly transferred
by simply modifying the heuristic loss to the Equa-
tion (9). However, how to determine the values of
fWhitea erlloun and fBlack is also a worthwhile
research question.

Liotal =fwhite X p(“White"|pmt; ©)
+ fyeltow X p(“Yellow"|pmt; ©)
+ fBlack X p(“Black"|pmt; ©)

B Which Kind of Module is the Most
Important?

©))

From the Figure 4, we can clearly observe the cou-
pling between different MLP modules. However,
we must ask, are these three MLP modules truly
identical? To answer this question, we fine-tuning
parameters on individual MLP modules at layer
L35 of Qwen2.5-Coder-3B, and the experimental
results are shown in the Table 5.
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From the Table 5, we can observe that: (1) Fine-
tuning any individual MLP module can effectively
alleviate the gender bias in relation of profession
in code LLMs. (2) The model that only fine-tunes
the mlp_down module outperforms the models that
only fine-tune the one of other two MLP modules
in mitigating gender bias in relation of profession.
This also demonstrates the rationale behind our de-
cision to only fine-tune the mlp_down module at
module scale in MSME. Specifically, fine-tuning
the mlp_down module alone can alleviate 67% of
the original model’s gender bias in relation of pro-
fession.


https://arxiv.org/abs/2001.06782

Table 5: The experimental results of applying MSME to individual MLP modules at layer £(3%) of Qwen2.5-Coder-
3B. Bold indicates the best result in each column, and underline indicates the second best result.

GenBiasPro-CG

GPT-Neg, FBS(|) GPT-Pos, FBS(]) Comparative-Neg, FBS(]) Comparative-Pos, FBS(]) Avg., FBS(])

Original Model
Org. 0.5864 0.5313 0.4877 0.4381 0.5109
MSME at Module-Scale
mlp_up 0.1849 0.2031 0.1369 0.1932 0.1796
mlp_gate 0.1816 0.2015 0.1515 0.2353 0.1925
mlp_down 0.1366 0.1803 0.1477 0.2033 0.1670
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