Under review as a conference paper at ICLR 2026

CAUSALPLAN: EMPOWERING FEFFICIENT LLM
MULTI-AGENT COLLABORATION THROUGH
CAUSALITY-DRIVEN PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) agents often generate causally invalid plans in
collaborative tasks due to their reliance on surface-level correlations rather than
grounded causal reasoning. This limitation undermines their performance in terms
of coordination and planning in dynamic environments. We address this challenge
with CausalPlan, a framework that integrates explicit structural causal reasoning
into the LLM planning process. At the core of CausalPlan is the Structural Causal
Action (SCA) model, which learns a causal graph from agent trajectories to cap-
ture how prior actions and current environment states influence future decisions.
This model is then used to inform the planning process, shaping proposed LLM-
generated plans through causal scoring, reweighting, and fallback to grounded al-
ternatives when needed. By embedding this causal knowledge directly into the de-
cision loop, CausalPlan constrains planning to intervention-consistent behaviors
without requiring fine-tuning. We evaluated CausalPlan on the Overcooked-Al
benchmark across five multi-agent coordination tasks and four LLMs of varying
sizes: Gemma-7B, Llama-8B, Qwen-14B and Llama-70B. Experimental results
show that CausalPlan consistently reduces invalid actions and improves collabo-
ration in both AI-AI and human-AI settings, outperforming strong reinforcement
learning baselines. Our findings highlight the value of causality-driven planning
for deploying efficient, interpretable, and generalisable multi-agent LLM systems.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated significant success across various natural lan-
guage processing tasks (Achiam et al., 2023; [Zhao et al., 2023bj (Guo et al., 2025). Recently, there
has been growing research interest in using LLMs as decision makers, particularly within multi-
agent frameworks for executing interactive planning tasks, with notable works including integrated
pipelines for cooperative tasks (Zhang et al.| 2023a)), graph-based coordination (Qian et al.| 2024),
and human-AlI collaboration frameworks (Zhang et al.| 2024a).

A major challenge in multi-agent learning is zero-shot multi-agent coordination, developing gener-
alized agents capable of collaborating with a wide range of previously unseen partners, including
humans (Legg & Hutter, [2007; Hu et al., [2020). LLM-based agents, trained on vast and diverse
datasets that contain rich common-sense knowledge, have emerged as a promising solution to this
challenge. Compared to traditional multi-agent reinforcement learning (RL) methods—which often
struggle with generalization and sample inefficiency—LLMs demonstrate impressive performance
in collaborative tasks (Zhang et al., 2024a). However, despite these strengths, a persistent limitation
remains: LLM agents often lack causal reasoning ability (Joshi et al.,|2024; |Chi et al., [2024). This
shortcoming leads them to select causally invalid actions that violate causally physical constraints,
actions that are absent or cannot be executed under the given task constraints, and ignoring tempo-
ral dependencies, producing sequences of actions that do not respect the natural order of cause and
effect. This problem is particularly pronounced in smaller open-source LLMs due to their limited ca-
pacity and narrower training coverage. As shown in Fig.[I(a), our evaluation of multiple open-source
LLMs with varying parameter sizes demonstrates that even Llama-70B produces a substantial num-
ber of invalid actions. Despite this limitation, such models remain highly attractive for enterprise
and resource-constrained settings because of their accessibility, controllability, and lower deploy-

Under review as a conference paper at ICLR 2026

(@ 100 : (b)

- [Without CausalPlan Pick Up Bot with

'ag 80 ZZ2 With CausalPlan Onion Onion

< —

2 nNT 0.0 - - - /I

2 &0 N n DR

: I 06 -~ 09y -02-"09

N N

> 40 0.5 N7 = 0.0 -

ﬁ | U N

> Y A4 Y

S 2 Place Put Fill Dish
Onion on Onion in .
Counter, Pot with Soup

Gemma 7B Qwen 14B Llama 70B

Figure 1: (a) Evaluation on the Overcooked Cramped Room layout showing how the number of
causally invalid actions changes with LLM size, averaged over four seeds. CausalPlan significantly
reduces the number of invalid moves. (b) Simplified causal graph discovered by CausalPlan for
the same layout. Yellow and red nodes indicate parent actions and states, respectively, while green
nodes denote child actions. “Pick Up Onion” strongly influences “Put Onion in Pot” (0.6) and “Place
Onion on Counter” (0.5), but not “Fill Dish with Soup” (0). The state “Pot with 2 Onions” strongly
drives “Put Onion in Pot” (0.9), while “Pot Finished” strongly influences “Fill Dish with Soup”.

ment costs. However, their higher incidence of causally invalid actions can significantly undermine
performance. Although previous work has tried to improve LLM planning with causal knowledge,
it primarily focuses on single-agent settings and relies on LLMs to infer causal relationships from
observations or provide the causal graph as part of the planning prompt (Yu & Lul|2025;|Chen et al.,
20235). These approaches are limited because they depend on the robustness of the LLM’s causal
reasoning and inference ability, which can vary significantly between models and prompts. This
motivates the need to integrate causal knowledge directly into the decoding process, rather than re-
lying on prompt engineering, so that LLM action planning is grounded in cause—and—effect structure
and yields more reliable coordination in multi-agent settings. Ultimately, our aim is to answer the
question of: “How can we systematically align LLM action planning with explicit causal knowledge
to ensure reliable and effective collaboration in multi-agent settings?”

To answer the question, we introduce the CausalPlan framework, grounded in the study of causal-
ity (Pearl, [2009). In causality, causal relationships can be represented by a causal graph G, with
the structural causal model (SCM) a formal framework that defines how each variable is generated
from its parent variables in the graph (see Fig. [I] (b) for an example) (Pearl, 2009). An SCM can
be identified through causal discovery, and once identified, an SCM supports causal inference for
downstream tasks (Pearl, [2009). CausalPlan translates these principles of causality into the multi-
agent LLM planning setting. The framework consists of two key phases inspired by the discovery
and inference processes: Causal Action Structure Learning and Agent Planning with Causal Knowl-
edge. In Causal Action Structure Learning, we introduce a Structural Causal Action (SCA) model,
an extension of SCM tailored to capture the causal relationships between previous actions of agents,
current states of both agents, and future actions. For example, before serving a plate of soup (future
action), one must first fill the dish with soup (past action); similarly, if the partner agent is already
carrying a filled dish (partner state), the controlled agent should focus on complementary actions
rather than duplicating effort. Once discovered, the SCA produces a Causal Action Matrix M,
which encodes causal relationships as causal scores and can be queried during planning using the
current state and past actions of the agents.

In the Agent Planning with Causal Knowledge phase, we align the LLM decoding process with the
scores in M to prevent causally invalid actions. To achieve this, we introduce two complementary
strategies: Causal-Aware Planning and Causal Backup Plan. The Causal-Aware Planning module
adjusts the LLM’s action probabilities by reweighting them with causal scores and then resampling
to select actions that follow the natural order of cause and effect. When all candidate actions pro-
posed by the LLM violate the causally physical constraints of the task, the Causal Backup Plan
module adjusts by selecting the action with the highest causal probability as the next action.

We evaluate CausalPlan on the Overcooked-Al benchmark (Carroll et al., [2019), a standard test-
ing suite for multi-agent, using four open-source LLMs—Gemma-7B, Llama-8B, Qwen-14B, and
Llama-70B—across both AI-AI and human-AlI collaboration settings. Empirical results show that

Under review as a conference paper at ICLR 2026

CausalPlan consistently improves planning performance and reduces invalid actions, even for the
smallest LLMs without fine-tuning. Our main contributions are: (i) We identify a core failure mode
of LLM agents in multi-agent collaboration generating causally invalid actions and propose causally
aligned planning as a principled remedy; (ii) We introduce CausalPlan, a two-phase framework that
integrates causal discovery and inference to enhance open-source LLM agent planning and collabo-
ration; (iii) We demonstrate, through extensive experiments, that CausalPlan improves performance
across multiple model sizes and collaboration scenarios, outperforming strong RL baselines.

2 PRELIMINARIES

Markov Decision Process. A two-player Markov Decision Process (MDP) is defined as
(S,{A"}, P,~y, R), where S is the state space, A’ is the action set for agent i € {1,2}, P defines
the transition dynamics, v € [0, 1) is the discount factor, and R : S x A — R is the reward function
where A = A; X A, is the joint action space. We assume a factored state space S = S x S,
where S§*" is the state of the agent (both agent 1 and 2) and S the state of the environment. Let
S =|8]and A = | A| denote the dimensions of S and A, respectively. At each timestep ¢, each agent
i € {1,2} observes the current state s, = (5:™, 5") and selects an action according to its policy
7(ai | s¢), forming the joint action a; = (a}, a?). A trajectory is given by 7 = (s1, a1, s2,az, - ..),
and the objective is to maximize the cumulative expected reward E [}, R(s;, a¢)]. In our two-agent
setting, one of the agents is the controlled agent (an LLM-based agent), while the other serves as its
partner.

Causality and Structural Causal Model. Causality studies the relationships between variables
and events (Pearl| [2009). The SCM framework represents causal relationships in a system, where
for a set of variables V = {Vi,..., Vi }, each variable V; is defined as V; := f;(Pag(V;), &;), with
{f1, fa,. -, fur} being generating functions, Pag(V;) the parents of V; in the causal graph G, and
{€1,...,en} noise terms (Pearl, [2009). The directed acyclic graph (DAG) causal G = {V, E'} con-
tains edges e;; € F, where e;; = 1 indicates that V; causes V;, and e;; = 0 otherwise (Pearl, 2009).
SCMs are often learned from data by modeling the generating functions f; as neural networks pa-
rameterized by generating parameters ¢ (Ke et al.,[2019;|Peng et al., 2022;Zhang et al.,2023b), with
causal edges e;; = 1 if the binary adjacency indicator 7);; is higher than a confidence threshold (Ke
et al.| 2019; [Peng et al.l 2022} [Zhang et al., 2023b).

3 METHOD

Our CausalPlan is a two-phase framework (Fig.[2). In Phase 1, Causal Action Structure Learning, we
construct the SCA model and derive from it Causal Action Matrix M. In Phase 2, Agent Planning
with Causal Knowledge, we align the LLM’s planning process with the causal scores in M, using
them to guide the action selection process. At each planning step ¢, we first provide the current
observation s; to the LLM agent and prompt it to analyze the observation. Both the observation s;
and the analysis are then used as inputs for a second prompt, where the agent is asked to generate a
set of candidate actions (details of the prompt are in Appx.[B.2.1). We, then, leverage M to modify
the agent’s plan selection, either through the Causal-Aware Planning module or the Causal Backup
Plan module (see Appx. [B]for the full algorithms).

3.1 CAUSAL ACTION STRUCTURE LEARNING

The goal of the first phase is to construct an SCA model, capturing the causal graph G, where the
previous action a;—; and the current state s; are the parent nodes, and the next action a; is the child
node. Unlike prior work, which typically focuses on modeling state transitions or rewards (Zhang
et al.,[2023b}|2024b)), our approach explicitly treats the action as a child node. This novel formulation
allows the agent to reason causally about how past actions and current states influence future actions,
providing a new perspective on decision-making dynamics.

Data Preparation. To facilitate the process of SCA modeling, we collect a dataset B =

N
{{(s,’f, a,’f)}?:1}k:1 containing actions that have been executed successfully in the environment,
using a behavior policy mg. We, then, factorize and discretely encode the states and actions,
which are collected in text form into a binary-encoded representation suitable for causal analy-

Under review as a conference paper at ICLR 2026

B Phase 1: Causal Action Structure Learning

{st,a}}, A Kot empty_hand ...|bold. onionl hold onion? pickup_omion potd| | Pe(pickup_onion) = 0.3+ 0.3+ 0.0 + 0.5 = 1.1
9

9 T pickup_onion 0. 03 0.3 0.0 0.5 L _ _
{S: 5y }t:1—@ P put_onion in pot 07 08 03 06 e Pc(put_onion_in_pot) = 0.8 + 0.3 + 0.6 + 0.5 = 2.2

{srltca a’f}{:l

Compute causal scores

Agent 1's state: hold_onion1
/Agent 2's state: hold_onion2
Environment's state: pot0
|Previous action: pickup_onion|
Phase 2: Agent Planning with Causal Knowledge

Causal-Aware Planning

Scenario
t: Agent 1
is

A’ = (pickup_onion, put_onion_in_pot) pe(pickup_onion) = 0.5 x y+ 1.1 x (1 —7)
l

currently
holding an|

onion,
agent 2 is
currently
"1 | holding an
onion the & - . . L

pot is ‘)‘ A = (pickup_onion, put_onion_in_pot, ...) f----- > Pe(put_onion_in_pot) = 2.2

empty

Pu(A') = (0.5,03) pe(put_onion_in_pot) = 0.3 x 7y +2.2 x (1-7)[%

@)
‘ Causal Backup Plan ,(’

X Pe(pickup_onion) = 1.1

Figure 2: Overview of the CausalPlan Framework. The process begins with a dataset B collected
by a behavior policy mg. In Phase 1 (Causal Action Structure Learning), we train the Structural
Causal Action (SCA) Model by optimizing generating (§) and structural (n) parameters, yielding
the Causal Action Matrix M, which encodes causal influence from states and past actions to future
actions. In Phase 2 (Agent Planning with Causal Knowledge), an LLM receives scenario ¢ and
proposes candidate actions A’. If A" # (), Causal-Aware Planning adjusts LLM probabilities; if
A’ = (), Causal Backup Plan selects the most probable past action via M. Black solid arrows denote
causal training; dashed arrows denote LLM inference, and red arrows denote causal knowledge
consultation. The red box represents the causal score extraction for each potential next action,
where the score is computed as the sum of causal contributions from the current state and previous
action.

sis: 8¢ = [s.1,---,505] € {0,1}%, a; = [ag1,...,as,a] € {0,1}#, where each component s;
and a; ; is a binary indicator representing whether a particular state feature or action is active (1)
or inactive (0) (refer to Appx. for details). The assumption of factorized states and actions is a
common assumption in most causal RL research (Ke et al., 2019; [Yu & Lul 2025).

Causal Modeling. The SCA model can be represented as:

a; = fi (Pag(a;),¢a,) (1)

fori € {1,2,..., A}, where Pag(a;) denotes the parent nodes for a; in the causal graph G. The
function f; is a neural network parameterized by the generating parameter §, while the causal re-
lationships of each graph are governed by the structural parameters encoded by binary adjacency
indicators 7;;. The loss function to optimize these parameters is: L(d,7) = Lcausa1(9, 1) + Lreg (1),
where:

A

Leausal = E(at_l,st,at)wB [_ Z IOgP(at,i | Sty At—1; 57 n)] . (2
i=1

L, () is a negative-log-prior penalty imposed on the adjacency indicators to discourage spurious
edges and avoid overfitting to unlikely causal links. Let P(e;; = 1) be the prior probability for any
edge. Then

Licg = =AY _nji log P(eji = 1), 3)

(]

where A > 0 controls the relative contribution of each penalty term. Including an edge 7;; = 1
incurs a cost —log P(ej; = 1), so only edges with high prior belief are preferred.

Under review as a conference paper at ICLR 2026

In causal inference, identifiability, referring to the ability to recover causal effects from data (Pearl,
2009) uniquely, is crucial for valid causal inferences. In our setting, identifiability guarantees that
the true causal structure and decision policy can be recovered from observed trajectories. We can
prove that under our formulation, identifiability is ensured, as stated in the following proposition:

Proposition 1 (Identifiability). Suppose that the state s; and previous action a,_1 are observable,
while the next action a; is unobservable, and they form a Markov Decision Process (MDP) as de-
scribed in Eq.[I| Then, under the global Markov condition and the faithfulness assumption given a
large enough dataset B, the next action a. is identifiable, as well as the causal structure character-
ized by the binary masks 1 and the transition dynamics f.

Proof. See Appx.[A| O

Causal Action Matrix construction. We then construct the matrix M € R4*(5+4) that encodes
the causal score of selecting each action given the current state and past actions. Each row of the
matrix corresponds to a possible next action, and each column corresponds to a state or past action
feature. Each entry (i, j) of the matrix represents the probability that there is causal influence from
state or action feature j to action i, given by the learned structure parameter 7);;.

A query M(s¢, a;—1,a) returns the causal score p.(a) = ZJEJ nj; where J = Active(ss, a—1) C
{1,...,S + A} denote the set of column indices corresponding to the features that are “active” in
the current state s; and the previous action a;—1, and ¢ is the row index corresponding to action a
(details refer to Appx.[B.2.2). To prevent cycles in the causal graph and ensure DAG property of a
standard SCM (Pearl, |2009), we compare the coefficients for the bidirectional relationships in M
and set the lower to 0.

3.2 AGENT PLANNING WITH CAUSAL KNOWLEDGE

At each planning step, instead of directly generating the next action a; given the historical trajectory
he = (s1,a1, 82,a29, . ..,ai_1, S¢), we require the LLM-based agent to consider alternative scenarios
and select the action that aligns with the causal scores in the matrix M. Firstly, we sample from the

LLM a set of candidate actions A’ = {a’l, aby ..., ai A } C A. Each of these actions will come with

a probability of being sampled by the LLM, which we denote as p,(a},). Next, we verify whether
the sampled actions comply with the environment’s instructions (the causally physical constraints).
If the set A’ # () (there are valid candidates), we follow the Causal-Aware Planning module to find
the most suitable action that follows causal temporal dependencies; otherwise, we use the Causal
Backup Plan for the causal backup mechanism.

3.2.1 CAUSAL-AWARE PLANNING

Given the set A’ with their associated probabilities P,(A’), we aim to integrate the causal scores
from the model M. We extract the causal score for each action p.(a’) = M(sy,a,_1,a’),Va' € A,
to form the set P.(A') = {pc(a’l),pc(a’g), .. ,pc(aiA,l)} (details in Appx.[B.2.2). The updated

individual action probabilities are computed as the weighted sum of the LLM sampling probability
and the causal score:

pr(ay,) =7 -pa(as,) + (1 =) - pe(ay,), @)

where v is the weight hyperparameter. We apply the softmax function to all values of p¢(al,) to
normalize the probabilities, which allows us to get the final probability set:

| A"
P(A') = {Pf(all)7pf(a/2)7 e >Pf(af,4f|)}7 > pilay,) =1 S
k=1

The sampled action set A’ may contain redundant actions, so we apply a method to identify and
merge these duplicates by summing their probabilities (details in Appx.[B.2.4). This yields a reduced

Under review as a conference paper at ICLR 2026

set A" with updated probabilities P, from which we sample the next action:
a; ~ Categorical ([p; (a}), pi (ab), .- i (af 4-))]) - ©)

3.2.2 CAUSAL BACKUP PLAN

In the second case, when all candidates are invalid A" = (), existing methods often apply an in-
tervention by prompting the agent to re-plan (Zhang et al., 2024a). However, such strategies may
fail when the agent persistently hallucinates, for instance, when the state stays unchanged. In-
spired by human behavior under uncertainty, choosing the action that we are most familiar with,
we propose a recovery mechanism that leverages past causality knowledge. Instead of immedi-
ately re-planning, we ask the agent to retrieve the causal score for all actions a € A by querying
pe(a) = M(sy,a,-1,a),Va € A, (details in Appx. [B.2.2). This yields a probability distribution:
P.(A) = {pc(a1),pc(az),...,pc.(as)}. We then greedily select the next action given by:

a; = argmax P.(a), (7N
acA

i.e., the action deemed most reliable according to past causal knowledge. Only if this action fails do
we then ask the agent to re-plan.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We use the Overcooked-Al environment suite (Carroll et al., |2019) as our main testing platform.
This suite comprises five distinct layouts: Cramped Room (CR), Asymmetric Advantages (AA), Co-
ordination Ring (COR), Forced Coordination (FC), and Counter Circuit (CC) (details of the envi-
ronments in Appx. [C.2). Each layout evaluates distinct aspects of multi-agent coordination, making
this environment a standard for evaluating agent collaboration. Our experiments aim to demonstrate
that CausalPlan can improve planning for various open-source LLMs and, thus, better collabora-
tion. Specifically, we use gemma-1.1-7b-1it (Gemma-7B), Meta-Llama-3-8B-Instruct
(Llama-8B), Qwen2.5-14B-Instruct—-1M (Qwen-14B), and L1ama-3.3-70B-Instruct
(Llama-70B). These open-source models are integrated into ProAgent (Zhang et al.,[20244), a frame-
work that leverages advanced prompting techniques (ReAct (Yao et al., 2023)) and Reflexion (Shinn
et al., 2023)), upon which we apply CausalPlan to refine the planned actions. Additionally, we use
Cohere/command-r [Cohere| (2024), a 35-billion-parameter model, to generate the analysis of
the observation in our two-prompt input (refer to Appx. [B.2.1]for details).

In Sect. we compare the performance of LLM agents with their performance when enhanced
with CausalPlan. Our agent is evaluated alongside baseline partner Al agents (see next paragraph).
In these experiments, our agents play as Player 1 and the baseline agents as Player 0. An effective
agent should demonstrate strong performance in collaboration with all other partners. We also com-
pare our CausalPlan agent with the Llama-70B backbone against the baseline agents playing as both
Player O and Player 1. In Sect. we evaluate the performance of CausalPlan agents when col-
laborating with human-like agents (collected using Behavior Cloning) (Li et al.,[2023). In Sect.[4.4]
we evaluate different components of CausalPlan and in Sect. .5 we analyze the benefits of inte-
grating causal knowledge. In the Appendix, we provide additional experiments such as parameter
7 tuning (Appx. [C.6), different data collection policies 75 (Appx.[C.7), time complexity analysis
(Appx.[C.10), and the causal matrix M (Appx.[C.9).

Baselines. The baselines include traditional RL methods designed for zero-shot human and Al
coordination. These baselines have achieved notable results in the field, including SP (Tesauro,
1994; |Carroll et al., [2019), PBT (Jaderberg et al., [2017), FCP (Strouse et al., 2021)), MEP (Zhao
et al.,[2023a), COLE (Li et al.| [2023)) (refer to Appx. for baseline details).

We also evaluate CausalPlan on the Crafter environment (Hafner, [2021), a long-horizon planningg
benchmark, where it outperforms Causal-Aware LLMs (Chen et al., 2025)) (the state-of-the-art causal
prompting approach). Due to space constraints, detailed results are deferred to Appx.[D}

Under review as a conference paper at ICLR 2026

ProAgent
CausalPlan (Ours)

CcC CC CcC
Llama-8B Qwen-14B Llama-70B

CcC
Gemma-7B

Figure 3: Performance of different backbones with and without CausalPlan across various layouts.
In these experiments, we use the LLM agent as Player 1, allowing it to collaborate with all other
baselines (described in Sect. [d.1)) for 400 timesteps and report the average of three different seeds.

Table 1: Average performance (mean = std) of baseline agents and CausalPlan (Ours) across layouts
using Llama-70B. Results are averaged over both player positions and three seeds (400 timesteps
each). Best and second-best results are in bold and underlined, respectively. Detailed performance
of playing as Player O or Player 1 is provided in Appx. Tab. 4]

Layout Baseline AI Agents CausalPlan
SP PBT FCP MEP COLE (Ours)
CR 162.0 £ 10.0 168.0 £5.0 | 194.0 £10.1 | 178.0+ 16.1 | 1534+ 12.5 172.7 +£4.2
AA 184.0+ 175 | 168.0 £ 154 | 176.6 =15.0 | 167.3 +5.8 1853 +15.1 | 258.7 - 16.4
CC 56.7 +9.2 520+ 14.0 63.4 +10.5 50.0 + 16.1 90.6 + 10.1 112.6 +£ 7.6
COR 120.7 £ 11.0 | 1394 4+ 10.1 130.7 £ 6.2 160.7 + 7.2 1534+ 4.6 156.6 + 3.2
FC 18.0 + 4.6 40.6 £ 10.3 420+72 304+5.4 44.6 £7.0 53.9 + 149

4.2 Al PARTNER EVALUATION

Enhancing open-source LLM performance using CausalPlan We evaluate whether CausalPlan
improves open-source LLM performance in collaboration tasks, as shown in Fig. [3| and detailed in
Appx. [C4| Tab.[3] CausalPlan improves performance models, with significant gains seen in Qwen-
14B (29.04%) and Llama-70B (22.42%). In terms of layouts, the most substantial improvements
were found in the settings CR (20.83%) and COR (19.13%). Furthermore, CausalPlan also pro-
vided notable benefits for larger LLMs, such as Llama-70B, demonstrating its potential to enhance
performance even at scale.

Comparison with state-of-the-art RL baselines. We evaluate the performance of our top-
performing agent (Llama-70B backbone) against the set of SOTA baseline RL agents. The results,
presented in Tab. |1} show that our agent consistently ranks among the top performers across different
layouts (highest score in three out of five layouts and second in one additional layout). The most
significant performance gaps between our method and the next best baseline are observed in the AA
layout, showing a 63% advantage. We attribute the underperformance in CR to the simplicity of the
task, which does not require causal knowledge. These results demonstrate that, when equipped with
CausalPlan, open-source LLM agents can outperform state-of-the-art RL agents in various tasks,
highlighting the effectiveness of integrating causal reasoning into cooperative LLM-based agents.

4.3 HUMAN PARTNER EVALUATION

To evaluate human collaboration, we performed an experiment using human proxy partners, with
the results shown in Fig. [In this experiment, our CausalPlan framework utilizes Llama-70B as
the backbone LLM. As shown, our agent (green bars) outperforms all baselines in 8 out of 10
configurations. On average across all layouts, it achieves approximately a 30% improvement over
ProAgent (red bars), and outperforms the strongest RL baseline (COLE) by approximately 32%.
To further validate these improvements, we conducted statistical analyses using paired ¢-tests and
corresponding p-values. The results (Appx. [C.5] Tab. [5) show that CausalPlan consistently achieves

Under review as a conference paper at ICLR 2026

m sp N FCP B COLE Bl CausalPlan (Ours)
- N PBT = MEP BEm ProAgent
8250
o
@
$200
@
Qo
- 150
5
2
2 100
CD
(=2
gso i il‘ illiiilﬁ'iiln ‘
2 i
o i i il
d‘ d‘ v‘? v (_,o (Jo“‘ <<U <<U o o

Figure 4: Experiments with a human proxy partner. Results show the mean and variance averaged
over using five different BC policies as the partner (each running for 400 timesteps). “P0” denotes
the controlled Al agent acting as Player 0, and vice versa.

Table 2: Ablation studies were conducted on the CR layout using Llama-8B. ”1-Prompt” uses a
single prompt for observation and planning, as in ProAgent; ”2-Prompt” uses our modified dual-
prompt method. ”CausalPlan (no CBP)” omits the Causal Backup Plan component.

Baseline AI Agents Average
Methods SP PBT FCP MEP COLE | Results
1-Prompt (ProAgent)| 86.7 +41.6 | 66.7 + 63.4 [180.0 4+ 20.0|106.7 + 75.7(113.3 £ 11.5]110.7 4+ 12.8
2-Prompt 73.3 £30.5|93.3+57.7 | 180.0 £ 0.0 [126.7 £ 11.5(126.7 +23.1| 121.3 +2.3
CausalPlan (no CBP)|113.3 £ 23.1|146.7 4+ 46.2{160.0 + 34.6(133.3 £ 11.5|153.3 + 23.1|141.3 £ 12.9
CausalPlan (Full) 126.7 £ 30.6|133.3 + 30.5{160.0 £ 40.0|166.7 + 41.6|166.7 £ 23.1| 150.7 £ 2.3

higher ¢ values than ProAgent when compared against the best RL method. Direct comparison
in Tab. |§[) reveals statistical significance (p < 0.05) in 30% of the cases (CR-PO, AA-P1, COR-
P1), with another 30% (CR-P1, FC-PO, CC-P0) showing marginal significance (0.05 < p < 0.2).
Importantly, performance never degrades when CausalPlan is included. These findings confirm that
the observed improvements are statistically reliable.

4.4 IMPACT OF CAUSALPLAN COMPONENTS

In this section, we investigate the individual contributions of each component within the CausalPlan
framework. First, we compare the use of a single prompt (Zhang et al.|[20244d), for both observation
analysis and planning, against our two-prompt setup, where one prompt is dedicated to analysis
and the other to planning. This comparison helps isolate whether performance gains come from the
embedded causal knowledge. As shown in Tab.[2} the performance between the single-prompt and
two-prompt configurations is nearly identical, with only a slight improvement when using our two-
prompt. Second, we examine the effect of the Causal Backup Plan module. CausalPlan without the
backup action still outperforms the two-prompt variant by 27%, but falls short of the full framework
by 7%. This highlights the significance of the backup mechanism to avoid scenarios in which the
agent fails to select actions as instructed.

4.5 BENEFITS OF CAUSAL INTEGRATION

We analyze the behavior of Llama-8B, with and without CausalPlan, in the CR layout, where our
method achieves a substantial +36.1% improvement (see Appx. for detailed analysis). This
analysis highlights two key benefits of causal integration.

(1) Physically invalid actions. Without causal guidance, the agent frequently makes invalid calls
to pick up an object while already holding an object. CausalPlan reduces these physically invalid
actions by 18%, while simultaneously increasing valid calls made with an empty hand by 17%.

Under review as a conference paper at ICLR 2026

This demonstrates that CausalPlan not only suppresses impossible actions but also systematically
promotes temporally valid ones.

(2) Poor coordination. Coordination failures are further mitigated. When the pot is nearly full and
the partner agent already has an onion, the baseline still selects redundant actions to pick up onion.
With CausalPlan, these cases drop to zero, indicating that the agent learns to anticipate teammate
states and avoid conflicting behaviors. This complete elimination of redundant pickups reflects a
higher level of situational awareness and inter-agent coordination.

5 RELATED WORK

Reasoning and planning with LLM agents. The rise of LLMs has enabled applications in both
single and multi-agent settings. The works in a single-agent setting focus on improving reasoning
through chain-of-thought prompting (Wei et al., 2022} |Kojima et al., 2022), self-consistency (Wang
et al.,|2022), and problem decomposition (Zhou et al.,|2022)). LL.Ms have also been applied to robotic
planning (Ahn et all [2022), integrated reasoning and acting, and reflection-based learning (Shinn
et al.,2023). |Zhu et al.|(2024) and |Qiao et al|(2024) leverage memory of past actions and states
to improve planning. In contrast, our work targets multi-agent environments. In multi-LLM agent
research, [Park et al.| (2023) proposed a fully automated cooperative framework with perception,
communication, and planning.

Zero-shot multi-agent coordination. Zero-shot multi-agent coordination aims to train agents that
can collaborate with unseen partners, human or Al. A classic method is Self-Play (SP) (Tesauro,
1994; |Carroll et al.| |2019), where agents train by interacting with themselves. Population-Based
Training (PBT) (Jaderberg et al., 2017) promotes learning by diversifying the population of train-
ing agents. Recent methods combine SP and PBT to increase diversity, such as Fictitious Co-
Play (FCP) (Strouse et al., [2021)) and Maximum Entropy Population (MEP) (Zhao et al.| 2023a).
COLE (Li et al.l 2023) shifts focus to strategic policy selection during training. However, these
methods are generally computationally expensive and lack interpretability. |[Zhang et al.| (2024a)
shows that LLM-based agents can excel in zero-shot tasks by using rich language knowledge. Al-
though this demonstrates the potential of language-based agents, LLMs tend to select causally in-
valid actions (Gao et al., [2023). To address this challenge, we propose a causal align planning
approach that enhances action selection for LLMs.

Causality in decision making. Causal reasoning has received increasing attention for improving
Al decision-making. In single-agent domains, counterfactual methods are used for data augmen-
tation (Pitis et al.l [2020; [2022)). |Corcoll & Vicente| (2020) leverage causality to construct variable
hierarchies. [Zhang et al.[(2023b) redistribute rewards based on causal impact. [Seitzer et al.| (2021
incorporate causal signals into reward shaping. |[Peng et al.| (2022)) learns causal graphs to define
hierarchical RL subgoals. More recently, efforts have focused on integrating causality into LLM
planning by directly providing the causal graph as part of the LLM prompt (Chen et al.| 2025} [Yu
& Lul 2025). However, a limitation of these approaches is the reliance on the causal reasoning and
inference ability of the LLM, which can vary significantly between models and prompts. In multi-
agent settings, social influence has been used as causality to promote cooperation (Jaques et al.,
2019), while subsequent work employs action influence and redistribution of rewards to encour-
age coordinated behaviors (Du et al., 2024} [Zhang et al., |2024b). In contrast to prior research, our
work integrates causal modeling into multi-agent systems based on LLMs by directly aligning the
decoding process with the discovered causal structure, which requires a distinct approach.

6 CONCLUSION AND FUTURE WORKS

In this paper, we introduce CausalPlan, a framework designed to integrate causal knowledge into the
decoding processes of LLM agents, to enhance their performance in multi-agent cooperation. Our
experiments show notable performance gains across various LLM backbones. This work serves as an
important step toward incorporating causal knowledge into multi-agent planning with LLMs. While
the framework is not currently intended for deployment in specific applications, it holds the potential
to improve the safety, efficiency, and interpretability of collaborative Al systems. As a promising
direction for future work, our approach could be combined with causal prompting methods to further
strengthen planning performance.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All implementation details, experimental settings, results are provided and can be found in the Ap-
pendix to ensure full reproducibility. The complete source code is also submitted with the submis-
sion.

LLM USAGE

Large Language Models (LLMs) were employed as the backbone for experiments with our
CausalPlan framework. We also use LLM to refine the paper’s presentation by improving gram-
mar and overall writing clarity.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Techni-
cal Report. arXiv preprint arXiv:2303.08774, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as I can, not as I say:
grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Micah Carroll, Rohin Shah, Mark K Ho, Thomas L Griffiths, Sanjit A Seshia, Pieter Abbeel, and
Anca Dragan. On the utility of learning about humans for human-AlI coordination. In Advances
in Neural Information Processing Systems (NeurIPS), pp. 5174-5185, 2019.

Wei Chen, Jiahao Zhang, Haipeng Zhu, Boyan Xu, Zhifeng Hao, Keli Zhang, Junjian Ye, and Ruichu
Cai. Causal-aware large language models: Enhancing decision-making through learning, adapting
and acting. In James Kwok (ed.), Proceedings of the Thirty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI, pp. 4292-4300. International Joint Conferences on Artificial
Intelligence Organization, 8 2025. doi: 10.24963/ijcai.2025/478. URL https://doi.org/
10.24963/17cai.2025/478. Main Track.

Haoang Chi, He Li, Wenjing Yang, Feng Liu, Long Lan, Xiaoguang Ren, Tongliang Liu, and
Bo Han. Unveiling causal reasoning in large language models: Reality or mirage? In Advances
in Neural Information Processing Systems (NeurIPS), volume 37, pp. 96640-96670, 2024.

Cohere. The command R model (details and application). https://docs.cohere.com/v2/
docs/command-r)} 2024. Accessed: 2025-05-12.

Oriol Corcoll and Raul Vicente. Disentangling causal effects for hierarchical reinforcement learning.
arXiv preprint arXiv:2010.01351, 2020.

Xiao Du, Yutong Ye, Pengyu Zhang, Yaning Yang, Mingsong Chen, and Ting Wang. Situation-
dependent causal influence-based cooperative multi-agent reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, pp. 17362—-17370, 2024.

Chen Gao, Xiaochong Lan, Zhihong Lu, Jinzhu Mao, Jinghua Piao, Huandong Wang, Depeng
Jin, and Yong Li. S3: Social-network simulation system with large language model-empowered
agents. arXiv preprint arXiv:2307.14984, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. In Proceedings of the International Conference on Learning Representations
(ICLR), 2020.

10

https://doi.org/10.24963/ijcai.2025/478
https://doi.org/10.24963/ijcai.2025/478
https://docs.cohere.com/v2/docs/command-r
https://docs.cohere.com/v2/docs/command-r

Under review as a conference paper at ICLR 2026

Patrik O Hoyer, Dominik Janzing, Joris Mooij, Jonas Peters, and Bernhard Scholkopf. Nonlinear
causal discovery with additive noise models. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 689-696, 2008.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “Other-play” for zero-shot
coordination. In Proceedings of the International Conference on Machine Learning (ICML), pp.
43994410, 2020.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, lain Dunning, Karen Simonyan, Chrisantha Fernando,
and Koray Kavukcuoglu. Population based training of neural networks. arXiv preprint
arXiv:1711.09846, 2017.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning
(ICML), pp. 3040-3049, 2019.

Nitish Joshi, Abulhair Saparov, Yixin Wang, and He He. Llms are prone to fallacies in causal infer-
ence. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 10553-10569, 2024.

Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Bernhard
Scholkopf, Michael C Mozer, Chris Pal, and Yoshua Bengio. Learning neural causal models
from unknown interventions. arXiv preprint arXiv:1910.01075, 2019.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in Neural Information Processing Systems
(NeurlIPS), pp. 22199-22213, 2022.

Shane Legg and Marcus Hutter. Universal intelligence: A definition of machine intelligence. Minds
and Machines, 17:391-444, 2007.

Yang Li, Shao Zhang, Jichen Sun, Yali Du, Ying Wen, Xinbing Wang, and Wei Pan. Cooperative
open-ended learning framework for zero-shot coordination. In Proceedings of the International
Conference on Machine Learning (ICML), pp. 20470-20484, 2023.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: interactive simulacra of human behavior. In Proceedings
of the Annual ACM Symposium on User Interface Software and Technology, pp. 1-22, 2023.

Judea Pearl. Causality. Cambridge University Press, 2009.

Shaohui Peng, Xing Hu, Rui Zhang, Ke Tang, Jiaming Guo, Qi Yi, Ruizhi Chen, Xishan Zhang,
Zidong Du, Ling Li, Qi Guo, and Yunji Chen. Causality-driven hierarchical structure discovery
for reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS),
pp- 20064-20076, 2022.

Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. Elements of Causal Inference: Foundations
and Learning Algorithms. The MIT Press, 2017.

Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally
factored dynamics. In Advances in Neural Information Processing Systems (NeurlPS), pp. 3976—
3990, 2020.

Silviu Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg. Mocoda: model-based counterfac-
tual data augmentation. In Advances in Neural Information Processing Systems (NeurlPS), pp.
18143-18156, 2022.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024.

11

Under review as a conference paper at ICLR 2026

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model. In
Advances in Neural Information Processing Systems (NeurIPS), volume 37, pp. 114843-114871,
2024.

Maximilian Seitzer, Bernhard Scholkopf, and Georg Martius. Causal influence detection for improv-
ing efficiency in reinforcement learning. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 22905-22918, 2021.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: language agents with verbal reinforcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 8634-8652, 2023.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. The MIT
Press, 2000.

DJ Strouse, Kevin R McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborat-
ing with humans without human data. In Advances in Neural Information Processing Systems
(NeurlIPS), pp. 14502-14515, 2021.

Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation, 6(2):215-219, 1994.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In Proceedings of the International Conference on Learning Representations (ICLR),

2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems (NeurIPS), pp. 24824-24837,
2022.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian Processes for Machine Learning,
volume 2. MIT Press Cambridge, MA, 2006.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In Proceedings of the International
Conference on Learning Representations (ICLR), 2023.

Shu Yu and Chaochao Lu. Adam: An embodied causal agent in open-world environments.”. In
Proceedings of the International Conference on Learning Representations (ICLR), 2025.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: building proactive cooperative agents with
large language models. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
17591-17599, 2024a.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. In Proceedings of the International Conference on Learning Representations (ICLR),
2023a.

Yudi Zhang, Yali Du, Biwei Huang, Ziyan Wang, Jun Wang, Meng Fang, and Mykola Pechenizkiy.
Interpretable reward redistribution in reinforcement learning: a causal approach. In Advances in
Neural Information Processing Systems (NeurIPS), pp. 20208-20229, 2023b.

Yudi Zhang, Yali Du, Biwei Huang, Meng Fang, and Mykola Pechenizkiy. A causality-inspired
spatial-temporal return decomposition approach for multi-agent reinforcement learning. In
NeurIPS 2024 Causal Representation Learning Workshop, 2024b.

Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhongqian Sun, and Wei
Yang. Maximum entropy population-based training for zero-shot human-ai coordination. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6145-6153, 2023a.

12

Under review as a conference paper at ICLR 2026

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023b.

Denny Zhou, Nathanael Schérli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In Proceedings of the International Conference on Learning
Representations (ICLR), 2022.

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,
Jinjie Gu, and Huajun Chen. Knowagent: knowledge-augmented planning for LLM-based agents.
arXiv preprint arXiv:2403.03101, 2024.

13

Under review as a conference paper at ICLR 2026

APPENDIX

A IDENTIFIABILITY ANALYSIS

Proposition 1 (Identifiability of the causal structure and functions):

Let the dataset consist of sequences of the form:

(St,at_l,at), tzl,...,T, (8)

Assume the data comes from a Markov Decision Process (MDP) under the interaction of a fixed
behavior policy mg. The next action a; (a binary vector of size A) is assumed to be generated by a
structural causal model (SCM):

ai‘,t = fi(Pa(ai,t)) +5ai)” 7= 1,...,A, (9)

where, the parents Pa(a; ;) of a; ; are selected from the state s; and action a;_;. The noise terms,
e, are independent of the parents. Under the following assumptions:

1. Additive noise: The noise terms are independent and identically distributed (i.i.d.) and do
not depend on the inputs Hoyer et al.| (2008)).

2. Causal sufficiency: All relevant causes are observed (i.e., no hidden confounders) Spirtes
et al.| (2000).

3. Faithfulness and global Markov condition: Observed conditional independencies match
those implied by the graph [Pearl| (2009).

4. Function class expressiveness: Each function f; belongs to a class identifiable under addi-
tive noise models. In additive noise models, identifiability of causal direction relies on the
function class having sufficient expressiveness and satisfying certain regularity conditions
(e.g., nonlinearity, invertibility) Ke et al.| (2019); Peters et al.| (2017).

5. Acyclicity: The causal graph has no cycles (i.e., it is a Directed Acyclic Graph (DAG)).

6. Sufficient data: There are enough samples to guarantee reliable estimation.

Then, both the structure of the causal graph and the functions f; can be identified. In particular, the
binary adjacency masks indicating causal edges can be consistently estimated.

Proof sketch:

Step 1: Ildentifiability using additive noise models. Under the above assumptions, especially addi-
tivity and faithfulness, each causal function f; can be learned uniquely up to Markov equivalence.
Prior work Hoyer et al.| (2008)) shows that additive noise and independence of noise from inputs
imply identifiability of the direction of causality.

Step 2: Estimating the functions. We approximate each function f; using a weighted basis expan-
sion:

fi() = W, (), (10

where ¢;(-) € R? is a nonlinear feature map that transforms the input tuple (-) into a d-dimensional
representation, and W; € R? is the corresponding weight vector of function f;. In the simplest
case, ¢;(-) and W; are predefined basis functions and linear coefficients, respectively. However, in
practice, we often implement f; using a neural network to allow for flexible function approximation.
Given an input tuple (s, a;—1), the generating function for a; ; can be rewritten as:

ais = fi(st,a-1) + €q;, = Wi—r(bi(stvatfl) + €a; 45 (11)

with noise term &, ,. Suppose we have a dataset comprising NV trajectories & with the form given in
Eq.|8] For each trajectory, we define:

14

Under review as a conference paper at ICLR 2026

(st ag) af
Pk — : eRT, AF=1| : | eRT| (12)
Gi(sh,ap_y)" ai

Each row of ®¥ represents the feature vector for a specific time step, while the corresponding el-
ement in A% contains the observed action component. We then estimate W; by minimizing the
ridge-regularized least-squares objective:

N
i DAL — b A 13

where A > 0 controls the regularization strength.
Step 3: Unique closed-form solution proof. We proceed by proving that solving the objective yields
a unique closed-form solution. The objective function above can be compactly written as:
N
LW:) = Y AF =@l Wiy + AWl = A - W3+ AW W (4
k=1
First, expand the squared-error term:
|A; — W3 = (A — ;W) T (A — @, W) = AJ A, —2W] [A, + W, @] 2, W;. (15)
Thus,
LW;)=AlA; —2W,] A; + W, @] &, W, + AW, W;. (16)
Taking the gradient with respect to W, gives:
Vi, L(W;) = =28 A; +2 (@] ®; + \I) W;. (17)
Setting Vyy, L(W;) = 0 yields the normal equation:
(@] @, + \I) W; = @] A,. (18)

Since A > 0, the matrix ®; ®; + A is strictly positive-definite and hence invertible. Therefore, the
unique minimizer is:

-1
W= (] @+ XI)" @/ A,. (19)
Re-expressing in terms of the individual trajectories,
N N
o0 =) (o) e, @A =) (®f) AL, (20)
k=1 k=1
so equivalently
N 4 N
wi= (Y (@hTel+a1) Y (@h)TAL @1)
k=1 k=1

Because L(W)) is strictly convex, it admits a unique closed-form solution. Moreover, given a suf-
ficiently large dataset, the estimator converges to a good estimate of W; [Williams & Rasmussen
(2006).

To recover the graph structure, we exploit the closed-form solution for W; derived by minimizing
the regularized quadratic loss in the previous step:

Wi = (@] 0, +) ®] A,
This expression yields an estimate of the weight vector W;, which quantifies the linear relationship
between the current state and previous action features and the target component a; ;. The support of
W;—i.e., the indices of its nonzero entries—identifies which features are informative for predicting
a; . Under the faithfulness assumption, this support exactly corresponds to the true parent set of
node ¢ in the underlying causal graph. Thus, one can recover the graph structure by examining
which entries of W; are significantly nonzero, using thresholding or statistical tests.

15

Under review as a conference paper at ICLR 2026

CONCLUSION

Under the usual identifiability conditions, both the graph structure and the functional relationships
in the Structural Causal Action model are uniquely determined. As a result, the causal action matrix
learned by CausalPlan faithfully reflects the true cause—effect relations among states and actions.

B CAUSALPLAN DETAILS

As described in Sect. [3|and in Fig. 2] the CausalPlan framework involves two phases Causal Action
Structure Learning and Agent Planning with Causal Knowledge. Here, we discuss in detail the two
phases and their components, as well as present algorithms that outline the method.

B.1 CAUSAL ACTION STRUCTURE LEARNING DETAILS

This appendix outlines the procedure used to model and learn the causal relationships between the
previous action a;_1, current state s;, and next action a;.

Buffer B Collection. The data collection process begins by constructing the buffer B, which is
used to train the SCA model. We collect this data by allowing a pretrained agent to interact with the
environment for /V timesteps, with each episode having a horizon of T'. These interactions include
both high-level task-oriented actions and low-level movement actions.

To facilitate causal analysis, we apply a preprocessing step in which all low-level movement actions
are relabeled as the most recent preceding high-level action of interest. For example, if the agent ex-
ecutes pickup_onion, then moves for several steps, and finally performs put_onion_in_pot,
all intermediate movement actions are relabeled as pickup_onion. This yields a simplified se-
quence: pickup_onion — pickup_onion — pickup_onion — put_onion_in_pot. This
transformation reduces noise from irrelevant actions and makes it easier to detect meaningful causal
edges—such as from pickup_onion to put_onion_in_pot.

Importantly, we retain the original state observations at each timestep, even after relabeling the
actions. This ensures that we can still study the causal relationship between the immediate state
before an action and the subsequent high-level decision, preserving the integrity of the underlying
state-action dynamics.

SCA Model. To capture these dependencies, we employ the SCA model, which incorporates two
key components: the generative parameters ¢ and the structural parameters 1. The parameters §
define a set of functions f, each implemented as a neural network. Specifically, for each action
feature a; in Eq.[I} there is a corresponding function f; parameterized by §; (see Appx. for
network details). As described in Sect. the model generates the next action a; based on the
current state and previous action. The parameters § govern this generative mapping and are trained
using standard neural network optimization.

In parallel, the structural parameters 7 encode the causal graph G, where each entry indicates the
presence or absence of a directed edge between action factorizations, using binary adjacency indi-
cators. During inference, only those factorizations that are parents of the current action feature a;,
according to 7, are activated. We implement this by masking out all features not connected to a;,
ensuring that each function f; conditions only on its relevant causal parents, as defined in Eq.[1] Fur-
thermore, we manually set the diagonal entries 7;_,; = 0, since edges from an action factorization
to itself are not allowed in the causal graph. This constraint prevents self-causation among action
nodes, maintaining a valid causal structure. Finally, we apply a sigmoid activation to each entry of
7, producing values in [0, 1] that represent the probability of an edge’s existence

Optimization. Both sets of parameters are jointly optimized during training. The overall loss
function is defined as

L((Sv 77) = Lcausal((sa 77) + Lreg(n)»

where Lcasa €ncourages accurate prediction of the next action, and Ly, regularizes the structural
parameters to promote sparsity and prevent overfitting. This results in an interpretable and reliable
causal model.

16

Under review as a conference paper at ICLR 2026

The full training procedure is summarized in Algorithm [T which alternates between updating the
generative and structural parameters using mini-batches sampled from the buffer B.

Algorithm 1 Iterative Optimization for Structural Causal Action (SCA) Model

1: Input: Dataset B = {{(s},af)}{_, }:[_1
2: Initialize structural parameters 1) and generating parameters &
3: Repeat:
4: 1. Sample a mini-batch B = {{(a;_;, sf,af)ier}, C B
2. Optimize Generating Parameters §:
Fix n
Optimize ¢ by minimizing the 1oss Lcaysal (6, 77) in Eq.
Update generating parameters &
9: 3. Optimize Structural Parameters 7:
10: Fix ¢
11: Optimize 7 by minimizing the loss L(6,7) = Lcausa1(0,7) + Lreg(n) in Eq.[2)and Eq.
12: Apply sigmoid to n
13: Output: Optimized parameters 0, 7

B.1.1 STATE AND ACTION FACTORIZATION

We assumed a known factorization of state and action spaces, a common assumption often made
in causal reinforcement learning research (Seitzer et al., 2021} Peng et all [2022). This allows
us to encode the states and actions into binary vectors: s; = [s.1,...,5:5] € {0,1}°, a; =
[at1,---,ar,a] € {0,1}#, where each component s; ; and a; is a binary indicator representing
whether a particular state feature or action is active (1) or inactive (0).

For example, given an observation s} of trajectory k at timestep ¢ : “agent 1 is holding an onion,
agent 2 is holding nothing”, this can be encoded into a binary state vector such as:

s¥ =11,0,0,1,0,...],

where each entry corresponds to a specific feature (e.g., “agent 1 is holding onion”, “agent 1 is hold-

ing nothing”, “agent 2 is holding nothing”, etc.), and the 1s indicate which conditions are currently
true. Similarly, an action like “agent 1 places onion in pot” can be encoded into

a¥ =1[0,1,0,...],

where each entry corresponds to a specific atomic action in the action space, and the 1 marks the
active action at time ¢. Note: In our training process, we use only the previous action of the control-
ling agent. While it is possible to incorporate the actions of the other agent, doing so increases the
complexity of learning the causal graph and may negatively impact the training performance.

This factorized representation enables us to formulate the causality training as a classification prob-
lem, allowing us to optimize using the negative log-likelihood loss defined in Eq. 2] Refer to
Appx. |C.11.2)for the factorization features used in our experiments.

B.2 AGENT PLANNING WITH CAUSAL KNOWLEDGE DETAILS

This appendix provides additional details on how causal knowledge is integrated into the agent’s
decision-making process during action planning.

LLM prompting process. During inference, we first equip the LLM agents with a knowledge li-
brary that specifies the tasks, rules, and example responses relevant to the game environment. At
each time step, the current observation s; is presented to the agent along with a prompt instruct-
ing it to analyze the situation. The agent typically responds with a natural language interpretation
highlighting the key elements of the observation. Both the original observation s; and the generated
analysis are then fed into a second prompt, which instructs the agent to produce a set of appropriate
next actions .4’. For further details, refer to Appx.

Causal-Aware Planning. When a set of candidate actions A’ is generated during planning, each
action is initially assigned a probability by the LLM model, denoted as P,(A’). To incorporate

17

Under review as a conference paper at ICLR 2026

causal reasoning, the agent queries the Causal Action Matrix M using the current state s; and
previous action a;_1 to compute a corresponding set of causal scores P.(A’) (refer to Appx. m
for details). A weighted combination of the LLM’s probabilities and causal scores is formed using
Eq.[]and then normalized via the softmax function:

exp(pi(al,))
S exp(pr(as,))’

(22)

resulting in the final action distribution P;(.A"). Redundant actions are identified and merged ac-
cording to the process described in Appx.[B.2.4] and the agent samples the next action a;, from
this refined distribution.

Causal Backup Plan. In scenarios where no valid candidate actions are proposed (i.e., A" = (),
mostly due to hallucinations, the agent relies on a causal fallback mechanism. Instead of halting
execution, it queries M using s; and a;_1 to derive a causal distribution over the original instruction
set A. The agent then selects the action with the highest causal score, effectively leveraging prior
experience to recover from failure.

The complete inference procedure using Causal-Aware Planning and Causal Backup Plan is sum-
marized in Algorithm 2]

Algorithm 2 Agent Planning with the Causal Knowledge Algorithm at time step ¢

1: Input: Current state s;, previous action a;_1, candidate actions .A’, LLM probabilities P,(.A"),
instruction set .4, causal matrix M, weighting coefficient v € [0, 1], P(A') = 0, P.(A) = 0
2: If A’ # () then

3: Foralla), € A’

4 pc(a{m) — M(St’ ai—1, a;n)

50 pilag,) < v palan, + (1=17) - pe(ay,) (Eq.H)

6: Pr(A") + pe(al,)

7. End for

8: Normalize P;(.A’) using softmax in Eq

9: Apply redundancy check (see Appx.[B.2.4) to get A", P;*
10: Sample a; ~ Categorical ([pf (a}),pf(ay),...,pf (afA,*‘))
11: Else

122 Forallaec A

13: De (CL) — M(St, ag—1, a)

14: P.(A) + pc(a)

15 End for

16: a; + argmaxgeq Peo(a)

17: End If

18: Output: Selected action ay

B.2.1 LLM PROMPT DESIGN

Knowledge library. At the beginning of the inference process, we construct a knowledge library
for the LLLM agent, following prior work in the field (Zhang et al., 2024a; |Qiao et al.,|[2024)). This
library is organized around three key perspectives: the tasks, the rules, and the in-context examples.
This knowledge library is fed into the LLMs at the initial stage of the inference process before the
cooperation task begins. An example of a knowledge library is provided in Fig.[3]

In our experiments, for simplicity, we utilized the knowledge library provided by |Zhang et al.
(20244), with slight modifications to accommodate our two-prompt design, as their work uses the
same evaluation environmen(']

'https://github.com/PKU-Alignment /ProAgent|(MIT License).

18

https://github.com/PKU-Alignment/ProAgent

Under review as a conference paper at ICLR 2026

Knowledge library

Tasks:

- You are ...

- This is a team game played by two players who will ...
- The team goal is ...

- You need to ...

Rules:

- In this task, the legal actions include: [Action 1], [Action 2], ...

- Assume the role of an assistant proficient in the task. Your objective is to control Player 0 and cooperate with Player 1, who
follows a fixed strategy, in order to achieve a high score. You should adhere to the following guidelines:

- For each step, you will receive the current scene or current scene with an analysis.
- If you receive only the current scene, you need to:

1. Describe the current scene and analyze it.
- If you receive the current scene and the analysis then you need to:

2. Plan ONLY ONE best skill for to do right now. Format should be ...

Examples:
i
Scene 1 Prompt 1:

Analysis: Both player are . I believe

liiizid

Scene 1 Prompt 2: . N
believe

Plan: Player | should [Scene 1 Action].
HiH#
Scene 90 Prompt 1:

Analysis:
i
Scene 2 Prompt 2:

Plan: Player 1 should [Scene 90 Action].
i

Figure 5: An Example of Knowledge Library.

Analysis and planning prompts To facilitate the planning process, we first ground the environ-
ment state into natural language so that it becomes interpretable to the LLM agent, as the raw state
representation is typically not directly understandable by language models. In our experiments, we
adopt the grounding methodology proposed by |Zhang et al.| (2024al), since their work uses the same
evaluation environments. For detailed grounding procedures, we refer the reader to their paper. An
example of the final grounded state prompt used as input to the agent at each timestep is highlighted
in red in Fig.[6]

We then apply our two-prompt design to guide the LLM’s behavior using the knowledge library.
Specifically, when the agent is prompted with only the current observation, it is expected to analyze
the scene. When the prompt includes both the observation and the analysis, the agent is expected to
respond with a planned action. Our approach first asks the agent to perform the analysis, then uses
that analysis together with the state prompt as input to generate the final action plan. The analysis
is highlighted in , while the planned action is highlighted in purple in Fig.[6] We hypothesize
that this two-prompt process provides the agent with a reasoning workflow similar to the chain-
of-thought (CoT) prompting described by [Wang et al.|(2022), while also allowing straightforward
access to the planned action through hard-coded separation. In contrast, including both the analysis
and the planned action in the same response, as done by [Zhang et al.| (2024a)—can make it diffi-
cult to accurately extract the planned action, since action names might appear within the analysis.
We evaluate the performance of one-prompt versus two-prompt approaches without causality en-
hancement through our CausalPlan in Sect. [d.4] and find that the results are quite similar, with the

19

Under review as a conference paper at ICLR 2026

two-prompt approach showing slightly better performance. Although the single-prompt approach is
feasible in practice, it complicates reliably identifying the correct action.

Analysis and planning prompts

i

Scene 1 Prompt 1: Layout: Onion Dispenser 0, Onion Dispenser 1, Dish Dispenser 0, Serving Location 0, Pot 0, Pot 1.

State: Player 1 holds nothing. Player 0 holds nothing. Kitchen states: Pot 0 is empty. Pot 1 is empty. 3 counters can be visited by
Player 0. Their states are as follows: No counters have onion. No counters have dish.

Analysis:

i

Scene 1 Prompt 2: Layout: Onion Dispenser 0, Onion Dispenser 1, Dish Dispenser 0, Serving Location 0, Pot 0, Pot 1.

State: Player 1 holds nothing. Player 0 holds nothing. Kitchen states: Pot 0 is empty. Pot 1 is empty. 3 counters can be visited by

Player 0. Their states are as follows: No counters have onion. No counters have dish. Analysis:

Plan: Player 1 should pickup(onion).
HHH

Figure 6: An example of analysis and planning prompts.

B.2.2 CAUSAL KNOWLEDGE CONSULTATION DETAILS

To compute the causal score for a candidate action, the agent first maps the action to its correspond-
ing row in M and identifies which columns are currently active based on features derived from the
current state and previous action. These active features are determined using the procedure outlined

in Appx.

For instance, given that we want to extract the causal scores of an action a, given current state s; and
previous action a;_1, we first identify the corresponding index ¢ of the action a within the matrix
row. Letidx: A — {1,...,]A|} be the function that maps any action to its row index in M, and
let J = Active(ss, ai—1) C {1,...,5 + A} denote the set of column indices corresponding to the
features that are “active” in the current state s; and the previous action a;_1.

For a candidate action a, we first compute its row index ¢ = idx(a), then gather the entries of row 4
in M at all active columns j € J, thus a query M (s, a¢—1, a) will return:

pela) =Y ;i (23)

jeJ

In other words, p.(a) is the sum of the causal-weight entries in the row for a; that correspond to the
features currently active.

B.2.3 EXTRACTING INFORMATION FOR CAUSAL KNOWLEDGE CONSULTATION

Given the observations grounded in natural language, as explained in Appx.[B:2.1} we map them to
a set of predefined state features. For example, from the state prompt shown in Fig. [7]— “Player 1
holds nothing. Player 0 holds nothing. Kitchen states: Pot 0 is empty. Pot 1 has 1 onion...” — we
extract factorized features such as hold_-nothingl (indicating that agent 1 is holding nothing),
hold.nothing2 (agent 2 is holding nothing), pot 0_0 (pot 0 is empty), pot1_1 (pot 1 has 1
onion). This allows us to formulate the state feature factorization s;.

In addition, the previous action taken by the agent is also recorded, referring to the last executable
action performed. This allows us to configure the action feature factorization vector a;_1.

Depending on the environment, the number of factorized features can vary widely (see Appx.[C.11.2]
for the specific factorized features used in each experimental task). While a larger number of features
can produce a more detailed causal graph, this does not necessarily lead to better performance, as

20

Under review as a conference paper at ICLR 2026

learning such graphs becomes more challenging and requires more data. In our experiments, we
chose to use high-level state and action factorizations (we ignore low-level movement actions and
only focus on the state of the two agents and the pot) to strike a balance between expressiveness and
learnability.

Giiaid

Scene 1 Prompt 1: Layout: Onion Dispenser 0, Onion Dispenser 1, Dish Dispenser 0, Serving Location 0, Pot 0, Pot 1.
State: Player I holds nothing. Player 0 holds nothing) Kitchen states: [Pot 0 is empty. Pot I has T onion. 3 counters can be
visited by Playyf 0. Their states are as foll}f(ws: No counters have onion. No dfounters have dish.

Agent 2's state: Environment's state:
hold_nothing2 pot0_0

Agent 1's state:

hold_nothing1 potl_1 put_onion_in_pot

Environment's state: ‘ Previous action: ‘

a at—l:[071,07-~-]

Figure 7: Information extraction for causal knowledge consultation.

B.2.4 POST-PROCESSING TO IDENTIFY REDUNDANT ACTIONS

During the process of sampling the next actions, the LLM may output the same action in dif-
ferent formats within the sampled set A’. To address this, we apply a series of post-processing
steps using standard natural language processing techniques—such as converting text to lower-
case, removing punctuation, and regex matching pre-defined patterns—to identify and merge se-
mantically equivalent actions. This enables us to accurately aggregate their probabilities in P;(A’).
For instance, the same action put_onion_in_pot can be expressed as put_onion_in_pot (),
put_onion_in_pot () ., or put_onion_In_Pot (refer to the associated code for details of this
process). After post-processing all these possible responses, we can calculate the updated value:

pe(put_onion_in pot) = pe(put_onion_in_pot ())
+ pr(put_onion_in pot () .)+ pr(put_onion_In_Pot)

C ADDITIONAL EXPERIMENT DETAILS

C.1 CAUSALPLAN IMPLEMENTATION

As mentioned earlier, we build upon the ProAgent framework (Zhang et al., 2024a), retaining all
components except for the planning module, which we replace with our proposed algorithm. Un-
like the original ProAgent implementation that relied on the closed-source GPT-3.5 for plan-
ning, we instead utilize one of the following open-source language models, all retrieved from
Hugging Fac gemma-1.1-7b-it (Gemma-7B), Meta-Llama-3-8B-Instruct (Llama-
8B), Qwen2.5-14B-Instruct-1M(Qwen-14B),and L1ama-3.3-70B-Instruct (Llama-
70B). These models are integrated into the ProAgent framework to serve as the core planner, with
our CausalPlan method applied to refine the generated actions. Additionally, for the two-
prompt input structure, we employ the Cohere/command-r model (Cohere}, 2024)—a 35-billion-
parameter LLM accessed via the Cohere API using the official cohere Python clienﬂ—to pro-

Zhttps://huggingface.co
Shttps://docs.cohere.com/v2/reference/chat

21

https://huggingface.co
https://docs.cohere.com/v2/reference/chat

Under review as a conference paper at ICLR 2026

duce scenario analyses for faster inference. For the “Belief Correction” module, we also substi-
tute GPT-3 .5 with the same Cohere model. The “Controller” module in ProAgent
[2024a)—and in our setup—uses a rule-based best-first search; while effective, performance could
likely be improved with a reinforcement learning-based approach.

Regarding hardware requirements, the Gemma-7B and Llama-8B models each require approxi-
mately 10-16 GB of VRAM, Qwen-14B demands around 25-30 GB and multi-GPU support, while
Llama-70B needs over 70 GB VRAM with multi-GPU configuration on NVIDIA h-100 GPUs.

To facilitate easier extraction of action selection probabilities, we slightly modify the prompting
strategy used in the original method. In particular, we separate the reasoning step, based on CoT
prompting, from the action planning step, implementing them as two distinct prompts. The output
of the reasoning prompt is then used as input for the planning prompt. We provide further details
of this process in Appx.[B.2.T]and include an empirical study in Appx. demonstrating that this
modification does not contribute to the performance gains, nor does it substantially affect the overall
performance of the backbone.

To avoid the cold-start problem and long interaction times associated with using small LLMs to
collect data into the buffer B, we employ a pre-trained policy based on MEP to interact with the
environment and gather data. Nonetheless, we conduct an experiment (results are in Appx. |C.7)
demonstrating that even when using a small LLM, specifically Llama-8B, for data collection, our
method still yields improved performance compared to simply using the backbone method.

C.2 ENVIRONMENT DETAILS

We use the Overcooked-Al environment suite as our testing platform (Carroll et al.}[2019). In Over-
cooked, two agents must collaborate to prepare and serve onion soup. Their tasks include gathering
and placing up to three ingredients into a pot, cooking the soup, transferring it into a dish, and
delivering the final meal. Each successful delivery yields a reward of +20, and both agents share
the final return, promoting cooperative behavior. This suite comprises five distinct layouts
2019)—Cramped Room (CR), Asymmetric Advantages (AA), Coordination Ring (COR),
Forced Coordination (FC), and Counter Circuit (CC)—each designed to evaluate different aspects
of multi-agent collaboration under varying levels of complexity and coordination demands:

* Cramped Room (CR): This environment features a highly constrained layout with narrow
hallways and tight corridors, forcing agents to navigate around each other constantly.

* Asymmetric Advantages (AA): In AA, the kitchen layout provides one agent with easier
access to ingredients and tools, while the other agent is disadvantaged in terms of spatial
reach.

* Coordination Ring (COR): COR introduces a ring-like structure in the kitchen, where
ingredients, cooking stations, and delivery points are spread along a loop.

* Forced Coordination (FC): FC is designed to enforce interdependence between the agents
through environment constraints.

¢ Counter Circuit (CC): The CC environment includes a set of counters that create a barrier
between the agents and the task stations.

Figure 8: Overcooked-Al Environments. From left to right: Cramped Room (CR), Asymmetric
Advantages (AA), Coordination Ring (CR), Forced Coordination (FC), and Counter Circuit (CC).

22

Under review as a conference paper at ICLR 2026

The environment testing suite was collected from the associated GitHub repositoryﬂ

C.3 BASELINE DETAILS

We compare CausalPlan against several established reinforcement learning (RL) methods specif-
ically designed for zero-shot human-Al coordination tasks. These baselines have demonstrated
strong performance in prior research and serve as competitive benchmarks in our experiments.

* SP (Self-Play) (Tesauro, 1994; Carroll et al., 2019): A classical RL approach where agents
learn policies by playing against themselves, promoting strategic behavior without relying
on external partners.

* PBT (Population-Based Training) (Jaderberg et al., 2017): An evolutionary algorithm
that optimizes agent populations by iteratively mutating and selecting promising policies,
facilitating diverse and robust coordination strategies.

* FCP (Fictitious Co-Play) (Strouse et al., [2021): A method that models coordination by
simulating the behaviors of various partner types, enabling agents to adapt to unseen col-
laborators.

* MEP (Maximum Entropy Population) (Zhao et al. 2023a): This approach promotes
diversity within agent populations by maximizing entropy, which encourages exploration
of varied strategies for better coordination.

* COLE (Cooperative Learning) (Li et al., 2023)): An algorithm designed to enhance co-
operative behavior between agents by explicitly learning to predict and adapt to partners’
actions.

These baselines were selected due to their relevance and proven success in multi-agent coordination
scenarios. The pretrained baseline models were obtained from the ProAgent GitHub reposito

We also evaluate CausalPlan in collaboration with a human policy collected via behavior learning,
available at the COLE platforn{’}

C.4 DETAILS OF Al PARTNER EVALUATION

Tab. 3] presents a comprehensive comparison of the performance of various backbone LLMs, both
with and without CausalPlan, evaluated across multiple layouts.

Tab. [provides an in-depth comparison between baseline agents and our proposed CausalPlan
method using Llama-70B, across different layouts.

C.5 DETAILS OF HUMAN PARTNER EVALUATION

Our main goal is to present a modular causal reasoning framework that improves LLM-based plan-
ning agent that can collaborate well with human.

To provide quantitative support, we present Table [5] which compares Llama-70B with CausalPlan
against the best RL baseline and Table [6] which reports the t-values of models with and without
CausalPlan when paired with a human agent. The ¢-test is a statistical method used to determine
whether observed differences between two groups are statistically significant or could have occurred
by chance. Higher ¢-values indicate stronger evidence that the difference is meaningful.

Statistical analysis with best RL methods

In most environments, CausalPlan leads to a clear improvement in ¢-statistics, often reversing a
negative score into a positive one (e.g., CR-PO, AA-P1, FC-PO, CC-P0). Although some t-values
do not reach statistical significance due to the small sample size (n = 5), which is limited by the
availability of human data, the consistent trend of improvement suggests that our approach is effec-
tive and broadly applicable. We hypothesize that applying our causal method on stronger models

*https://github.com/HumanCompatibleAI/overcooked_ai (MIT License)
Shttps://github.com/PKU-Alignment /ProAgent (MIT License)
®https://github.com/liyang619/COLE-Platform

23

https://github.com/HumanCompatibleAI/overcooked_ai
https://github.com/PKU-Alignment/ProAgent
https://github.com/liyang619/COLE-Platform

Under review as a conference paper at ICLR 2026

Table 3: Performance of different backbones with and without CausalPlan across various layouts
(this is the detailed version of Fig.[3). The reported results, including mean and variance, are ob-
tained from 3 different seeds, with each seed running for 400 timesteps. In these experiments, we
use the small LLM agent as Player 1, allowing it to collaborate with all other baselines as described
in Sect.[4.T] and report the average and variance of the outcomes. The last column reports the aver-
age improvement across backbones, and the last row reports the average improvement across layouts
in %. The result with the highest improvement is highlighted in bold, while the second highest is

underscored.

Backb With Layouts | Avg.
ackbones mprov.
CausalPlan CR AA COR FC cc (%)
X 121.3 + 16.2 88.0 +32.7 78.7 £ 8.3 17.3 £ 6.1 73.3 £+ 10.1
Gemma-7B 12.82
v 141.3 + 6.1 122.7 £ 129 82.7 + 30.5 173 +£9.2 78.7 £ 14.0
X 110.7 £ 12.8 163.4 +£3.3 80.0 +41.7 93+23 84.0 + 20.8
Llama-8B 13.90
v 150.7 £ 2.3 182.2 + 18.3 773+ 14.0 16.0 4.0 90.7 £ 2.3
X 117.3 £ 4.6 224.0 £ 22.6 76.0 £ 17.4 16.0 £ 4.0 48.0 +22.6
Qwen-14B 29.04
v 162.6 £9.2 232.0 £ 31.7 121.3 £ 16.6 173 £ 12.8 93.3 £22.7
X 144.0 + 18.3 248.0 £ 22.7 125.3 + 10.0 347+ 14.0 89.3 +32.3
Llama-70B 22.42
v 1787 £2.3 266.7 £+ 16.7 1573 +£23 38.7 £ 16.2 1120 £ 6.9
Avg. Improv. (%) - 20.83 18.80 19.13 4.87 9.55 -
Oracle GPT — 1942 +10.5 229.8 +£21.9 183.0 £ 31.7 31.0 +33.9 128.5 + 28.1 —

Table 4: Performance comparison between baseline agents and CausalPlan (Ours) across layouts
using Llama-70B (this is the detailed version of Tab. E]) Results (mean + variance) are averaged
over 3 seeds (400 timesteps each). The first row per layout corresponds to our agent as Player O, the

second to Player 1. Best and second-best results are in bold and underlined, respectively.

Layout Baseline AI Agents CausalPlan
SP PBT FCP MEP COLE (Ours)

CR 1600 +4.0 | 1653+1.7 | 1946 +10.0 | 177.3+22.0 | 1640+69 | 166.7 +6.1
1640 +16.0 | 1707 £83 | 193.3+10.1 | 178.7 £10.1 | 1427+ 18.0 | 178.7+23

AA 1733 £22.0 | 1853+ 128 | 181.3+14.0 | 153.34+23 | 197.3 £ 14.0 | 250.7 + 16.1
1947 +129 | 1507+ 18.0 | 1720 £16.0 | 181.3+£9.2 | 1733+ 16.2 | 266.7 + 16.7

COR 1067 £12.8 | 1387+ 122 | 1387+23 | 166.7+83 | 1547 +23 | 156.0 £4.0
1347 +£92 | 1400+80 | 122.7+10.1 | 1547 +£6.1 | 1520+69 | 157.3+2.3

FC 107+46 | 200+144 | 573+6.1 274+46 | 413+100 | 69.1+13.6
253+ 4.6 61.3 + 6.1 26.7 £ 8.3 38.0+ 6.1 48.0+4.0 | 38.7+t16.1

o 62.7+122 | 56.0+8.0 64.0+80 | 333+220 | 960+40 | 113.3+8.3
50.7 + 6.1 4804200 | 62.7+129 | 66.7+10.1 | 853+162 | 112.0 £ 6.9

like GPT-3.5, as used in ProAgent Zhang et al.| (2024a)), would likely yield even more significant
improvements in performance.

Statistical analysis with backbone

Statistically significant improvements (p < 0.05) are observed in 30% of the cases (CR-P0O, AA-P1,
COR-P1), with strong t-values (3.805, 2.987, 2.834 respectively), providing direct evidence that
CausalPlan improves performance in these settings. An additional 30% of cases (CR-P1, FC-PO,
CC-P0) show marginally significant improvements, with p-values between 0.05 and 0.2. These re-
sults suggest a positive trend toward significance that may be confirmed with more data. Importantly,
100% of the t-values are positive, meaning CausalPlan never degrades performance compared to the
non-causal baseline.

24

Under review as a conference paper at ICLR 2026

Table 5: t-values of models with and without CausalPlan against the best RL baseline.

Layout Best RL t-value (w/ CausalPlan) ¢-value (w/o CausalPlan)
CR-PO COLE 0.868 -3.504
CR-P1 MEP 0.388 -1.638
AA-PO MEP 3.329 2.660
AA-P1 COLE 1.966 -1.188
COR-PO MEP 0.657 0.000
COR-P1 COLE 2.781 0.838
FC-PO COLE 0.818 -1.405
FC-P1 PBT -0.589 -1.421
CC-PO COLE 1.099 -0.211
CC-P1 COLE -0.236 -0.408

Table 6: Paired t-test results comparing Llama-70B with CausalPlan (Ours) and Llama-70B (Re-
act+Reflexion).

Layout t-value p-value
CR-PO 3.805 0.0304
CR-P1 1.731 0.1982
AA-PO 0490 0.6518
AA-P1 2987 0.0429
COR-PO 0.608 0.5867
COR-P1 2834 0.0496
FC-PO 1.832 0.1740
FC-P1 0.741 0.5000
CC-PO 1.902 0.1320
CC-P1 0.274 0.8028

C.6 EFFECT OF HYPERPARAMETER 7y

In our framework, the hyperparameter v in Eq. 10 controls the balance between the agent’s belief
and the causal knowledge. To investigate the effect of varying v, we conducted an experiment on
two layouts, CR and FC, using Qwen-14B as the backbone LLM. As shown in Fig.[9] the optimal
value for +y lies within the range of 0.5 to 0.7. In both cases, when -y is set to 0.2, indicating a greater
reliance on causal knowledge than on the agent’s own knowledge, or when 7 is set to 1, fully trusting
the agent, the performance degraded. Refer to Fig.[9]for the experimental results and Tab. [T2]for the
~ values used for each LLM agent across different layouts. Due to limited computational resources,
tuning was only performed on layouts where CausalPlan initially underperformed with v = 0.5. We
believe that further tuning of this hyperparameter would likely lead to improved performance.

C.7 EFFECT OF DIFFERENT DATA COLLECTION POLICY

Table 7: Ablation studies on using different agents to collect data for buffer B conducted on CR
layout with Llama-8B as backbone. The results, including mean and variance, are obtained from 3
different seeds. “Llama-8B” and "MEP” refer to using Llama-8B or MEP to generate data.

Baseline AI Agents Average

Methods Results

Sp PBT FCP MEP COLE

Llama-8B

106.7 £ 41.6

86.7 £75.1

166.7 + 41.6

126.7 + 30.6

140.0 £ 0.0

125.3 £ 30.7

MEP

126.7 + 30.6

133.3 £ 30.5

160.0 £ 40.0

166.7 £ 41.6

166.7 + 23.1

150.7 £ 2.3

25

Under review as a conference paper at ICLR 2026

=
~
w

g CR
2150 FC
a
w125
g
100
T
©
2 75
9]
o
o 50
o
o
o 25
<
0
0.2 0.4 0.5 0.6 0.7 0.8 1.0

Parameter Value

Figure 9: Experiments showing the impact of tuning the hyperparameter v conducted using Qwen-
14B on CR and FC layouts. The results, including mean and variance, are averaged over three
different seeds. The optimal value of typically lies within the range of 0.4-0.8, emphasizing the
importance of balancing between the belief of the LLMs and the prior causal knowledge.

Tab. |/| presents an ablation study comparing the effects of using different agents—Llama-8B and
MEP—for data collection in buffer B, when interacting with the environment to collect data for 200k
steps. We hypothesize that using MEP for data collection would yield better results, given that it is
a pretrained agent specialized for the task. Nevertheless, even when using data collected by Llama-
8B, incorporating causal knowledge still provides a performance gain compared to not using causal
knowledge at all. The results show that MEP consistently outperforms Llama-8B across all baseline
Al agents, achieving a higher average score of 150.7 (+2.3) compared to 125.3 (+30.7) for Llama-
8B. This underscores the importance of utilizing a stronger agent to generate high-quality training
data for causal reasoning. Importantly, even when using data from Llama-8B, causal knowledge
improves performance relative to the absence of causal guidance, where the average score drops to
110.7 (+£12.8) as reported in Appx. Tab.[3] We hypothesize that the performance gain observed when
using data from Llama-8B arises from its ability to consult not only the current deterministic action
selection but also similar past scenarios through the incorporation of causal knowledge.

C.8 BENEFITS OF CAUSAL KNOWLEDGE INTEGRATION

We divide our analysis into micro-level failure, which examines agent behavior within a single
environment, and macro-level failure, which compares performance across multiple environments.

Micro-Level Failure. We analyzed Llama-8B’s behavior at 300 timesteps on the Cramped Room
layout, where our method showed a significant +36.1% improvement (from 110.7 to 150.7; Fig. .
Comparing agents with and without CausalPlan, we focused on two failure modes:

(1) Physically invalid actions. Calls to pickup_onion () while already holding an object (e.g.,
hold_onionl or hold_dishl) are reduced with the use of the causal graph. In contrast, valid
calls when the agent’s hand is empty (empty_handl) increase. Invalid calls dropped from 14
(41%) to 10 (23%), and valid ones rose from 20 (59%) to 33 (76%).

Table 8: Invalid vs. valid pickup_onion () calls under different hand states.

State — Action Without Graph With Graph
hold_onionl orhold.dishl — pickup_onion () 14 10
empty_handl — pickup_onion () 20 33

(2) Poor coordination. The agent avoids redundant pickups when the pot is nearly full (pot2) and
the other agent already holds an onion (hold_-onion?2). These cases dropped from 2 to 0, reflecting
better awareness and coordination from causal integration.

26

Under review as a conference paper at ICLR 2026

Table 9: Coordination failures with redundant pickup_onion () calls.
State — Action Without Graph With Graph

hold_onion2, pot_2 — pickup_-onion () 2 0

Macro-Level Failure. Across environments, CausalPlan shows the largest improvements on
Cramped Room (+20.8%), Asymmetric Advantages (+18.8%), and Coordination Ring (+19.1%),
where causal failures such as role confusion, blocking, or redundant actions are common.

In contrast, Forced Coordination (+4.9%) emphasizes tight, time-dependent synchronization be-
tween agents (e.g., placing too many onions that block the counter while the pot is already full),
leaving less room for improvement under our current setup. Notably, we have not yet modeled
counter state in the causal graph; incorporating this information could further enhance performance
in such layouts.

C.9 HEATMAP OF LEARNED CAUSAL MATRIX M ANALYSIS

In Fig. and Fig. we present the causal matrices M derived from data collected by MEP
and Llama-8B, respectively. The inference results using these matrices are detailed in Appx.
To obtain each matrix, the respective agent interacts with the environment for 200,000 steps to
gather data, followed by training the SCA model for 500,000 steps on the collected dataset.
While both matrices share similarities in many key edges—for example, from empty_handl to
pickup_onion (edge weights of 0.9 for MEP and 0.8 for Llama-8B) and from pot_finished
to fill_dish_with_soup (0.9 for MEP and 0.8 for Llama-8B) (see Appx. for feature
descriptions)—there are important differences that likely contribute to performance variations. For
instance, the edge from pickup_onion to put_onion_in_pot has a weight of 0.6 when using
MEP-collected data but is absent (weight 0) with Llama-collected data. Similarly, the transition
from deliver_soup to pickup-onion appears with a weight of 0.7 in the MEP matrix but is
missing in the Llama-8B matrix. These differences highlight how the choice of data collection agent
influences the learned causal structure, which in turn can impact the effectiveness of downstream
inference and control.

Additionally, one may observe that both heatmaps contain several edges that are difficult to inter-
pret, especially those originating from the state of the other agent toward the current action. These
edges may carry meaning for the agent but appear unintelligible to humans, or they may be irrele-
vant. However, these unexpected edges have minimal impact on the inference process, provided the
LLM agent does not sample the corresponding actions, thereby eliminating the need to re-calculate
the final associated sampling probabilities. This highlights the importance of the general knowledge
embedded within the LLM agent, which helps partially eliminate irrelevant edges and leaves only
those ambiguities that require causal reasoning. We hypothesize that more advanced causal discov-
ery techniques could further improve the quality of the learned causal graphs by eliminating spurious
edges. A simpler alternative might involve hyperparameter tuning of a threshold, where edges with
probabilities below this threshold are removed entirely, or collecting more data. We leave these
explorations for future work.

C.10 TIME EFFICIENCY ANALYSIS

Learning the causal graph—such as in the CR environment, which involves 21 parent nodes and 7
child nodes—requires approximately 3 hours of training. However, this is a one-time offline process
that can be reused across all backbone models, making its cost negligible in the overall training
pipeline.

The actual runtime during planning varies depending on the backbone model used. Using NVIDIA
h100 GPUs (details in Appx.[C.1I] we observe the following runtimes for 400 timesteps:

* Gemma-7B and Llama-8B: Approximately 5 minutes without CausalPlan, and around 15
minutes with CausalPlan.

* Qwen-14B: Roughly 16 minutes without CausalPlan, and 41 minutes with CausalPlan.

27

Under review as a conference paper at ICLR 2026

Q o"é&;&q}
o & @ & 5 c(f@ &
v\\'z’(\b'@& \\{30 Av\\"’b @\é &0(,\ oé\;\‘}\ S\&;o"Q O 7}‘6400 Q& ‘\?o
3o & & \‘\\‘)\be oQ? o(\\° K7 ®9¢®9\ 7 O(\\b SN
& soo\b ;\o\b /b\‘;o /Qo'& Qoo' Q(‘)O’ $ Qé‘" qo"” /é\d' Qo"é\d' N Q\@(' Q\@b S foo\ /6‘{}\ ’
pickup_onion 0.3 0.5 0.7 0.5 b b mo.o 0.5 0.0 0. b b b L L Y
put_onion_in_pot o.7m0.3 0.5 m 0.5 0.5 /0.7 0.6 0.0 0.0 0.2 0.0 0.0 0.0 07 0. . 0.8
pickup_dish 0.5 0.3 0.5 0.7 FXJ06 0.5 0.5 0.7 0.6 0.0 0.0 0.0 0.0[0.0/0.5 0.5 0.6 oK} 0.6%’
fill_dish_with_soup {2} 0,3mo.7 0.4 0.4 0.0 (0.7 0.6 0.0 0.0 04 .0/0.0/0.4 0.5 0202 =
deliver_soup {0 0.60.5 0.6 mmm 0.7 0.5 0.5 .0/ 0.0 /0.5 0.2 (0.7 0'45’
place_onion_on_counter o.7mo.5 06 0.6 0.6 0.7mo.5 05 05 05 0403|0000 0.1 oemos o_zm
place_dish_on_counter Ul PR 11v/ 0.2 [0.6 0.3 X} 0.4 0.0 0.4 0.5 0.0

Figure 10: Heatmap of causal graph edge weights obtained from data collected using MEP in the
CR layout. The plot illustrates the influence of state features (x-axis) on agent actions (y-axis).

£
& &
SR
g S R ¢S 2
S N S o P STy R
O &> o S & &7 \ o Q)
O FEE T T S S o
A‘/\ 0® SN (\\‘) b‘z} Q9 {‘\0 Q7 é(\/?/‘a & 8§ ‘/\ o‘\\ SEIN
< N\ R0 (O e’ @7
ST P S I R S S S MY O/ O7 o
O @ S EEC T F ST NG Q\’Z> Q\’b O @
pickup_onion
put_onion_in_pot {13 m § y -0.8
o
pickup_dish 06m07 0.6 0.5 0.6 OSWHOG 06-_5’
o
fill_dish_with_soup =
()
deliver_soup 1 UvA AR 0.0 f0:6 0.0 0.0 0.6 0.5 0.0 {06 0.5 0.1|0.1 0'4.8’
w
place_onion_on_counter |01 0.9| 09 (X808 09 0.9 0| 1.0 [os EIIE e 1B
place_dish_on_counter {0/ Nl 0.4 0.7 0.6 0.7 0.6 [0k 0.0 UER 0.6 0.5
0.0

Figure 11: Heatmap of causal graph edge weights obtained from data collected using the Llama-
8B backbone in the CR layout. The plot illustrates the influence of state features (x-axis) on agent
actions (y-axis).

e Llama-70B: About 40 minutes without CausalPlan, and approximately 68 minutes with

CausalPlan.

These results highlight the additional computational cost introduced by causal reasoning. However,
the overhead remains reasonable given the observed improvements in policy quality.

C.11 HYPERPARAMETERS

C.11.1 CAUSALITY AND LLMS HYPERPARAMETERS

SCA Model

LLMs Agent (Build on top of ProAgent framework (Zhang et al.,[2024a))
~ value in Eq.[d|for each layouts

C.11.2 STATES AND ACTIONS FACTORIZATION IN EACH ENVIRONMENT

States and actions factorization used in CR layouts are available in Tab.[I3]and for other other layouts
are included in Tab. T4l

28

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameters related to SCA Model

Parameter Value Description
N 200,000 Timesteps used to collect data for buffer B.
T 400 Horizon of each episode.

fi network architecture MLP Four hidden layers with dimensions 64, 256, 256,
64; ReLU activations; sigmoid output.

Optimizer Adam Optimization algorithm used to train ¢ and 7.
Learning rate 3e-4 Step size for gradient updates for ¢ and 7.
Regularization A le-7 Regularization strength for parameter estimation.
Iterations 500,000 Number of training iterations for ¢ and 7.

Table 11: Hyperparameters related to LLMs

Parameter Value Description
Model sizes Gemma-7B, Language model sizes and architectures
Qwen-14B,
Llama-8B,
Llama-70B
Temperature 1.0 Controls randomness; higher values encourage di-
verse samples
Max new tokens 256 Maximum number of generated tokens per output
Top-k sampling 50 Number of top tokens considered in sampling
Top-p sampling 0.9 Nucleus sampling threshold (alternative to top-k)
Sampling method Enabled Sampling is enabled (do_sample=true)
retrival_method recent_k Parameter of ProAgent framework to retrieve re-
cent history dialogue
K 1 Parameter of ProAgent framework, the number of

history dialogue (default value is O or 1)

D ADAPT TO LONG-HORIZON PLANNING

To adapt CausalPlan to Crafter, a single-agent environment that is often used to evaluate causality-
driven methods, we construct the causal matrix M using only the agent’s state and action informa-
tion. We continue to apply our two-phase causal reasoning framework to guide planning and action
selection. In this experiment, we employ Llama-7B as the backbone LLLM, and use an underlying
PPO policy as our g (similar to |Chen et al.| (2025)) to collect trajectories and build the causal
matrix.

Fig.[I2]presents the success rates of CausalPlan (Ours) against Dreamer-V2 (Hafner et al.,[2020) and
Causal-aware LLMs (Chen et al., |2025) across 22 Crafter tasks. Causal-aware LLMs represent the
state-of-the-art approach that integrates causal reasoning into LLM agent planning through prompt-
ing. Our method consistently outperforms both baselines, often by substantial margins. In the partic-
ularly challenging tasks of make stone pickaxe and make stone sword, CausalPlan achieves success
rates of 5.2% and 6.7%, compared to only 1.3% and 1.6% with Causal-aware LLMs. Likewise,
in make iron pickaxe and make iron sword, CausalPlan succeeds where both Causal-aware LLMs
and Dreamer-V2 fail. These improvements in individual tasks are reflected in the aggregated final
score (Tab. [T3), where CausalPlan achieves a higher final score of 16.7%, surpassing Causal-aware
LLM (14.6%) and Dreamer-V2 (10.0%). These results highlight that prompting alone is insuffi-
cient for robust long-horizon planning, whereas our method provides more reliable improvements
by grounding decisions in causal structure.

29

Under review as a conference paper at ICLR 2026

Table 12: ~ value in Eq. d]for each layout and language model

Layout Gemma-7B Qwen-14B Llama-8B Llama-70B
CR 0.5 0.5 0.5 0.5
AA 0.5 0.5 0.5 0.5
COR 0.5 0.5 0.5 0.5
FC 0.6 0.7 0.4 0.5
CcC 0.5 0.5 0.5 0.5

Table 13: Factorized States and Actions for CR Layout with Descriptions

Feature

Description

empty_handl
hold_onionl
hold._dishl
dish_with_soupl

Controlling agent is not holding any object
Controlling agent is holding an onion

Controlling agent is holding an empty dish
Controlling agent is holding a dish filled with soup

potO0
potl
pot2
pot3
pot_finished

Pot contains 0 onions (empty)

Pot contains 1 onion

Pot contains 2 onions

Pot contains 3 onions (ready to cook)

Pot has finished cooking and soup is ready

goal_delivered

A soup has been successfully delivered to the goal

pickup-onion
put_onion_in_pot
pickup_dish

fill dish with_soup
deliver_soup
place_onion_on_counter
place_dish_on_counter

Action:
Action:
Action:
Action:
Action:
Action:
Action:

controlling agent picks up an onion

controlling agent places an onion into a pot

controlling agent picks up an empty dish

controlling agent fills a dish with soup from a finished pot
controlling agent delivers a soup to the goal

controlling agent places an onion on the counter
controlling agent places a dish on the counter

empty_hand?2
hold_onion2
hold._dish2
dish_with_soup2

Other agent is not holding any object

Other agent is holding an onion

Other agent is holding an empty dish

Other agent is holding a dish filled with soup

BN Dreamer-V2

M Causal-aware LLMs I CausalPlan (Ours)

100

10

Success Rate
-

le-01

le-02-

Figure 12: Success rates of obtaining 22 achievements in log scale @ 1M steps.

30

Under review as a conference paper at ICLR 2026

Table 14: Factorized states and actions for other layouts and their descriptions

Feature Description

empty_handl Controlling agent is not holding any object
hold_onionl Controlling agent is holding an onion
hold._dishl Controlling agent is holding an empty dish
dish.with_soupl Controlling agent is holding a dish filled with soup
pot0.0 Pot 0 contains 0 onions (empty)

potl1.0 Pot 0 contains 1 onion

pot2_.0 Pot O contains 2 onions

pot3.0 Pot O contains 3 onions (ready to cook)
pot_finished.0 Pot 0 has finished cooking and soup is ready
pot0.1 Pot 1 contains 0 onions (empty)

potl.1 Pot 1 contains 1 onion

pot2.1 Pot 1 contains 2 onions

pot3.1 Pot 1 contains 3 onions (ready to cook)
pot_finished-1 Pot 1 has finished cooking and soup is ready
goal_delivered A soup has been successfully delivered to the goal
pickup-onion Action: controlling agent picks up an onion
put_onion_in_pot Action: controlling agent places an onion into a pot
pickup_dish Action: controlling agent picks up an empty dish
fill dish.with_soup Action: controlling agent fills a dish with soup from a finished pot
deliver_soup Action: controlling agent delivers a soup to the goal

place_onion_on_counter Action: controlling agent places an onion on the counter
place_dish_on_counter Action: controlling agent places a dish on the counter

empty_hand?2 Other agent is not holding any object
hold.-onion2 Other agent is holding an onion
hold._dish? Other agent is holding an empty dish
dish_with_soup2 Other agent is holding a dish filled with soup

Table 15: Scores (mean =+ std) of our method and baselines on 22 Crafter tasks.
Method Final Score (%)
Dreamer-V2 100 £1.2

Causal-aware LLMs @ 1M 14.6 £2.2
CausalPlan (Ours) @ 1M 16.7 + 1.2

E DISCUSSION OF BROADER IMPACTS

This work represents an important foundational step toward integrating causal reasoning into multi-
agent planning with large language models (LLMs). Our causality-driven framework aims to im-
prove the safety, efficiency, and interpretability of collaborative Al systems by enabling agents to
better understand the consequences of their states and actions. Although primarily exploratory and
not yet intended for real-world deployment, the results demonstrate promising potential for advanc-
ing multi-agent coordination.

At this stage, we do not expect any direct negative societal impacts, as the framework requires further
development and validation before practical use. Nevertheless, as autonomous multi-agent systems
mature, concerns related to fairness, reliability, misuse, and broader ethical implications will become
increasingly important. Addressing these challenges through responsible design, transparency, and
rigorous evaluation will be critical to ensure the safe and trustworthy deployment of such systems in
the future.

31

	Introduction
	Preliminaries
	Method
	Causal Action Structure Learning
	Agent Planning with Causal Knowledge
	Causal-Aware Planning
	Causal Backup Plan

	Experiments
	Experimental setup
	AI partner evaluation
	Human partner evaluation
	Impact of CausalPlan components
	Benefits of Causal Integration

	Related Work
	Conclusion and Future Works
	Identifiability Analysis
	CausalPlan Details
	Causal Action Structure Learning details
	State and action factorization

	Agent Planning with Causal Knowledge details
	LLM prompt design
	Causal knowledge consultation details
	Extracting information for causal knowledge consultation
	Post-processing to identify redundant actions

	Additional Experiment Details
	CausalPlan implementation
	Environment details
	Baseline details
	Details of AI partner evaluation
	Details of Human partner evaluation
	Effect of hyperparameter
	Effect of different data collection policy
	Benefits of Causal Knowledge Integration
	Heatmap of learned causal matrix M analysis
	Time Efficiency Analysis
	Hyperparameters
	Causality and LLMs hyperparameters
	States and actions factorization in each environment

	Adapt to long-horizon planning
	Discussion of broader impacts

