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Abstract
Spiking Neural Networks (SNNs) have received widespread atten-
tion due to their unique neuronal dynamics and low-power nature.
Previous research empirically shows that SNNs with Poisson cod-
ing are more robust than Artificial Neural Networks (ANNs) on
small-scale datasets. However, it is still unclear in theory how the ad-
versarial robustness of SNNs is derived, and whether SNNs can still
maintain its adversarial robustness advantage on large-scale dataset
tasks. This work theoretically demonstrates that SNN’s inherent
adversarial robustness stems from its Poisson coding. We reveal the
conceptual equivalence of Poisson coding and randomized smooth-
ing in defense strategies, and analyze in depth the trade-off between
accuracy and adversarial robustness in SNNs via the proposed Ran-
domized Smoothing Coding (RSC) method. Experiments demon-
strate that the proposed RSC-SNNs show remarkable adversarial
robustness, surpassing ANNs and achieving state-of-the-art robust-
ness results on large-scale dataset ImageNet. Our open-source im-
plementation code is available at https://github.com/KemingWu/RSC-
SNN .
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1 Introduction
Owing to the distinctive event-driven nature [3] and remarkable
biological plausibility [11], SNNs have gained recognition as the
third generation of artificial neural networks [18, 25]. Compared
with ANNs, SNNs employ discrete binary signals for information
transfer among spiking neurons, where spikes are generated solely
when the membrane potential surpasses the firing threshold. Af-
ter deployment to neuromorphic chips [6, 20, 22, 37], SNNs have
demonstrated their effectiveness and efficacy in a variety of scenar-
ios, including static visual tasks[35, 36], dynamic visual processing
[10, 38], speech classification [24, 39].

Direct [33] and Poisson coding [31] are two popular coding
strategies for SNNs, which define how information is represented
via spike patterns [7]. For SNNs, a static input 𝑥 ∈ R𝑑 needs to
be converted into a time sequence input using coding strategies.
Direct coding will repeatedly input 𝑥 for 𝑇 times. Poisson coding
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uses frequency approximation to generate 𝑇 binary spikes {𝑝𝑖 }𝑇𝑖=1
so that the average number of spikes approximates the intensity
of the pixel 1

𝑇

∑𝑇
𝑖=1 𝑝𝑖 ≈ 𝑥 . Coding methods play a crucial role in

determining the network’s computational efficiency and resilience
to perturbations. Existing empirical studies have shown that the
adversarial robustness of SNNs using Poisson coding is higher
than that of ANNs, and the robustness decreases as the time step
increases [28]. In contrast, SNNs using direct coding have poorer
adversarial robustness than ANNs [15].

The impact of direct coding and Poisson coding on the adver-
sarial robustness has not been systematically analyzed, which un-
dermines the potential advantages of SNNs over ANNs in terms of
adversarial robustness. Moreover, it is still unknown whether SNN
can still maintain the adversarial robustness advantage on large-
scale tasks, because previous work has only been verified on small
datasets such as CIFAR-10/100 [4, 17, 21, 27]. We are interested in
why the adversarial robustness of SNNs employing Poisson coding
is stronger. We note that randomized smoothing and Poisson coding
have similar features in enhancing adversarial robustness, although
they may seem like two different approaches. Randomized smooth-
ing builds a base classifier by introducing noise [5], in contrast,
Poisson coding converts the input into a binary probability.

Inspired by this, we theoretically establish the connection be-
tween randomized smoothing and Poisson coding via analyzing the
statistical characteristics of them. We found that Poisson coding
shares fundamental statistical properties with randomized smooth-
ing, such as expectation and variance, introducing similar noise
smoothing. Since existing research has shown that randomized
smoothing can bring certified adversarial robustness, based on
this observation, we can understand why SNNs using Poisson cod-
ing have adversarial robustness. However, our theoretical analy-
sis shows that SNNs with Poisson coding are greatly affected by
perturbation while bringing about the problem of reduced clean
accuracy. Therefore, it is urgent to establish a guiding principle
for the trade-off between accuracy and robustness in the design of
defense methods against adversarial examples in SNNs. We analyze
in depth the trade-off between accuracy and adversarial robustness
in SNNs via a novel Randomized Smoothing Coding (RSC) method,
which significantly improves the adversarial robustness of SNNs.
To further exploit the potential of this approach, we propose a new
training method designed for RSC-SNN. Experimental results on
extensive datasets show that randomized smoothing coding greatly
enhances the adversarial robustness of SNNs. Simultaneously, The
final results indicate a trade-off between accuracy and adversar-
ial robustness, which is consistent with the conclusions of ANNs
[29, 30, 41]. Furthermore, We also propose an empirical estimation
method to quantify the trade-off called Quantification Trade-off
Estimation (QTE) to help design defense methods with better trade-
offs. The main contributions of our work are summarized as follows:

• We establish the connection between Poisson coding and
randomized smoothing for the first time, which is a novel
insight contributing to the field. Furthermore, we prove the
conceptual equivalence of randomized smoothing and Pois-
son coding, which provides a theoretical foundation for the
robustness of Poisson-encoded SNNs. We proposed a novel
coding method called randomized smoothing coding.

• Observing the inherent clean accuracy drop caused by ran-
domized smoothing coding, we propose a new trainingmethod
called Efficient Randomized Smoothing Coding Training (E-
RSCT) specifically for randomized smoothing coding.

• Experimental results show that RSC-SNNs show remarkable
adversarial robustness in image recognition and achieves
state-of-the-art results on datasets including large datasets
Tiny-ImageNet, ImageNet, while achieving a better trade-off
under the metric of Quantification Trade-off Estimation.

2 Background and Related Work
2.1 Spiking Neural Network
Spiking neurons are the basic units of SNNs, which are abstracted
from the dynamics of biological neurons. The leaky-integrate-and-
fire (LIF) neuron model is widely acknowledged as the simplest
model among all popular neuron models while maintaining biolog-
ical interpretability, in contrast to the many-variable and complex
H-H model [14]. It also has a significantly lower computational
demand [23, 26]. We adopt the LIF neuron model and translate it to
an iterative expression with the Euler method [32]. Mathematically,
the LIF-SNN layer can be described as an iterable version for better
computational traceability:

𝑢
(𝑙 )
𝑖

[𝑡 + 1] = ℎ (𝑙 )
𝑖

[𝑡] + 𝑓 (𝑤 (𝑙 ) , 𝑥 (𝑙−1)
𝑖

[𝑡])
𝑠
(𝑙 )
𝑖

[𝑡] = Θ(𝑢 (𝑙 )
𝑖

[𝑡 + 1] − 𝜗)
ℎ
(𝑙 )
𝑖

[𝑡 + 1] = 𝜏𝑢 (𝑙 )
𝑖

[𝑡 + 1] (1 − 𝑠 (𝑙 )
𝑖

[𝑡]),
(1)

where 𝜏 is the time constant, 𝑡 and 𝑖 respectively represent the
indices of the time step and the 𝑙-th layer, 𝑤 denotes synaptic
weight matrix between two adjacent layers, 𝑓 (·) is the function
operation stands for convolution (Conv) or fully connected (FC), 𝑥
is the input, and Θ(·) denotes the Heaviside step function. When
the membrane potential 𝑢 exceeds the firing threshold 𝜗 , the LIF
neuron will trigger a spike 𝑆 . Moreover, ℎ represents the membrane
potential after the trigger event which equals 𝜏𝑢.

2.2 Adversarial Attacks
Adversarial attacks are designed to fool a model into incorrect
predictions or outputs through carefully crafted inputs [12]. Given a
classifier 𝑓 : R𝑑 → Y, whereY is the set of class labels, the purpose
of an adversarial perturbation 𝛿 is to make 𝑓 (𝑥 + 𝛿) ≠ 𝑓 (𝑥), which
can be formulated as an optimization problem:

max
∥𝛿 ∥𝑝≤𝜖

L (𝑓 (𝑥 + 𝛿) , 𝑦) , (2)

where 𝑓 is the network under attack, L is the loss function, 𝑥 , 𝑦 are
the input and target output of the given network, respectively. 𝜖 is
a parameter that limits the intensity of the perturbation so that it is
not easily observed by the human eye. 𝛿 is the parameter we want to
optimize. In this paper we mainly use two widely adopted gradient-
based adversarial attacks: Fast Gradient Sign Method (FGSM) and
Projected Gradient Descent method (PGD).

FGSM. As a simple but effective attack method [12], adversarial
examples are generated based on the symbolic information of the
gradient to maximize the loss of the perturbed 𝑥 + 𝛿 , which can be
formulated as

𝑥𝑎𝑑𝑣 = 𝑥 + 𝜖 × sign (∇𝑥𝐿 (𝑓 (𝑥,𝑦))) , (3)
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where 𝜖 denotes the strength of the attack.
PGD. As an iterative version of FGSM, it generates adversarial

samples by adding small perturbations in the gradient direction
multiple iterations and limiting the results to a certain range after
each iteration [19], which can be formulated as

x(𝑘 )
𝑎𝑑𝑣

= Π𝜖
{
x(𝑘−1)
𝑎𝑑𝑣

+ 𝛼 × sign
(
∇x𝐿

(
𝑓

(
x(𝑘−1)
𝑎𝑑𝑣

, 𝑦

)))}
, (4)

where 𝑘 denotes the number of the iteration step and 𝛼 is the step
size of each iteration. Π𝜖 is used to ensure that the perturbation
does not exceed a predefined range 𝜖 .

For FGSM and PGD, we explore two scenarios: white-box and
black-box attacks. In the white-box scenario, the attacker possesses
full access to the model’s topology, parameters, and gradients. Con-
versely, in the black-box scenario, the attacker is limited to basic
information about the model. Without specific guidelines, we fix
𝜖 at 8/255 across all methods for testing. For iterative techniques
PGD, the attack step is set at 𝛼 = 0.01, with a total of 7 steps.

2.3 Randomized Smoothing
As a strategy aimed at enhancing model adversarial robustness,
randomized smoothing fortifies the model’s defense against attacks
through the inclusion of random noise [5]. In addition, there are
many works that further explore randomized smoothing [16, 34, 40].

In a classification scenario mapping from R𝑑 → Y, randomized
smoothing constitutes a method to formulate a refined classifier
𝑔 from any base classifier 𝑓 . When evaluated at 𝑥 , the smoothed
classifier 𝑔 identifies the class that the base classifier 𝑓 is most
inclined to predict when 𝑥 undergoes perturbation by isotropic
Gaussian noise:

𝑔 (𝑥) = argmax
𝑐∈Y

P (𝑓 (𝑥 + 𝜖) = 𝑐) , (5)

where 𝜖 ∼ N
(
0, 𝜎2𝐼

)
. The noise level 𝜎 serves as a hyperparam-

eter for the smoothed classifier 𝑔, dictating a trade-off between
adversarial robustness and accuracy.

3 Method
As aforementioned, we suggest achieving a better trade-off between
adversarial robustness and accuracy for designing more practical
SNN models. In this section, we first provide an empirical metric to
quantify the trade-off between adversarial robustness and accuracy.
We then introduce a new coding method called RSC to improve the
adversarial robustness, which enhances the quantitative trade-off
between adversarial robustness and accuracy. Furthermore, theo-
retical analysis is given to illustrate the conceptual equivalence of
RSC and Poisson coding. After observing the inherent limitations
of RSC, we further propose a specified training method designed
for RSC to improve its clean accuracy and adversarial robustness.

3.1 Quantification Trade-off Estimation
Quantification trade-off is important for designing methods to bet-
ter trade-off. Therefore, before giving full details of our methods,
we first try to formulate a Quantification Trade-off Estimation.

Definition 3.1. Quantification Trade-off Estimation (QTE). From
Figure 1, we can get that the process of achieving better trade-offs is
also essentially making the area larger. For a trained model, assume

Accuracy

Attack Intensity

Vanilla SNN

RSC-SNN (Ours)

0

Figure 1: An illustration of the trade-off between adversarial
robustness and accuracy can be represented by the absolute
value of the slope, indicating the SNN model’s adversarial
robustness. The area of a triangle can quantitatively estimate
this trade-off. It is important to note that the slope illustrates
the correlation between accuracy and attack strength, rather
than implying a specific linear relationship.

that its accuracy under attack intensity 𝜂 is 𝐴(𝜂), Quantification
Trade-off Estimation between two attack intensities 𝜂𝑎 and 𝜂𝑏 can
be formulated as

QTE=
���� (𝜂𝑏 − 𝜂𝑎) (𝐴 (𝜂𝑏 ) +𝐴 (𝜂𝑎))

2

���� . (6)

Obviously, a larger Quantification Trade-off Estimation implies
higher overall accuracy within the attack interval, signifying an
improved trade-off in the model implementation. Simultaneously,
it’s noticeable that a smaller difference in |𝜂𝑏 − 𝜂𝑎 | corresponds to
more accurate estimations of the model’s quantification trade-offs.

3.2 Randomized Smoothing Coding (RSC)
Motivated by randomized smoothing, we first introduced random
smoothing of Gaussian noise into the input of SNN. For each sample
input 𝑥 ∈ R3×𝐻×𝑊 , there is a given time step 𝑇 . There are actually
two ways to add noise to the input sample of the SNN model. One
is to directly add a fixed noise a to the input and no longer changes
at each time step, which can be formulated as

𝑥 = 𝑥 + 𝜖, 𝜖 ∼ N
(
0, 𝜎2𝐼

)
, (7)

it can also be expressed as

𝑥 ∼ N
(
𝑥, 𝜎2𝐼

)
. (8)

Another way is to add different Gaussian noises at each time
step, which can be formulated as

𝑥𝑖 = 𝑥𝑖 + 𝜖𝑖 , 𝜖𝑖 ∼ N
(
0, 𝜎2𝐼

)
, 𝑖 = 1, · · · , |𝑇 | , (9)

where the noise level 𝜎 serves as a hyperparameter for the model,
dictating a trade-off between adversarial robustness and accuracy.

After adding noise to 𝑥 , we further limit the range of 𝑥 to [0, 1],
which can be formulated as

𝑥clamp = clamp (𝑥) = clamp (𝑥 + 𝜖) , 𝑥clamp ∈ [0, 1] . (10)
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For the first method, we named it RSC-I, and the second method
RSC-II. In the experiment, we found that RSC-I can bring about
a substantial improvement in adversarial robustness compared to
RSC-II, and the degree of clean accuracy decrease will be higher
than that of RSC-II; RSC-II can also bring about a small improve-
ment in adversarial robustness, and the degree of clean accuracy
decrease will be lower than that of RSC-I. Due to the need for higher
adversarial robustness, we choose RSC-I as our main method.

3.3 Theoretical Analysis for Randomized
Smoothing Coding

For the convenience of analysis, we first explain the meaning of
the symbols. The input image is denoted as 𝒙 . The expectation of
𝑿 is denoted as 𝑬 [𝑿 ] and the covariance matrix is denoted as 𝚺𝑿 .

For Poisson coding, the input is a random vector 𝑿𝑷 , where the
vector follows a Bernoulli binomial distribution with probability
vector 𝒑. For randomized smoothing, the input is a random vector
𝑿𝑹𝑺 , which follows a normal distribution centered at 𝒙 with co-
variance 𝝈2, denoted as 𝑿𝑹𝑺 ∼ N(𝒙,𝝈2). The following formula
can be satisfied:
𝑬 [𝑿𝑷 ] = 𝑬 [𝑿𝑹𝑺 ] = 𝒙

𝚺𝑿𝑷 = diag(𝒙 (1 − 𝒙)) = diag(𝑥1 (1 − 𝑥1), . . . , 𝑥𝑑 (1 − 𝑥𝑑 )) .
𝚺𝑿𝑹𝑺 = diag(𝝈2) = diag(𝜎21 , 𝜎

2
2 , . . . , 𝜎

2
𝑑
).

(11)

We can observe that Poisson coding and randomized smoothing
coding can be considered as an equivalence in theory.

To better explain why randomized smoothing coding is better
than Poisson coding, the results of the two different perturbed cod-
ing methods in a linear layer are explored through the following the-
orem. For the convenience of expression, we express the adversarial
sample as 𝒙 +𝝐 and denote the linear layer as a deterministic weight
matrix𝑾 , the original output as a random variable 𝒀𝑷/𝑹𝑺𝒐𝒓 𝒊𝒈𝒊𝒏𝒂𝒍
and the attacked output as a random variable 𝒀𝑷/𝑹𝑺𝒂𝒕𝒕𝒂𝒄𝒌 . For both
coding methods, the expectation of original 𝒀𝒐𝒓 𝒊𝒈𝒊𝒏𝒂𝒍 and attacked
𝒀𝒂𝒕𝒕𝒂𝒄𝒌 are given by:

𝑬 [𝒀𝒐𝒓 𝒊𝒈𝒊𝒏𝒂𝒍 ] = 𝑬 [𝑾𝑿 ] =𝑾𝑬 [𝑿 ] =𝑾𝒙 .

𝑬 [𝒀𝒂𝒕𝒕𝒂𝒄𝒌 ] =𝑾 (𝒙 + 𝝐). (12)

Although the expectations of both exhibit the same character-
istics, their covariances behave differently. In Theorems 3.2 and
3.3, we obtain two covariance results with Poisson coding and
randomized smoothing coding.

Theorem 3.2. The covariance matrix of Poisson coding before and
after the attack satisfies:

𝚺𝒀𝑷𝒐𝒓 𝒊𝒈𝒊𝒏𝒂𝒍
=𝑾diag(𝒙 (1 − 𝒙))𝑾𝑇 .

𝚺𝒀𝑷𝒂𝒕𝒕𝒂𝒄𝒌
=𝑾diag(𝒙 (1 − 𝒙) + 𝝐 (1 − 2𝒙) − 𝝐2)𝑾𝑇 .

(13)

Theorem 3.3. The covariance matrix of randomized smoothing
coding before and after the attack satisfies:

𝚺𝒀𝑹𝑺𝒐𝒓 𝒊𝒈𝒊𝒏𝒂𝒍/𝒂𝒕𝒕𝒂𝒄𝒌
=𝑾diag(𝝈2)𝑾𝑇 . (14)

All the above theorems are proved in the supplementary material.

Proposition 3.4. (Covariance invariance of RSC.) Poisson coding
and randomized smoothing coding demonstrate distinct character-
istics regarding covariance. For randomized smoothing coding, the

Feature map after Poisson coding layer

(a)

(b)

Feature map after RS coding layer

(a) An example of feature maps processed by RS and Poisson coding selected from
CIFAR10, which shows a high degree of similarity between them.

Feature map after Poisson coding layer

(a)

(b)

Feature map after RS coding layer

(b) The average cosine similarity among three coding methods on CIFAR10, CI-
FAR100, and Tiny-ImageNet datasets indicates a notably high resemblance between
randomized smoothing coding and Poisson coding.

Figure 2: Visual verification of equivalence of randomized
smoothing coding and Poisson coding.

noise variance introduced to the input remains constant and does not
vary with the input itself.

While Poisson coding and randomized smoothing share the high-
level objective of enhancing adversarial robustness through noise
averaging, they differ significantly in the specific nature of the
noise added. Randomized smoothing employs isotropic Gaussian
noise, resulting in predictable and manageable outcomes due to
its uniform variance in all directions. In contrast, Poisson coding
introduces noise whose covariance is influenced by both the input
magnitude and perturbation attacks, leading to input-dependent
variance. Consequently, the constant noise variance in randomized
smoothing ensures a more stable and consistent smoothing process,
potentially making it more effective in certain scenarios.

Observation 3.5. (Equivalence between RSC and Poisson cod-
ing.) The image inputs to SNNs, following processing by the random-
ized smoothing coding layer, exhibit similar characteristics to that of
the Poisson coding layer, displaying a notably high cosine similarity.

The phenomenon in Figure 2(a) stems from coding properties.
Randomized Smoothing regularizes feature maps by smoothing
out irregularities, enhancing robustness. On the contrary, Poisson
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coding, introduces binary spikes based on pixel intensity, poten-
tially resulting in a noisier feature map. This observation is clearly
depicted in Figure 2(a) and 2(b), where the average cosine similarity
of randomized smoothing coding and Poisson coding stands at a no-
tably elevated level, suggesting a equivalence between them. More
visualization results are shown in the supplementary material.

Table 1: Checklist for characteristic behaviors caused by ob-
fuscated and masked gradients.

Items to identify gradient obfuscation Test

(1) One-step attacks perform better than iterative attacks Pass
(2) Black-box attacks are better than white-box attacks. Pass
(3) Unbounded attacks do not reach 100% success. Pass
(4) Increasing distortion bound does not increase success. Pass
(5) Random sampling finds adversarial examples. Pass

Table 2: Results show that our proposed method can still
defend against EOT attacks.

Dataset Architecture Methods Clean PGD EOTPGD

CIFAR10 VGG-5 RSC-0.1 80.29 37.28 28.72
VGG-5 RSC-0.5 78.67 58.94 48.93

CIFAR100 VGG-11 RSC-0.1 57.05 24.35 18.95
VGG-11 RSC-0.5 56.25 33.96 27.14

3.4 Checks for RSC Gradient Obfuscation
Gradient obfuscation is the main reason why many adversarial
defense methods are mistakenly considered effective. By certain
methods, the neural network cannot produce accurate gradients,
resulting in the inability to produce effective attacks.

To evaluate the attack effectiveness of the RSC , we employ the
systematic checklist presented in [1] to scrutinize the gradient ob-
fuscation of this novel coding scheme. This assessment is primarily
grounded in the data delineated in Table 3 and Table 4 within the
main body of the text, with a brief summary provided in Table 1.
The detailed analysis can be found in the supplementary material.

Expectation over Transformation (EOT) computes the gradient
over the expected transformation to the input as a method to attack
randomized models [2]. We use EOTPGD proposed by Zimmer-
mann [42] to evaluate the effectiveness of our method. The results
in Table 2 show that our method can defend against EOT attacks.

3.5 Efficient-RSC Training (E-RSCT)
We found that while RSC improved the SNN model’s adversarial
robustness, it also led to a certain degree of decline in clean accuracy.
To alleviate this problem, we propose E-RSCT for training SNN
models using RSC. Motivated by the idea of knowledge distillation,
we found that the corresponding ANN have naturally high clean
accuracy, so we decided to use a pre-trained ANN as a teacher
model to transfer the learned knowledge to the RSC-SNN model.

E-RSCT consists of two parts of loss functions during the training
process. First, in order to transfer the learned knowledge from the

Algorithm 1 Training process of E-RSCT for one epoch.
Input: An SNN to be trained with RSC; a hyperparameter 𝜎 ;

training dataset; total training iteration: 𝐼train.
Output: The well-trained SNN.
1: for all 𝑖 = 1, 2, . . . , 𝐼train iteration do
2: Get mini-batch training data, 𝒙in (𝑖) and class label, 𝒚(𝑖);
3: Feed the 𝒙in (𝑖) into the SNN ;
4: Generate new sample 𝑥 by Eq. 7;
5: Process 𝑥 to get 𝑥clamp by Eq. 10;
6: Calculate the SNN output, 𝒐out (𝑖) by Eq. 1 ;
7: Compute the loss function L𝐸−𝑅𝑆𝐶 = 𝜆L𝐾𝐷 + L𝑃−𝑆 by

Eq. 16;
8: Backpropagation and update model parameters;
9: end for

teacher model [13], we define the loss function of the first part as
L𝐾𝐷 and use KL divergence to measure the difference between the
student network and the teacher network to get L𝐾𝐷 .

L𝐾𝐷 = 𝐾𝐿 (𝑂𝑠𝑡𝑢 ,𝑂𝑡𝑒𝑎) , (15)

where𝑂𝑡𝑒𝑎 is the output of the teacher ANN model and𝑂𝑠𝑡𝑢 is the
output of the student SNN model.

For the second part of the loss function, we use the pre-synaptic
loss L𝑃−𝑆 [8] in training.

By combining L𝐾𝐷 and L𝑃−𝑆 , we get the new loss function
used for the novel training as follows

L𝐸−𝑅𝑆𝐶 = 𝜆L𝐾𝐷 + L𝑃−𝑆 , (16)

where 𝜆 is used to achieve a trade-off between L𝐾𝐷 and L𝑃−𝑆 .
Without special explanation, we select 𝜆 = 0.1 in the experiment.
The detail of E-RSCT is shown in Algo.1.

4 Experiments
4.1 Experimental Setup
We verify the effectiveness of the proposed RSC and E-RSCT on
multiple datasets and compare with ANNs simultaneously. In the
following experiments, SNNs using direct coding are represented
by DIRECT, SNNs using RS coding are represented by RSC and
SNNs using Poisson coding are represented by POISSON. For the
trade-off measurement of the model under different attacks, we
use F-QTE to represent the Quantification Trade-off Estimation
under the FGSM attack, and P-QTE to represent the Quantification
Trade-off Estimation under the PGD attack. Detailed implementa-
tion is referred to in the supplementary material. For adversarial
robustness evaluation, specific hyperparameter settings are intro-
duced in Section 2.2. In the experiments of E-RSCT, we used the
hyperparameters set in Section 3.5.

4.2 Performance under attacks.
Clean accuracy and adversarial robustness. Clean accuracy
refers to the accuracy on the clean test dataset. It was represented as
CLEAN in the experiment. The evaluation of adversarial robustness
accuracy is denoted as FGSM and PGD respectively.

Results on different datasets. Table 3 illustrates the perfor-
mance evaluation of our proposed RSC scheme. For constructing
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Table 3: White-box attack results on four datasets of ANN and three different coding methods of SNN. The best result is
highlighted with bold and the second with underlined. The larger the better for all metrics.

Dataset Architecture Coding Methods Clean FGSM PGD F-QTE P-QTE

CIFAR10

VGG-5 ANN 90.95 10.89 0.12 4.07 3.64
VGG-5 Direct 90.69 6.19 0.03 3.88 3.63
VGG-5 Poisson 83.18 31.20 22.16 4.58 4.21
VGG-5 RSC-0.1(Ours) 80.29 51.29 37.28 5.26 4.70
VGG-5 RSC-0.5(Ours) 78.67 66.61 58.94 5.81 5.50

CIFAR100

VGG-11 ANN 72.86 4.56 0.13 3.10 2.92
VGG-11 Direct 72.45 4.67 0.22 3.08 2.91
VGG-11 Poisson 58.49 19.46 15.56 3.12 2.96
VGG-11 RSC-0.1(Ours) 57.05 32.48 24.35 3.58 3.22
VGG-11 RSC-0.2(Ours) 55.42 37.83 29.69 3.73 3.40
VGG-11 RSC-0.5(Ours) 51.30 40.81 33.96 3.68 3.41

Tiny-ImageNet

VGG-16 ANN 60.77 2.08 0.00 2.51 2.43
VGG-16 Direct 57.90 2.04 0.01 2.40 2.32
VGG-16 Poisson 48.14 6.79 2.68 2.20 2.03
VGG-16 RSC-0.01(Ours) 48.33 7.73 2.15 2.24 2.02
VGG-16 RSC-0.1(Ours) 47.47 22.63 13.75 2.80 2.45

ImageNet

ResNet-19 ANN 67.00 0.66 0.00 2.71 2.68
ResNet-19 Direct 56.41 2.57 0.02 2.36 2.26
ResNet-19 Poisson 40.21 10.61 2.68 2.03 1.72
ResNet-19 RSC-0.1(Ours) 44.25 17.73 8.50 2.48 2.11

SEW-ResNet-18 Direct 64.40 4.56 0.00 2.76 2.58
SEW-ResNet-18 Poisson 52.29 15.73 4.70 2.72 2.28
SEW-ResNet-18 RSC-0.1(Ours) 53.79 25.86 7.38 3.19 2.45

Table 4: Black-box attack results on four datasets of ANN and three different coding methods of SNN. The best result is
highlighted with bold and the second with underlined. The larger the better for all metrics.

Dataset Architecture Coding Methods Clean FGSM PGD F-QTE P-QTE

CIFAR10
VGG-5 Direct 90.69 20.75 3.52 4.46 3.77
VGG-5 Poisson 83.18 43.06 36.15 5.05 4.77
VGG-5 RSC-0.1(Ours) 80.29 59.25 49.55 5.58 5.19

CIFAR100
VGG-11 Direct 72.45 11.79 4.08 3.37 3.06
VGG-11 Poisson 58.49 31.03 27.36 3.58 3.43
VGG-11 RSC-0.1(Ours) 57.05 41.74 35.56 3.95 3.70

Tiny-ImageNet
VGG-16 Direct 57.90 14.82 8.15 2.91 2.64
VGG-16 Poisson 48.14 21.22 16.73 2.77 2.59
VGG-16 RSC-0.1(Ours) 47.47 35.06 29.40 3.30 3.07

ImageNet
SEW-ResNet-18 Direct 64.40 15.75 11.89 3.21 3.05
SEW-ResNet-18 Poisson 52.29 16.87 16.65 2.77 2.76
SEW-ResNet-18 RSC-0.1(Ours) 53.79 29.52 27.91 3.33 3.27

effective attacks on SNN, all gradient attacks are applied based on
BPTT. The specific implementation of BPTT is in the supplemen-
tary material. The results consistently demonstrate the efficacy of
our RSC in enhancing model adversarial robustness, as evidenced
by notable enhancements in adversarial robustness accuracy across
all attack methodologies. Particularly striking is the significant im-
provement in adversarial robustness against stronger white-box
iterative attacks. Notably, the VGG-5 model exhibited a remark-
able 58.91% increase in accuracy when attacked by PGD compared

to direct coding on the CIFAR-10 dataset. Simultaneously, the im-
provement of F-QTE and P-QTE also shows that our method better
achieves the trade-off between accuracy and adversarial robust-
ness. The experimental results that RSC shows more adversarial
robustness than Poisson coding well verify Theorem 3.2 and 3.3.

Experiments on Tiny-ImageNet and ImageNet. Previous
work was limited to small datasets such as CIFAR-10 and CIFAR-100.
We also conducted experiments on Tiny-ImageNet and ImageNet to
provide a baseline for the evaluation of SNN adversarial robustness.
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Table 5: Enhanced robustness with adversarial training. The
best result is highlighted with bold. The larger the better for
all metrics.

Dataset Architecture Methods Clean FGSM PGD

CIFAR10 VGG-5 RSC-0.1 80.29 51.29 37.28
VGG-5 RSC-0.1 + Adv 80.27 55.58 43.59

CIFAR100 VGG-11 RSC-0.1 57.05 32.48 24.35
VGG-11 RSC-0.1 + Adv 56.25 35.53 27.57

(a) Ablation experiments of noise 𝜎2 -
FGSM.

(b) Ablation experiments of noise 𝜎2 -
PGD.

Figure 3: Ablation experiment for noise level 𝜎2.

It can be seen that the adversarial robustness of RSC-SNN has been
significantly improved compared to DIRECT and POISSON.

Black-box attack results on different datasets. In this sec-
tion, we assess the adversarial robustness of RSC against black-box
attacks. We utilize a separately trained SNN with an identical archi-
tecture to generate white-box attack samples. The results presented
in Table 4 demonstrate that RSC demonstrates significant resilience
against adversarial attacks, surpassing traditional SNNs in both
FGSM and PGD scenarios. This robustness positions RSC as no-
tably more resilient to adversarial intrusions in black-box scenarios.
Compared with traditional SNNs, RSC-SNN’s F-QTE and P-QTE
have also improved in black-box attack scenarios.

Enhanced Robustness with Adversarial Training. Adversar-
ial training, has been the most widely accepted defense method. To
evaluate the combined robustness of RSC and adversarial training,
we explored their transferability and scalability. We trained SNN-
Direct, SNN-Poisson and RSC using low-intensity FGSM samples
and then exposed them to more complex and larger 𝜖 white-box
attacks. Results in Table 5 (rows 1-2 for CIFAR10 and rows 3-4 for
CIFAR100) show a significant boost in robustness for RSC when
combined with adversarial training. On CIFAR-10, this combination
increased robustness for FGSM (to 55.58% from 51.29%) and PGD
(to 43.59% from 37.28%). For CIFAR-100, resilience improved against
FGSM (to 35.53% from 32.48%) and PGD (to 27.57% from 24.35%).
In conclusion, the integration of RSC with adversarial training
gives it the versatility to withstand a wider range of more powerful
adversarial attacks.

4.3 The effectiveness of E-RSCT.
We can see from Table 3 that while RSC brings significant adver-
sarial robustness improvement to the model, it also leads to clean
accuracy decline. To alleviate this problem, we proposed E-RSCT
for RSC-SNN. Table 6 summarizes the clean and robust accuracy
of SNN models trained with and without E-RSCT. It can be seen
from Table 6 that the clean accuracy and adversarial robustness
of the model trained using E-RSCT on all datasets have been im-
proved to a certain extent. On the CIFAR10 dataset, while the clean
accuracy was improved by 1.74%, its robust accuracy for FGSM
and PGD was also improved by 3.23% and 2.70% respectively. On
other datasets, an average accuracy improvement of more than
1% has been achieved. The experimental results concretely verify
the effectiveness of our proposed training algorithm. The improve-
ment of F-QTE and P-QTE also shows that E-RSCT achieves better
trade-offs.

4.4 Ablation Studies
Effect of different noise levels 𝜎2 on RSC. Investigating the
pivotal role of the noise level parameter 𝜎2 within the novel intro-
duced RSC framework holds significant importance in regulating
the model’s adversarial robustness. We conducted an exhaustive
ablation study to discern the effect of parameter variations on the
model’s adversarial robustness. Specifically, we selected three dis-
tinct values: 𝜎2 = 0.01, 𝜎2 = 0.1, and 𝜎2 = 0.5 to meticulously
evaluate the model’s adversarial robustness under varying attack
intensities FGSM and PGD across multiple values (𝜖 = 2, 4, 6, 8).
The comprehensive experimental outcomes are visually presented
in the Figure 3. The solid line shows clean accuracy, and the dotted
line shows post-attack accuracy.

From Figure 3, a noticeable trend emerges: as the noise level
(𝜎2) escalates, there’s a concurrent decline in the model’s clean
accuracy, a phenomenon congruent with our empirical analyses.
Simultaneously, with an increase in 𝜎2, the model’s adversarial
robustness exhibits a consistent uptrend. Remarkably, the robust
accuracy under various attack intensities showcases a discernible
hierarchy, wherein higher 𝜎2 values correspond to augmented ad-
versarial robustness. Specifically, the variations in robust accuracy
across different attack intensities become more pronounced with
increasing 𝜎2. Evidently, this underscores the significance of strik-
ing a balance between clean accuracy and adversarial robustness
in real-world RSC applications. Achieving this balance necessitates
meticulous exploration of 𝜎2 values to pinpoint the optimal choice
aligned with specific application requisites.

4.5 Comparison with State-of-the-art Work on
Adversarial Robustness of SNN

To evaluate the effectiveness of our proposed RSC, we compare
it with the results of existing state-of-the-art work. We conduct
experimental comparisons in the case of FGSM and PGD white-box
attacks on the CIFAR-10 and CIFAR-100 datasets. The hyperparam-
eters of the attack are set to 𝜖 = 8/255 for FGSM and 𝛼 = 0.01 for
PGD with a total of 7 steps. The comparison results are shown in
Table 7.

CIFAR-10. On the CIFAR-10 dataset, employing the RSC VGG-
5 model with a noise level of 𝜎2 = 0.1, our approach showcased
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Table 6: Comparison of results with E-RSCT and without E-RSCT. The best result is highlighted with bold. The larger the better
for all metrics.

Dataset Architecture Methods Clean FGSM PGD F-QTE P-QTE

CIFAR-10 VGG-5 Baseline 80.29 51.29 37.28 5.26 4.70
VGG-5 +E-RSCT 82.03 54.52 39.98 5.46 4.88

CIFAR-100 VGG-11 Baseline 57.05 32.48 24.35 3.58 3.26
VGG-11 +E-RSCT 58.04 34.89 26.67 3.72 3.39

Tiny-ImageNet VGG-16 Baseline 47.47 22.63 13.75 2.80 2.45
VGG-16 +E-RSCT 48.29 24.01 15.46 2.89 2.55

ImageNet SEW-ResNet-18 Baseline 53.79 25.86 7.38 3.19 2.45
SEW-ResNet-18 +E-RSCT 54.77 27.21 8.84 3.28 2.54

Table 7: Comparison with others works. The best result is highlighted with bold and the second with underlined. The larger
the better for all metrics.

Dataset Architecture Methods FGSM PGD F-QTE P-QTE Clean

CIFAR10

VGG-5 Baseline 6.19 0.03 3.88 3.63 90.69
VGG-5 Sharmin et al. [28]ECCV 15.00 3.80 4.17 3.72 89.30
VGG-5 Kundu et al. [15]ICCV 38.00 9.10 5.02 3.86 87.50
VGG-5 Ding et al. [9]NeurIPS 45.23 21.16 5.44 4.48 90.74
VGG-5 Our work 54.52 39.98 5.46 4.88 82.03

CIFAR100

VGG-11 Baseline 5.30 0.02 3.15 2.93 73.33
VGG-11 Sharmin et al. [28]ECCV 15.50 6.30 3.20 2.83 64.40
VGG-11 Kundu et al. [15]ICCV 22.00 7.50 3.48 2.90 65.10
VGG-11 Ding et al. [9]NeurIPS 25.86 10.38 3.87 3.25 70.89
VGG-11 Our work 34.89 26.67 3.72 3.39 58.04

Tiny-ImageNet VGG-16 Baseline 2.04 0.03 2.40 2.32 57.90
VGG-16 Our work 24.01 15.46 2.89 2.55 48.29

ImageNet SEW-RESNET-18 Baseline 4.56 0.00 2.76 2.58 64.40
SEW-RESNET-18 Our work 27.21 8.84 3.28 2.54 54.77

promising advancements. As indicated in the table, our method
notably elevated the model accuracy against FGSM and PGD attacks
by 48.33% and 39.95%, respectively, in contrast to the vanilla model.
Furthermore, in comparison with the best-performing outcomes
[9], our approach achieved a substantial enhancement in accuracy
by 9.29% for FGSM and 18.82% for PGD attacks.

CIFAR-100. On the CIFAR-100, our utilization of the RSC VGG-
11 model with a noise level of 𝜎2 = 0.1 yielded notable advance-
ments. The provided table demonstrates that our method elevated
accuracy against FGSM and PGD attacks by 29.59% and 26.65%,
respectively, surpassing the performance of the vanilla model. In
comparison to the top-performing outcomes, our approach show-
cased compelling enhancements, achieving a remarkable 9.03%
accuracy improvement for FGSM and 16.29% for PGD attacks.

Upon comparing our experimental outcomes with the State-
of-the-Art (SOTA) approaches on the CIFAR-10 and CIFAR-100
datasets, our proposed method showcased significant enhance-
ments in the model’s adversarial robustness. F-QTE and P-QTE
also achieve comparable results to SOTA. Notably, while augment-
ing adversarial robustness, we observed a decline in clean accuracy
compared to the vanilla model. Hence, to achieve a balance between
clean accuracy and adversarial robustness, we meticulously fine-
tuned various hyperparameters involved in the training process.

Parameters like the noise level 𝜎 , the proportion of the loss func-
tion 𝜆, etc., were judiciously adjusted in the E-RSCT framework for
refinement. However, achieving superior results still necessitates
further extensive research and exploration.

5 Conclusion
Our present work offers a theoretical foundation for the observed
empirical robustness of Poisson-encoded classifiers against adver-
sarial attacks. Observing that randomized smoothing and Poisson
coding exhibit similar characteristics, we first demonstrate the
equivalence between the two, explaining why Poisson coding SNNs
have adversarial robustness. Furthermore, our theoretical analysis
shows that randomized smoothing is more stable than Poisson cod-
ing. On this basis we propose a novel randomized smoothing coding,
which enhances the adversarial robustness of SNNs. Experimental
results show that our method achieves state-of-the-art adversarial
robustness. However, there is still room for further improvement in
clean accuracy. Therefore, valuable future work directions include
further improving the trade-off between adversarial robustness and
clean accuracy. We believe our work will pave the way for further
research on more applications of safety-critical SNNs.
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