

000 CAUSALPLAN: EMPOWERING EFFICIENT LLM 001 002 MULTI-AGENT COLLABORATION THROUGH 003 004 CAUSALITY-DRIVEN PLANNING

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Large language model (LLM) agents often generate causally invalid plans in
014 collaborative tasks due to their reliance on surface-level correlations rather than
015 grounded causal reasoning. This limitation undermines their performance in terms
016 of coordination and planning in dynamic environments. We address this challenge
017 with CausalPlan, a framework that integrates explicit structural causal reasoning
018 into the LLM planning process. At the core of CausalPlan is the Structural Causal
019 Action (SCA) model, which learns a causal graph from agent trajectories to cap-
020 ture how prior actions and current environment states influence future decisions.
021 This model is then used to inform the planning process, shaping proposed LLM-
022 generated plans through causal scoring, reweighting, and fallback to grounded al-
023 ternatives when needed. By embedding this causal knowledge directly into the de-
024 cision loop, CausalPlan constrains planning to intervention-consistent behaviors
025 without requiring fine-tuning. We evaluated CausalPlan on the Overcooked-AI
026 benchmark across five multi-agent coordination tasks and four LLMs of varying
027 sizes: Gemma-7B, Llama-8B, Qwen-14B and Llama-70B. Experimental results
028 show that CausalPlan consistently reduces invalid actions and improves collabora-
029 tion in both AI-AI and human-AI settings, outperforming strong reinforcement
030 learning baselines. Our findings highlight the value of causality-driven planning
031 for deploying efficient, interpretable, and generalisable multi-agent LLM systems.

1 INTRODUCTION

032 Large Language Models (LLMs) have demonstrated significant success across various natural lan-
033 guage processing tasks (Achiam et al., 2023; Zhao et al., 2023b; Guo et al., 2025). Recently, there
034 has been growing research interest in using LLMs as decision makers, particularly within multi-
035 agent frameworks for executing interactive planning tasks, with notable works including integrated
036 pipelines for cooperative tasks (Zhang et al., 2023a), graph-based coordination (Qian et al., 2024),
037 and human-AI collaboration frameworks (Zhang et al., 2024a).

038 A major challenge in multi-agent learning is zero-shot multi-agent coordination, developing general-
039 ized agents capable of collaborating with a wide range of previously unseen partners, including
040 humans (Legg & Hutter, 2007; Hu et al., 2020). LLM-based agents, trained on vast and diverse
041 datasets that contain rich common-sense knowledge, have emerged as a promising solution to this
042 challenge. Compared to traditional multi-agent reinforcement learning (RL) methods—which often
043 struggle with generalization and sample inefficiency—LLMs demonstrate impressive performance
044 in collaborative tasks (Zhang et al., 2024a). However, despite these strengths, a persistent limitation
045 remains: LLM agents often lack causal reasoning ability (Joshi et al., 2024; Chi et al., 2024). This
046 shortcoming leads them to select causally invalid actions that violate *causally physical constraints*,
047 actions that are absent or cannot be executed under the given task constraints, and ignoring *tempo-
048 ral dependencies*, producing sequences of actions that do not respect the natural order of cause and
049 effect. This problem is particularly pronounced in smaller open-source LLMs due to their limited
050 capacity and narrower training coverage. As shown in Fig. 1(a), our evaluation of multiple open-source
051 LLMs with varying parameter sizes demonstrates that even Llama-70B produces a substantial num-
052 ber of invalid actions. Despite this limitation, such models remain highly attractive for enterprise
053 and resource-constrained settings because of their accessibility, controllability, and lower deploy-

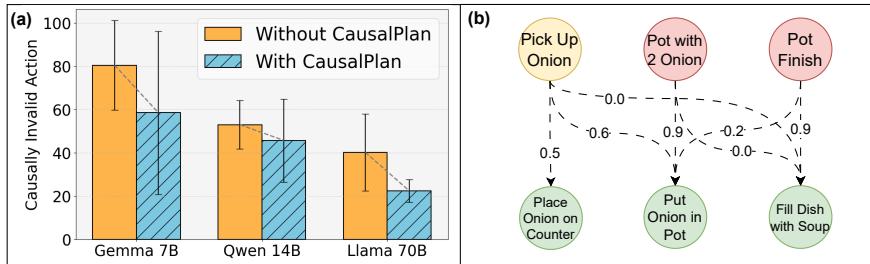
054
055
056
057
058
059
060
061
062
063

Figure 1: (a) Evaluation on the Overcooked Cramped Room layout showing how the number of causally invalid actions changes with LLM size, averaged over four seeds. CausalPlan significantly reduces the number of invalid moves. (b) Simplified causal graph discovered by CausalPlan for the same layout. Yellow and red nodes indicate parent actions and states, respectively, while green nodes denote child actions. “Pick Up Onion” strongly influences “Put Onion in Pot” (0.6) and “Place Onion on Counter” (0.5), but not “Fill Dish with Soup” (0). The state “Pot with 2 Onions” strongly drives “Put Onion in Pot” (0.9), while “Pot Finished” strongly influences “Fill Dish with Soup”.

ment costs. However, their higher incidence of causally invalid actions can significantly undermine performance. Although previous work has tried to improve LLM planning with causal knowledge, it primarily focuses on single-agent settings and relies on LLMs to infer causal relationships from observations or provide the causal graph as part of the planning prompt (Yu & Lu, 2025; Chen et al., 2025). These approaches are limited because they depend on the robustness of the LLM’s causal reasoning and inference ability, which can vary significantly between models and prompts. This motivates the need to integrate causal knowledge directly into the decoding process, rather than relying on prompt engineering, so that LLM action planning is grounded in cause-and-effect structure and yields more reliable coordination in multi-agent settings. Ultimately, our aim is to answer the question of: *“How can we systematically align LLM action planning with explicit causal knowledge to ensure reliable and effective collaboration in multi-agent settings?”*

To answer the question, we introduce the CausalPlan framework, grounded in the study of causality (Pearl, 2009). In causality, causal relationships can be represented by a causal graph \mathcal{G} , with the structural causal model (SCM) a formal framework that defines how each variable is generated from its parent variables in the graph (see Fig. 1 (b) for an example) (Pearl, 2009). An SCM can be identified through causal discovery, and once identified, an SCM supports causal inference for downstream tasks (Pearl, 2009). CausalPlan translates these principles of causality into the multi-agent LLM planning setting. The framework consists of two key phases inspired by the discovery and inference processes: *Causal Action Structure Learning* and *Agent Planning with Causal Knowledge*. In Causal Action Structure Learning, we introduce a Structural Causal Action (SCA) model, an extension of SCM tailored to capture the causal relationships between previous actions of agents, current states of both agents, and future actions. **Importantly, the SCA model characterizes causal influence at the policy-level within the agent’s decision process, rather than causal dynamics at the environment-level in the Pearl sense (Pearl, 2009).** Its purpose is not to model the true causal mechanisms of the environment, but to extract a stable and interpretable dependency structure that can guide and refine the LLM’s action selection. For example, before serving a plate of soup (future action), one must first fill the dish with soup (past action); similarly, if the partner agent is already carrying a filled dish (partner state), the controlled agent should focus on complementary actions rather than duplicating effort. Once discovered, the SCA produces a *Causal Action Matrix* \mathcal{M} , which encodes causal relationships as causal scores and can be queried during planning using the current state and past actions of the agents.

In the Agent Planning with Causal Knowledge phase, we align the LLM decoding process with the scores in \mathcal{M} to prevent causally invalid actions. To achieve this, we introduce two complementary strategies: *Causal-Aware Planning* and *Causal Backup Plan*. The Causal-Aware Planning module adjusts the LLM’s action probabilities by reweighting them with causal scores and then resampling to select actions that follow the natural order of cause and effect. When all candidate actions proposed by the LLM violate the causally physical constraints of the task, the *Causal Backup Plan* module adjusts by selecting the action with the highest causal probability as the next action.

108 We evaluate CausalPlan on the Overcooked-AI benchmark (Carroll et al., 2019), a standard testing
 109 suite for multi-agent, using four open-source LLMs—Gemma-7B, Llama-8B, Qwen-14B, and
 110 Llama-70B—across both AI-AI and human-AI collaboration settings. Empirical results show that
 111 CausalPlan consistently improves planning performance and reduces invalid actions, even for the
 112 smallest LLMs without fine-tuning. Our main contributions are: (i) We identify a core failure mode
 113 of LLM agents in multi-agent collaboration generating causally invalid actions and propose causally
 114 aligned planning as a principled remedy; (ii) We introduce CausalPlan, a two-phase framework that
 115 integrates causal discovery and inference to enhance open-source LLM agent planning and collabora-
 116 tion; (iii) We demonstrate, through extensive experiments, that CausalPlan improves performance
 117 across multiple model sizes and collaboration scenarios, outperforming strong RL baselines.
 118

119 2 PRELIMINARIES

120 **Markov Decision Process.** A two-player Markov Decision Process (MDP) is defined as
 121 $(\mathcal{S}, \{\mathcal{A}^i\}, P, \gamma, R)$, where \mathcal{S} is the state space, \mathcal{A}^i is the action set for agent $i \in \{1, 2\}$, P defines
 122 the transition dynamics, $\gamma \in [0, 1]$ is the discount factor, and $R : \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$ is the reward function
 123 where $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ is the joint action space. We assume a factored state space $\mathcal{S} = \mathcal{S}^{\text{agent}} \times \mathcal{S}^{\text{env}}$,
 124 where $\mathcal{S}^{\text{agent}}$ is the state of the agent (both agent 1 and 2) and \mathcal{S}^{env} the state of the environment. Let
 125 $S = |\mathcal{S}|$ and $A = |\mathcal{A}|$ denote the dimensions of \mathcal{S} and \mathcal{A} , respectively. At each timestep t , each agent
 126 $i \in \{1, 2\}$ observes the current state $s_t = (s_t^{\text{agent}}, s_t^{\text{env}})$ and selects an action according to its policy
 127 $\pi^i(a_t^i | s_t)$, forming the joint action $a_t = (a_t^1, a_t^2)$. A trajectory is given by $\tau = (s_1, a_1, s_2, a_2, \dots)$,
 128 and the objective is to maximize the cumulative expected reward $\mathbb{E} [\sum_t R(s_t, a_t)]$. In our two-agent
 129 setting, one of the agents is the controlled agent (an LLM-based agent), while the other serves as its
 130 partner.
 131

132 **Causality and Structural Causal Model.** Causality studies the relationships between variables
 133 and events (Pearl, 2009). The SCM framework represents causal relationships in a system, where
 134 for a set of variables $V = \{V_1, \dots, V_M\}$, each variable V_i is defined as $V_i := f_i(\text{Pa}_G(V_i), \varepsilon_i)$, with
 135 $\{f_1, f_2, \dots, f_M\}$ being generating functions, $\text{Pa}_G(V_i)$ the parents of V_i in the causal graph G , and
 136 $\{\varepsilon_1, \dots, \varepsilon_M\}$ noise terms (Pearl, 2009). The directed acyclic graph (DAG) causal $G = \{V, E\}$ con-
 137 tains edges $e_{ji} \in E$, where $e_{ji} = 1$ indicates that V_j causes V_i , and $e_{ji} = 0$ otherwise (Pearl, 2009).
 138 SCMs are often learned from data by modeling the generating functions f_i as neural networks pa-
 139 rameterized by generating parameters δ (Ke et al., 2019; Peng et al., 2022; Zhang et al., 2023b), with
 140 causal edges $e_{ji} = 1$ if the binary adjacency indicator η_{ji} is higher than a confidence threshold (Ke
 141 et al., 2019; Peng et al., 2022; Zhang et al., 2023b).
 142

143 3 METHOD

144 Our CausalPlan is a two-phase framework (Fig. 2). In Phase 1, *Causal Action Structure Learning*, we
 145 construct the SCA model and derive from it *Causal Action Matrix* \mathcal{M} . In Phase 2, *Agent Planning*
 146 with *Causal Knowledge*, we align the LLM’s planning process with the causal scores in \mathcal{M} , using
 147 them to guide the action selection process. At each planning step t , we first provide the current
 148 observation s_t to the LLM agent and prompt it to analyze the observation. Both the observation s_t
 149 and the analysis are then used as inputs for a second prompt, where the agent is asked to generate a
 150 set of candidate actions (details of the prompt are in Appx. C.2.1). We, then, leverage \mathcal{M} to modify
 151 the agent’s plan selection, either through the Causal-Aware Planning module or the Causal Backup
 152 Plan module (see Appx. C for the full algorithms).
 153

154 3.1 CAUSAL ACTION STRUCTURE LEARNING

155 The goal of the first phase is to construct an SCA model, capturing the causal graph G , where the
 156 previous action a_{t-1} and the current state s_t are the parent nodes, and the next action a_t is the child
 157 node. Unlike prior work, which typically focuses on modeling state transitions or rewards (Zhang
 158 et al., 2023b; 2024b), our approach explicitly treats the action as a child node. This novel formulation
 159 allows the agent to reason causally about how past actions and current states influence future actions,
 160 providing a new perspective on decision-making dynamics.
 161

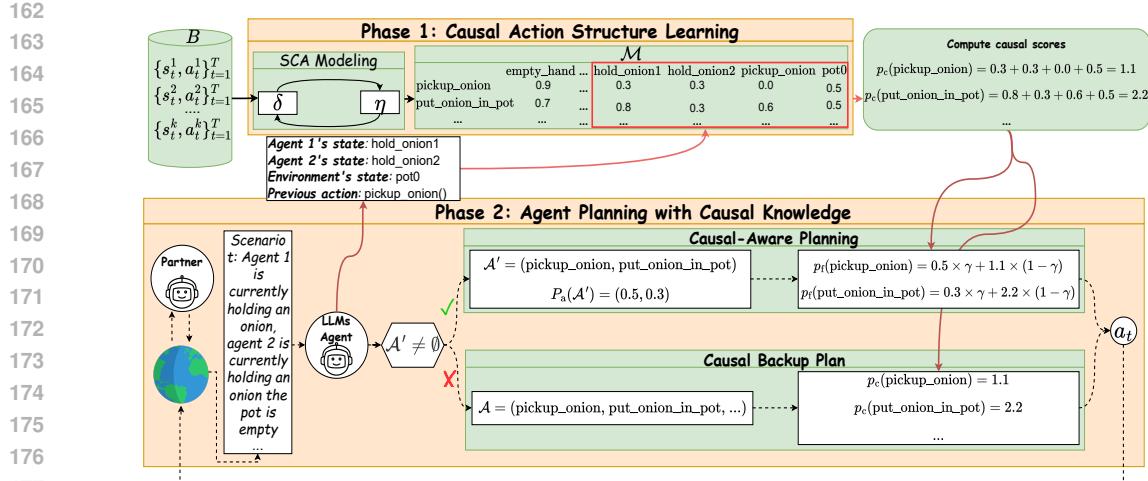


Figure 2: **Overview of the CausalPlan Framework.** The process begins with a dataset B collected by a behavior policy π_β . In Phase 1 (*Causal Action Structure Learning*), we train the Structural Causal Action (SCA) Model by optimizing generating (δ) and structural (η) parameters, yielding the *Causal Action Matrix* \mathcal{M} , which encodes causal influence from states and past actions to future actions. In Phase 2 (*Agent Planning with Causal Knowledge*), an LLM receives scenario t and proposes candidate actions \mathcal{A}' . If $\mathcal{A}' \neq \emptyset$, *Causal-Aware Planning* adjusts LLM probabilities; if $\mathcal{A}' = \emptyset$, *Causal Backup Plan* selects the most probable past action via \mathcal{M} . Black solid arrows denote causal training; dashed arrows denote LLM inference, and red arrows denote causal knowledge consultation. The red box represents the causal score extraction for each potential next action, where the score is computed as the sum of causal contributions from the current state and previous action.

Data Preparation. To facilitate the process of SCA modeling, we collect a dataset $B = \{\{(s_t^k, a_t^k)\}_{t=1}^T\}_{k=1}^N$ containing actions that have been executed successfully in the environment, using a behavior policy π_β . We, then, factorize and discretely encode the states and actions, which are collected in text form into a binary-encoded representation suitable for causal analysis: $s_t = [s_{t,1}, \dots, s_{t,S}] \in \{0, 1\}^S$, $a_t = [a_{t,1}, \dots, a_{t,A}] \in \{0, 1\}^A$, where each component $s_{t,j}$ and $a_{t,i}$ is a binary indicator representing whether a particular state feature or action is active (1) or inactive (0) (refer to Appx. C.1 for details). The assumption of factorized states and actions is a common assumption in most causal RL research (Ke et al., 2019; Yu & Lu, 2025).

Causal Modeling. The SCA model can be represented as:

$$a_i = f_i(\text{Pa}_G(a_i), \varepsilon_{a_i}) \quad (1)$$

for $i \in \{1, 2, \dots, A\}$, where $\text{Pa}_G(a_i)$ denotes the parent nodes for a_i in the causal graph G . The function f_i is a neural network parameterized by the generating parameter δ , while the causal relationships of each graph are governed by the structural parameters encoded by binary adjacency indicators η_{ji} . The loss function to optimize these parameters is: $L(\delta, \eta) = L_{\text{causal}}(\delta, \eta) + L_{\text{reg}}(\eta)$, where:

$$L_{\text{causal}} = \mathbb{E}_{(a_{t-1}, s_t, a_t) \sim B} \left[- \sum_{i=1}^A \log P(a_{t,i} \mid s_t, a_{t-1}; \delta, \eta) \right]. \quad (2)$$

$L_{\text{reg}}(\eta)$ is a negative-log-prior penalty imposed on the adjacency indicators to discourage spurious edges and avoid overfitting to unlikely causal links. Let $P(e_{ji} = 1)$ be the prior probability for any

216 edge. Then

217

$$L_{\text{reg}} = -\lambda \sum_{i,j} \eta_{ji} \log P(e_{ji} = 1), \quad (3)$$

218

219 where $\lambda > 0$ controls the relative contribution of each penalty term. Including an edge $\eta_{ji} = 1$
 220 incurs a cost $-\log P(e_{ji} = 1)$, so only edges with high prior belief are preferred.

221 In causal inference, identifiability, referring to the ability to recover causal effects from data (Pearl,
 222 2009) uniquely, is crucial for valid causal inferences. In our setting, identifiability intuitively ensures
 223 that the underlying causal structure and decision policy could, in principle, be recovered from ob-
 224 served trajectories. **We emphasize that the following proposition and its proof serve as a conceptual**
 225 **illustration for the SCA model used in practice:**

226 **Proposition 1** (Identifiability (Conceptual Illustration)). *Suppose that the state s_t and previous ac-
 227 tion a_{t-1} are observable, while the next action a_t is observable during training and unobserable
 228 during inference, and they form a Markov Decision Process (MDP) as described in Eq. 1. Then,
 229 under the global Markov condition and the faithfulness assumption given a large enough dataset B ,
 230 the next action a_t is identifiable, as well as the causal structure characterized by the binary masks η
 231 and the transition dynamics f .*

232 *Proof.* See Appx. A.

233 \square

234 **Causal Action Matrix construction.** We then construct the matrix $\mathcal{M} \in \mathbb{R}^{A \times (S+A)}$ that encodes
 235 the causal score of selecting each action given the current state and past actions. Each row of the
 236 matrix corresponds to a possible next action, and each column corresponds to a state or past action
 237 feature. Each entry (i, j) of the matrix represents the probability that there is causal influence from
 238 state or action feature j to action i , given by the learned structure parameter η_{ji} .

239 A query $\mathcal{M}(s_t, a_{t-1}, a)$ returns the causal score $p_c(a) = \sum_{j \in J} \eta_{ji}$ where $J = \text{Active}(s_t, a_{t-1}) \subseteq$
 240 $\{1, \dots, S+A\}$ denote the set of column indices corresponding to the features that are “active” in
 241 the current state s_t and the previous action a_{t-1} , and i is the row index corresponding to action a
 242 (details refer to Appx. C.2.2). **To enforce a partial DAG structure in the causal graph, we compare**
 243 **the coefficients for each pair of mutually connected nodes in \mathcal{M} and set the smaller coefficient to**
 244 **zero, which removes 2-cycles (Pearl, 2009).**

245 3.2 AGENT PLANNING WITH CAUSAL KNOWLEDGE

246 At each planning step, instead of directly generating the next action a_t given the historical trajectory
 247 $h_t = (s_1, a_1, s_2, a_2, \dots, a_{t-1}, s_t)$, we require the LLM-based agent to consider alternative scenarios
 248 and select the action that aligns with the causal scores in the matrix \mathcal{M} . Firstly, we sample from
 249 the LLM a set of candidate actions $\mathcal{A}' = \{a'_1, a'_2, \dots, a'_{|\mathcal{A}'|}\} \subseteq \mathcal{A}$. Each of these actions will
 250 come with a probability of being sampled by the LLM, which we denote as $p_a(a'_m)$. Next, we
 251 verify whether the sampled actions, **assuming access to a feasibility verifier for candidate actions**,
 252 comply with the environment’s instructions and physical constraints. If the set $\mathcal{A}' \neq \emptyset$ (there are
 253 valid candidates), we follow the Causal-Aware Planning module to find the most suitable action that
 254 follows causal temporal dependencies; otherwise, we use the Causal Backup Plan for the causal
 255 backup mechanism.

256 3.2.1 CAUSAL-AWARE PLANNING

257 Given the set \mathcal{A}' with their associated probabilities $P_a(\mathcal{A}')$, we aim to integrate the causal scores
 258 from the model \mathcal{M} . We extract the causal score for each action $p_c(a') = \mathcal{M}(s_t, a_{t-1}, a'), \forall a' \in \mathcal{A}'$,
 259 to form the set $P_c(\mathcal{A}') = \{p_c(a'_1), p_c(a'_2), \dots, p_c(a'_{|\mathcal{A}'|})\}$ (details in Appx. C.2.2). The updated
 260 individual action probabilities are computed as the weighted sum of the LLM sampling probability
 261 and the causal score:

262

$$p_f(a'_m) = \gamma \cdot p_a(a'_m) + (1 - \gamma) \cdot p_c(a'_m), \quad (4)$$

263

270 where γ is the weight hyperparameter. We apply the softmax function to all values of $p_f(a'_m)$ to
 271 normalize the probabilities, which allows us to get the final probability set:
 272

$$273 \quad 274 \quad P_f(\mathcal{A}') = \left\{ p_f(a'_1), p_f(a'_2), \dots, p_f(a'_{|\mathcal{A}'|}) \right\}, \quad \sum_{k=1}^{|\mathcal{A}'|} p_f(a'_k) = 1 \quad (5)$$

275 The sampled action set \mathcal{A}' may contain redundant actions, so we apply a method to identify and
 276 merge these duplicates by summing their probabilities (details in Appx. C.2.4). This yields a reduced
 277 set \mathcal{A}'^* with updated probabilities P_f^* , from which we sample the next action:
 278

$$279 \quad a_t \sim \text{Categorical} \left(\left[p_f^*(a'_1), p_f^*(a'_2), \dots, p_f^*(a'_{|\mathcal{A}'^*|}) \right] \right). \quad (6)$$

282 3.2.2 CAUSAL BACKUP PLAN

283 In the second case, when all candidates are invalid $\mathcal{A}' = \emptyset$, existing methods often apply a **fall-back strategy** by prompting the agent to re-plan (Zhang et al., 2024a). However, such strategies
 284 may fail when the agent persistently hallucinates, for instance, when the state stays unchanged. In-
 285 spired by human behavior under uncertainty, choosing the action that we are most familiar with,
 286 we propose a recovery mechanism that leverages past causality knowledge. Instead of immedi-
 287 ately re-planning, we ask the agent to retrieve the causal score for all actions $a \in \mathcal{A}$ by querying
 288 $p_c(a) = \mathcal{M}(s_t, a_{t-1}, a), \forall a \in \mathcal{A}$, (details in Appx. C.2.2). This yields a probability distribution:
 289 $P_c(\mathcal{A}) = \{p_c(a_1), p_c(a_2), \dots, p_c(a_A)\}$. We then greedily select the next action given by:
 290

$$291 \quad 292 \quad a_t = \arg \max_{a \in \mathcal{A}} P_c(a), \quad (7)$$

293 i.e., the action deemed most reliable according to past causal knowledge. Only if this action fails do
 294 we then ask the agent to re-plan.
 295

296 4 EXPERIMENTS

300 4.1 EXPERIMENTAL SETUP

301 We use the Overcooked-AI environment suite (Carroll et al., 2019) as our main testing platform.
 302 This suite comprises five distinct layouts: *Cramped Room* (CR), *Asymmetric Advantages* (AA), *Co-*
 303 *ordination Ring* (COR), *Forced Coordination* (FC), and *Counter Circuit* (CC) (details of the envi-
 304 ronments in Appx. D.2). Each layout evaluates distinct aspects of multi-agent coordination, making
 305 this environment a standard for evaluating agent collaboration. Our experiments aim to demonstrate
 306 that CausalPlan can improve planning for various open-source LLMs and, thus, better collabora-
 307 tion. Specifically, we use gemma-1.1-7b-it (Gemma-7B), Meta-Llama-3-8B-Instruct
 308 (Llama-8B), Qwen2.5-14B-Instruct-1M (Qwen-14B), and Llama-3.3-70B-Instruct
 309 (Llama-70B). These open-source models are integrated into ProAgent (Zhang et al., 2024a), a frame-
 310 work that leverages advanced prompting techniques (ReAct (Yao et al., 2023) and Reflexion (Shinn
 311 et al., 2023)), upon which we apply CausalPlan to refine the planned actions. Additionally, we use
 312 Cohere/command-r Cohere (2024), a 35-billion-parameter model, to generate the analysis of
 313 the observation in our two-prompt input (refer to Appx. C.2.1 for details).
 314

315 In Sect. 4.2, we compare the performance of LLM agents with their performance when enhanced
 316 with CausalPlan. Our agent is evaluated alongside baseline partner AI agents (see next paragraph).
 317 In these experiments, our agents play as Player 1 and the baseline agents as Player 0. An effec-
 318 tive agent should demonstrate strong performance in collaboration with all other partners. We also
 319 compare our CausalPlan agent with the Llama-70B backbone against the baseline agents playing
 320 as both Player 0 and Player 1. In Sect. 4.3, we evaluate the performance of CausalPlan agents
 321 when collaborating with human-like agents (collected using Behavior Cloning (Li et al., 2023b)). In
 322 Sect. 4.4, we evaluate different components of CausalPlan and in Sect. 4.6 we analyze the benefits
 323 of integrating causal knowledge. In Sect. 4.4, we provide experimental comparisons with a natural
 324 non-causal supervised baseline. In the Appendix, we provide additional experiments such as pa-
 325 rameter tuning γ (Appx. D.6), different data collection policies π_β (Appx. D.7), time complexity

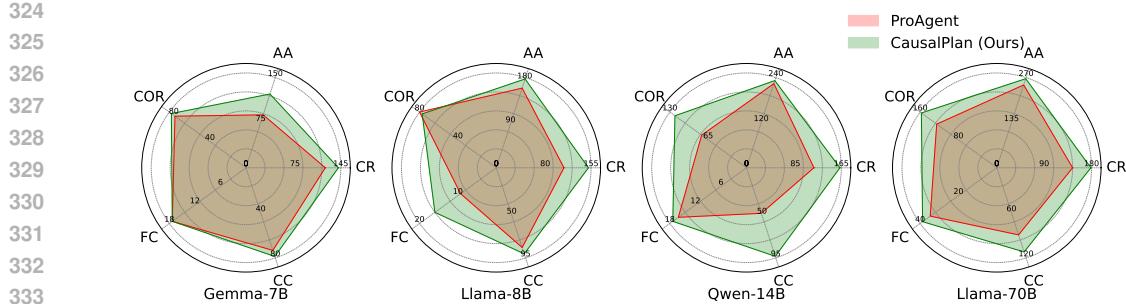


Figure 3: Performance of different backbones with and without CausalPlan across various layouts. In these experiments, we use the LLM agent as Player 1, allowing it to collaborate with all other baselines (described in Sect. 4.1) for 400 timesteps and report the average of three different seeds.

analysis (Appx. D.10), the causal matrix \mathcal{M} (Appx. D.9), and a verification of the causal graph found (Appx. E.1).

Baselines. The baselines include traditional RL methods designed for zero-shot human and AI coordination. These baselines have achieved notable results in the field, including SP (Tesauro, 1994; Carroll et al., 2019), PBT (Jaderberg et al., 2017), FCP (Strouse et al., 2021), MEP (Zhao et al., 2023a), COLE (Li et al., 2023b) (refer to Appx. D.3 for baseline details).

We also evaluate CausalPlan in the Crafter environment (Hafner, 2021), a long-horizon planning benchmark, where it outperforms Causal-Aware LLMs (Chen et al., 2025) (the state-of-the-art causal prompting approach). Due to space constraints, detailed results are deferred to Appx. E.

4.2 AI PARTNER EVALUATION

Enhancing open-source LLM performance using CausalPlan We evaluate whether CausalPlan improves open-source LLM performance in collaboration tasks, as shown in Fig. 3 and detailed in Appx. D.4 Tab. 4. CausalPlan improves performance models, with significant gains seen in Qwen-14B (29.04%) and Llama-70B (22.42%). In terms of layouts, the most substantial improvements were found in the settings CR (20.83%) and COR (19.13%). Furthermore, CausalPlan also provided notable benefits for larger LLMs, such as Llama-70B, demonstrating its potential to enhance performance even at scale.

Comparison with state-of-the-art RL baselines. We evaluate the performance of our top-performing agent (Llama-70B backbone) against the set of SOTA baseline RL agents. The results, presented in Tab. 1, show that our agent consistently ranks among the top performers across different layouts (highest score in three out of five layouts and second in one additional layout). The most significant performance gaps between our method and the next best baseline are observed in the AA layout, showing a 63% advantage. We attribute the underperformance in CR to the simplicity of the task, which does not require causal knowledge. These results demonstrate that, when equipped with CausalPlan, open-source LLM agents can outperform state-of-the-art RL agents in various tasks, highlighting the effectiveness of integrating causal reasoning into cooperative LLM-based agents.

4.3 HUMAN PARTNER EVALUATION

To evaluate human collaboration, we performed an experiment using human proxy partners, with the results shown in Fig. 4. In this experiment, our CausalPlan framework utilizes Llama-70B as the backbone LLM. As shown, our agent (green bars) outperforms all baselines in 8 out of 10 configurations. On average across all layouts, it achieves approximately a 30% improvement over ProAgent (red bars), and outperforms the strongest RL baseline (COLE) by approximately 32%. To further validate these improvements, we conducted statistical analyses using paired t -tests and corresponding p -values. The results (Appx. D.5 Tab. 6) show that CausalPlan consistently achieves higher t values than ProAgent when compared against the best RL method. Direct comparison in Tab. 7 reveals statistical significance ($p < 0.05$) in 30% of the cases (CR-P0, AA-P1, COR-

378
379
380
381
382Table 1: Average performance (mean \pm std) of baseline agents and CausalPlan (Ours) across layouts using Llama-70B. Results are averaged over both player positions and three seeds (400 timesteps each). Best and second-best results are in **bold** and underlined, respectively. Detailed performance of playing as Player 0 or Player 1 is provided in Appx. Tab. 5.

Layout	Baseline AI Agents					CausalPlan (Ours)
	SP	PBT	FCP	MEP	COLE	
CR	162.0 \pm 10.0	<u>168.0 \pm 5.0</u>	194.0 \pm 10.1	178.0 \pm 16.1	153.4 \pm 12.5	172.7 \pm 4.2
AA	184.0 \pm 17.5	168.0 \pm 15.4	176.6 \pm 15.0	167.3 \pm 5.8	<u>185.3 \pm 15.1</u>	258.7 \pm 16.4
CC	56.7 \pm 9.2	52.0 \pm 14.0	63.4 \pm 10.5	50.0 \pm 16.1	<u>90.6 \pm 10.1</u>	112.6 \pm 7.6
COR	120.7 \pm 11.0	139.4 \pm 10.1	130.7 \pm 6.2	160.7 \pm 7.2	153.4 \pm 4.6	<u>156.6 \pm 3.2</u>
FC	18.0 \pm 4.6	40.6 \pm 10.3	<u>42.0 \pm 7.2</u>	30.4 \pm 5.4	44.6 \pm 7.0	53.9 \pm 14.9

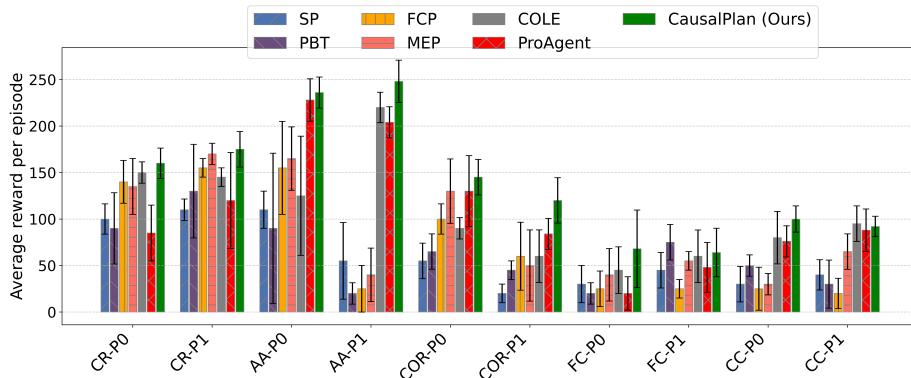
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Experiments with a human proxy partner. Results show the mean and variance averaged over using five different BC policies as the partner (each running for 400 timesteps). "P0" denotes the controlled AI agent acting as Player 0, and vice versa.

P1), with another 30% (CR-P1, FC-P0, CC-P0) showing marginal significance ($0.05 < p < 0.2$). Importantly, performance never degrades when CausalPlan is included. These findings confirm that the observed improvements are statistically reliable.

4.4 IMPACT OF CAUSALPLAN COMPONENTS

In this section, we investigate the individual contributions of each component within the CausalPlan framework. First, we compare the use of a single prompt (Zhang et al., 2024a), for both observation analysis and planning, against our two-prompt setup, where one prompt is dedicated to analysis and the other to planning. This comparison helps isolate whether performance gains come from the embedded causal knowledge. As shown in Tab. 2, the performance between the single-prompt and two-prompt configurations is nearly identical, with only a slight improvement when using our two-prompt. Second, we examine the effect of the Causal Backup Plan module. CausalPlan without the backup action still outperforms the two-prompt variant by 27%, but falls short of the full framework by 7%. This highlights the significance of the backup mechanism to avoid scenarios in which the agent fails to select actions as instructed.

4.5 COMPARISON TO NON-CAUSAL SUPERVISED CONDITIONAL MODELS

To demonstrate that CausalPlan provides stronger guidance than a non-causal conditional model, we evaluate a supervised baseline trained to estimate $P(at | st, a_{t-1})$ from MEP data. As shown in Tab. 3, combining this learned model with the backbone Llama-70B (which we refer to as MEP_{guided}) consistently degrades performance (16.4% drop on AA-P1 and 10.1% drop on CC-P1), indicating that a non-causal conditional model constrains the LLM to suboptimal demonstrated actions. Using

432
 433 Table 2: Ablation studies were conducted on the CR layout using Llama-8B. "1-Prompt" uses a
 434 single prompt for observation and planning, as in ProAgent; "2-Prompt" uses our modified dual-
 435 prompt method. "CausalPlan (no CBP)" omits the Causal Backup Plan component.

436 437 Methods	438 439 440 441 Baseline AI Agents					442 443 444 445 446 447 448 449 450 451 Average Results
	452 453 SP	454 455 PBT	456 457 FCP	458 459 MEP	460 461 COLE	
1-Prompt (ProAgent)	86.7 ± 41.6	66.7 ± 63.4	180.0 ± 20.0	106.7 ± 75.7	113.3 ± 11.5	110.7 ± 12.8
2-Prompt	73.3 ± 30.5	93.3 ± 57.7	180.0 ± 0.0	126.7 ± 11.5	126.7 ± 23.1	121.3 ± 2.3
CausalPlan (no CBP)	113.3 ± 23.1	146.7 ± 46.2	160.0 ± 34.6	133.3 ± 11.5	153.3 ± 23.1	141.3 ± 12.9
CausalPlan (Full)	126.7 ± 30.6	133.3 ± 30.5	160.0 ± 40.0	166.7 ± 41.6	166.7 ± 23.1	150.7 ± 2.3

443
 444 Table 3: Performance comparison between the backbone Llama-70B policy, the non-causal super-
 445 vised baselines (MEP_{guided} and MEP_{backup}), and our method CausalPlan. The MEP_{guided} baseline
 446 combines the learned conditional model $P(a_t | s_t, a_{t-1})$ with the backbone by averaging action
 447 probabilities. The MEP_{backup} baseline replaces CausalPlan’s backup mechanism with the condi-
 448 tional model.

449 Layout	450 Llama-70B	451 MEP_{guided}	452 MEP_{backup}	453 CausalPlan
AA-P1	248.0 ± 22.7	207.3 ± 19.4	257.3 ± 9.2	266.7 ± 16.7
CC-P1	89.3 ± 32.3	80.3 ± 9.2	90.7 ± 12.9	112.0 ± 6.9

454 the conditional model only as a backup (MEP_{backup}) yields small gains over the backbone LLM but
 455 remains notably worse than CausalPlan. We attribute this gap to a fundamental difference in what
 456 each method can correct. MEP_{backup} can only correct physically invalid actions, whereas CausalPlan
 457 additionally enforces the correct temporal dependencies between actions. Ensuring that the agent
 458 selects actions in the right causal order is equally crucial—especially in coordination tasks where
 459 timing and sequence are important. Overall, these results show that non-causal supervised mod-
 460 els cannot surpass the behavior policy, while CausalPlan provides a causal structure that enables
 461 consistent improvements across layouts.

462 4.6 BENEFITS OF CAUSAL INTEGRATION

463 We analyze the behavior of Llama-8B, with and without CausalPlan, in the CR layout, where our
 464 method achieves a substantial +36.1% improvement (see Appx. D.8 for detailed analysis). This
 465 analysis highlights two key benefits of causal integration.

466 **(1) Physically invalid actions.** Without causal guidance, the agent frequently makes invalid calls
 467 to pick up an object while already holding an object. CausalPlan reduces these physically invalid
 468 actions by 18%, while simultaneously increasing valid calls made with an empty hand by 17%.
 469 This demonstrates that CausalPlan not only suppresses impossible actions but also systematically
 470 promotes temporally valid ones.

471 **(2) Poor coordination.** Coordination failures are further mitigated. When the pot is nearly full and
 472 the partner agent already has an onion, the baseline still selects redundant actions to pick up onion.
 473 With CausalPlan, these cases drop to zero, indicating that the agent learns to anticipate teammate
 474 states and avoid conflicting behaviors. This complete elimination of redundant pickups reflects a
 475 higher level of situational awareness and inter-agent coordination.

477 5 RELATED WORK

480 **Reasoning and planning with LLM agents.** The rise of LLMs has enabled applications in both
 481 single- and multi-agent settings. The works in a single-agent setting focus on improving reasoning
 482 through chain-of-thought prompting (Wei et al., 2022; Kojima et al., 2022), self-consistency (Wang
 483 et al., 2022), and problem decomposition (Zhou et al., 2022). LLMs have also been applied to
 484 robotic planning (Ahn et al., 2022), integrated reasoning and acting, and reflection-based learning
 485 (Shinn et al., 2023). Zhu et al. (2024) and Qiao et al. (2024) leverage the memory of past actions
 and states to improve planning. In contrast, our work targets multi-agent environments. In multi-

486 LLM agent research, Park et al. (2023) proposed a fully automated cooperative framework through
 487 manually designed perception, communication, and planning modules, while Li et al. (2023a) fa-
 488 cilitates agent communication through role-playing and inception prompting. More recently, data-
 489 driven enhancement approaches, such as ReAd (Zhang et al., 2025) refine LLM-generated plans
 490 via advantage-weighted action selection. ReAd (Zhang et al., 2025) operates purely in the ac-
 491 tion-reward space: collects offline trajectories, estimates action advantages, and biases the LLM
 492 toward higher-advantage candidate actions during decoding. Our method, in contrast, is designed
 493 to extract and enforce a causal dependency structure between past actions and current states of both
 494 agents. Thus, while ReAd (Zhang et al., 2025) improves planning through reward-driven prefer-
 495 ence shaping, CausalPlan improves planning through explicit modeling and enforcement of causal
 496 dependencies between agents.

497 **Zero-shot multi-agent coordination.** Zero-shot multi-agent coordination aims to train agents that
 498 can collaborate with unseen partners, human or AI. A classic method is Self-Play (SP) (Tesauro,
 499 1994; Carroll et al., 2019), where agents train by interacting with themselves. Population-Based
 500 Training (PBT) (Jaderberg et al., 2017) promotes learning by diversifying the population of train-
 501 ing agents. Recent methods combine SP and PBT to increase diversity, such as Fictitious Co-
 502 Play (FCP) (Strouse et al., 2021) and Maximum Entropy Population (MEP) (Zhao et al., 2023a).
 503 COLE (Li et al., 2023b) shifts focus to strategic policy selection during training. However, these
 504 methods are generally computationally expensive and lack interpretability. Zhang et al. (2024a)
 505 shows that LLM-based agents can excel in zero-shot tasks by using rich language knowledge. Al-
 506 though this demonstrates the potential of language-based agents, LLMs tend to select causally in-
 507 valid actions (Gao et al., 2023). To address this challenge, we propose a causal align planning
 508 approach that enhances action selection for LLMs.

509 **Causality in decision making.** Causality has received increasing attention for improving AI
 510 decision-making. In single-agent domains, counterfactual methods are used for data augmenta-
 511 tion (Pitis et al., 2020; 2022). Corcoll & Vicente (2020) leverage causality to construct variable
 512 hierarchies. Zhang et al. (2023b) redistribute rewards based on causal impact. Seitzer et al. (2021)
 513 incorporate causal signals into reward shaping. Peng et al. (2022) learns causal graphs to define
 514 hierarchical RL subgoals. More recently, efforts have focused on integrating causality into LLM
 515 planning by directly providing the causal graph as part of the LLM prompt (Chen et al., 2025; Yu
 516 & Lu, 2025). However, a limitation of these approaches is the reliance on the causal reasoning
 517 and inference ability of the LLM, which can vary significantly between models and prompts. In
 518 multi-agent settings, social influence has been used as causality to promote cooperation (Jaques
 519 et al., 2019), while subsequent work employs action influence and redistribution of rewards to en-
 520 courage coordinated behaviors (Du et al., 2024; Zhang et al., 2024b). In contrast to these lines
 521 of research, our work integrates causal modeling directly into multi-agent systems built on LLMs.
 522 **CausalMACE** (Chai et al., 2025) also targets multi-LLM-agent collaboration, prompting an LLM to
 523 infer a causal graph from task descriptions and rules, and was designed specifically for Minecraft
 524 gameplay. However, our framework CausalPlan does not ask the LLM to construct or infer a causal
 525 graph, and is not designed for any specific environment, making it more generally applicable.

526 6 CONCLUSION AND FUTURE WORKS

527
 528 In this paper, we introduce CausalPlan, a framework designed to integrate causal knowledge into
 529 the decoding processes of LLM agents to enhance their performance in multi-agent cooperation.
 530 While our SCA model is trained using trajectories from a single behavior policy, our experiments
 531 show that it generalizes effectively when deployed with other partner agents, demonstrating robust-
 532 ness in multi-agent coordination. Moreover, we evaluate CausalPlan across multiple environment
 533 layouts, confirming that the learned policy-level causal structure remains meaningful and beneficial
 534 in different spatial configurations.

535 This work represents an important step toward incorporating causal knowledge into multi-agent
 536 planning with LLMs. Although the framework is not currently intended for deployment in specific
 537 applications, it has potential to improve the safety, efficiency, and interpretability of collabora-
 538 tive AI systems. As a promising direction for future work, our approach could be combined with causal
 539 prompting methods or **layout-agnostic SCA learning** to further strengthen planning performance and
 enable more generalizable multi-agent coordination.

540 REPRODUCIBILITY STATEMENT
541542 All implementation details, experimental settings, results are provided and can be found in the Ap-
543 pendix to ensure full reproducibility. The complete source code is also submitted with the submis-
544 sion.546 LLM USAGE
547548 Large Language Models (LLMs) were employed as the backbone for experiments with our
549 CausalPlan framework. We also use LLM to refine the paper's presentation by improving gram-
550 mar and overall writing clarity.552 REFERENCES
553554 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
555 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Techni-
556 cal Report. *arXiv preprint arXiv:2303.08774*, 2023.557 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
558 Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as I can, not as I say:
559 grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.560 Micah Carroll, Rohin Shah, Mark K Ho, Thomas L Griffiths, Sanjit A Seshia, Pieter Abbeel, and
561 Anca Dragan. On the utility of learning about humans for human-AI coordination. In *Advances
562 in Neural Information Processing Systems (NeurIPS)*, pp. 5174–5185, 2019.563 Qi Chai, Zhang Zheng, Junlong Ren, Deheng Ye, Zichuan Lin, and Hao Wang. Causalmace: Causal-
564 ity empowered multi-agents in minecraft cooperative tasks. In *Findings of the Association for
565 Computational Linguistics: EMNLP 2025*, pp. 14410–14426, 2025.566 Wei Chen, Jiahao Zhang, Haipeng Zhu, Boyan Xu, Zhifeng Hao, Keli Zhang, Junjian Ye, and Ruichu
567 Cai. Causal-aware large language models: Enhancing decision-making through learning, adapting
568 and acting. In James Kwok (ed.), *Proceedings of the Thirty-Fourth International Joint Conference
569 on Artificial Intelligence, IJCAI*, pp. 4292–4300. International Joint Conferences on Artificial
570 Intelligence Organization, 8 2025. doi: 10.24963/ijcai.2025/478. URL <https://doi.org/10.24963/ijcai.2025/478>. Main Track.571 Haoang Chi, He Li, Wenjing Yang, Feng Liu, Long Lan, Xiaoguang Ren, Tongliang Liu, and
572 Bo Han. Unveiling causal reasoning in large language models: Reality or mirage? In *Advances
573 in Neural Information Processing Systems (NeurIPS)*, volume 37, pp. 96640–96670, 2024.574 Cohere. The command R model (details and application). <https://docs.cohere.com/v2/docs/command-r>, 2024. Accessed: 2025-05-12.575 Oriol Corcoll and Raul Vicente. Disentangling causal effects for hierarchical reinforcement learning.
576 *arXiv preprint arXiv:2010.01351*, 2020.577 Xiao Du, Yutong Ye, Pengyu Zhang, Yaning Yang, Mingsong Chen, and Ting Wang. Situation-
578 dependent causal influence-based cooperative multi-agent reinforcement learning. In *Proceedings
579 of the AAAI Conference on Artificial Intelligence*, pp. 17362–17370, 2024.580 Chen Gao, Xiaochong Lan, Zhihong Lu, Jinzhu Mao, Jinghua Piao, Huandong Wang, Depeng
581 Jin, and Yong Li. S3: Social-network simulation system with large language model-empowered
582 agents. *arXiv preprint arXiv:2307.14984*, 2023.583 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
584 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: incentivizing reasoning capability in
585 LLMs via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.586 Danijar Hafner. Benchmarking the spectrum of agent capabilities. *Proceedings of the International
587 Conference on Learning Representations (ICLR)*, 2021.

594 Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
 595 crete world models. In *Proceedings of the International Conference on Learning Representations*
 596 (*ICLR*), 2020.

597

598 Patrik O Hoyer, Dominik Janzing, Joris Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear
 599 causal discovery with additive noise models. In *Advances in Neural Information Processing*
 600 *Systems (NeurIPS)*, pp. 689–696, 2008.

601 Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. "Other-play" for zero-shot
 602 coordination. In *Proceedings of the International Conference on Machine Learning (ICML)*, pp.
 603 4399–4410, 2020.

604

605 Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
 606 Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando,
 607 and Koray Kavukcuoglu. Population based training of neural networks. *arXiv preprint*
 608 *arXiv:1711.09846*, 2017.

609 Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
 610 Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
 611 reinforcement learning. In *Proceedings of the International Conference on Machine Learning*
 612 (*ICML*), pp. 3040–3049, 2019.

613

614 Nitish Joshi, Abulhair Saparov, Yixin Wang, and He He. Llms are prone to fallacies in causal infer-
 615 ence. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*
 616 (*EMNLP*), pp. 10553–10569, 2024.

617 Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Bernhard
 618 Schölkopf, Michael C Mozer, Chris Pal, and Yoshua Bengio. Learning neural causal models
 619 from unknown interventions. *arXiv preprint arXiv:1910.01075*, 2019.

620

621 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 622 language models are zero-shot reasoners. In *Advances in Neural Information Processing Systems*
 623 (*NeurIPS*), pp. 22199–22213, 2022.

624

625 Shane Legg and Marcus Hutter. Universal intelligence: A definition of machine intelligence. *Minds*
 626 and *Machines*, 17:391–444, 2007.

627

628 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. Camel: Com-
 629 municative agents for "mind" exploration of large language model society. In A. Oh, T. Nau-
 630 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Infor-
 631 mation Processing Systems (NeurIPS)*, volume 36, pp. 51991–52008. Curran Associates, Inc.,
 632 2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/a3621ee907def47c1b952ade25c67698-Paper-Conference.pdf.

633

634 Yang Li, Shao Zhang, Jichen Sun, Yali Du, Ying Wen, Xinbing Wang, and Wei Pan. Cooperative
 635 open-ended learning framework for zero-shot coordination. In *Proceedings of the International*
Conference on Machine Learning (ICML), pp. 20470–20484, 2023b.

636

637 Minh Hoang Nguyen, Hung Le, and Svetha Venkatesh. Variable-agnostic causal exploration for
 638 reinforcement learning. In *Joint European Conference on Machine Learning and Knowledge*
Discovery in Databases, pp. 216–232. Springer, 2024.

639

640 Joon Sung Park, Joseph O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
 641 Michael S Bernstein. Generative agents: interactive simulacra of human behavior. In *Proceedings*
of the Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023.

642

643 Judea Pearl. *Causality*. Cambridge University Press, 2009.

644

645 Shaohui Peng, Xing Hu, Rui Zhang, Ke Tang, Jiaming Guo, Qi Yi, Ruizhi Chen, Xishan Zhang,
 646 Zidong Du, Ling Li, Qi Guo, and Yunji Chen. Causality-driven hierarchical structure discovery
 647 for reinforcement learning. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 pp. 20064–20076, 2022.

648 Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. *Elements of Causal Inference: Foundations*
 649 *and Learning Algorithms*. The MIT Press, 2017.

650

651 Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally
 652 factored dynamics. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 3976–
 653 3990, 2020.

654 Silviu Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg. Mocoda: model-based counterfac-
 655 tual data augmentation. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp.
 656 18143–18156, 2022.

657

658 Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
 659 Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
 660 *arXiv preprint arXiv:2406.07155*, 2024.

661

662 Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
 663 Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model. In
 664 *Advances in Neural Information Processing Systems (NeurIPS)*, volume 37, pp. 114843–114871,
 2024.

665

666 Maximilian Seitzer, Bernhard Schölkopf, and Georg Martius. Causal influence detection for improv-
 667 ing efficiency in reinforcement learning. In *Advances in Neural Information Processing Systems
 (NeurIPS)*, pp. 22905–22918, 2021.

668

669 Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang. Disentangled
 670 generative causal representation learning. 2020.

671

672 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
 673 ion: language agents with verbal reinforcement learning. In *Advances in Neural Information
 Processing Systems (NeurIPS)*, pp. 8634–8652, 2023.

674

675 Peter Spirtes, Clark Glymour, and Richard Scheines. *Causation, Prediction, and Search*. The MIT
 676 Press, 2000.

677

678 DJ Strouse, Kevin R McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborat-
 679 ing with humans without human data. In *Advances in Neural Information Processing Systems
 (NeurIPS)*, pp. 14502–14515, 2021.

680

681 Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level play.
 682 *Neural Computation*, 6(2):215–219, 1994.

683

684 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 685 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 686 models. In *Proceedings of the International Conference on Learning Representations (ICLR)*,
 2022.

687

688 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi,
 689 Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 690 models. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 24824–24837,
 2022.

691

692 Christopher KI Williams and Carl Edward Rasmussen. *Gaussian Processes for Machine Learning*,
 693 volume 2. MIT Press Cambridge, MA, 2006.

694

695 Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae:
 696 Disentangled representation learning via neural structural causal models. In *Proceedings of the
 IEEE/CVF conference on computer vision and pattern recognition*, pp. 9593–9602, 2021.

697

698 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
 699 React: Synergizing reasoning and acting in language models. In *Proceedings of the International
 Conference on Learning Representations (ICLR)*, 2023.

700

701 Shu Yu and Chaochao Lu. Adam: An embodied causal agent in open-world environments.”. In
Proceedings of the International Conference on Learning Representations (ICLR), 2025.

702 Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
 703 Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: building proactive cooperative agents with
 704 large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp.
 705 17591–17599, 2024a.

706 Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
 707 min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
 708 models. In *Proceedings of the International Conference on Learning Representations (ICLR)*,
 709 2023a.

710 Yang Zhang, Shixin Yang, Chenjia Bai, Fei Wu, Xiu Li, Zhen Wang, and Xuelong Li. Towards
 711 efficient llm grounding for embodied multi-agent collaboration. In *Findings of the Association
 712 for Computational Linguistics: ACL 2025*, pp. 1663–1699, 2025.

713 Yudi Zhang, Yali Du, Biwei Huang, Ziyan Wang, Jun Wang, Meng Fang, and Mykola Pechenizkiy.
 714 Interpretable reward redistribution in reinforcement learning: a causal approach. In *Advances in
 715 Neural Information Processing Systems (NeurIPS)*, pp. 20208–20229, 2023b.

716 Yudi Zhang, Yali Du, Biwei Huang, Meng Fang, and Mykola Pechenizkiy. A causality-inspired
 717 spatial-temporal return decomposition approach for multi-agent reinforcement learning. In
 718 *NeurIPS 2024 Causal Representation Learning Workshop*, 2024b.

719 Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhongqian Sun, and Wei
 720 Yang. Maximum entropy population-based training for zero-shot human-ai coordination. In
 721 *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 6145–6153, 2023a.

722 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 723 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv
 724 preprint arXiv:2303.18223*, 2023b.

725 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
 726 mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
 727 reasoning in large language models. In *Proceedings of the International Conference on Learning
 728 Representations (ICLR)*, 2022.

729 Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,
 730 Jinjie Gu, and Huajun Chen. Knowagent: knowledge-augmented planning for LLM-based agents.
 731 *arXiv preprint arXiv:2403.03101*, 2024.

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A IDENTIFIABILITY ANALYSIS

Proposition 1 (Identifiability of the causal structure and functions):

Let the dataset consist of sequences of the form:

$$(s_t, a_{t-1}, a_t), \quad t = 1, \dots, T, \quad (8)$$

where the state s_t and previous action a_{t-1} are observable, while the next action a_t is observable during training and unobservable during inference. Assume the data comes from a Markov Decision Process (MDP) under the interaction of a fixed behavior policy π_β . The next action a_t (a binary vector of size A) is assumed to be generated by a structural causal model (SCM):

$$a_{i,t} = f_i(\text{Pa}(a_{i,t})) + \varepsilon_{a_i}, \quad i = 1, \dots, A, \quad (9)$$

where, the parents $\text{Pa}(a_{i,t})$ of $a_{i,t}$ are selected from the state s_t and action a_{t-1} . The noise terms, ε , are independent of the parents. Under the following assumptions:

1. **Additive noise:** The noise terms are independent and identically distributed (i.i.d.) and do not depend on the inputs (Hoyer et al., 2008).
2. **Causal sufficiency:** All relevant causes are observed (i.e., no hidden confounders) (Spirtes et al., 2000).
3. **Faithfulness and global Markov condition:** Observed conditional independencies match those implied by the graph (Pearl, 2009).
4. **Function class expressiveness:** Each function f_i belongs to a class identifiable under additive noise models. In additive noise models, identifiability of causal direction relies on the function class having sufficient expressiveness and satisfying certain regularity conditions (e.g., nonlinearity, invertibility) (Ke et al., 2019; Peters et al., 2017).
5. **Acyclicity:** The causal graph has no cycles (i.e., it is a Directed Acyclic Graph (DAG)).
6. **Sufficient data:** There are enough samples to guarantee reliable estimation.

Then, both the structure of the causal graph and the functions f_i can be identified. In particular, the binary adjacency masks indicating causal edges can be consistently estimated.

Proof sketch:

Step 1: Identifiability using additive noise models. Under the above assumptions, especially additivity and faithfulness, each causal function f_i can be learned uniquely up to Markov equivalence. Prior work (Hoyer et al., 2008) shows that additive noise and independence of noise from inputs imply identifiability of the direction of causality.

Step 2: Estimating the functions. We approximate each function f_i using a weighted basis expansion:

$$f_i(\cdot) \approx W_i^\top \phi_i(\cdot), \quad (10)$$

where $\phi_i(\cdot) \in \mathbb{R}^d$ is a nonlinear feature map that transforms the input tuple (\cdot) into a d -dimensional representation, and $W_i \in \mathbb{R}^d$ is the corresponding weight vector of function f_i . In the simplest case, $\phi_i(\cdot)$ and W_i are predefined basis functions and linear coefficients, respectively. However, in practice, we often implement f_i using a neural network to allow for flexible function approximation. Given an input tuple (s_t, a_{t-1}) , the generating function for $a_{i,t}$ can be rewritten as:

$$a_{i,t} = f_i(s_t, a_{t-1}) + \varepsilon_{a_i} \approx W_i^\top \phi_i(s_t, a_{t-1}) + \varepsilon_{a_i}, \quad (11)$$

with noise term ε_{a_i} . Suppose we have a dataset comprising N trajectories k with the form given in Eq. 8. For each trajectory, we define:

$$\Phi_i^k = \begin{bmatrix} \phi_i(s_1^k, a_0^k)^\top \\ \vdots \\ \phi_i(s_T^k, a_{T-1}^k)^\top \end{bmatrix} \in \mathbb{R}^{T \times d}, \quad \mathbf{A}_i^k = \begin{bmatrix} a_{i,1}^k \\ \vdots \\ a_{i,T}^k \end{bmatrix} \in \mathbb{R}^T, \quad (12)$$

Each row of Φ_i^k represents the feature vector for a specific time step, while the corresponding element in \mathbf{A}_i^k contains the observed action component. We then estimate W_i by minimizing the ridge-regularized least-squares objective:

$$\min_{W_i} \sum_{k=1}^N \|\mathbf{A}_i^k - \Phi_i^k W_i\|_2^2 + \lambda \|W_i\|_2^2, \quad (13)$$

where $\lambda > 0$ controls the regularization strength.

Step 3: Unique closed-form solution proof. We proceed by proving that solving the objective yields a unique closed-form solution. The objective function above can be compactly written as:

$$L(W_i) = \sum_{k=1}^N \|\mathbf{A}_i^k - \Phi_i^k W_i\|_2^2 + \lambda \|W_i\|_2^2 = \|\mathbf{A}_i - \Phi_i W_i\|_2^2 + \lambda W_i^\top W_i. \quad (14)$$

First, expand the squared-error term:

$$\|\mathbf{A}_i - \Phi_i W_i\|_2^2 = (\mathbf{A}_i - \Phi_i W_i)^\top (\mathbf{A}_i - \Phi_i W_i) = \mathbf{A}_i^\top \mathbf{A}_i - 2 W_i^\top \Phi_i^\top \mathbf{A}_i + W_i^\top \Phi_i^\top \Phi_i W_i. \quad (15)$$

Thus,

$$L(W_i) = \mathbf{A}_i^\top \mathbf{A}_i - 2 W_i^\top \Phi_i^\top \mathbf{A}_i + W_i^\top \Phi_i^\top \Phi_i W_i + \lambda W_i^\top W_i. \quad (16)$$

Taking the gradient with respect to W_i gives:

$$\nabla_{W_i} L(W_i) = -2 \Phi_i^\top \mathbf{A}_i + 2 (\Phi_i^\top \Phi_i + \lambda I) W_i. \quad (17)$$

Setting $\nabla_{W_i} L(W_i) = 0$ yields the normal equation:

$$(\Phi_i^\top \Phi_i + \lambda I) W_i = \Phi_i^\top \mathbf{A}_i. \quad (18)$$

Since $\lambda > 0$, the matrix $\Phi_i^\top \Phi_i + \lambda I$ is strictly positive-definite and hence invertible. Therefore, the unique minimizer is:

$$W_i = (\Phi_i^\top \Phi_i + \lambda I)^{-1} \Phi_i^\top \mathbf{A}_i. \quad (19)$$

Re-expressing in terms of the individual trajectories,

$$\Phi_i^\top \Phi_i = \sum_{k=1}^N (\Phi_i^k)^\top \Phi_i^k, \quad \Phi_i^\top \mathbf{A}_i = \sum_{k=1}^N (\Phi_i^k)^\top \mathbf{A}_i^k, \quad (20)$$

so equivalently

$$W_i = \left(\sum_{k=1}^N (\Phi_i^k)^\top \Phi_i^k + \lambda I \right)^{-1} \sum_{k=1}^N (\Phi_i^k)^\top \mathbf{A}_i^k. \quad (21)$$

Because $L(W_i)$ is strictly convex, it admits a unique closed-form solution. Moreover, given a sufficiently large dataset, the estimator converges to a good estimate of W_i (Williams & Rasmussen (2006)).

To recover the graph structure, we exploit the closed-form solution for W_i derived by minimizing the regularized quadratic loss in the previous step:

$$W_i = (\Phi_i^\top \Phi_i + \lambda I)^{-1} \Phi_i^\top \mathbf{A}_i.$$

This expression yields an estimate of the weight vector W_i , which quantifies the linear relationship between the current state and previous action features and the target component $a_{i,t}$. The *support* of W_i —i.e., the indices of its nonzero entries—identifies which features are informative for predicting $a_{i,t}$. Under the *faithfulness* assumption, this support exactly corresponds to the true parent set of node i in the underlying causal graph. Thus, one can recover the graph structure by examining which entries of W_i are significantly nonzero, using thresholding or statistical tests.

864 CONCLUSION
865866 Under the usual identifiability conditions, both the graph structure and the functional relationships
867 in the Structural Causal Action model are uniquely determined. As a result, the Structural Causal
868 Action model learned by CausalPlan captures a sparse pattern of causal dependencies at the policy-
869 level, providing a stable and interpretable approximation of the underlying decision-making process.
870
871
872873 B CONCEPTUAL COMPARISON OF RIDGE REGRESSION AND BERNOUILLI
874 NLL
875876 In the above Sect. A, the proof uses ridge regression over fixed basis features to simplify the analysis.
877 Here, we clarify the connection to the actual neural Bernoulli heads used in CausalPlan and the
878 assumptions underlying the simplified proof.
879
880881 B.1 LOSS FUNCTIONS
882883 • Ridge regression (with L2 regularization):
884

885
$$\min_w \sum_{i=1}^N \|y_i - x_i^\top w\|_2^2 + \lambda \|w\|_2^2, \quad (22)$$

886
887

888 • Negative log-likelihood (NLL) (with L2 regularization):
889

890
$$-\sum_{i=1}^N \left[y_i \log \sigma(x_i^\top w) + (1 - y_i) \log(1 - \sigma(x_i^\top w)) \right] + \lambda \|w\|_2^2, \quad (23)$$

891
892
893

894 B.2 GRADIENTS
895
896

897
$$\nabla_w \mathcal{L}_{\text{ridge}} = -\sum_{i=1}^N (y_i - x_i^\top w) x_i + 2\lambda w, \quad (24)$$

898
899

900
$$\nabla_w \mathcal{L}_{\text{NLL}} = \sum_{i=1}^N (\hat{y}_i - y_i) x_i + 2\lambda w, \quad \hat{y}_i = \sigma(x_i^\top w) \quad (25)$$

901
902

903 Here, y_i denotes the ground-truth and \hat{y}_i denotes the prediction.
904
905906 B.3 APPROXIMATION
907908 When the predictions are close to the targets ($\hat{y}_i \approx y_i$), the sigmoid function is approximately linear
909 in the neighborhood of the current logit. That is, for small prediction errors, $\hat{y}_i - y_i \approx c(x_i^\top w - y_i)$
910 for some constant $c > 0$. Under this approximation, the NLL gradient resembles the ridge regression
911 gradient up to a scaling factor.
912913 In practice, the actual CausalPlan model uses nonlinear neural Bernoulli heads. The proof in Sect A
914 serves as a **simplified surrogate illustration** rather than a formal identifiability guarantee for the
915 trained model.
916
917

918 **C CAUSALPLAN DETAILS**
 919

920 As described in Sect. 3 and in Fig. 2, the CausalPlan framework involves two phases Causal Action
 921 Structure Learning and Agent Planning with Causal Knowledge. Here, we discuss in detail the two
 922 phases and their components, as well as present algorithms that outline the method.
 923

924 **C.1 CAUSAL ACTION STRUCTURE LEARNING DETAILS**
 925

926 This appendix outlines the procedure used to model and learn the causal relationships between the
 927 previous action a_{t-1} , current state s_t , and next action a_t .
 928

Buffer B Collection. The data collection process begins by constructing the buffer B , which is
 929 used to train the SCA model. We collect this data by allowing a pretrained agent to interact with the
 930 environment for N timesteps, with each episode having a horizon of T . These interactions include
 931 both high-level task-oriented actions and low-level movement actions.
 932

To facilitate causal analysis, we apply a preprocessing step in which all low-level movement actions
 933 are relabeled as the most recent preceding high-level action of interest. For example, if the agent ex-
 934 ecutes `pickup_onion`, then moves for several steps, and finally performs `put_onion_in_pot`,
 935 all intermediate movement actions are relabeled as `pickup_onion`. This yields a simplified se-
 936 quence: `pickup_onion` → `pickup_onion` → `pickup_onion` → `put_onion_in_pot`. This
 937 transformation reduces noise from irrelevant actions and makes it easier to detect meaningful causal
 938 edges—such as from `pickup_onion` to `put_onion_in_pot`.
 939

Importantly, we retain the original state observations at each timestep, even after relabeling the
 940 actions. This ensures that we can still study the causal relationship between the immediate state
 941 before an action and the subsequent high-level decision, preserving the integrity of the underlying
 942 state-action dynamics.
 943

SCA Model. To capture these dependencies, we employ the SCA model, which incorporates two
 944 key components: the generative parameters δ and the structural parameters η . The parameters δ
 945 define a set of functions f , each implemented as a neural network. Specifically, for each action
 946 feature a_i in Eq. 1, there is a corresponding function f_i parameterized by δ_i (see Appx. D.12 for
 947 network details). As described in Sect. 3.1, the model generates the next action a_t based on the
 948 current state and previous action. **The full training procedure is summarized in Algorithm 1, which
 949 alternates between updating the generative δ and structural parameters η using mini-batches sampled
 950 from the buffer B .**
 951

In phase one of the optimization, the parameters δ govern the generative mapping and are optimized
 952 while parameter η is fixed. **To optimize δ , we draw graph configurations from a Bernoulli distri-
 953 bution based on current edge beliefs: $\mathcal{G}^{\text{sampled}} \sim \text{Ber}(\sigma(\eta))$.** Each sampled graph acts like a hard
 954 intervention, specifying which edges are active, and δ is trained under these causal hypotheses. Only
 955 those factorizations that are parents of the current action feature a_i , according to the sampled graph,
 956 are activated. We implement this by masking out all features not connected to a_i , ensuring that each
 957 function f_i conditions only on its relevant causal parents, as defined in Eq. 1. Furthermore, we man-
 958 ually set the diagonal entries of $\mathcal{G}^{\text{sampled}}$ to 0, since edges from an action factorization to itself are
 959 not allowed in the causal graph. This constraint prevents self-causation among action nodes, main-
 960 taining a valid causal structure. The optimization process encourages the model to learn dynamics
 961 robust across plausible causal structures.
 962

In phase 2, the structural parameters η , where each entry indicates the presence or absence of a
 963 directed edge between action factorizations, using binary adjacency indicators, is optimized. With
 964 the generative parameters δ fixed, we now update η via backpropagation. We applied a sigmoid σ
 965 function to each entry of η producing values in range $[0, 1]$ that represent the probability of an edge’s
 966 existence and mask the features not connected to the current feature a_i using this soft-intervention.
 967 Here, we also manually set the diagonal entries of $\eta_{i \rightarrow i} = 0$, since edges from an action factorization
 968 to itself are not allowed in the causal graph. Essentially, we are refining the graph toward the
 969 structure best supported by the data. Edges that improve predictions are reinforced, while edges that
 970 hurt performance are down-weighted.
 971

Optimization. The overall loss function is defined as

$$L(\delta, \eta) = L_{\text{causal}}(\delta, \eta) + L_{\text{reg}}(\eta),$$

972 where L_{causal} encourages accurate prediction of the next action, and L_{reg} regularizes the structural
 973 parameters to promote sparsity and prevent overfitting. This results in an interpretable and reliable
 974 causal model. Refer to (Ke et al., 2019) for details of this two-phase optimization process, which
 975 we adapt in our method.
 976

977 **Algorithm 1** Iterative Optimization for Structural Causal Action (SCA) Model with Bernoulli Sam-
 978 pling

979 1: **Input:** Dataset $B = \{\{(s_t^k, a_t^k)\}_{t=1}^T\}_{k=1}^N$
 980 2: Initialize structural parameters η and generating parameters δ
 981 3: **Repeat:**
 982 4: **1. Sample a mini-batch** $\mathcal{B} = \{\{(a_{t-1}^k, s_t^k, a_t^k)_{t \in T}\}_{k \in N} \subset B$
 983 5: **2. Optimize Generating Parameters** δ :
 984 6: **Fix** η
 985 7: **For each forward pass:** sample a graph $\mathcal{G}^{\text{sampled}} \sim \text{Ber}(\sigma(\eta))$
 986 8: Mask edges according to sampled $\mathcal{G}^{\text{sampled}}$
 987 9: Optimize δ by minimizing the loss $L_{\text{causal}}(\delta, \eta)$ in Eq. 2
 988 10: Update generating parameters δ
 989 11: **3. Optimize Structural Parameters** η :
 990 12: **Fix** δ
 991 13: **Apply** $\sigma(\eta)$
 992 14: Update η via backpropagation using loss $L(\delta, \eta) = L_{\text{causal}}(\delta, \eta) + L_{\text{reg}}(\eta)$ (Eq. 2, Eq. 3)
 993 15: **Output:** Optimized parameters δ, η

994
 995 C.1.1 STATE AND ACTION FACTORIZATION
 996

997 We assumed a known factorization of state and action spaces, a common assumption often made
 998 in causal reinforcement learning research (Seitzer et al., 2021; Peng et al., 2022). This allows
 999 us to encode the states and actions into binary vectors: $s_t = [s_{t,1}, \dots, s_{t,S}] \in \{0, 1\}^S$, $a_t =$
 1000 $[a_{t,1}, \dots, a_{t,A}] \in \{0, 1\}^A$, where each component $s_{t,j}$ and $a_{t,i}$ is a binary indicator representing
 1001 whether a particular state feature or action is active (1) or inactive (0).

1002 For example, given an observation s_t^k of trajectory k at timestep t : “agent 1 is holding an onion,
 1003 agent 2 is holding nothing”, this can be encoded into a binary state vector such as:

1004
$$s_t^k = [1, 0, 0, 1, 0, \dots],$$

 1005

1006 where each entry corresponds to a specific feature (e.g., “agent 1 is holding onion”, “agent 1 is hold-
 1007 ing nothing”, “agent 2 is holding nothing”, etc.), and the 1s indicate which conditions are currently
 1008 true. Similarly, an action like “agent 1 places onion in pot” can be encoded into

1009
$$a_t^k = [0, 1, 0, \dots],$$

 1010

1011 where each entry corresponds to a specific atomic action in the action space, and the 1 marks the
 1012 active action at time t . **Note:** In our training process, we use only the previous action of the control-
 1013 ling agent. While it is possible to incorporate the actions of the other agent, doing so increases the
 1014 complexity of learning the causal graph and may negatively impact the training performance.

1015 This factorized representation enables us to formulate the causality training as a classification prob-
 1016 lem, allowing us to optimize using the negative log-likelihood loss defined in Eq. 2. Refer to
 1017 Appx. D.12.2 for the factorization features used in our experiments.

1018 In practice, the assumption of discrete variables and state-action factorization do not restrict the
 1019 broader applicability of CausalPlan. Many practical domains—such as recommendation systems
 1020 and text-based planning agents—naturally produce structured, vector-based observations that can
 1021 be discretized or directly mapped to symbolic variables. Our evaluation closely reflects real-world
 1022 scenarios such as Model Context Protocol (MCP) servers, where agents receive textual prompts and
 1023 select appropriate API function calls. Similarly, text-based recommendation systems process natural
 1024 language inputs about user preferences to generate textual suggestions. These examples share the
 1025 symbolic, text-in/text-out framework of Overcooked-AI, underscoring the practical relevance and
 generalizability of our approach beyond simulated settings. Additionally, a number of methods

1026 have been developed to recover such symbolic factors from high-dimensional inputs for the purpose
 1027 of causal discovery: for example, CausalVAE (Yang et al., 2021), DEAR (Shen et al., 2020), and
 1028 more recently VLM-based approaches learn disentangled latent state-action representations, while
 1029 VACERL (Nguyen et al., 2024) demonstrates effective causal discovery directly in image-based
 1030 environments. The main limitation in moving to continuous space lies in the complexity of learning
 1031 a mapping function that must be learned during causal modeling.

1032 C.2 AGENT PLANNING WITH CAUSAL KNOWLEDGE DETAILS

1033 This appendix provides additional details on how causal knowledge is integrated into the agent’s
 1034 decision-making process during action planning.

1035 **LLM prompting process.** During inference, we first equip the LLM agents with a knowledge li-
 1036 brary that specifies the tasks, rules, and example responses relevant to the game environment. At
 1037 each time step, the current observation s_t is presented to the agent along with a prompt instruct-
 1038 ing it to analyze the situation. The agent typically responds with a natural language interpretation
 1039 highlighting the key elements of the observation. Both the original observation s_t and the generated
 1040 analysis are then fed into a second prompt, which instructs the agent to produce a set of appropriate
 1041 next actions \mathcal{A}' . For further details, refer to Appx. C.2.1.

1042 **Causal-Aware Planning.** When a set of candidate actions \mathcal{A}' is generated during planning, each
 1043 action is initially assigned a probability by the LLM model, denoted as $P_a(\mathcal{A}')$. To incorporate
 1044 causal reasoning, the agent queries the Causal Action Matrix \mathcal{M} using the current state s_t and
 1045 previous action a_{t-1} to compute a corresponding set of causal scores $P_c(\mathcal{A}')$ (refer to Appx. C.2.2
 1046 for details). A weighted combination of the LLM’s probabilities and causal scores is formed using
 1047 Eq. 4 and then normalized via the softmax function:

$$1052 \frac{\exp(p_f(a'_m))}{\sum_{j=1}^{|\mathcal{A}'|} \exp(p_f(a'_m))}, \quad (26)$$

1053 resulting in the final action distribution $P_f(\mathcal{A}')$. Redundant actions are identified and merged ac-
 1054 cording to the process described in Appx. C.2.4, and the agent samples the next action a_{t+1} from
 1055 this refined distribution.

1056 **Causal Backup Plan.** In scenarios where no valid candidate actions are proposed (i.e., $\mathcal{A}' = \emptyset$),
 1057 mostly due to hallucinations, the agent relies on a causal fallback mechanism. Instead of halting
 1058 execution, it queries \mathcal{M} using s_t and a_{t-1} to derive a causal distribution over the original instruction
 1059 set \mathcal{A} . The agent then selects the action with the highest causal score, effectively leveraging prior
 1060 experience to recover from failure.

1061 The complete inference procedure using Causal-Aware Planning and Causal Backup Plan is sum-
 1062 marized in Algorithm 2.

1063 C.2.1 LLM PROMPT DESIGN

1064 **Knowledge library.** At the beginning of the inference process, we construct a knowledge library
 1065 for the LLM agent, following prior work in the field (Zhang et al., 2024a; Qiao et al., 2024). This
 1066 library is organized around three key perspectives: the tasks, the rules, and the in-context examples.
 1067 This knowledge library is fed into the LLMs at the initial stage of the inference process before the
 1068 cooperation task begins. An example of a knowledge library is provided in Fig. 5.

1069 In our experiments, for simplicity, we utilized the knowledge library provided by Zhang et al.
 1070 (2024a), with slight modifications to accommodate our two-prompt design, as their work uses the
 1071 same evaluation environment¹.

1072 ¹<https://github.com/PKU-Alignment/ProAgent> (MIT License).

1080 **Algorithm 2** Agent Planning with the Causal Knowledge Algorithm at time step t

1081 1: **Input:** Current state s_t , previous action a_{t-1} , candidate actions \mathcal{A}' , LLM probabilities $P_a(\mathcal{A}')$,

1082 instruction set \mathcal{A} , causal matrix \mathcal{M} , weighting coefficient $\gamma \in [0, 1]$, $P_f(\mathcal{A}') = \emptyset$, $P_c(\mathcal{A}) = \emptyset$

1083 2: **If** $\mathcal{A}' \neq \emptyset$ **then**

1084 3: **For all** $a'_m \in \mathcal{A}'$

1085 4: $p_c(a'_m) \leftarrow \mathcal{M}(s_t, a_{t-1}, a'_m)$

1086 5: $p_f(a'_m) \leftarrow \gamma \cdot p_a(a'_m + (1 - \gamma) \cdot p_c(a'_m))$ (Eq. 4)

1087 6: $P_f(\mathcal{A}') \leftarrow p_f(a'_m)$

1088 7: **End for**

1089 8: Normalize $P_f(\mathcal{A}')$ using softmax in Eq 26

1090 9: Apply redundancy check (see Appx. C.2.4) to get \mathcal{A}'^* , P_f^*

1091 10: Sample $a_t \sim \text{Categorical} \left([p_f^*(a'_1), p_f^*(a'_2), \dots, p_f^*(a'_{|\mathcal{A}'^*|})] \right)$

1092 11: **Else**

1093 12: **For all** $a \in \mathcal{A}$

1094 13: $p_c(a) \leftarrow \mathcal{M}(s_t, a_{t-1}, a)$

1095 14: $P_c(\mathcal{A}) \leftarrow p_c(a)$

1096 15: **End for**

1097 16: $a_t \leftarrow \arg \max_{a \in \mathcal{A}} P_c(a)$

1098 17: **End If**

1099 18: **Output:** Selected action a_t

Knowledge library	
1101	Tasks:
1102	- You are ...
1103	- This is a team game played by two players who will ...
1104	- The team goal is ...
1105	- You need to ...
1106	
1107	Rules:
1108	- In this task, the legal actions include: [Action 1] , [Action 2] , ...
1109	- Assume the role of an assistant proficient in the task. Your objective is to control Player 0 and cooperate with Player 1, who follows a fixed strategy, in order to achieve a high score. You should adhere to the following guidelines:
1110	- [Rule 1] .
1111	- [Rule 2] .
1112	- ...
1113	- For each step, you will receive the current scene or current scene with an analysis.
1114	- If you receive only the current scene, you need to:
1115	1. Describe the current scene and analyze it.
1116	- If you receive the current scene and the analysis then you need to:
1117	2. Plan ONLY ONE best skill for to do right now. Format should be ...
1118	Examples:
1119	###
1120	Scene 1 Prompt 1: [Environment Scene 1] [Player 0 Scene 1] [Player 1 Scene 1] .
1121	Analysis: Both player are [Scene Description] . I believe [Other Analysis] .
1122	###
1123	Scene 1 Prompt 2: [Environment Scene 1] [Player 0 Scene 1] [Player 1 Scene 1] . Analysis: Both Player are [Scene Description] . I believe [Other Analysis] .
1124	Plan: Player 1 should [Scene 1 Action] .
1125	###
1126	Scene 90 Prompt 1: [Environment Scene 90] [Player 0 Scene 90] [Player 1 Scene 90] .
1127	Analysis: Player 0 and Player 1 are [Scene 90 Description] . I believe [Other Analysis] .
1128	###
1129	Scene 2 Prompt 2: [Environment Scene 90] [Player 0 Scene 90] [Player 1 Scene 90] . Analysis: Player 0 and Player 1 are [Scene 90 Description] . I believe [Other Analysis] .
1130	Plan: Player 1 should [Scene 90 Action] .
1131	###
1132	...
1133	

Figure 5: An Example of Knowledge Library.

1134 **Analysis and planning prompts** To facilitate the planning process, we first ground the environment
 1135 state into natural language so that it becomes interpretable to the LLM agent, as the raw state
 1136 representation is typically not directly understandable by language models. In our experiments, we
 1137 adopt the grounding methodology proposed by Zhang et al. (2024a), since their work uses the same
 1138 evaluation environments. For detailed grounding procedures, we refer the reader to their paper. An
 1139 example of the final grounded state prompt used as input to the agent at each timestep is highlighted
 1140 in red in Fig. 6.

1141 We then apply our two-prompt design to guide the LLM’s behavior using the knowledge library.
 1142 Specifically, when the agent is prompted with only the current observation, it is expected to analyze
 1143 the scene. When the prompt includes both the observation and the analysis, the agent is expected to
 1144 respond with a planned action. Our approach first asks the agent to perform the analysis, then uses
 1145 that analysis together with the state prompt as input to generate the final action plan. The analysis
 1146 is highlighted in green, while the planned action is highlighted in purple in Fig. 6. We hypothesize
 1147 that this two-prompt process provides the agent with a reasoning workflow similar to the chain-
 1148 of-thought (CoT) prompting described by Wang et al. (2022), while also allowing straightforward
 1149 access to the planned action through hard-coded separation. In contrast, including both the analysis
 1150 and the planned action in the same response, as done by Zhang et al. (2024a)—can make it diffi-
 1151 cult to accurately extract the planned action, since action names might appear within the analysis.
 1152 We evaluate the performance of one-prompt versus two-prompt approaches without causality en-
 1153 hancement through our CausalPlan in Sect. 4.4 and find that the results are quite similar, with the
 1154 two-prompt approach showing slightly better performance. Although the single-prompt approach is
 1155 feasible in practice, it complicates reliably identifying the correct action.
 1156

Analysis and planning prompts	
###	
Scene 1 Prompt 1: Layout: Onion Dispenser 0, Onion Dispenser 1, Dish Dispenser 0, Serving Location 0, Pot 0, Pot 1.	
State: Player 1 holds nothing. Player 0 holds nothing. Kitchen states: Pot 0 is empty. Pot 1 is empty. 3 counters can be visited by Player 0. Their states are as follows: No counters have onion. No counters have dish.	
Analysis:	
- The pot is empty, and there are no onions or dishes on the counters.	
- Player 1 needs to deliver an onion and a dish to the counter.	
- The legal actions that player1 can take are pickup(onion) and pickup(dish).	
###	
Scene 1 Prompt 2: Layout: Onion Dispenser 0, Onion Dispenser 1, Dish Dispenser 0, Serving Location 0, Pot 0, Pot 1.	
State: Player 1 holds nothing. Player 0 holds nothing. Kitchen states: Pot 0 is empty. Pot 1 is empty. 3 counters can be visited by Player 0. Their states are as follows: No counters have onion. No counters have dish. Analysis:	
- The pot is empty, and there are no onions or dishes on the counters.	
- Player 1 needs to deliver an onion and a dish to the counter.	
- The legal actions that player1 can take are pickup(onion) and pickup(dish).	
Plan: Player 1 should pickup(onion).	
###	

Figure 6: An example of analysis and planning prompts.

C.2.2 CAUSAL KNOWLEDGE CONSULTATION DETAILS

1180 To compute the causal score for a candidate action, the agent first maps the action to its correspond-
 1181 ing row in \mathcal{M} and identifies which columns are currently active based on features derived from the
 1182 current state and previous action. These active features are determined using the procedure outlined
 1183 in Appx. C.2.3.

1184 For instance, given that we want to extract the causal scores of an action a , given current state s_t and
 1185 previous action a_{t-1} , we first identify the corresponding index i of the action a within the matrix
 1186 row. Let $\text{idx}: \mathcal{A} \rightarrow \{1, \dots, |\mathcal{A}|\}$ be the function that maps any action to its row index in \mathcal{M} , and
 1187 let $J = \text{Active}(s_t, a_{t-1}) \subseteq \{1, \dots, S + A\}$ denote the set of column indices corresponding to the
 1188 features that are “active” in the current state s_t and the previous action a_{t-1} .

1188 For a candidate action a , we first compute its row index $i = \text{idx}(a)$, then gather the entries of row i
 1189 in \mathcal{M} at all active columns $j \in J$, thus a query $\mathcal{M}(s_t, a_{t-1}, a)$ will return:
 1190

$$p_c(a) = \sum_{j \in J} \eta_{ji}. \quad (27)$$

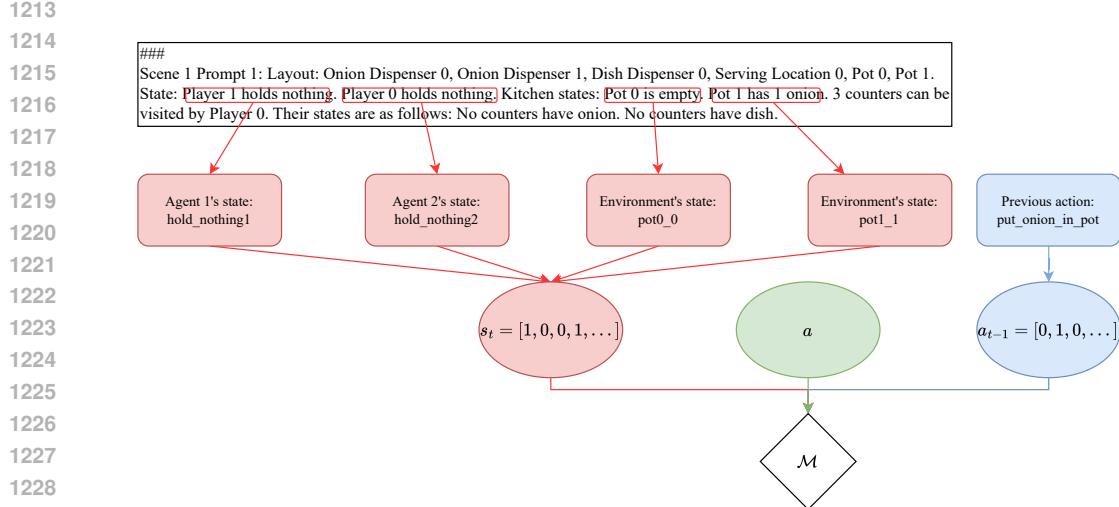
1193 In other words, $p_c(a)$ is the sum of the causal-weight entries in the row for a_t that correspond to the
 1194 features currently active.
 1195

1196 C.2.3 EXTRACTING INFORMATION FOR CAUSAL KNOWLEDGE CONSULTATION

1198 Given the observations grounded in natural language, as explained in Appx. C.2.1, we map them to
 1199 a set of predefined state features. For example, from the state prompt shown in Fig. 7 — “Player 1
 1200 holds nothing. Player 0 holds nothing. Kitchen states: Pot 0 is empty. Pot 1 has 1 onion...” — we
 1201 extract factorized features such as `hold_nothing1` (indicating that agent 1 is holding nothing),
 1202 `hold_nothing2` (agent 2 is holding nothing), `pot0_0` (pot 0 is empty), `pot1_1` (pot 1 has 1
 1203 onion). This allows us to formulate the state feature factorization s_t .

1204 In addition, the previous action taken by the agent is also recorded, referring to the last executable
 1205 action performed. This allows us to configure the action feature factorization vector a_{t-1} .

1206 Depending on the environment, the number of factorized features can vary widely (see Appx. D.12.2
 1207 for the specific factorized features used in each experimental task). While a larger number of features
 1208 can produce a more detailed causal graph, this does not necessarily lead to better performance, as
 1209 learning such graphs becomes more challenging and requires more data. In our experiments, we
 1210 chose to use high-level state and action factorizations (we ignore low-level movement actions and
 1211 only focus on the state of the two agents and the pot) to strike a balance between expressiveness and
 1212 learnability.



1231 Figure 7: Information extraction for causal knowledge consultation.
 1232

1233 C.2.4 POST-PROCESSING TO IDENTIFY REDUNDANT ACTIONS

1235 During the process of sampling the next actions, the LLM may output the same action in dif-
 1236 ferent formats within the sampled set \mathcal{A}' . To address this, we apply a series of post-processing
 1237 steps using standard natural language processing techniques—such as converting text to lower-
 1238 case, removing punctuation, and regex matching pre-defined patterns—to identify and merge
 1239 semantically equivalent actions. This enables us to accurately aggregate their probabilities in $P_f(\mathcal{A}')$.
 1240 For instance, the same action `put_onion_in_pot` can be expressed as `put_onion_in_pot()`,
 1241 `put_onion_in_pot()`, or `put_onion_In_Pot` (refer to the associated code for details of this
 1242 process). After post-processing all these possible responses, we can calculate the updated value:

$$\begin{aligned}
 p_f(\text{put_onion_in_pot}) &= p_f(\text{put_onion_in_pot}()) \\
 &\quad + p_f(\text{put_onion_in_pot}(\cdot)) + p_f(\text{put_onion_In_Pot})
 \end{aligned}$$

D ADDITIONAL EXPERIMENT DETAILS

D.1 CAUSALPLAN IMPLEMENTATION

As mentioned earlier, we build upon the ProAgent framework (Zhang et al., 2024a), retaining all components except for the planning module, which we replace with our proposed algorithm. Unlike the original ProAgent implementation that relied on the closed-source GPT-3.5 for planning, we instead utilize one of the following open-source language models, all retrieved from Hugging Face²: gemma-1.1-7b-bit (Gemma-7B), Meta-Llama-3-8B-Instruct (Llama-8B), Qwen2.5-14B-Instruct-1M (Qwen-14B), and Llama-3.3-70B-Instruct (Llama-70B). These models are integrated into the ProAgent framework to serve as the core planner, with our CausalPlan method applied to refine the generated actions. Additionally, for the two-prompt input structure, we employ the Cohere/command-r model (Cohere, 2024)—a 35-billion-parameter LLM accessed via the Cohere API using the official cohene Python client³—to produce scenario analyses for faster inference. For the “Belief Correction” module, we also substitute GPT-3.5 with the same Cohere model. The “Controller” module in ProAgent (Zhang et al., 2024a)—and in our setup—uses a rule-based best-first search; while effective, performance could likely be improved with a reinforcement learning-based approach.

Regarding hardware requirements, the Gemma-7B and Llama-8B models each require approximately 10–16 GB of VRAM, Qwen-14B demands around 25–30 GB and multi-GPU support, while Llama-70B needs over 70 GB VRAM with multi-GPU configuration on NVIDIA h-100 GPUs.

To facilitate easier extraction of action selection probabilities, we slightly modify the prompting strategy used in the original method. In particular, we separate the reasoning step, based on CoT prompting, from the action planning step, implementing them as two distinct prompts. The output of the reasoning prompt is then used as input for the planning prompt. We provide further details of this process in Appx. C.2.1 and include an empirical study in Appx. D.7, demonstrating that this modification does not contribute to the performance gains, nor does it substantially affect the overall performance of the backbone.

To avoid the cold-start problem and long interaction times associated with using small LLMs to collect data into the buffer B , we employ a pre-trained policy based on MEP to interact with the environment and gather data. Nonetheless, we conduct an experiment (results are in Appx. D.7) demonstrating that even when using a small LLM, specifically Llama-8B, for data collection, our method still yields improved performance compared to simply using the backbone method.

D.2 ENVIRONMENT DETAILS

We use the Overcooked-AI environment suite as our testing platform (Carroll et al., 2019). In Overcooked, two agents must collaborate to prepare and serve onion soup. Their tasks include gathering and placing up to three ingredients into a pot, cooking the soup, transferring it into a dish, and delivering the final meal. Each successful delivery yields a reward of +20, and both agents share the final return, promoting cooperative behavior. This suite comprises five distinct layouts (Carroll et al., 2019)—*Cramped Room* (CR), *Asymmetric Advantages* (AA), *Coordination Ring* (COR), *Forced Coordination* (FC), and *Counter Circuit* (CC)—each designed to evaluate different aspects of multi-agent collaboration under varying levels of complexity and coordination demands:

- **Cramped Room (CR):** This environment features a highly constrained layout with narrow hallways and tight corridors, forcing agents to navigate around each other constantly.
- **Asymmetric Advantages (AA):** In AA, the kitchen layout provides one agent with easier access to ingredients and tools, while the other agent is disadvantaged in terms of spatial reach.

²<https://huggingface.co>

³<https://docs.cohere.com/v2/reference/chat>

- **Coordination Ring (COR):** COR introduces a ring-like structure in the kitchen, where ingredients, cooking stations, and delivery points are spread along a loop.
- **Forced Coordination (FC):** FC is designed to enforce interdependence between the agents through environment constraints.
- **Counter Circuit (CC):** The CC environment includes a set of counters that create a barrier between the agents and the task stations.

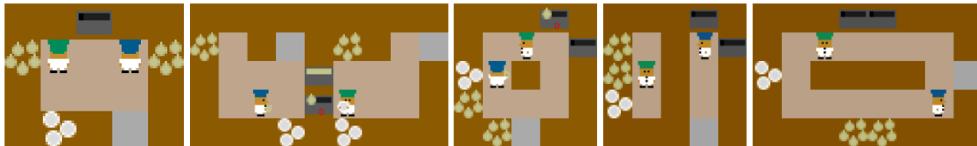


Figure 8: Overcooked-AI Environments. From left to right: Cramped Room (CR), Asymmetric Advantages (AA), Coordination Ring (CR), Forced Coordination (FC), and Counter Circuit (CC).

The environment testing suite was collected from the associated GitHub repository⁴.

D.3 BASELINE DETAILS

We compare CausalPlan against several established reinforcement learning (RL) methods specifically designed for zero-shot human-AI coordination tasks. These baselines have demonstrated strong performance in prior research and serve as competitive benchmarks in our experiments.

- **SP (Self-Play)** (Tesauro, 1994; Carroll et al., 2019): A classical RL approach where agents learn policies by playing against themselves, promoting strategic behavior without relying on external partners.
- **PBT (Population-Based Training)** (Jaderberg et al., 2017): An evolutionary algorithm that optimizes agent populations by iteratively mutating and selecting promising policies, facilitating diverse and robust coordination strategies.
- **FCP (Fictitious Co-Play)** (Strouse et al., 2021): A method that models coordination by simulating the behaviors of various partner types, enabling agents to adapt to unseen collaborators.
- **MEP (Maximum Entropy Population)** (Zhao et al., 2023a): This approach promotes diversity within agent populations by maximizing entropy, which encourages exploration of varied strategies for better coordination.
- **COLE (Cooperative Learning)** (Li et al., 2023b): An algorithm designed to enhance cooperative behavior between agents by explicitly learning to predict and adapt to partners' actions.

These baselines were selected due to their relevance and proven success in multi-agent coordination scenarios. The pretrained baseline models were obtained from the ProAgent GitHub repository⁵.

We also evaluate CausalPlan in collaboration with a human policy collected via behavior learning, available at the COLE platform⁶.

D.4 DETAILS OF AI PARTNER EVALUATION

Tab. 4 presents a comprehensive comparison of the performance of various backbone LLMs, both with and without CausalPlan, evaluated across multiple layouts.

⁴https://github.com/HumanCompatibleAI/overcooked_ai (MIT License)

⁵<https://github.com/PKU-Alignment/ProAgent> (MIT License)

⁶<https://github.com/liyang619/COLE-Platform>

1350
 1351 Table 4: Performance of different backbones with and without CausalPlan across various layouts
 1352 (this is the detailed version of Fig. 3). The reported results, including mean and variance, are ob-
 1353 tained from 3 different seeds, with each seed running for 400 timesteps. In these experiments, we
 1354 use the small LLM agent as Player 1, allowing it to collaborate with all other baselines as described
 1355 in Sect. 4.1, and report the average and variance of the outcomes. The last column reports the aver-
 1356 age improvement across backbones, and the last row reports the average improvement across layouts
 1357 in %. The result with the highest improvement is highlighted in **bold**, while the second highest is
underscored.
 1358

Backbones	With CausalPlan	Layouts					Avg. Improv. (%)
		CR	AA	COR	FC	CC	
Gemma-7B	✗	121.3 \pm 16.2	88.0 \pm 32.7	78.7 \pm 8.3	17.3 \pm 6.1	73.3 \pm 10.1	12.82
	✓	141.3 \pm 6.1	122.7 \pm 12.9	82.7 \pm 30.5	17.3 \pm 9.2	78.7 \pm 14.0	
Llama-8B	✗	110.7 \pm 12.8	163.4 \pm 3.3	80.0 \pm 41.7	9.3 \pm 2.3	84.0 \pm 20.8	13.90
	✓	150.7 \pm 2.3	182.2 \pm 18.3	77.3 \pm 14.0	16.0 \pm 4.0	90.7 \pm 2.3	
Qwen-14B	✗	117.3 \pm 4.6	224.0 \pm 22.6	76.0 \pm 17.4	16.0 \pm 4.0	48.0 \pm 22.6	29.04
	✓	162.6 \pm 9.2	232.0 \pm 31.7	121.3 \pm 16.6	17.3 \pm 12.8	93.3 \pm 22.7	
Llama-70B	✗	144.0 \pm 18.3	248.0 \pm 22.7	125.3 \pm 10.0	34.7 \pm 14.0	89.3 \pm 32.3	<u>22.42</u>
	✓	178.7 \pm 2.3	266.7 \pm 16.7	157.3 \pm 2.3	38.7 \pm 16.2	112.0 \pm 6.9	
Avg. Improv. (%)	–	20.83	18.80	<u>19.13</u>	4.87	9.55	–
Oracle GPT	–	194.2 \pm 10.5	229.8 \pm 21.9	183.0 \pm 31.7	31.0 \pm 33.9	128.5 \pm 28.1	–

1371
 1372 Tab. 5 provides an in-depth comparison between baseline agents and our proposed CausalPlan
 1373 method using Llama-70B, across different layouts.
 1374

1375
 1376 Table 5: Performance comparison between baseline agents and CausalPlan (Ours) across layouts
 1377 using Llama-70B (this is the detailed version of Tab. 1). Results (mean \pm variance) are averaged
 1378 over 3 seeds (400 timesteps each). The first row per layout corresponds to our agent as Player 0, the
 1379 second to Player 1. Best and second-best results are in **bold** and underlined, respectively.
 1380

Layout	Baseline AI Agents					CausalPlan (Ours)
	SP	PBT	FCP	MEP	COLE	
CR	160.0 \pm 4.0	165.3 \pm 1.7	194.6 \pm 10.0	<u>177.3 \pm 22.0</u>	164.0 \pm 6.9	166.7 \pm 6.1
	164.0 \pm 16.0	170.7 \pm 8.3	193.3 \pm 10.1	178.7 \pm 10.1	142.7 \pm 18.0	<u>178.7 \pm 2.3</u>
AA	173.3 \pm 22.0	185.3 \pm 12.8	181.3 \pm 14.0	153.3 \pm 2.3	<u>197.3 \pm 14.0</u>	250.7 \pm 16.1
	<u>194.7 \pm 12.9</u>	150.7 \pm 18.0	172.0 \pm 16.0	181.3 \pm 9.2	173.3 \pm 16.2	266.7 \pm 16.7
COR	106.7 \pm 12.8	138.7 \pm 12.2	138.7 \pm 2.3	166.7 \pm 8.3	154.7 \pm 2.3	<u>156.0 \pm 4.0</u>
	134.7 \pm 9.2	140.0 \pm 8.0	122.7 \pm 10.1	<u>154.7 \pm 6.1</u>	152.0 \pm 6.9	157.3 \pm 2.3
FC	10.7 \pm 4.6	20.0 \pm 14.4	<u>57.3 \pm 6.1</u>	22.7 \pm 4.6	41.3 \pm 10.0	69.1 \pm 13.6
	25.3 \pm 4.6	61.3 \pm 6.1	26.7 \pm 8.3	38.0 \pm 6.1	48.0 \pm 4.0	38.7 \pm 16.1
CC	62.7 \pm 12.2	56.0 \pm 8.0	64.0 \pm 8.0	33.3 \pm 22.0	96.0 \pm 4.0	113.3 \pm 8.3
	50.7 \pm 6.1	48.0 \pm 20.0	62.7 \pm 12.9	66.7 \pm 10.1	85.3 \pm 16.2	112.0 \pm 6.9

1393 D.5 DETAILS OF HUMAN PARTNER EVALUATION

1394 Our main goal is to present a modular causal reasoning framework that improves LLM-based planning
 1395 agent that can collaborate well with human.

1396 To provide quantitative support, we present Table 6, which compares Llama-70B with CausalPlan
 1397 against the best RL baseline and Table 7, which reports the *t*-values of models with and without
 1398 CausalPlan when paired with a human agent. The *t*-test is a statistical method used to determine
 1399 whether observed differences between two groups are statistically significant or could have occurred
 1400 by chance. Higher *t*-values indicate stronger evidence that the difference is meaningful.
 1401

1402 Statistical analysis with best RL methods

1404 In most environments, CausalPlan leads to a clear improvement in t -statistics, often reversing a
 1405 negative score into a positive one (e.g., CR-P0, AA-P1, FC-P0, CC-P0). Although some t -values
 1406 do not reach statistical significance due to the small sample size ($n = 5$), which is limited by the
 1407 availability of human data, the consistent trend of improvement suggests that our approach is effec-
 1408 tive and broadly applicable. We hypothesize that applying our causal method on stronger models
 1409 like GPT-3.5, as used in ProAgent Zhang et al. (2024a), would likely yield even more significant
 1410 improvements in performance.

1411

1412

1413 Table 6: t -values of models with and without CausalPlan against the best RL baseline.

Layout	Best RL	t -value (w/ CausalPlan)	t -value (w/o CausalPlan)
CR-P0	COLE	0.868	-3.504
CR-P1	MEP	0.388	-1.638
AA-P0	MEP	3.329	2.660
AA-P1	COLE	1.966	-1.188
COR-P0	MEP	0.657	0.000
COR-P1	COLE	2.781	0.838
FC-P0	COLE	0.818	-1.405
FC-P1	PBT	-0.589	-1.421
CC-P0	COLE	1.099	-0.211
CC-P1	COLE	-0.236	-0.408

1424

1425

Statistical analysis with backbone

1427

1428

1429 Statistically significant improvements ($p < 0.05$) are observed in 30% of the cases (CR-P0, AA-P1,
 1430 COR-P1), with strong t -values (3.805, 2.987, 2.834 respectively), providing direct evidence that
 1431 CausalPlan improves performance in these settings. An additional 30% of cases (CR-P1, FC-P0,
 1432 CC-P0) show marginally significant improvements, with p -values between 0.05 and 0.2. These re-
 1433 sults suggest a positive trend toward significance that may be confirmed with more data. Importantly,
 1434 100% of the t -values are positive, meaning CausalPlan never degrades performance compared to the
 1435 non-causal baseline.

1436

1437

1438 Table 7: Paired t -test results comparing Llama-70B with CausalPlan (Ours) and Llama-70B (Re-
 1439 act+Reflexion).

Layout	t -value	p -value
CR-P0	3.805	0.0304
CR-P1	1.731	0.1982
AA-P0	0.490	0.6518
AA-P1	2.987	0.0429
COR-P0	0.608	0.5867
COR-P1	2.834	0.0496
FC-P0	1.832	0.1740
FC-P1	0.741	0.5000
CC-P0	1.902	0.1320
CC-P1	0.274	0.8028

1448

1449

1450

1451

D.6 EFFECT OF HYPERPARAMETER γ

1452

1453

1454

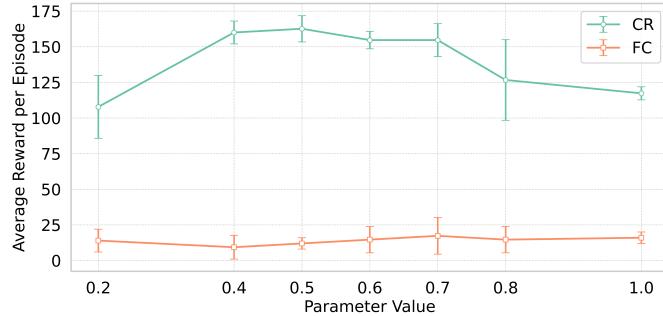
1455

1456

1457

In our framework, the hyperparameter γ in Eq. 10 controls the balance between the agent’s belief and the causal knowledge. To investigate the effect of varying γ , we conducted an experiment on two layouts, CR and FC, using Qwen-14B as the backbone LLM. As shown in Fig. 9, the optimal value for γ lies within the range of 0.5 to 0.7. In both cases, when γ is set to 0.2, indicating a greater reliance on causal knowledge than on the agent’s own knowledge, or when γ is set to 1, fully trusting the agent, the performance degraded. Refer to Fig. 9 for the experimental results and Tab. 13 for the γ values used for each LLM agent across different layouts. Due to limited computational resources,

1458 tuning was only performed on layouts where CausalPlan initially underperformed with $\gamma = 0.5$. We
 1459 believe that further tuning of this hyperparameter would likely lead to improved performance.
 1460



1473 Figure 9: Experiments showing the impact of tuning the hyperparameter γ conducted using Qwen-
 1474 14B on CR and FC layouts. The results, including mean and variance, are averaged over three
 1475 different seeds. The optimal value of γ typically lies within the range of 0.4-0.8, emphasizing the
 1476 importance of balancing between the belief of the LLMs and the prior causal knowledge.
 1477

D.7 EFFECT OF DIFFERENT DATA COLLECTION POLICY

1481 Table 8: Ablation studies on using different agents to collect data for buffer B conducted on CR
 1482 layout with Llama-8B as backbone. The results, including mean and variance, are obtained from 3
 1483 different seeds. "Llama-8B" and "MEP" refer to using Llama-8B or MEP to generate data.

Methods	Baseline AI Agents					Average Results
	SP	PBT	FCP	MEP	COLE	
Llama-8B	106.7 \pm 41.6	86.7 \pm 75.1	166.7 \pm 41.6	126.7 \pm 30.6	140.0 \pm 0.0	125.3 \pm 30.7
MEP	126.7 \pm 30.6	133.3 \pm 30.5	160.0 \pm 40.0	166.7 \pm 41.6	166.7 \pm 23.1	150.7 \pm 2.3

1492 Tab. 8 presents an ablation study comparing the effects of using different agents—Llama-8B and
 1493 MEP—for data collection in buffer B , when interacting with the environment to collect data for 200k
 1494 steps. We hypothesize that using MEP for data collection would yield better results, given that it is
 1495 a pretrained agent specialized for the task. Nevertheless, even when using data collected by Llama-
 1496 8B, incorporating causal knowledge still provides a performance gain compared to not using causal
 1497 knowledge at all. The results show that MEP consistently outperforms Llama-8B across all baseline
 1498 AI agents, achieving a higher average score of 150.7 (± 2.3) compared to 125.3 (± 30.7) for Llama-
 1499 8B. This underscores the importance of utilizing a stronger agent to generate high-quality training
 1500 data for causal reasoning. Importantly, even when using data from Llama-8B, causal knowledge
 1501 improves performance relative to the absence of causal guidance, where the average score drops to
 1502 110.7 (± 12.8) as reported in Appx. Tab. 4. We hypothesize that the performance gain observed when
 1503 using data from Llama-8B arises from its ability to consult not only the current deterministic action
 1504 selection but also similar past scenarios through the incorporation of causal knowledge.

D.8 BENEFITS OF CAUSAL KNOWLEDGE INTEGRATION

1507 We divide our analysis into **micro-level failure**, which examines agent behavior within a single
 1508 environment, and **macro-level failure**, which compares performance across multiple environments.
 1509

1510 **Micro-Level Failure.** We analyzed Llama-8B's behavior at 300 timesteps on the *Cramped Room*
 1511 layout, where our method showed a significant +36.1% improvement (from 110.7 to 150.7; Fig. 3).
 Comparing agents with and without CausalPlan, we focused on two failure modes:

1512 **(1) Physically invalid actions.** Calls to `pickup_onion()` while already holding an object (e.g.,
 1513 `hold_onion1` or `hold_dish1`) are reduced with the use of the causal graph. In contrast, valid
 1514 calls when the agent’s hand is empty (`empty_hand1`) increase. Invalid calls dropped from 14
 1515 (41%) to 10 (23%), and valid ones rose from 20 (59%) to 33 (76%).
 1516

1517

1518 Table 9: Invalid vs. valid `pickup_onion()` calls under different hand states.

1519 State → Action	Without Graph	With Graph
1520 <code>hold_onion1</code> or <code>hold_dish1</code> → <code>pickup_onion()</code>	14	10
1521 <code>empty_hand1</code> → <code>pickup_onion()</code>	20	33

1522

1523 **(2) Poor coordination.** The agent avoids redundant pickups when the pot is nearly full (`pot2`) and
 1524 the other agent already holds an onion (`hold_onion2`). These cases dropped from 2 to 0, reflecting
 1525 better awareness and coordination from causal integration.
 1526

1527

1528 Table 10: Coordination failures with redundant `pickup_onion()` calls.

1529 State → Action	Without Graph	With Graph
1530 <code>hold_onion2, pot_2</code> → <code>pickup_onion()</code>	2	0

1531

1532 **Macro-Level Failure.** Across environments, CausalPlan shows the largest improvements on
 1533 *Cramped Room* (+20.8%), *Asymmetric Advantages* (+18.8%), and *Coordination Ring* (+19.1%),
 1534 where causal failures such as role confusion, blocking, or redundant actions are common.
 1535

1536

1537 In contrast, *Forced Coordination* (+4.9%) emphasizes tight, time-dependent synchronization be-
 1538 tween agents (e.g., placing too many onions that block the counter while the pot is already full),
 1539 leaving less room for improvement under our current setup. Notably, we have not yet modeled
 1540 counter state in the causal graph; incorporating this information could further enhance performance
 1541 in such layouts.

1542

1543 D.9 HEATMAP OF LEARNED CAUSAL MATRIX \mathcal{M} ANALYSIS

1544

1545 In Fig. 10 and Fig. 11, we present the causal matrices \mathcal{M} derived from data collected by MEP
 1546 and Llama-8B, respectively. The inference results using these matrices are detailed in Appx. D.7.
 1547 To obtain each matrix, the respective agent interacts with the environment for 200,000 steps to
 1548 gather data, followed by training the SCA model for 500,000 steps on the collected dataset.
 1549 While both matrices share similarities in many key edges—for example, from `empty_hand1` to
 1550 `pickup_onion` (edge weights of 0.9 for MEP and 0.8 for Llama-8B) and from `pot_finished`
 1551 to `fill_dish_with_soup` (0.9 for MEP and 0.8 for Llama-8B) (see Appx. D.12.2 for feature
 1552 descriptions)—there are important differences that likely contribute to performance variations. For
 1553 instance, the edge from `pickup_onion` to `put_onion_in_pot` has a weight of 0.6 when using
 1554 MEP-collected data but is absent (weight 0) with Llama-collected data. Similarly, the transition
 1555 from `deliver_soup` to `pickup_onion` appears with a weight of 0.7 in the MEP matrix but is
 1556 missing in the Llama-8B matrix. These differences highlight how the choice of data collection agent
 1557 influences the learned causal structure, which in turn can impact the effectiveness of downstream
 1558 inference and control.

1559

1560 Additionally, one may observe that both heatmaps contain several edges that are difficult to inter-
 1561 pret, especially those originating from the state of the other agent toward the current action. These
 1562 edges may carry meaning for the agent but appear unintelligible to humans, or they may be irre-
 1563 relevant. However, these unexpected edges have minimal impact on the inference process, provided the
 1564 LLM agent does not sample the corresponding actions, thereby eliminating the need to re-calculate
 1565 the final associated sampling probabilities. This highlights the importance of the general knowledge
 1566 embedded within the LLM agent, which helps partially eliminate irrelevant edges and leaves only
 1567 those ambiguities that require causal reasoning. We hypothesize that more advanced causal discov-
 1568 ery techniques could further improve the quality of the learned causal graphs by eliminating spurious
 1569 edges. A simpler alternative might involve hyperparameter tuning of a threshold, where edges with
 1570

probabilities below this threshold are removed entirely, or collecting more data. We leave these explorations for future work.

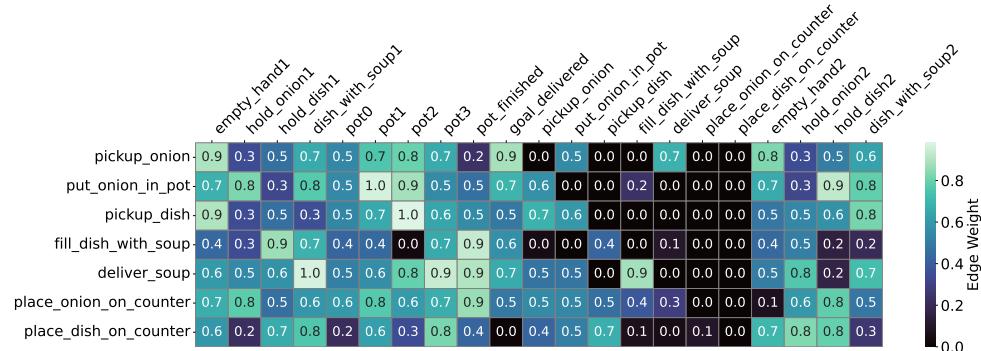


Figure 10: Heatmap of causal graph edge weights obtained from data collected using MEP in the CR layout. The plot illustrates the influence of state features (x-axis) on agent actions (y-axis).

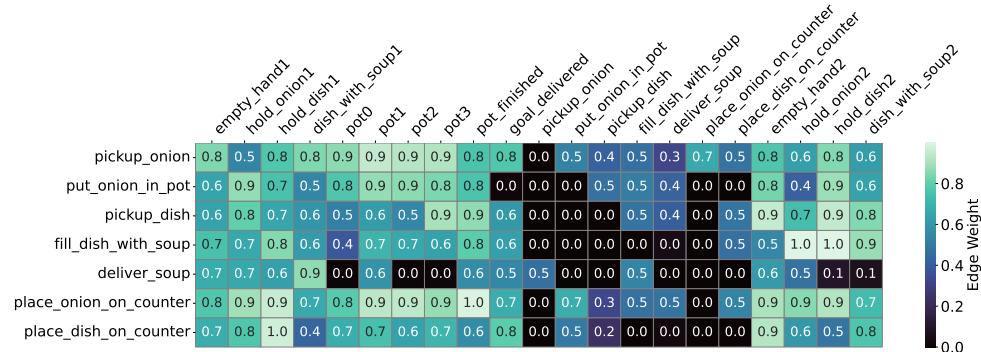


Figure 11: Heatmap of causal graph edge weights obtained from data collected using the Llama-8B backbone in the CR layout. The plot illustrates the influence of state features (x-axis) on agent actions (y-axis).

D.10 TIME EFFICIENCY ANALYSIS

Learning the causal graph—such as in the CR environment, which involves 21 parent nodes and 7 child nodes—requires approximately 3 hours of training. However, this is a one-time offline process that can be reused across all backbone models, making its cost negligible in the overall training pipeline.

The actual runtime during planning varies depending on the backbone model used. Using NVIDIA h100 GPUs (details in Appx. D.1, we observe the following runtimes for 400 timesteps:

- Gemma-7B and Llama-8B: Approximately 5 minutes without CausalPlan, and around 15 minutes with CausalPlan.
- Qwen-14B: Roughly 16 minutes without CausalPlan, and 41 minutes with CausalPlan.
- Llama-70B: About 40 minutes without CausalPlan, and approximately 68 minutes with CausalPlan.

These results highlight the additional computational cost introduced by causal reasoning. However, the overhead remains reasonable given the observed improvements in policy quality.

1620 **D.11 DETAILED ANALYSIS OF NON-CAUSAL CONDITIONAL MODEL BASELINES**
1621

1622 In this section, we provide our hypotheses explaining the results in Tab. 3. Our first hypothesis
 1623 is that a non-causal supervised model simply reproduces the empirical behavior policy: it imitates
 1624 demonstrations and therefore cannot meaningfully exceed the demonstrator’s performance, which
 1625 is precisely what we aim to avoid. Such a model lacks any mechanism to depart from demonstrated
 1626 trajectories, as it has no causal constraints, sparsity, or structural priors specifying which variables
 1627 influence different components of the action.

1628 We further hypothesize that this baseline performs poorly when the behavior policy π_β is weaker
 1629 than the backbone model, since it anchors the backbone to the same suboptimal decisions. To test
 1630 this, we trained the conditional model $P(a_t | s_t, a_{t-1})$ using demonstrations from MEP on two
 1631 layouts (AA-P1 and CC-P1) where MEP underperforms. As shown in Tab. 3, injecting this non-
 1632 causal model either degrades performance or provides only limited improvements.

1633 **D.12 HYPERPARAMETERS**
16341635 **D.12.1 CAUSALITY AND LLMs HYPERPARAMETERS**
1636**SCA Model.**
1637

1638 Refer to Table. 11.

1640 **Table 11: Hyperparameters related to SCA Model**

1641 Parameter	1642 Value	1643 Description
1643 N	1644 200,000	1645 Timesteps used to collect data for buffer B .
1644 T	1645 400	1646 Horizon of each episode.
1645 f_i network architecture	1646 MLP	1647 Four hidden layers with dimensions 64, 256, 256, 64; ReLU activations; sigmoid output.
1646 Optimizer	1647 Adam	1648 Optimization algorithm used to train δ and η .
1647 Learning rate	1648 3e-4	1649 Step size for gradient updates for δ and η .
1648 Regularization λ	1649 1e-7	1650 Regularization strength for parameter estimation.
1649 Iterations	1650 500,000	1651 Number of training iterations for δ and η .

1652 **LLMs Agent (Build on top of ProAgent framework (Zhang et al., 2024a).**

1653 Refer to Table. 12.

1655 **Table 12: Hyperparameters related to LLMs**

1656 Parameter	1657 Value	1658 Description
1658 Model sizes	1659 Gemma-7B, 1660 Qwen-14B, 1661 Llama-8B, 1662 Llama-70B	1663 Language model sizes and architectures
1662 Temperature	1.0	1664 Controls randomness; higher values encourage diverse samples
1664 Max new tokens	256	1665 Maximum number of generated tokens per output
1665 Top-k sampling	50	1666 Number of top tokens considered in sampling
1666 Top-p sampling	0.9	1667 Nucleus sampling threshold (alternative to top-k)
1667 Sampling method	Enabled	1668 Sampling is enabled (do_sample=true)
1668 retrival_method	recent_k	1669 Parameter of ProAgent framework to retrieve recent history dialogue
1669 K	1	1670 Parameter of ProAgent framework, the number of history dialogue (default value is 0 or 1)

1671 **γ value in Eq. 4 for each layouts**

1672 Refer to Table. 13.

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684 D.12.2 STATES AND ACTIONS FACTORIZATION IN EACH ENVIRONMENT

1685

1686 States and actions factorization used in CR layouts are available in Tab. 14 and for other other layouts
1687 are included in Tab. 15.

1688

1689

Table 13: γ value in Eq. 4 for each layout and language model

Layout	Gemma-7B	Qwen-14B	Llama-8B	Llama-70B
CR	0.5	0.5	0.5	0.5
AA	0.5	0.5	0.5	0.5
COR	0.5	0.5	0.5	0.5
FC	0.6	0.7	0.4	0.5
CC	0.5	0.5	0.5	0.5

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Table 14: Factorized States and Actions for CR Layout with Descriptions

Feature	Description
empty_hand1	Controlling agent is not holding any object
hold_onion1	Controlling agent is holding an onion
hold_dish1	Controlling agent is holding an empty dish
dish_with_soup1	Controlling agent is holding a dish filled with soup
pot0	Pot contains 0 onions (empty)
pot1	Pot contains 1 onion
pot2	Pot contains 2 onions
pot3	Pot contains 3 onions (ready to cook)
pot_finished	Pot has finished cooking and soup is ready
goal_delivered	A soup has been successfully delivered to the goal
pickup_onion	Action: controlling agent picks up an onion
put_onion_in_pot	Action: controlling agent places an onion into a pot
pickup_dish	Action: controlling agent picks up an empty dish
fill_dish_with_soup	Action: controlling agent fills a dish with soup from a finished pot
deliver_soup	Action: controlling agent delivers a soup to the goal
place_onion_on_counter	Action: controlling agent places an onion on the counter
place_dish_on_counter	Action: controlling agent places a dish on the counter
empty_hand2	Other agent is not holding any object
hold_onion2	Other agent is holding an onion
hold_dish2	Other agent is holding an empty dish
dish_with_soup2	Other agent is holding a dish filled with soup

1716

E ADAPT TO LONG-HORIZON PLANNING

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

To adapt CausalPlan to Crafter, a single-agent environment that is often used to evaluate causality-driven methods, we construct the causal matrix \mathcal{M} using only the agent’s state and action information. We continue to apply our two-phase causal reasoning framework to guide planning and action selection. In this experiment, we employ Llama-7B as the backbone LLM, and use an underlying PPO policy as our π_β (similar to Chen et al. (2025)) to collect trajectories and build the causal matrix.

Fig. 12 presents the success rates of CausalPlan (Ours) against Dreamer-V2 (Hafner et al., 2020) and Causal-aware LLMs (Chen et al., 2025) across 22 Crafter tasks. Causal-aware LLMs represent the state-of-the-art approach that integrates causal reasoning into LLM agent planning through prompting. Our method consistently outperforms both baselines, often by substantial margins. In the particularly challenging tasks of *make stone pickaxe* and *make stone sword*, CausalPlan achieves success rates of 5.2% and 6.7%, compared to only 1.3% and 1.6% with Causal-aware LLMs. Likewise,

1728

1729

Table 15: Factorized states and actions for other layouts and their descriptions

1730

1731

Feature	Description
empty_hand1	Controlling agent is not holding any object
hold_onion1	Controlling agent is holding an onion
hold_dish1	Controlling agent is holding an empty dish
dish_with_soup1	Controlling agent is holding a dish filled with soup
pot0_0	Pot 0 contains 0 onions (empty)
pot1_0	Pot 0 contains 1 onion
pot2_0	Pot 0 contains 2 onions
pot3_0	Pot 0 contains 3 onions (ready to cook)
pot_finished_0	Pot 0 has finished cooking and soup is ready
pot0_1	Pot 1 contains 0 onions (empty)
pot1_1	Pot 1 contains 1 onion
pot2_1	Pot 1 contains 2 onions
pot3_1	Pot 1 contains 3 onions (ready to cook)
pot_finished_1	Pot 1 has finished cooking and soup is ready
goal_delivered	A soup has been successfully delivered to the goal
pickup_onion	Action: controlling agent picks up an onion
put_onion_in_pot	Action: controlling agent places an onion into a pot
pickup_dish	Action: controlling agent picks up an empty dish
fill_dish_with_soup	Action: controlling agent fills a dish with soup from a finished pot
deliver_soup	Action: controlling agent delivers a soup to the goal
place_onion_on_counter	Action: controlling agent places an onion on the counter
place_dish_on_counter	Action: controlling agent places a dish on the counter
empty_hand2	Other agent is not holding any object
hold_onion2	Other agent is holding an onion
hold_dish2	Other agent is holding an empty dish
dish_with_soup2	Other agent is holding a dish filled with soup

1758

1759

1760 in *make iron pickaxe* and *make iron sword*, CausalPlan succeeds where both Causal-aware LLMs
 1761 and Dreamer-V2 fail. These improvements in individual tasks are reflected in the aggregated final
 1762 score (Tab. 16), where CausalPlan achieves a higher final score of 16.7%, surpassing Causal-aware
 1763 LLM (14.6%) and Dreamer-V2 (10.0%). These results highlight that prompting alone is insuffi-
 1764 cient for robust long-horizon planning, whereas our method provides more reliable improvements
 1765 by grounding decisions in causal structure.

1766

1767

Table 16: Scores (mean \pm std) of our method and baselines on 22 Crafter tasks.

1768

1769

1770

1771

1772

1773

1774

1775

1776

E.1 VISUALIZATION OF CAUSAL GRAPH

1777

1778

1779 To evaluate whether our method recovers meaningful structure, we validate it against the known
 1780 recipe (domain knowledge) and physical constraints defined by the Overcooked-AI rules. We use the
 1781 Cramped Room (CR) layout for illustration because it contains the smallest set of actions/features,
 making the learned graph easy to interpret.

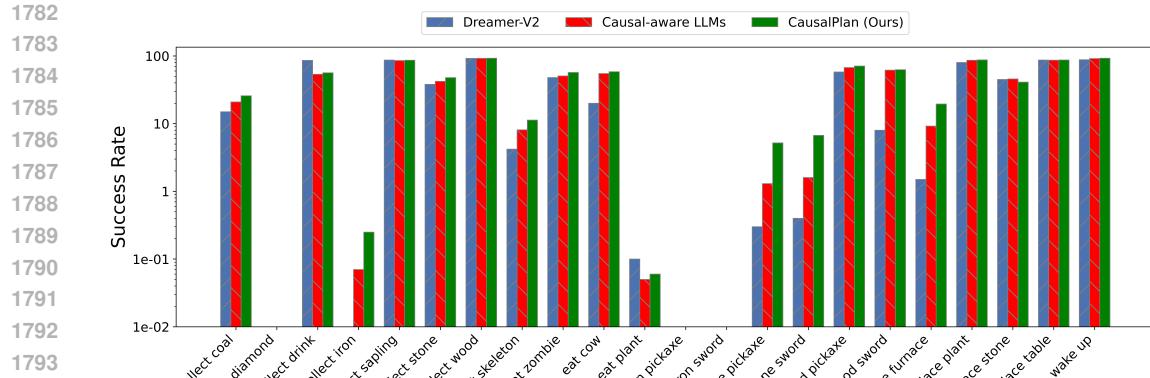


Figure 12: Success rates of obtaining 22 achievements in log scale @1M steps.

E.1.1 DOMAIN KNOWLEDGE VERITIFCATION

To construct the recipe graph, we begin from the soft causal action matrix (learned under the MEP behavior policy; Fig. 10). We then remove any bidirectional edges by keeping only the direction with the higher learned weight, yielding a directed acyclic graph (penalize length-2 cycles). The structure (see Fig. 13) correctly identifies the canonical recipe sequence required by the environment: first pick up the onion, then put the onion in the pot, next pick up the dish, fill the dish with soup, deliver the soup, and finally return to pick up another onion. These edges (highlighted in red in the figure) match the ground-truth procedural dependencies of the cooking task.

The other edges (black) show that the matrix \mathcal{M} does not directly correspond to the MEP policy, but is a plausible indirect dependency arising from the structure of the recipe. For example, while a trained model like MEP does not execute pick up the onion to pick up the dish consecutively, such a dependency is reasonable because a dish is typically picked up only after onions have already been placed in the pot, and the learned causal graph manage to capture this broader sequencing.

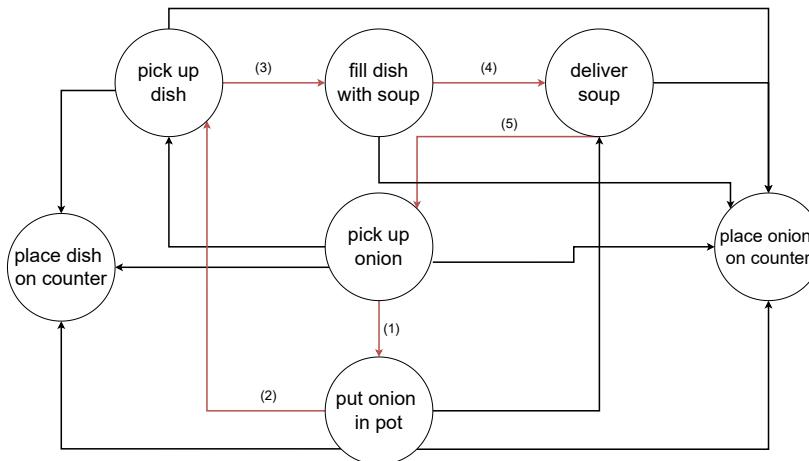


Figure 13: Directed recipe graph constructed from the soft causal action matrix. Red edges indicate the canonical procedural sequence for the cooking task, correctly reflecting the environment’s required steps, while black edges represent plausible indirect dependencies captured by the learned causal structure. The graph demonstrates that the model identifies both direct and broader sequencing relationships in the recipe.

1836

E.1.2 PHYSICAL CONSTRAINT VERITIFCATON

1837

1838 To illustrate physical constraint, we look at local causality. We specifically look at action to pick
 1839 up the onion (see Fig. 14). Applying a hard intervention with a threshold of 0.7 (keeping only
 1840 edges with scores above the threshold) identifies the relevant state features that causally influence
 1841 this action: empty_hand1 and empty_hand2. While some additional edges are present, they do not
 1842 contradict task logic (for instance, after the pot already contains two onions, the agent is still required
 1843 to pick up more onions to complete the recipe) and may reflect broader dependencies; importantly,
 1844 their inclusion is associated with improved task performance. This demonstrates that even at the
 1845 level of individual actions, the learned causal action matrix \mathcal{M} captures meaningful dependencies
 1846 between state features and next actions, supporting the interpretability and correctness of the inferred
 1847 graph.

1848

1849

1850

1851

1852

1853

1854

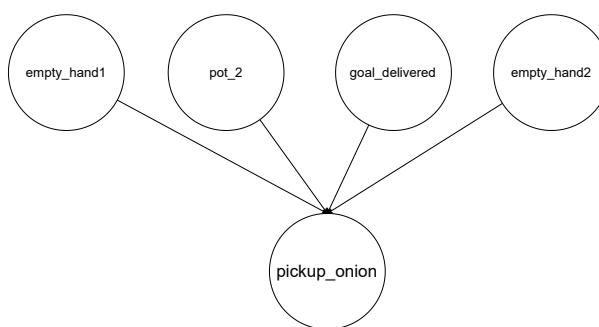
1855

1856

1857

1858

1859



1860 Figure 14: Local causal dependencies for the action pick up onion, derived from the learned causal
 1861 action matrix with a hard intervention threshold of 0.7. The highlighted edges show that the action
 1862 is causally influenced by the state features empty_hand1 and empty_hand2, reflecting the physical
 1863 constraint of the environment that the agent can only pick up an onion when a hand is free.

1864

1865

F DISCUSSION OF BROADER IMPACTS

1866

1867 This work represents an important foundational step toward integrating causal reasoning into multi-
 1868 agent planning with large language models (LLMs). Our causality-driven framework aims to im-
 1869 prove the safety, efficiency, and interpretability of collaborative AI systems by enabling agents to
 1870 better understand the consequences of their states and actions. Although primarily exploratory and
 1871 not yet intended for real-world deployment, the results demonstrate promising potential for advanc-
 1872 ing multi-agent coordination.

1873

1874 At this stage, we do not expect any direct negative societal impacts, as the framework requires further
 1875 development and validation before practical use. Nevertheless, as autonomous multi-agent systems
 1876 mature, concerns related to fairness, reliability, misuse, and broader ethical implications will become
 1877 increasingly important. Addressing these challenges through responsible design, transparency, and
 1878 rigorous evaluation will be critical to ensure the safe and trustworthy deployment of such systems in
 1879 the future.

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889