
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAUSALPLAN: EMPOWERING EFFICIENT LLM
MULTI-AGENT COLLABORATION THROUGH
CAUSALITY-DRIVEN PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) agents often generate causally invalid plans in
collaborative tasks due to their reliance on surface-level correlations rather than
grounded causal reasoning. This limitation undermines their performance in terms
of coordination and planning in dynamic environments. We address this challenge
with CausalPlan, a framework that integrates explicit structural causal reasoning
into the LLM planning process. At the core of CausalPlan is the Structural Causal
Action (SCA) model, which learns a causal graph from agent trajectories to cap-
ture how prior actions and current environment states influence future decisions.
This model is then used to inform the planning process, shaping proposed LLM-
generated plans through causal scoring, reweighting, and fallback to grounded al-
ternatives when needed. By embedding this causal knowledge directly into the de-
cision loop, CausalPlan constrains planning to intervention-consistent behaviors
without requiring fine-tuning. We evaluated CausalPlan on the Overcooked-AI
benchmark across five multi-agent coordination tasks and four LLMs of varying
sizes: Gemma-7B, Llama-8B, Qwen-14B and Llama-70B. Experimental results
show that CausalPlan consistently reduces invalid actions and improves collabo-
ration in both AI-AI and human-AI settings, outperforming strong reinforcement
learning baselines. Our findings highlight the value of causality-driven planning
for deploying efficient, interpretable, and generalisable multi-agent LLM systems.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated significant success across various natural lan-
guage processing tasks (Achiam et al., 2023; Zhao et al., 2023b; Guo et al., 2025). Recently, there
has been growing research interest in using LLMs as decision makers, particularly within multi-
agent frameworks for executing interactive planning tasks, with notable works including integrated
pipelines for cooperative tasks (Zhang et al., 2023a), graph-based coordination (Qian et al., 2024),
and human-AI collaboration frameworks (Zhang et al., 2024a).

A major challenge in multi-agent learning is zero-shot multi-agent coordination, developing gener-
alized agents capable of collaborating with a wide range of previously unseen partners, including
humans (Legg & Hutter, 2007; Hu et al., 2020). LLM-based agents, trained on vast and diverse
datasets that contain rich common-sense knowledge, have emerged as a promising solution to this
challenge. Compared to traditional multi-agent reinforcement learning (RL) methods—which often
struggle with generalization and sample inefficiency—LLMs demonstrate impressive performance
in collaborative tasks (Zhang et al., 2024a). However, despite these strengths, a persistent limitation
remains: LLM agents often lack causal reasoning ability (Joshi et al., 2024; Chi et al., 2024). This
shortcoming leads them to select causally invalid actions that violate causally physical constraints,
actions that are absent or cannot be executed under the given task constraints, and ignoring tempo-
ral dependencies, producing sequences of actions that do not respect the natural order of cause and
effect. This problem is particularly pronounced in smaller open-source LLMs due to their limited ca-
pacity and narrower training coverage. As shown in Fig. 1(a), our evaluation of multiple open-source
LLMs with varying parameter sizes demonstrates that even Llama-70B produces a substantial num-
ber of invalid actions. Despite this limitation, such models remain highly attractive for enterprise
and resource-constrained settings because of their accessibility, controllability, and lower deploy-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(b)

0.6

0.0

0.5

Pick Up
Onion

Put
Onion in

Pot

Place
Onion on
Counter

Fill Dish
with Soup

0.9
0.0

Pot with
2 Onion

0.90.2

Pot
Finish

(a)

Figure 1: (a) Evaluation on the Overcooked Cramped Room layout showing how the number of
causally invalid actions changes with LLM size, averaged over four seeds. CausalPlan significantly
reduces the number of invalid moves. (b) Simplified causal graph discovered by CausalPlan for
the same layout. Yellow and red nodes indicate parent actions and states, respectively, while green
nodes denote child actions. “Pick Up Onion” strongly influences “Put Onion in Pot” (0.6) and “Place
Onion on Counter” (0.5), but not “Fill Dish with Soup” (0). The state “Pot with 2 Onions” strongly
drives “Put Onion in Pot” (0.9), while “Pot Finished” strongly influences “Fill Dish with Soup”.

ment costs. However, their higher incidence of causally invalid actions can significantly undermine
performance. Although previous work has tried to improve LLM planning with causal knowledge,
it primarily focuses on single-agent settings and relies on LLMs to infer causal relationships from
observations or provide the causal graph as part of the planning prompt (Yu & Lu, 2025; Chen et al.,
2025). These approaches are limited because they depend on the robustness of the LLM’s causal
reasoning and inference ability, which can vary significantly between models and prompts. This
motivates the need to integrate causal knowledge directly into the decoding process, rather than re-
lying on prompt engineering, so that LLM action planning is grounded in cause–and–effect structure
and yields more reliable coordination in multi-agent settings. Ultimately, our aim is to answer the
question of: “How can we systematically align LLM action planning with explicit causal knowledge
to ensure reliable and effective collaboration in multi-agent settings?”

To answer the question, we introduce the CausalPlan framework, grounded in the study of causal-
ity (Pearl, 2009). In causality, causal relationships can be represented by a causal graph G, with
the structural causal model (SCM) a formal framework that defines how each variable is generated
from its parent variables in the graph (see Fig. 1 (b) for an example) (Pearl, 2009). An SCM can
be identified through causal discovery, and once identified, an SCM supports causal inference for
downstream tasks (Pearl, 2009). CausalPlan translates these principles of causality into the multi-
agent LLM planning setting. The framework consists of two key phases inspired by the discovery
and inference processes: Causal Action Structure Learning and Agent Planning with Causal Knowl-
edge. In Causal Action Structure Learning, we introduce a Structural Causal Action (SCA) model,
an extension of SCM tailored to capture the causal relationships between previous actions of agents,
current states of both agents, and future actions. For example, before serving a plate of soup (future
action), one must first fill the dish with soup (past action); similarly, if the partner agent is already
carrying a filled dish (partner state), the controlled agent should focus on complementary actions
rather than duplicating effort. Once discovered, the SCA produces a Causal Action Matrix M,
which encodes causal relationships as causal scores and can be queried during planning using the
current state and past actions of the agents.

In the Agent Planning with Causal Knowledge phase, we align the LLM decoding process with the
scores inM to prevent causally invalid actions. To achieve this, we introduce two complementary
strategies: Causal-Aware Planning and Causal Backup Plan. The Causal-Aware Planning module
adjusts the LLM’s action probabilities by reweighting them with causal scores and then resampling
to select actions that follow the natural order of cause and effect. When all candidate actions pro-
posed by the LLM violate the causally physical constraints of the task, the Causal Backup Plan
module adjusts by selecting the action with the highest causal probability as the next action.

We evaluate CausalPlan on the Overcooked-AI benchmark (Carroll et al., 2019), a standard test-
ing suite for multi-agent, using four open-source LLMs—Gemma-7B, Llama-8B, Qwen-14B, and
Llama-70B—across both AI-AI and human-AI collaboration settings. Empirical results show that

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

CausalPlan consistently improves planning performance and reduces invalid actions, even for the
smallest LLMs without fine-tuning. Our main contributions are: (i) We identify a core failure mode
of LLM agents in multi-agent collaboration generating causally invalid actions and propose causally
aligned planning as a principled remedy; (ii) We introduce CausalPlan, a two-phase framework that
integrates causal discovery and inference to enhance open-source LLM agent planning and collabo-
ration; (iii) We demonstrate, through extensive experiments, that CausalPlan improves performance
across multiple model sizes and collaboration scenarios, outperforming strong RL baselines.

2 PRELIMINARIES

Markov Decision Process. A two-player Markov Decision Process (MDP) is defined as
(S, {Ai}, P, γ,R), where S is the state space, Ai is the action set for agent i ∈ {1, 2}, P defines
the transition dynamics, γ ∈ [0, 1) is the discount factor, and R : S ×A 7→ R is the reward function
where A = A1 ×A2 is the joint action space. We assume a factored state space S = Sagent × Senv,
where Sagent is the state of the agent (both agent 1 and 2) and Senv the state of the environment. Let
S = |S| and A = |A| denote the dimensions of S andA, respectively. At each timestep t, each agent
i ∈ {1, 2} observes the current state st = (sagent

t , senv
t) and selects an action according to its policy

πi(ait | st), forming the joint action at = (a1t , a
2
t). A trajectory is given by τ = (s1, a1, s2, a2, . . .),

and the objective is to maximize the cumulative expected reward E [
∑

t R(st, at)]. In our two-agent
setting, one of the agents is the controlled agent (an LLM-based agent), while the other serves as its
partner.

Causality and Structural Causal Model. Causality studies the relationships between variables
and events (Pearl, 2009). The SCM framework represents causal relationships in a system, where
for a set of variables V = {V1, . . . , VM}, each variable Vi is defined as Vi := fi(PaG(Vi), εi), with
{f1, f2, . . . , fM} being generating functions, PaG(Vi) the parents of Vi in the causal graph G, and
{ε1, . . . , εM} noise terms (Pearl, 2009). The directed acyclic graph (DAG) causal G = {V,E} con-
tains edges eji ∈ E, where eji = 1 indicates that Vj causes Vi, and eji = 0 otherwise (Pearl, 2009).
SCMs are often learned from data by modeling the generating functions fi as neural networks pa-
rameterized by generating parameters δ (Ke et al., 2019; Peng et al., 2022; Zhang et al., 2023b), with
causal edges eji = 1 if the binary adjacency indicator ηji is higher than a confidence threshold (Ke
et al., 2019; Peng et al., 2022; Zhang et al., 2023b).

3 METHOD

Our CausalPlan is a two-phase framework (Fig. 2). In Phase 1, Causal Action Structure Learning, we
construct the SCA model and derive from it Causal Action MatrixM. In Phase 2, Agent Planning
with Causal Knowledge, we align the LLM’s planning process with the causal scores inM, using
them to guide the action selection process. At each planning step t, we first provide the current
observation st to the LLM agent and prompt it to analyze the observation. Both the observation st
and the analysis are then used as inputs for a second prompt, where the agent is asked to generate a
set of candidate actions (details of the prompt are in Appx. B.2.1). We, then, leverageM to modify
the agent’s plan selection, either through the Causal-Aware Planning module or the Causal Backup
Plan module (see Appx. B for the full algorithms).

3.1 CAUSAL ACTION STRUCTURE LEARNING

The goal of the first phase is to construct an SCA model, capturing the causal graph G, where the
previous action at−1 and the current state st are the parent nodes, and the next action at is the child
node. Unlike prior work, which typically focuses on modeling state transitions or rewards (Zhang
et al., 2023b; 2024b), our approach explicitly treats the action as a child node. This novel formulation
allows the agent to reason causally about how past actions and current states influence future actions,
providing a new perspective on decision-making dynamics.

Data Preparation. To facilitate the process of SCA modeling, we collect a dataset B ={
{(skt , akt)}Tt=1

}N

k=1
containing actions that have been executed successfully in the environment,

using a behavior policy πβ . We, then, factorize and discretely encode the states and actions,
which are collected in text form into a binary-encoded representation suitable for causal analy-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

SCA Modeling
Phase 1: Causal Action Structure Learning

Phase 2: Agent Planning with Causal Knowledge
Causal-Aware Planning

Agent 1's state: hold_onion1
Agent 2's state: hold_onion2
Environment's state: pot0
Previous action: pickup_onion()

...
0.9
0.7 0.8

0.3 0.0

0.6
...
...
......

....
0.5
0.5

LLMs
Agent

...

✓

✗
Causal Backup Plan

...

Scenario
t: Agent 1

is
currently
holding an

onion,
agent 2 is
currently
holding an
onion the

pot is
empty

...

0.3

0.3
...

Partner

Compute causal scores

...

Figure 2: Overview of the CausalPlan Framework. The process begins with a dataset B collected
by a behavior policy πβ . In Phase 1 (Causal Action Structure Learning), we train the Structural
Causal Action (SCA) Model by optimizing generating (δ) and structural (η) parameters, yielding
the Causal Action MatrixM, which encodes causal influence from states and past actions to future
actions. In Phase 2 (Agent Planning with Causal Knowledge), an LLM receives scenario t and
proposes candidate actions A′. If A′ ̸= ∅, Causal-Aware Planning adjusts LLM probabilities; if
A′ = ∅, Causal Backup Plan selects the most probable past action viaM. Black solid arrows denote
causal training; dashed arrows denote LLM inference, and red arrows denote causal knowledge
consultation. The red box represents the causal score extraction for each potential next action,
where the score is computed as the sum of causal contributions from the current state and previous
action.

sis: st = [st,1, . . . , st,S] ∈ {0, 1}S , at = [at,1, . . . , at,A] ∈ {0, 1}A, where each component st,j
and at,i is a binary indicator representing whether a particular state feature or action is active (1)
or inactive (0) (refer to Appx. B.1 for details). The assumption of factorized states and actions is a
common assumption in most causal RL research (Ke et al., 2019; Yu & Lu, 2025).

Causal Modeling. The SCA model can be represented as:

ai = fi (PaG(ai), εai
) (1)

for i ∈ {1, 2, . . . , A}, where PaG(ai) denotes the parent nodes for ai in the causal graph G. The
function fi is a neural network parameterized by the generating parameter δ, while the causal re-
lationships of each graph are governed by the structural parameters encoded by binary adjacency
indicators ηji. The loss function to optimize these parameters is: L(δ, η) = Lcausal(δ, η)+Lreg(η),
where:

Lcausal = E(at−1,st,at)∼B

[
−

A∑
i=1

logP
(
at,i | st, at−1; δ, η

)]
. (2)

Lreg(η) is a negative-log-prior penalty imposed on the adjacency indicators to discourage spurious
edges and avoid overfitting to unlikely causal links. Let P (eji = 1) be the prior probability for any
edge. Then

Lreg = −λ
∑
i,j

ηji logP
(
eji = 1

)
, (3)

where λ > 0 controls the relative contribution of each penalty term. Including an edge ηji = 1
incurs a cost − logP (eji = 1), so only edges with high prior belief are preferred.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In causal inference, identifiability, referring to the ability to recover causal effects from data (Pearl,
2009) uniquely, is crucial for valid causal inferences. In our setting, identifiability guarantees that
the true causal structure and decision policy can be recovered from observed trajectories. We can
prove that under our formulation, identifiability is ensured, as stated in the following proposition:

Proposition 1 (Identifiability). Suppose that the state st and previous action at−1 are observable,
while the next action at is unobservable, and they form a Markov Decision Process (MDP) as de-
scribed in Eq. 1. Then, under the global Markov condition and the faithfulness assumption given a
large enough dataset B, the next action at is identifiable, as well as the causal structure character-
ized by the binary masks η and the transition dynamics f .

Proof. See Appx. A

Causal Action Matrix construction. We then construct the matrixM ∈ RA×(S+A) that encodes
the causal score of selecting each action given the current state and past actions. Each row of the
matrix corresponds to a possible next action, and each column corresponds to a state or past action
feature. Each entry (i, j) of the matrix represents the probability that there is causal influence from
state or action feature j to action i, given by the learned structure parameter ηji.

A queryM(st, at−1, a) returns the causal score pc(a) =
∑

j∈J ηji where J = Active(st, at−1) ⊆
{1, . . . , S + A} denote the set of column indices corresponding to the features that are “active” in
the current state st and the previous action at−1, and i is the row index corresponding to action a
(details refer to Appx. B.2.2). To prevent cycles in the causal graph and ensure DAG property of a
standard SCM (Pearl, 2009), we compare the coefficients for the bidirectional relationships in M
and set the lower to 0.

3.2 AGENT PLANNING WITH CAUSAL KNOWLEDGE

At each planning step, instead of directly generating the next action at given the historical trajectory
ht = (s1, a1, s2, a2, . . . , at−1, st), we require the LLM-based agent to consider alternative scenarios
and select the action that aligns with the causal scores in the matrixM. Firstly, we sample from the
LLM a set of candidate actionsA′ =

{
a′1, a

′
2, . . . , a

′
|A′|

}
⊆ A. Each of these actions will come with

a probability of being sampled by the LLM, which we denote as pa(a
′
m). Next, we verify whether

the sampled actions comply with the environment’s instructions (the causally physical constraints).
If the set A′ ̸= ∅ (there are valid candidates), we follow the Causal-Aware Planning module to find
the most suitable action that follows causal temporal dependencies; otherwise, we use the Causal
Backup Plan for the causal backup mechanism.

3.2.1 CAUSAL-AWARE PLANNING

Given the set A′ with their associated probabilities Pa(A′), we aim to integrate the causal scores
from the modelM. We extract the causal score for each action pc(a

′) =M(st, at−1, a
′), ∀a′ ∈ A′,

to form the set Pc(A′) =
{
pc(a

′
1), pc(a

′
2), . . . , pc(a

′
|A′|)

}
(details in Appx. B.2.2). The updated

individual action probabilities are computed as the weighted sum of the LLM sampling probability
and the causal score:

pf(a
′
m) = γ · pa(a

′
m) + (1− γ) · pc(a

′
m), (4)

where γ is the weight hyperparameter. We apply the softmax function to all values of pf(a
′
m) to

normalize the probabilities, which allows us to get the final probability set:

Pf(A′) =
{
pf(a

′
1), pf(a

′
2), . . . , pf(a

′
|A′|)

}
,

|A′|∑
k=1

pf(a
′
m) = 1 (5)

The sampled action set A′ may contain redundant actions, so we apply a method to identify and
merge these duplicates by summing their probabilities (details in Appx. B.2.4). This yields a reduced

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

set A′∗ with updated probabilities P ∗
f , from which we sample the next action:

at ∼ Categorical
([

p∗f (a
′
1), p

∗
f (a

′
2), . . . , p

∗
f (a

′
|A′∗|)

])
. (6)

3.2.2 CAUSAL BACKUP PLAN

In the second case, when all candidates are invalid A′ = ∅, existing methods often apply an in-
tervention by prompting the agent to re-plan (Zhang et al., 2024a). However, such strategies may
fail when the agent persistently hallucinates, for instance, when the state stays unchanged. In-
spired by human behavior under uncertainty, choosing the action that we are most familiar with,
we propose a recovery mechanism that leverages past causality knowledge. Instead of immedi-
ately re-planning, we ask the agent to retrieve the causal score for all actions a ∈ A by querying
pc(a) = M(st, at−1, a),∀a ∈ A, (details in Appx. B.2.2). This yields a probability distribution:
Pc(A) = {pc(a1), pc(a2), . . . , pc(aA)}. We then greedily select the next action given by:

at = argmax
a∈A

Pc(a), (7)

i.e., the action deemed most reliable according to past causal knowledge. Only if this action fails do
we then ask the agent to re-plan.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We use the Overcooked-AI environment suite (Carroll et al., 2019) as our main testing platform.
This suite comprises five distinct layouts: Cramped Room (CR), Asymmetric Advantages (AA), Co-
ordination Ring (COR), Forced Coordination (FC), and Counter Circuit (CC) (details of the envi-
ronments in Appx. C.2). Each layout evaluates distinct aspects of multi-agent coordination, making
this environment a standard for evaluating agent collaboration. Our experiments aim to demonstrate
that CausalPlan can improve planning for various open-source LLMs and, thus, better collabora-
tion. Specifically, we use gemma-1.1-7b-it (Gemma-7B), Meta-Llama-3-8B-Instruct
(Llama-8B), Qwen2.5-14B-Instruct-1M (Qwen-14B), and Llama-3.3-70B-Instruct
(Llama-70B). These open-source models are integrated into ProAgent (Zhang et al., 2024a), a frame-
work that leverages advanced prompting techniques (ReAct (Yao et al., 2023) and Reflexion (Shinn
et al., 2023)), upon which we apply CausalPlan to refine the planned actions. Additionally, we use
Cohere/command-r Cohere (2024), a 35-billion-parameter model, to generate the analysis of
the observation in our two-prompt input (refer to Appx. B.2.1 for details).

In Sect. 4.2, we compare the performance of LLM agents with their performance when enhanced
with CausalPlan. Our agent is evaluated alongside baseline partner AI agents (see next paragraph).
In these experiments, our agents play as Player 1 and the baseline agents as Player 0. An effective
agent should demonstrate strong performance in collaboration with all other partners. We also com-
pare our CausalPlan agent with the Llama-70B backbone against the baseline agents playing as both
Player 0 and Player 1. In Sect. 4.3, we evaluate the performance of CausalPlan agents when col-
laborating with human-like agents (collected using Behavior Cloning) (Li et al., 2023). In Sect. 4.4,
we evaluate different components of CausalPlan and in Sect. 4.5 we analyze the benefits of inte-
grating causal knowledge. In the Appendix, we provide additional experiments such as parameter
γ tuning (Appx. C.6), different data collection policies πβ (Appx. C.7), time complexity analysis
(Appx. C.10), and the causal matrixM (Appx. C.9).

Baselines. The baselines include traditional RL methods designed for zero-shot human and AI
coordination. These baselines have achieved notable results in the field, including SP (Tesauro,
1994; Carroll et al., 2019), PBT (Jaderberg et al., 2017), FCP (Strouse et al., 2021), MEP (Zhao
et al., 2023a), COLE (Li et al., 2023) (refer to Appx. C.3 for baseline details).

We also evaluate CausalPlan on the Crafter environment (Hafner, 2021), a long-horizon planningg
benchmark, where it outperforms Causal-Aware LLMs (Chen et al., 2025) (the state-of-the-art causal
prompting approach). Due to space constraints, detailed results are deferred to Appx. D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

CR

AA

COR

FC

CC

0 75 1450

75

150

0

40

80

0

6

12

18

0

40

80

Gemma-7B

CR

AA

COR

FC

CC

0 80 1550

90

180

0

40

80

0

10

20

0

50

95

Llama-8B

ProAgent
CausalPlan (Ours)

CR

AA

COR

FC

CC

0 85 1650

120

240

0

65

130

0

6

12

18

0

50

95

Qwen-14B

CR

AA

COR

FC

CC

0 90 1800

135

270

0

80

160

0

20

40

0

60

120

Llama-70B

Figure 3: Performance of different backbones with and without CausalPlan across various layouts.
In these experiments, we use the LLM agent as Player 1, allowing it to collaborate with all other
baselines (described in Sect. 4.1) for 400 timesteps and report the average of three different seeds.

Table 1: Average performance (mean ± std) of baseline agents and CausalPlan (Ours) across layouts
using Llama-70B. Results are averaged over both player positions and three seeds (400 timesteps
each). Best and second-best results are in bold and underlined, respectively. Detailed performance
of playing as Player 0 or Player 1 is provided in Appx. Tab. 4.

Layout Baseline AI Agents CausalPlan
(Ours)SP PBT FCP MEP COLE

CR 162.0 ± 10.0 168.0 ± 5.0 194.0 ± 10.1 178.0 ± 16.1 153.4 ± 12.5 172.7 ± 4.2
AA 184.0 ± 17.5 168.0 ± 15.4 176.6 ± 15.0 167.3 ± 5.8 185.3 ± 15.1 258.7 ± 16.4
CC 56.7 ± 9.2 52.0 ± 14.0 63.4 ± 10.5 50.0 ± 16.1 90.6 ± 10.1 112.6 ± 7.6
COR 120.7 ± 11.0 139.4 ± 10.1 130.7 ± 6.2 160.7 ± 7.2 153.4 ± 4.6 156.6 ± 3.2
FC 18.0 ± 4.6 40.6 ± 10.3 42.0 ± 7.2 30.4 ± 5.4 44.6 ± 7.0 53.9 ± 14.9

4.2 AI PARTNER EVALUATION

Enhancing open-source LLM performance using CausalPlan We evaluate whether CausalPlan
improves open-source LLM performance in collaboration tasks, as shown in Fig. 3 and detailed in
Appx. C.4 Tab. 3. CausalPlan improves performance models, with significant gains seen in Qwen-
14B (29.04%) and Llama-70B (22.42%). In terms of layouts, the most substantial improvements
were found in the settings CR (20.83%) and COR (19.13%). Furthermore, CausalPlan also pro-
vided notable benefits for larger LLMs, such as Llama-70B, demonstrating its potential to enhance
performance even at scale.

Comparison with state-of-the-art RL baselines. We evaluate the performance of our top-
performing agent (Llama-70B backbone) against the set of SOTA baseline RL agents. The results,
presented in Tab. 1, show that our agent consistently ranks among the top performers across different
layouts (highest score in three out of five layouts and second in one additional layout). The most
significant performance gaps between our method and the next best baseline are observed in the AA
layout, showing a 63% advantage. We attribute the underperformance in CR to the simplicity of the
task, which does not require causal knowledge. These results demonstrate that, when equipped with
CausalPlan, open-source LLM agents can outperform state-of-the-art RL agents in various tasks,
highlighting the effectiveness of integrating causal reasoning into cooperative LLM-based agents.

4.3 HUMAN PARTNER EVALUATION

To evaluate human collaboration, we performed an experiment using human proxy partners, with
the results shown in Fig. 4. In this experiment, our CausalPlan framework utilizes Llama-70B as
the backbone LLM. As shown, our agent (green bars) outperforms all baselines in 8 out of 10
configurations. On average across all layouts, it achieves approximately a 30% improvement over
ProAgent (red bars), and outperforms the strongest RL baseline (COLE) by approximately 32%.
To further validate these improvements, we conducted statistical analyses using paired t-tests and
corresponding p-values. The results (Appx. C.5 Tab. 5) show that CausalPlan consistently achieves

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Experiments with a human proxy partner. Results show the mean and variance averaged
over using five different BC policies as the partner (each running for 400 timesteps). ”P0” denotes
the controlled AI agent acting as Player 0, and vice versa.

Table 2: Ablation studies were conducted on the CR layout using Llama-8B. ”1-Prompt” uses a
single prompt for observation and planning, as in ProAgent; ”2-Prompt” uses our modified dual-
prompt method. ”CausalPlan (no CBP)” omits the Causal Backup Plan component.

Methods Baseline AI Agents Average
ResultsSP PBT FCP MEP COLE

1-Prompt (ProAgent) 86.7 ± 41.6 66.7 ± 63.4 180.0 ± 20.0 106.7 ± 75.7 113.3 ± 11.5 110.7 ± 12.8
2-Prompt 73.3 ± 30.5 93.3 ± 57.7 180.0 ± 0.0 126.7 ± 11.5 126.7 ± 23.1 121.3 ± 2.3
CausalPlan (no CBP) 113.3 ± 23.1 146.7 ± 46.2 160.0 ± 34.6 133.3 ± 11.5 153.3 ± 23.1 141.3 ± 12.9
CausalPlan (Full) 126.7 ± 30.6 133.3 ± 30.5 160.0 ± 40.0 166.7 ± 41.6 166.7 ± 23.1 150.7 ± 2.3

higher t values than ProAgent when compared against the best RL method. Direct comparison
in Tab. 6) reveals statistical significance (p < 0.05) in 30% of the cases (CR-P0, AA-P1, COR-
P1), with another 30% (CR-P1, FC-P0, CC-P0) showing marginal significance (0.05 < p < 0.2).
Importantly, performance never degrades when CausalPlan is included. These findings confirm that
the observed improvements are statistically reliable.

4.4 IMPACT OF CAUSALPLAN COMPONENTS

In this section, we investigate the individual contributions of each component within the CausalPlan
framework. First, we compare the use of a single prompt (Zhang et al., 2024a), for both observation
analysis and planning, against our two-prompt setup, where one prompt is dedicated to analysis
and the other to planning. This comparison helps isolate whether performance gains come from the
embedded causal knowledge. As shown in Tab. 2, the performance between the single-prompt and
two-prompt configurations is nearly identical, with only a slight improvement when using our two-
prompt. Second, we examine the effect of the Causal Backup Plan module. CausalPlan without the
backup action still outperforms the two-prompt variant by 27%, but falls short of the full framework
by 7%. This highlights the significance of the backup mechanism to avoid scenarios in which the
agent fails to select actions as instructed.

4.5 BENEFITS OF CAUSAL INTEGRATION

We analyze the behavior of Llama-8B, with and without CausalPlan, in the CR layout, where our
method achieves a substantial +36.1% improvement (see Appx. C.8 for detailed analysis). This
analysis highlights two key benefits of causal integration.

(1) Physically invalid actions. Without causal guidance, the agent frequently makes invalid calls
to pick up an object while already holding an object. CausalPlan reduces these physically invalid
actions by 18%, while simultaneously increasing valid calls made with an empty hand by 17%.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

This demonstrates that CausalPlan not only suppresses impossible actions but also systematically
promotes temporally valid ones.

(2) Poor coordination. Coordination failures are further mitigated. When the pot is nearly full and
the partner agent already has an onion, the baseline still selects redundant actions to pick up onion.
With CausalPlan, these cases drop to zero, indicating that the agent learns to anticipate teammate
states and avoid conflicting behaviors. This complete elimination of redundant pickups reflects a
higher level of situational awareness and inter-agent coordination.

5 RELATED WORK

Reasoning and planning with LLM agents. The rise of LLMs has enabled applications in both
single and multi-agent settings. The works in a single-agent setting focus on improving reasoning
through chain-of-thought prompting (Wei et al., 2022; Kojima et al., 2022), self-consistency (Wang
et al., 2022), and problem decomposition (Zhou et al., 2022). LLMs have also been applied to robotic
planning (Ahn et al., 2022), integrated reasoning and acting, and reflection-based learning (Shinn
et al., 2023). Zhu et al. (2024) and Qiao et al. (2024) leverage memory of past actions and states
to improve planning. In contrast, our work targets multi-agent environments. In multi-LLM agent
research, Park et al. (2023) proposed a fully automated cooperative framework with perception,
communication, and planning.

Zero-shot multi-agent coordination. Zero-shot multi-agent coordination aims to train agents that
can collaborate with unseen partners, human or AI. A classic method is Self-Play (SP) (Tesauro,
1994; Carroll et al., 2019), where agents train by interacting with themselves. Population-Based
Training (PBT) (Jaderberg et al., 2017) promotes learning by diversifying the population of train-
ing agents. Recent methods combine SP and PBT to increase diversity, such as Fictitious Co-
Play (FCP) (Strouse et al., 2021) and Maximum Entropy Population (MEP) (Zhao et al., 2023a).
COLE (Li et al., 2023) shifts focus to strategic policy selection during training. However, these
methods are generally computationally expensive and lack interpretability. Zhang et al. (2024a)
shows that LLM-based agents can excel in zero-shot tasks by using rich language knowledge. Al-
though this demonstrates the potential of language-based agents, LLMs tend to select causally in-
valid actions (Gao et al., 2023). To address this challenge, we propose a causal align planning
approach that enhances action selection for LLMs.

Causality in decision making. Causal reasoning has received increasing attention for improving
AI decision-making. In single-agent domains, counterfactual methods are used for data augmen-
tation (Pitis et al., 2020; 2022). Corcoll & Vicente (2020) leverage causality to construct variable
hierarchies. Zhang et al. (2023b) redistribute rewards based on causal impact. Seitzer et al. (2021)
incorporate causal signals into reward shaping. Peng et al. (2022) learns causal graphs to define
hierarchical RL subgoals. More recently, efforts have focused on integrating causality into LLM
planning by directly providing the causal graph as part of the LLM prompt (Chen et al., 2025; Yu
& Lu, 2025). However, a limitation of these approaches is the reliance on the causal reasoning and
inference ability of the LLM, which can vary significantly between models and prompts. In multi-
agent settings, social influence has been used as causality to promote cooperation (Jaques et al.,
2019), while subsequent work employs action influence and redistribution of rewards to encour-
age coordinated behaviors (Du et al., 2024; Zhang et al., 2024b). In contrast to prior research, our
work integrates causal modeling into multi-agent systems based on LLMs by directly aligning the
decoding process with the discovered causal structure, which requires a distinct approach.

6 CONCLUSION AND FUTURE WORKS

In this paper, we introduce CausalPlan, a framework designed to integrate causal knowledge into the
decoding processes of LLM agents, to enhance their performance in multi-agent cooperation. Our
experiments show notable performance gains across various LLM backbones. This work serves as an
important step toward incorporating causal knowledge into multi-agent planning with LLMs. While
the framework is not currently intended for deployment in specific applications, it holds the potential
to improve the safety, efficiency, and interpretability of collaborative AI systems. As a promising
direction for future work, our approach could be combined with causal prompting methods to further
strengthen planning performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All implementation details, experimental settings, results are provided and can be found in the Ap-
pendix to ensure full reproducibility. The complete source code is also submitted with the submis-
sion.

LLM USAGE

Large Language Models (LLMs) were employed as the backbone for experiments with our
CausalPlan framework. We also use LLM to refine the paper’s presentation by improving gram-
mar and overall writing clarity.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Techni-
cal Report. arXiv preprint arXiv:2303.08774, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as I can, not as I say:
grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Micah Carroll, Rohin Shah, Mark K Ho, Thomas L Griffiths, Sanjit A Seshia, Pieter Abbeel, and
Anca Dragan. On the utility of learning about humans for human-AI coordination. In Advances
in Neural Information Processing Systems (NeurIPS), pp. 5174–5185, 2019.

Wei Chen, Jiahao Zhang, Haipeng Zhu, Boyan Xu, Zhifeng Hao, Keli Zhang, Junjian Ye, and Ruichu
Cai. Causal-aware large language models: Enhancing decision-making through learning, adapting
and acting. In James Kwok (ed.), Proceedings of the Thirty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI, pp. 4292–4300. International Joint Conferences on Artificial
Intelligence Organization, 8 2025. doi: 10.24963/ijcai.2025/478. URL https://doi.org/
10.24963/ijcai.2025/478. Main Track.

Haoang Chi, He Li, Wenjing Yang, Feng Liu, Long Lan, Xiaoguang Ren, Tongliang Liu, and
Bo Han. Unveiling causal reasoning in large language models: Reality or mirage? In Advances
in Neural Information Processing Systems (NeurIPS), volume 37, pp. 96640–96670, 2024.

Cohere. The command R model (details and application). https://docs.cohere.com/v2/
docs/command-r, 2024. Accessed: 2025-05-12.

Oriol Corcoll and Raul Vicente. Disentangling causal effects for hierarchical reinforcement learning.
arXiv preprint arXiv:2010.01351, 2020.

Xiao Du, Yutong Ye, Pengyu Zhang, Yaning Yang, Mingsong Chen, and Ting Wang. Situation-
dependent causal influence-based cooperative multi-agent reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, pp. 17362–17370, 2024.

Chen Gao, Xiaochong Lan, Zhihong Lu, Jinzhu Mao, Jinghua Piao, Huandong Wang, Depeng
Jin, and Yong Li. S3: Social-network simulation system with large language model-empowered
agents. arXiv preprint arXiv:2307.14984, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. In Proceedings of the International Conference on Learning Representations
(ICLR), 2020.

10

https://doi.org/10.24963/ijcai.2025/478
https://doi.org/10.24963/ijcai.2025/478
https://docs.cohere.com/v2/docs/command-r
https://docs.cohere.com/v2/docs/command-r

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Patrik O Hoyer, Dominik Janzing, Joris Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear
causal discovery with additive noise models. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 689–696, 2008.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. ”Other-play” for zero-shot
coordination. In Proceedings of the International Conference on Machine Learning (ICML), pp.
4399–4410, 2020.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando,
and Koray Kavukcuoglu. Population based training of neural networks. arXiv preprint
arXiv:1711.09846, 2017.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning
(ICML), pp. 3040–3049, 2019.

Nitish Joshi, Abulhair Saparov, Yixin Wang, and He He. Llms are prone to fallacies in causal infer-
ence. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 10553–10569, 2024.

Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Bernhard
Schölkopf, Michael C Mozer, Chris Pal, and Yoshua Bengio. Learning neural causal models
from unknown interventions. arXiv preprint arXiv:1910.01075, 2019.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 22199–22213, 2022.

Shane Legg and Marcus Hutter. Universal intelligence: A definition of machine intelligence. Minds
and Machines, 17:391–444, 2007.

Yang Li, Shao Zhang, Jichen Sun, Yali Du, Ying Wen, Xinbing Wang, and Wei Pan. Cooperative
open-ended learning framework for zero-shot coordination. In Proceedings of the International
Conference on Machine Learning (ICML), pp. 20470–20484, 2023.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: interactive simulacra of human behavior. In Proceedings
of the Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023.

Judea Pearl. Causality. Cambridge University Press, 2009.

Shaohui Peng, Xing Hu, Rui Zhang, Ke Tang, Jiaming Guo, Qi Yi, Ruizhi Chen, Xishan Zhang,
Zidong Du, Ling Li, Qi Guo, and Yunji Chen. Causality-driven hierarchical structure discovery
for reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS),
pp. 20064–20076, 2022.

Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. Elements of Causal Inference: Foundations
and Learning Algorithms. The MIT Press, 2017.

Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally
factored dynamics. In Advances in Neural Information Processing Systems (NeurIPS), pp. 3976–
3990, 2020.

Silviu Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg. Mocoda: model-based counterfac-
tual data augmentation. In Advances in Neural Information Processing Systems (NeurIPS), pp.
18143–18156, 2022.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model. In
Advances in Neural Information Processing Systems (NeurIPS), volume 37, pp. 114843–114871,
2024.

Maximilian Seitzer, Bernhard Schölkopf, and Georg Martius. Causal influence detection for improv-
ing efficiency in reinforcement learning. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 22905–22918, 2021.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: language agents with verbal reinforcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 8634–8652, 2023.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. The MIT
Press, 2000.

DJ Strouse, Kevin R McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborat-
ing with humans without human data. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 14502–14515, 2021.

Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation, 6(2):215–219, 1994.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In Proceedings of the International Conference on Learning Representations (ICLR),
2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems (NeurIPS), pp. 24824–24837,
2022.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian Processes for Machine Learning,
volume 2. MIT Press Cambridge, MA, 2006.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In Proceedings of the International
Conference on Learning Representations (ICLR), 2023.

Shu Yu and Chaochao Lu. Adam: An embodied causal agent in open-world environments.”. In
Proceedings of the International Conference on Learning Representations (ICLR), 2025.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: building proactive cooperative agents with
large language models. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
17591–17599, 2024a.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. In Proceedings of the International Conference on Learning Representations (ICLR),
2023a.

Yudi Zhang, Yali Du, Biwei Huang, Ziyan Wang, Jun Wang, Meng Fang, and Mykola Pechenizkiy.
Interpretable reward redistribution in reinforcement learning: a causal approach. In Advances in
Neural Information Processing Systems (NeurIPS), pp. 20208–20229, 2023b.

Yudi Zhang, Yali Du, Biwei Huang, Meng Fang, and Mykola Pechenizkiy. A causality-inspired
spatial-temporal return decomposition approach for multi-agent reinforcement learning. In
NeurIPS 2024 Causal Representation Learning Workshop, 2024b.

Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhongqian Sun, and Wei
Yang. Maximum entropy population-based training for zero-shot human-ai coordination. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6145–6153, 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023b.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In Proceedings of the International Conference on Learning
Representations (ICLR), 2022.

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,
Jinjie Gu, and Huajun Chen. Knowagent: knowledge-augmented planning for LLM-based agents.
arXiv preprint arXiv:2403.03101, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A IDENTIFIABILITY ANALYSIS

Proposition 1 (Identifiability of the causal structure and functions):

Let the dataset consist of sequences of the form:

(st, at−1, at), t = 1, . . . , T, (8)

Assume the data comes from a Markov Decision Process (MDP) under the interaction of a fixed
behavior policy πβ . The next action at (a binary vector of size A) is assumed to be generated by a
structural causal model (SCM):

ai,t = fi(Pa(ai,t)) + εai,t
, i = 1, . . . , A, (9)

where, the parents Pa(ai,t) of ai,t are selected from the state st and action at−1. The noise terms,
ε, are independent of the parents. Under the following assumptions:

1. Additive noise: The noise terms are independent and identically distributed (i.i.d.) and do
not depend on the inputs Hoyer et al. (2008).

2. Causal sufficiency: All relevant causes are observed (i.e., no hidden confounders) Spirtes
et al. (2000).

3. Faithfulness and global Markov condition: Observed conditional independencies match
those implied by the graph Pearl (2009).

4. Function class expressiveness: Each function fi belongs to a class identifiable under addi-
tive noise models. In additive noise models, identifiability of causal direction relies on the
function class having sufficient expressiveness and satisfying certain regularity conditions
(e.g., nonlinearity, invertibility) Ke et al. (2019); Peters et al. (2017).

5. Acyclicity: The causal graph has no cycles (i.e., it is a Directed Acyclic Graph (DAG)).

6. Sufficient data: There are enough samples to guarantee reliable estimation.

Then, both the structure of the causal graph and the functions fi can be identified. In particular, the
binary adjacency masks indicating causal edges can be consistently estimated.

Proof sketch:

Step 1: Identifiability using additive noise models. Under the above assumptions, especially addi-
tivity and faithfulness, each causal function fi can be learned uniquely up to Markov equivalence.
Prior work Hoyer et al. (2008) shows that additive noise and independence of noise from inputs
imply identifiability of the direction of causality.

Step 2: Estimating the functions. We approximate each function fi using a weighted basis expan-
sion:

fi(·) ≈W⊤
i ϕi(·), (10)

where ϕi(·) ∈ Rd is a nonlinear feature map that transforms the input tuple (·) into a d-dimensional
representation, and Wi ∈ Rd is the corresponding weight vector of function fi. In the simplest
case, ϕi(·) and Wi are predefined basis functions and linear coefficients, respectively. However, in
practice, we often implement fi using a neural network to allow for flexible function approximation.
Given an input tuple (st, at−1), the generating function for ai,t can be rewritten as:

ai,t = fi(st, at−1) + εai,t ≈W⊤
i ϕi(st, at−1) + εai,t , (11)

with noise term εai,t
. Suppose we have a dataset comprising N trajectories k with the form given in

Eq. 8. For each trajectory, we define:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Φk
i =

 ϕi(s
k
1 , a

k
0)

⊤

...
ϕi(s

k
T , a

k
T−1)

⊤

 ∈ RT×d, Ak
i =

aki,1
...

aki,T

 ∈ RT , (12)

Each row of Φk
i represents the feature vector for a specific time step, while the corresponding el-

ement in Ak
i contains the observed action component. We then estimate Wi by minimizing the

ridge-regularized least-squares objective:

min
Wi

N∑
k=1

∥∥Ak
i − Φk

i Wi

∥∥2
2
+ λ

∥∥Wi

∥∥2
2
, (13)

where λ > 0 controls the regularization strength.

Step 3: Unique closed-form solution proof. We proceed by proving that solving the objective yields
a unique closed-form solution. The objective function above can be compactly written as:

L(Wi) =

N∑
k=1

∥∥Ak
i − Φk

iWi

∥∥2
2
+ λ ∥Wi∥22 = ∥Ai − ΦiWi∥22 + λW⊤

i Wi. (14)

First, expand the squared-error term:

∥Ai − ΦiWi∥22 = (Ai − ΦiWi)
⊤(Ai − ΦiWi) = A⊤

i Ai − 2W⊤
i Φ⊤

i Ai +W⊤
i Φ⊤

i Φi Wi. (15)

Thus,
L(Wi) = A⊤

i Ai − 2W⊤
i Φ⊤

i Ai +W⊤
i Φ⊤

i Φi Wi + λW⊤
i Wi. (16)

Taking the gradient with respect to Wi gives:

∇WiL(Wi) = −2Φ⊤
i Ai + 2

(
Φ⊤

i Φi + λI
)
Wi. (17)

Setting ∇Wi
L(Wi) = 0 yields the normal equation:(

Φ⊤
i Φi + λI

)
Wi = Φ⊤

i Ai. (18)

Since λ > 0, the matrix Φ⊤
i Φi + λI is strictly positive-definite and hence invertible. Therefore, the

unique minimizer is:

Wi =
(
Φ⊤

i Φi + λI
)−1

Φ⊤
i Ai. (19)

Re-expressing in terms of the individual trajectories,

Φ⊤
i Φi =

N∑
k=1

(Φk
i)

⊤Φk
i , Φ⊤

i Ai =

N∑
k=1

(Φk
i)

⊤Ak
i , (20)

so equivalently

Wi =
(N∑
k=1

(Φk
i)

⊤Φk
i + λI

)−1 N∑
k=1

(Φk
i)

⊤Ak
i . (21)

Because L(Wi) is strictly convex, it admits a unique closed-form solution. Moreover, given a suf-
ficiently large dataset, the estimator converges to a good estimate of Wi Williams & Rasmussen
(2006).

To recover the graph structure, we exploit the closed-form solution for Wi derived by minimizing
the regularized quadratic loss in the previous step:

Wi =
(
Φ⊤

i Φi + λI
)−1

Φ⊤
i Ai.

This expression yields an estimate of the weight vector Wi, which quantifies the linear relationship
between the current state and previous action features and the target component ai,t. The support of
Wi—i.e., the indices of its nonzero entries—identifies which features are informative for predicting
ai,t. Under the faithfulness assumption, this support exactly corresponds to the true parent set of
node i in the underlying causal graph. Thus, one can recover the graph structure by examining
which entries of Wi are significantly nonzero, using thresholding or statistical tests.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

CONCLUSION

Under the usual identifiability conditions, both the graph structure and the functional relationships
in the Structural Causal Action model are uniquely determined. As a result, the causal action matrix
learned by CausalPlan faithfully reflects the true cause–effect relations among states and actions.

B CAUSALPLAN DETAILS

As described in Sect. 3 and in Fig. 2, the CausalPlan framework involves two phases Causal Action
Structure Learning and Agent Planning with Causal Knowledge. Here, we discuss in detail the two
phases and their components, as well as present algorithms that outline the method.

B.1 CAUSAL ACTION STRUCTURE LEARNING DETAILS

This appendix outlines the procedure used to model and learn the causal relationships between the
previous action at−1, current state st, and next action at.

Buffer B Collection. The data collection process begins by constructing the buffer B, which is
used to train the SCA model. We collect this data by allowing a pretrained agent to interact with the
environment for N timesteps, with each episode having a horizon of T . These interactions include
both high-level task-oriented actions and low-level movement actions.

To facilitate causal analysis, we apply a preprocessing step in which all low-level movement actions
are relabeled as the most recent preceding high-level action of interest. For example, if the agent ex-
ecutes pickup onion, then moves for several steps, and finally performs put onion in pot,
all intermediate movement actions are relabeled as pickup onion. This yields a simplified se-
quence: pickup onion→ pickup onion→ pickup onion→ put onion in pot. This
transformation reduces noise from irrelevant actions and makes it easier to detect meaningful causal
edges—such as from pickup onion to put onion in pot.

Importantly, we retain the original state observations at each timestep, even after relabeling the
actions. This ensures that we can still study the causal relationship between the immediate state
before an action and the subsequent high-level decision, preserving the integrity of the underlying
state-action dynamics.

SCA Model. To capture these dependencies, we employ the SCA model, which incorporates two
key components: the generative parameters δ and the structural parameters η. The parameters δ
define a set of functions f , each implemented as a neural network. Specifically, for each action
feature ai in Eq. 1, there is a corresponding function fi parameterized by δi (see Appx. C.11 for
network details). As described in Sect. 3.1, the model generates the next action at based on the
current state and previous action. The parameters δ govern this generative mapping and are trained
using standard neural network optimization.

In parallel, the structural parameters η encode the causal graph G, where each entry indicates the
presence or absence of a directed edge between action factorizations, using binary adjacency indi-
cators. During inference, only those factorizations that are parents of the current action feature ai,
according to η, are activated. We implement this by masking out all features not connected to ai,
ensuring that each function fi conditions only on its relevant causal parents, as defined in Eq. 1. Fur-
thermore, we manually set the diagonal entries ηi→i = 0, since edges from an action factorization
to itself are not allowed in the causal graph. This constraint prevents self-causation among action
nodes, maintaining a valid causal structure. Finally, we apply a sigmoid activation to each entry of
η, producing values in [0, 1] that represent the probability of an edge’s existence

Optimization. Both sets of parameters are jointly optimized during training. The overall loss
function is defined as

L(δ, η) = Lcausal(δ, η) + Lreg(η),

where Lcausal encourages accurate prediction of the next action, and Lreg regularizes the structural
parameters to promote sparsity and prevent overfitting. This results in an interpretable and reliable
causal model.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The full training procedure is summarized in Algorithm 1, which alternates between updating the
generative and structural parameters using mini-batches sampled from the buffer B.

Algorithm 1 Iterative Optimization for Structural Causal Action (SCA) Model

1: Input: Dataset B =
{
{(skt , akt)}Tt=1

}N

k=1
2: Initialize structural parameters η and generating parameters δ
3: Repeat:
4: 1. Sample a mini-batch B =

{
{(akt−1, s

k
t , a

k
t)t∈T

}
k∈N

⊂ B
5: 2. Optimize Generating Parameters δ:
6: Fix η
7: Optimize δ by minimizing the loss Lcausal(δ, η) in Eq. 2
8: Update generating parameters δ
9: 3. Optimize Structural Parameters η:

10: Fix δ
11: Optimize η by minimizing the loss L(δ, η) = Lcausal(δ, η) + Lreg(η) in Eq. 2 and Eq. 3
12: Apply sigmoid to η
13: Output: Optimized parameters δ, η

B.1.1 STATE AND ACTION FACTORIZATION

We assumed a known factorization of state and action spaces, a common assumption often made
in causal reinforcement learning research (Seitzer et al., 2021; Peng et al., 2022). This allows
us to encode the states and actions into binary vectors: st = [st,1, . . . , st,S] ∈ {0, 1}S , at =
[at,1, . . . , at,A] ∈ {0, 1}A, where each component st,j and at,i is a binary indicator representing
whether a particular state feature or action is active (1) or inactive (0).

For example, given an observation skt of trajectory k at timestep t : “agent 1 is holding an onion,
agent 2 is holding nothing”, this can be encoded into a binary state vector such as:

skt = [1, 0, 0, 1, 0, . . .],

where each entry corresponds to a specific feature (e.g., “agent 1 is holding onion”, “agent 1 is hold-
ing nothing”, “agent 2 is holding nothing”, etc.), and the 1s indicate which conditions are currently
true. Similarly, an action like “agent 1 places onion in pot” can be encoded into

akt = [0, 1, 0, . . .],

where each entry corresponds to a specific atomic action in the action space, and the 1 marks the
active action at time t. Note: In our training process, we use only the previous action of the control-
ling agent. While it is possible to incorporate the actions of the other agent, doing so increases the
complexity of learning the causal graph and may negatively impact the training performance.

This factorized representation enables us to formulate the causality training as a classification prob-
lem, allowing us to optimize using the negative log-likelihood loss defined in Eq. 2. Refer to
Appx. C.11.2 for the factorization features used in our experiments.

B.2 AGENT PLANNING WITH CAUSAL KNOWLEDGE DETAILS

This appendix provides additional details on how causal knowledge is integrated into the agent’s
decision-making process during action planning.

LLM prompting process. During inference, we first equip the LLM agents with a knowledge li-
brary that specifies the tasks, rules, and example responses relevant to the game environment. At
each time step, the current observation st is presented to the agent along with a prompt instruct-
ing it to analyze the situation. The agent typically responds with a natural language interpretation
highlighting the key elements of the observation. Both the original observation st and the generated
analysis are then fed into a second prompt, which instructs the agent to produce a set of appropriate
next actions A′. For further details, refer to Appx. B.2.1.

Causal-Aware Planning. When a set of candidate actions A′ is generated during planning, each
action is initially assigned a probability by the LLM model, denoted as Pa(A′). To incorporate

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

causal reasoning, the agent queries the Causal Action Matrix M using the current state st and
previous action at−1 to compute a corresponding set of causal scores Pc(A′) (refer to Appx. B.2.2
for details). A weighted combination of the LLM’s probabilities and causal scores is formed using
Eq. 4 and then normalized via the softmax function:

exp(pf(a
′
m))∑|A′|

j=1 exp(pf(a′m))
, (22)

resulting in the final action distribution Pf(A′). Redundant actions are identified and merged ac-
cording to the process described in Appx. B.2.4, and the agent samples the next action at+1 from
this refined distribution.

Causal Backup Plan. In scenarios where no valid candidate actions are proposed (i.e., A′ = ∅),
mostly due to hallucinations, the agent relies on a causal fallback mechanism. Instead of halting
execution, it queriesM using st and at−1 to derive a causal distribution over the original instruction
set A. The agent then selects the action with the highest causal score, effectively leveraging prior
experience to recover from failure.

The complete inference procedure using Causal-Aware Planning and Causal Backup Plan is sum-
marized in Algorithm 2.

Algorithm 2 Agent Planning with the Causal Knowledge Algorithm at time step t

1: Input: Current state st, previous action at−1, candidate actions A′, LLM probabilities Pa(A′),
instruction set A, causal matrixM, weighting coefficient γ ∈ [0, 1], Pf(A′) = ∅, Pc(A) = ∅

2: If A′ ̸= ∅ then
3: For all a′m ∈ A′

4: pc(a
′
m)←M(st, at−1, a

′
m)

5: pf(a
′
m)← γ · pa(a

′
m + (1− γ) · pc(a

′
m) (Eq. 4)

6: Pf(A′)← pf(a
′
m)

7: End for
8: Normalize Pf(A′) using softmax in Eq 22
9: Apply redundancy check (see Appx. B.2.4) to get A′∗, P ∗

f

10: Sample at ∼ Categorical
([

p∗f (a
′
1), p

∗
f (a

′
2), . . . , p

∗
f (a

′
|A′∗|)

])
11: Else
12: For all a ∈ A
13: pc(a)←M(st, at−1, a)
14: Pc(A)← pc(a)
15: End for
16: at ← argmaxa∈A Pc(a)
17: End If
18: Output: Selected action at

B.2.1 LLM PROMPT DESIGN

Knowledge library. At the beginning of the inference process, we construct a knowledge library
for the LLM agent, following prior work in the field (Zhang et al., 2024a; Qiao et al., 2024). This
library is organized around three key perspectives: the tasks, the rules, and the in-context examples.
This knowledge library is fed into the LLMs at the initial stage of the inference process before the
cooperation task begins. An example of a knowledge library is provided in Fig. 5.

In our experiments, for simplicity, we utilized the knowledge library provided by Zhang et al.
(2024a), with slight modifications to accommodate our two-prompt design, as their work uses the
same evaluation environment1.

1https://github.com/PKU-Alignment/ProAgent (MIT License).

18

https://github.com/PKU-Alignment/ProAgent

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Tasks:
- You are ...
- This is a team game played by two players who will ...
- The team goal is ...
- You need to ...

Rules:
- In this task, the legal actions include: [Action 1], [Action 2], ...
- Assume the role of an assistant proficient in the task. Your objective is to control Player 0 and cooperate with Player 1, who
follows a fixed strategy, in order to achieve a high score. You should adhere to the following guidelines:
- [Rule 1].
- [Rule 2].
- ...

- For each step, you will receive the current scene or current scene with an analysis.
- If you receive only the current scene, you need to:
 1. Describe the current scene and analyze it.
- If you receive the current scene and the analysis then you need to:
 2. Plan ONLY ONE best skill for to do right now. Format should be ...

Examples:

Scene 1 Prompt 1: [Environment Scene 1][Player 0 Scene 1] [Player 1 Scene 1].

Analysis: Both player are [Scene Description]. I believe [Other Analysis].

Scene 1 Prompt 2: [Environment Scene 1][Player 0 Scene 1] [Player 1 Scene 1]. Analysis: Both Player are [Scene Description]. I
believe [Other Analysis].

Plan: Player 1 should [Scene 1 Action].
###
Scene 90 Prompt 1: [Environment Scene 90][Player 0 Scene 90] [Player 1 Scene 90].

Analysis: Player 0 and Player 1 are [Scene 90 Description]. I believe [Other Analysis].

Scene 2 Prompt 2: [Environment Scene 90][Player 0 Scene 90] [Player 1 Scene 90]. Analysis: Player 0 and Player 1 are [Scene
90 Description]. I believe [Other Analysis].

Plan: Player 1 should [Scene 90 Action].
###
...

Knowledge library

Figure 5: An Example of Knowledge Library.

Analysis and planning prompts To facilitate the planning process, we first ground the environ-
ment state into natural language so that it becomes interpretable to the LLM agent, as the raw state
representation is typically not directly understandable by language models. In our experiments, we
adopt the grounding methodology proposed by Zhang et al. (2024a), since their work uses the same
evaluation environments. For detailed grounding procedures, we refer the reader to their paper. An
example of the final grounded state prompt used as input to the agent at each timestep is highlighted
in red in Fig. 6.

We then apply our two-prompt design to guide the LLM’s behavior using the knowledge library.
Specifically, when the agent is prompted with only the current observation, it is expected to analyze
the scene. When the prompt includes both the observation and the analysis, the agent is expected to
respond with a planned action. Our approach first asks the agent to perform the analysis, then uses
that analysis together with the state prompt as input to generate the final action plan. The analysis
is highlighted in green, while the planned action is highlighted in purple in Fig. 6. We hypothesize
that this two-prompt process provides the agent with a reasoning workflow similar to the chain-
of-thought (CoT) prompting described by Wang et al. (2022), while also allowing straightforward
access to the planned action through hard-coded separation. In contrast, including both the analysis
and the planned action in the same response, as done by Zhang et al. (2024a)—can make it diffi-
cult to accurately extract the planned action, since action names might appear within the analysis.
We evaluate the performance of one-prompt versus two-prompt approaches without causality en-
hancement through our CausalPlan in Sect. 4.4 and find that the results are quite similar, with the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

two-prompt approach showing slightly better performance. Although the single-prompt approach is
feasible in practice, it complicates reliably identifying the correct action.

Scene 1 Prompt 1: Layout: Onion Dispenser 0, Onion Dispenser 1, Dish Dispenser 0, Serving Location 0, Pot 0, Pot 1.
State: Player 1 holds nothing. Player 0 holds nothing. Kitchen states: Pot 0 is empty. Pot 1 is empty. 3 counters can be visited by
Player 0. Their states are as follows: No counters have onion. No counters have dish.

Analysis:
- The pot is empty, and there are no onions or dishes on the counters.
- Player 1 needs to deliver an onion and a dish to the counter.
- The legal actions that player1 can take are pickup(onion) and pickup(dish).

Scene 1 Prompt 2: Layout: Onion Dispenser 0, Onion Dispenser 1, Dish Dispenser 0, Serving Location 0, Pot 0, Pot 1.
State: Player 1 holds nothing. Player 0 holds nothing. Kitchen states: Pot 0 is empty. Pot 1 is empty. 3 counters can be visited by
Player 0. Their states are as follows: No counters have onion. No counters have dish. Analysis:
- The pot is empty, and there are no onions or dishes on the counters.
- Player 1 needs to deliver an onion and a dish to the counter.
- The legal actions that player1 can take are pickup(onion) and pickup(dish).

Plan: Player 1 should pickup(onion).
###

Analysis and planning prompts

Figure 6: An example of analysis and planning prompts.

B.2.2 CAUSAL KNOWLEDGE CONSULTATION DETAILS

To compute the causal score for a candidate action, the agent first maps the action to its correspond-
ing row inM and identifies which columns are currently active based on features derived from the
current state and previous action. These active features are determined using the procedure outlined
in Appx. B.2.3.

For instance, given that we want to extract the causal scores of an action a, given current state st and
previous action at−1, we first identify the corresponding index i of the action a within the matrix
row. Let idx : A → {1, . . . , |A|} be the function that maps any action to its row index inM, and
let J = Active(st, at−1) ⊆ {1, . . . , S + A} denote the set of column indices corresponding to the
features that are “active” in the current state st and the previous action at−1.

For a candidate action a, we first compute its row index i = idx(a), then gather the entries of row i
inM at all active columns j ∈ J , thus a queryM(st, at−1, a) will return:

pc(a) =
∑
j∈J

ηji. (23)

In other words, pc(a) is the sum of the causal-weight entries in the row for at that correspond to the
features currently active.

B.2.3 EXTRACTING INFORMATION FOR CAUSAL KNOWLEDGE CONSULTATION

Given the observations grounded in natural language, as explained in Appx. B.2.1, we map them to
a set of predefined state features. For example, from the state prompt shown in Fig. 7 — “Player 1
holds nothing. Player 0 holds nothing. Kitchen states: Pot 0 is empty. Pot 1 has 1 onion. . . ” — we
extract factorized features such as hold nothing1 (indicating that agent 1 is holding nothing),
hold nothing2 (agent 2 is holding nothing), pot0 0 (pot 0 is empty), pot1 1 (pot 1 has 1
onion). This allows us to formulate the state feature factorization st.

In addition, the previous action taken by the agent is also recorded, referring to the last executable
action performed. This allows us to configure the action feature factorization vector at−1.

Depending on the environment, the number of factorized features can vary widely (see Appx. C.11.2
for the specific factorized features used in each experimental task). While a larger number of features
can produce a more detailed causal graph, this does not necessarily lead to better performance, as

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

learning such graphs becomes more challenging and requires more data. In our experiments, we
chose to use high-level state and action factorizations (we ignore low-level movement actions and
only focus on the state of the two agents and the pot) to strike a balance between expressiveness and
learnability.

Scene 1 Prompt 1: Layout: Onion Dispenser 0, Onion Dispenser 1, Dish Dispenser 0, Serving Location 0, Pot 0, Pot 1.
State: Player 1 holds nothing. Player 0 holds nothing. Kitchen states: Pot 0 is empty. Pot 1 has 1 onion. 3 counters can be
visited by Player 0. Their states are as follows: No counters have onion. No counters have dish.

Agent 1's state:
hold_nothing1

Agent 2's state:
hold_nothing2

Environment's state:
pot0_0

Environment's state:
pot1_1

Previous action:
put_onion_in_pot

Figure 7: Information extraction for causal knowledge consultation.

B.2.4 POST-PROCESSING TO IDENTIFY REDUNDANT ACTIONS

During the process of sampling the next actions, the LLM may output the same action in dif-
ferent formats within the sampled set A′. To address this, we apply a series of post-processing
steps using standard natural language processing techniques—such as converting text to lower-
case, removing punctuation, and regex matching pre-defined patterns—to identify and merge se-
mantically equivalent actions. This enables us to accurately aggregate their probabilities in Pf(A′).
For instance, the same action put onion in pot can be expressed as put onion in pot(),
put onion in pot()., or put onion In Pot (refer to the associated code for details of this
process). After post-processing all these possible responses, we can calculate the updated value:

pf(put onion in pot) = pf(put onion in pot())

+ pf(put onion in pot().) + pf(put onion In Pot)

C ADDITIONAL EXPERIMENT DETAILS

C.1 CAUSALPLAN IMPLEMENTATION

As mentioned earlier, we build upon the ProAgent framework (Zhang et al., 2024a), retaining all
components except for the planning module, which we replace with our proposed algorithm. Un-
like the original ProAgent implementation that relied on the closed-source GPT-3.5 for plan-
ning, we instead utilize one of the following open-source language models, all retrieved from
Hugging Face2: gemma-1.1-7b-it (Gemma-7B), Meta-Llama-3-8B-Instruct (Llama-
8B), Qwen2.5-14B-Instruct-1M (Qwen-14B), and Llama-3.3-70B-Instruct (Llama-
70B). These models are integrated into the ProAgent framework to serve as the core planner, with
our CausalPlan method applied to refine the generated actions. Additionally, for the two-
prompt input structure, we employ the Cohere/command-rmodel (Cohere, 2024)—a 35-billion-
parameter LLM accessed via the Cohere API using the official cohere Python client3—to pro-

2https://huggingface.co
3https://docs.cohere.com/v2/reference/chat

21

https://huggingface.co
https://docs.cohere.com/v2/reference/chat

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

duce scenario analyses for faster inference. For the “Belief Correction” module, we also substi-
tute GPT-3.5 with the same Cohere model. The ”Controller” module in ProAgent (Zhang et al.,
2024a)—and in our setup—uses a rule-based best-first search; while effective, performance could
likely be improved with a reinforcement learning-based approach.

Regarding hardware requirements, the Gemma-7B and Llama-8B models each require approxi-
mately 10–16 GB of VRAM, Qwen-14B demands around 25–30 GB and multi-GPU support, while
Llama-70B needs over 70 GB VRAM with multi-GPU configuration on NVIDIA h-100 GPUs.

To facilitate easier extraction of action selection probabilities, we slightly modify the prompting
strategy used in the original method. In particular, we separate the reasoning step, based on CoT
prompting, from the action planning step, implementing them as two distinct prompts. The output
of the reasoning prompt is then used as input for the planning prompt. We provide further details
of this process in Appx. B.2.1 and include an empirical study in Appx. C.7, demonstrating that this
modification does not contribute to the performance gains, nor does it substantially affect the overall
performance of the backbone.

To avoid the cold-start problem and long interaction times associated with using small LLMs to
collect data into the buffer B, we employ a pre-trained policy based on MEP to interact with the
environment and gather data. Nonetheless, we conduct an experiment (results are in Appx. C.7)
demonstrating that even when using a small LLM, specifically Llama-8B, for data collection, our
method still yields improved performance compared to simply using the backbone method.

C.2 ENVIRONMENT DETAILS

We use the Overcooked-AI environment suite as our testing platform (Carroll et al., 2019). In Over-
cooked, two agents must collaborate to prepare and serve onion soup. Their tasks include gathering
and placing up to three ingredients into a pot, cooking the soup, transferring it into a dish, and
delivering the final meal. Each successful delivery yields a reward of +20, and both agents share
the final return, promoting cooperative behavior. This suite comprises five distinct layouts (Car-
roll et al., 2019)—Cramped Room (CR), Asymmetric Advantages (AA), Coordination Ring (COR),
Forced Coordination (FC), and Counter Circuit (CC)—each designed to evaluate different aspects
of multi-agent collaboration under varying levels of complexity and coordination demands:

• Cramped Room (CR): This environment features a highly constrained layout with narrow
hallways and tight corridors, forcing agents to navigate around each other constantly.

• Asymmetric Advantages (AA): In AA, the kitchen layout provides one agent with easier
access to ingredients and tools, while the other agent is disadvantaged in terms of spatial
reach.

• Coordination Ring (COR): COR introduces a ring-like structure in the kitchen, where
ingredients, cooking stations, and delivery points are spread along a loop.

• Forced Coordination (FC): FC is designed to enforce interdependence between the agents
through environment constraints.

• Counter Circuit (CC): The CC environment includes a set of counters that create a barrier
between the agents and the task stations.

Figure 8: Overcooked-AI Environments. From left to right: Cramped Room (CR), Asymmetric
Advantages (AA), Coordination Ring (CR), Forced Coordination (FC), and Counter Circuit (CC).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The environment testing suite was collected from the associated GitHub repository4.

C.3 BASELINE DETAILS

We compare CausalPlan against several established reinforcement learning (RL) methods specif-
ically designed for zero-shot human-AI coordination tasks. These baselines have demonstrated
strong performance in prior research and serve as competitive benchmarks in our experiments.

• SP (Self-Play) (Tesauro, 1994; Carroll et al., 2019): A classical RL approach where agents
learn policies by playing against themselves, promoting strategic behavior without relying
on external partners.

• PBT (Population-Based Training) (Jaderberg et al., 2017): An evolutionary algorithm
that optimizes agent populations by iteratively mutating and selecting promising policies,
facilitating diverse and robust coordination strategies.

• FCP (Fictitious Co-Play) (Strouse et al., 2021): A method that models coordination by
simulating the behaviors of various partner types, enabling agents to adapt to unseen col-
laborators.

• MEP (Maximum Entropy Population) (Zhao et al., 2023a): This approach promotes
diversity within agent populations by maximizing entropy, which encourages exploration
of varied strategies for better coordination.

• COLE (Cooperative Learning) (Li et al., 2023): An algorithm designed to enhance co-
operative behavior between agents by explicitly learning to predict and adapt to partners’
actions.

These baselines were selected due to their relevance and proven success in multi-agent coordination
scenarios. The pretrained baseline models were obtained from the ProAgent GitHub repository5.

We also evaluate CausalPlan in collaboration with a human policy collected via behavior learning,
available at the COLE platform6.

C.4 DETAILS OF AI PARTNER EVALUATION

Tab. 3 presents a comprehensive comparison of the performance of various backbone LLMs, both
with and without CausalPlan, evaluated across multiple layouts.

Tab. 4 provides an in-depth comparison between baseline agents and our proposed CausalPlan
method using Llama-70B, across different layouts.

C.5 DETAILS OF HUMAN PARTNER EVALUATION

Our main goal is to present a modular causal reasoning framework that improves LLM-based plan-
ning agent that can collaborate well with human.

To provide quantitative support, we present Table 5, which compares Llama-70B with CausalPlan
against the best RL baseline and Table 6, which reports the t-values of models with and without
CausalPlan when paired with a human agent. The t-test is a statistical method used to determine
whether observed differences between two groups are statistically significant or could have occurred
by chance. Higher t-values indicate stronger evidence that the difference is meaningful.

Statistical analysis with best RL methods

In most environments, CausalPlan leads to a clear improvement in t-statistics, often reversing a
negative score into a positive one (e.g., CR-P0, AA-P1, FC-P0, CC-P0). Although some t-values
do not reach statistical significance due to the small sample size (n = 5), which is limited by the
availability of human data, the consistent trend of improvement suggests that our approach is effec-
tive and broadly applicable. We hypothesize that applying our causal method on stronger models

4https://github.com/HumanCompatibleAI/overcooked_ai (MIT License)
5https://github.com/PKU-Alignment/ProAgent (MIT License)
6https://github.com/liyang619/COLE-Platform

23

https://github.com/HumanCompatibleAI/overcooked_ai
https://github.com/PKU-Alignment/ProAgent
https://github.com/liyang619/COLE-Platform

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 3: Performance of different backbones with and without CausalPlan across various layouts
(this is the detailed version of Fig. 3). The reported results, including mean and variance, are ob-
tained from 3 different seeds, with each seed running for 400 timesteps. In these experiments, we
use the small LLM agent as Player 1, allowing it to collaborate with all other baselines as described
in Sect. 4.1, and report the average and variance of the outcomes. The last column reports the aver-
age improvement across backbones, and the last row reports the average improvement across layouts
in %. The result with the highest improvement is highlighted in bold, while the second highest is
underscored.

Backbones With
CausalPlan

Layouts Avg.
Improv.

(%)CR AA COR FC CC

Gemma-7B
× 121.3 ± 16.2 88.0 ± 32.7 78.7 ± 8.3 17.3 ± 6.1 73.3 ± 10.1

12.82
✓ 141.3 ± 6.1 122.7 ± 12.9 82.7 ± 30.5 17.3 ± 9.2 78.7 ± 14.0

Llama-8B
× 110.7 ± 12.8 163.4 ± 3.3 80.0 ± 41.7 9.3 ± 2.3 84.0 ± 20.8

13.90
✓ 150.7 ± 2.3 182.2 ± 18.3 77.3 ± 14.0 16.0 ± 4.0 90.7 ± 2.3

Qwen-14B
× 117.3 ± 4.6 224.0 ± 22.6 76.0 ± 17.4 16.0 ± 4.0 48.0 ± 22.6

29.04
✓ 162.6 ± 9.2 232.0 ± 31.7 121.3 ± 16.6 17.3 ± 12.8 93.3 ± 22.7

Llama-70B
× 144.0 ± 18.3 248.0 ± 22.7 125.3 ± 10.0 34.7 ± 14.0 89.3 ± 32.3

22.42
✓ 178.7 ± 2.3 266.7 ± 16.7 157.3 ± 2.3 38.7 ± 16.2 112.0 ± 6.9

Avg. Improv. (%) – 20.83 18.80 19.13 4.87 9.55 –

Oracle GPT – 194.2 ± 10.5 229.8 ± 21.9 183.0 ± 31.7 31.0 ± 33.9 128.5 ± 28.1 –

Table 4: Performance comparison between baseline agents and CausalPlan (Ours) across layouts
using Llama-70B (this is the detailed version of Tab. 1). Results (mean ± variance) are averaged
over 3 seeds (400 timesteps each). The first row per layout corresponds to our agent as Player 0, the
second to Player 1. Best and second-best results are in bold and underlined, respectively.

Layout Baseline AI Agents CausalPlan
(Ours)SP PBT FCP MEP COLE

CR 160.0 ± 4.0 165.3 ± 1.7 194.6 ± 10.0 177.3 ± 22.0 164.0 ± 6.9 166.7 ± 6.1
164.0 ± 16.0 170.7 ± 8.3 193.3 ± 10.1 178.7 ± 10.1 142.7 ± 18.0 178.7 ± 2.3

AA 173.3 ± 22.0 185.3 ± 12.8 181.3 ± 14.0 153.3 ± 2.3 197.3 ± 14.0 250.7 ± 16.1
194.7 ± 12.9 150.7 ± 18.0 172.0 ± 16.0 181.3 ± 9.2 173.3 ± 16.2 266.7 ± 16.7

COR 106.7 ± 12.8 138.7 ± 12.2 138.7 ± 2.3 166.7 ± 8.3 154.7 ± 2.3 156.0 ± 4.0
134.7 ± 9.2 140.0 ± 8.0 122.7 ± 10.1 154.7 ± 6.1 152.0 ± 6.9 157.3 ± 2.3

FC 10.7 ± 4.6 20.0 ± 14.4 57.3 ± 6.1 22.7 ± 4.6 41.3 ± 10.0 69.1 ± 13.6
25.3 ± 4.6 61.3 ± 6.1 26.7 ± 8.3 38.0 ± 6.1 48.0 ± 4.0 38.7 ± 16.1

CC 62.7 ± 12.2 56.0 ± 8.0 64.0 ± 8.0 33.3 ± 22.0 96.0 ± 4.0 113.3 ± 8.3
50.7 ± 6.1 48.0 ± 20.0 62.7 ± 12.9 66.7 ± 10.1 85.3 ± 16.2 112.0 ± 6.9

like GPT-3.5, as used in ProAgent Zhang et al. (2024a), would likely yield even more significant
improvements in performance.

Statistical analysis with backbone

Statistically significant improvements (p < 0.05) are observed in 30% of the cases (CR-P0, AA-P1,
COR-P1), with strong t-values (3.805, 2.987, 2.834 respectively), providing direct evidence that
CausalPlan improves performance in these settings. An additional 30% of cases (CR-P1, FC-P0,
CC-P0) show marginally significant improvements, with p-values between 0.05 and 0.2. These re-
sults suggest a positive trend toward significance that may be confirmed with more data. Importantly,
100% of the t-values are positive, meaning CausalPlan never degrades performance compared to the
non-causal baseline.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5: t-values of models with and without CausalPlan against the best RL baseline.
Layout Best RL t-value (w/ CausalPlan) t-value (w/o CausalPlan)

CR-P0 COLE 0.868 -3.504
CR-P1 MEP 0.388 -1.638
AA-P0 MEP 3.329 2.660
AA-P1 COLE 1.966 -1.188
COR-P0 MEP 0.657 0.000
COR-P1 COLE 2.781 0.838
FC-P0 COLE 0.818 -1.405
FC-P1 PBT -0.589 -1.421
CC-P0 COLE 1.099 -0.211
CC-P1 COLE -0.236 -0.408

Table 6: Paired t-test results comparing Llama-70B with CausalPlan (Ours) and Llama-70B (Re-
act+Reflexion).

Layout t-value p-value

CR-P0 3.805 0.0304
CR-P1 1.731 0.1982
AA-P0 0.490 0.6518
AA-P1 2.987 0.0429
COR-P0 0.608 0.5867
COR-P1 2.834 0.0496
FC-P0 1.832 0.1740
FC-P1 0.741 0.5000
CC-P0 1.902 0.1320
CC-P1 0.274 0.8028

C.6 EFFECT OF HYPERPARAMETER γ

In our framework, the hyperparameter γ in Eq. 10 controls the balance between the agent’s belief
and the causal knowledge. To investigate the effect of varying γ, we conducted an experiment on
two layouts, CR and FC, using Qwen-14B as the backbone LLM. As shown in Fig. 9, the optimal
value for γ lies within the range of 0.5 to 0.7. In both cases, when γ is set to 0.2, indicating a greater
reliance on causal knowledge than on the agent’s own knowledge, or when γ is set to 1, fully trusting
the agent, the performance degraded. Refer to Fig. 9 for the experimental results and Tab. 12 for the
γ values used for each LLM agent across different layouts. Due to limited computational resources,
tuning was only performed on layouts where CausalPlan initially underperformed with γ = 0.5. We
believe that further tuning of this hyperparameter would likely lead to improved performance.

C.7 EFFECT OF DIFFERENT DATA COLLECTION POLICY

Table 7: Ablation studies on using different agents to collect data for buffer B conducted on CR
layout with Llama-8B as backbone. The results, including mean and variance, are obtained from 3
different seeds. ”Llama-8B” and ”MEP” refer to using Llama-8B or MEP to generate data.

Methods
Baseline AI Agents Average

Results
SP PBT FCP MEP COLE

Llama-8B 106.7 ± 41.6 86.7 ± 75.1 166.7 ± 41.6 126.7 ± 30.6 140.0 ± 0.0 125.3 ± 30.7

MEP 126.7 ± 30.6 133.3 ± 30.5 160.0 ± 40.0 166.7 ± 41.6 166.7 ± 23.1 150.7 ± 2.3

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 9: Experiments showing the impact of tuning the hyperparameter γ conducted using Qwen-
14B on CR and FC layouts. The results, including mean and variance, are averaged over three
different seeds. The optimal value of γ typically lies within the range of 0.4-0.8, emphasizing the
importance of balancing between the belief of the LLMs and the prior causal knowledge.

Tab. 7 presents an ablation study comparing the effects of using different agents—Llama-8B and
MEP—for data collection in buffer B, when interacting with the environment to collect data for 200k
steps. We hypothesize that using MEP for data collection would yield better results, given that it is
a pretrained agent specialized for the task. Nevertheless, even when using data collected by Llama-
8B, incorporating causal knowledge still provides a performance gain compared to not using causal
knowledge at all. The results show that MEP consistently outperforms Llama-8B across all baseline
AI agents, achieving a higher average score of 150.7 (±2.3) compared to 125.3 (±30.7) for Llama-
8B. This underscores the importance of utilizing a stronger agent to generate high-quality training
data for causal reasoning. Importantly, even when using data from Llama-8B, causal knowledge
improves performance relative to the absence of causal guidance, where the average score drops to
110.7 (±12.8) as reported in Appx. Tab. 3. We hypothesize that the performance gain observed when
using data from Llama-8B arises from its ability to consult not only the current deterministic action
selection but also similar past scenarios through the incorporation of causal knowledge.

C.8 BENEFITS OF CAUSAL KNOWLEDGE INTEGRATION

We divide our analysis into micro-level failure, which examines agent behavior within a single
environment, and macro-level failure, which compares performance across multiple environments.

Micro-Level Failure. We analyzed Llama-8B’s behavior at 300 timesteps on the Cramped Room
layout, where our method showed a significant +36.1% improvement (from 110.7 to 150.7; Fig. 3).
Comparing agents with and without CausalPlan, we focused on two failure modes:

(1) Physically invalid actions. Calls to pickup onion() while already holding an object (e.g.,
hold onion1 or hold dish1) are reduced with the use of the causal graph. In contrast, valid
calls when the agent’s hand is empty (empty hand1) increase. Invalid calls dropped from 14
(41%) to 10 (23%), and valid ones rose from 20 (59%) to 33 (76%).

Table 8: Invalid vs. valid pickup onion() calls under different hand states.
State→ Action Without Graph With Graph
hold onion1 or hold dish1→ pickup onion() 14 10
empty hand1→ pickup onion() 20 33

(2) Poor coordination. The agent avoids redundant pickups when the pot is nearly full (pot2) and
the other agent already holds an onion (hold onion2). These cases dropped from 2 to 0, reflecting
better awareness and coordination from causal integration.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 9: Coordination failures with redundant pickup onion() calls.
State→ Action Without Graph With Graph
hold onion2, pot 2→ pickup onion() 2 0

Macro-Level Failure. Across environments, CausalPlan shows the largest improvements on
Cramped Room (+20.8%), Asymmetric Advantages (+18.8%), and Coordination Ring (+19.1%),
where causal failures such as role confusion, blocking, or redundant actions are common.

In contrast, Forced Coordination (+4.9%) emphasizes tight, time-dependent synchronization be-
tween agents (e.g., placing too many onions that block the counter while the pot is already full),
leaving less room for improvement under our current setup. Notably, we have not yet modeled
counter state in the causal graph; incorporating this information could further enhance performance
in such layouts.

C.9 HEATMAP OF LEARNED CAUSAL MATRIXM ANALYSIS

In Fig. 10 and Fig. 11, we present the causal matrices M derived from data collected by MEP
and Llama-8B, respectively. The inference results using these matrices are detailed in Appx. C.7.
To obtain each matrix, the respective agent interacts with the environment for 200,000 steps to
gather data, followed by training the SCA model for 500,000 steps on the collected dataset.
While both matrices share similarities in many key edges—for example, from empty hand1 to
pickup onion (edge weights of 0.9 for MEP and 0.8 for Llama-8B) and from pot finished
to fill dish with soup (0.9 for MEP and 0.8 for Llama-8B) (see Appx. C.11.2 for feature
descriptions)—there are important differences that likely contribute to performance variations. For
instance, the edge from pickup onion to put onion in pot has a weight of 0.6 when using
MEP-collected data but is absent (weight 0) with Llama-collected data. Similarly, the transition
from deliver soup to pickup onion appears with a weight of 0.7 in the MEP matrix but is
missing in the Llama-8B matrix. These differences highlight how the choice of data collection agent
influences the learned causal structure, which in turn can impact the effectiveness of downstream
inference and control.

Additionally, one may observe that both heatmaps contain several edges that are difficult to inter-
pret, especially those originating from the state of the other agent toward the current action. These
edges may carry meaning for the agent but appear unintelligible to humans, or they may be irrele-
vant. However, these unexpected edges have minimal impact on the inference process, provided the
LLM agent does not sample the corresponding actions, thereby eliminating the need to re-calculate
the final associated sampling probabilities. This highlights the importance of the general knowledge
embedded within the LLM agent, which helps partially eliminate irrelevant edges and leaves only
those ambiguities that require causal reasoning. We hypothesize that more advanced causal discov-
ery techniques could further improve the quality of the learned causal graphs by eliminating spurious
edges. A simpler alternative might involve hyperparameter tuning of a threshold, where edges with
probabilities below this threshold are removed entirely, or collecting more data. We leave these
explorations for future work.

C.10 TIME EFFICIENCY ANALYSIS

Learning the causal graph—such as in the CR environment, which involves 21 parent nodes and 7
child nodes—requires approximately 3 hours of training. However, this is a one-time offline process
that can be reused across all backbone models, making its cost negligible in the overall training
pipeline.

The actual runtime during planning varies depending on the backbone model used. Using NVIDIA
h100 GPUs (details in Appx. C.1, we observe the following runtimes for 400 timesteps:

• Gemma-7B and Llama-8B: Approximately 5 minutes without CausalPlan, and around 15
minutes with CausalPlan.

• Qwen-14B: Roughly 16 minutes without CausalPlan, and 41 minutes with CausalPlan.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

em
pty

_ha
nd

1

ho
ld_

on
ion

1

ho
ld_

dis
h1

dis
h_w

ith
_so

up
1

po
t0

po
t1

po
t2

po
t3

po
t_f

inis
he

d

go
al_

de
live

red

pic
kup

_on
ion

pu
t_o

nio
n_i

n_p
ot

pic
kup

_di
sh

fill_
dis

h_w
ith

_so
up

de
live

r_s
ou

p

pla
ce_

on
ion

_on
_co

un
ter

pla
ce_

dis
h_o

n_c
ou

nte
r

em
pty

_ha
nd

2

ho
ld_

on
ion

2

ho
ld_

dis
h2

dis
h_w

ith
_so

up
2

pickup_onion
put_onion_in_pot

pickup_dish
fill_dish_with_soup

deliver_soup
place_onion_on_counter

place_dish_on_counter

0.9 0.3 0.5 0.7 0.5 0.7 0.8 0.7 0.2 0.9 0.0 0.5 0.0 0.0 0.7 0.0 0.0 0.8 0.3 0.5 0.6

0.7 0.8 0.3 0.8 0.5 1.0 0.9 0.5 0.5 0.7 0.6 0.0 0.0 0.2 0.0 0.0 0.0 0.7 0.3 0.9 0.8

0.9 0.3 0.5 0.3 0.5 0.7 1.0 0.6 0.5 0.5 0.7 0.6 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.6 0.8

0.4 0.3 0.9 0.7 0.4 0.4 0.0 0.7 0.9 0.6 0.0 0.0 0.4 0.0 0.1 0.0 0.0 0.4 0.5 0.2 0.2

0.6 0.5 0.6 1.0 0.5 0.6 0.8 0.9 0.9 0.7 0.5 0.5 0.0 0.9 0.0 0.0 0.0 0.5 0.8 0.2 0.7

0.7 0.8 0.5 0.6 0.6 0.8 0.6 0.7 0.9 0.5 0.5 0.5 0.5 0.4 0.3 0.0 0.0 0.1 0.6 0.8 0.5

0.6 0.2 0.7 0.8 0.2 0.6 0.3 0.8 0.4 0.0 0.4 0.5 0.7 0.1 0.0 0.1 0.0 0.7 0.8 0.8 0.3
0.0

0.2

0.4

0.6

0.8

Ed
ge

 W
ei

gh
t

Figure 10: Heatmap of causal graph edge weights obtained from data collected using MEP in the
CR layout. The plot illustrates the influence of state features (x-axis) on agent actions (y-axis).

em
pty

_ha
nd

1

ho
ld_

on
ion

1

ho
ld_

dis
h1

dis
h_w

ith
_so

up
1

po
t0

po
t1

po
t2

po
t3

po
t_f

inis
he

d

go
al_

de
live

red

pic
kup

_on
ion

pu
t_o

nio
n_i

n_p
ot

pic
kup

_di
sh

fill_
dis

h_w
ith

_so
up

de
live

r_s
ou

p

pla
ce_

on
ion

_on
_co

un
ter

pla
ce_

dis
h_o

n_c
ou

nte
r

em
pty

_ha
nd

2

ho
ld_

on
ion

2

ho
ld_

dis
h2

dis
h_w

ith
_so

up
2

pickup_onion
put_onion_in_pot

pickup_dish
fill_dish_with_soup

deliver_soup
place_onion_on_counter

place_dish_on_counter

0.8 0.5 0.8 0.8 0.9 0.9 0.9 0.9 0.8 0.8 0.0 0.5 0.4 0.5 0.3 0.7 0.5 0.8 0.6 0.8 0.6

0.6 0.9 0.7 0.5 0.8 0.9 0.9 0.8 0.8 0.0 0.0 0.0 0.5 0.5 0.4 0.0 0.0 0.8 0.4 0.9 0.6

0.6 0.8 0.7 0.6 0.5 0.6 0.5 0.9 0.9 0.6 0.0 0.0 0.0 0.5 0.4 0.0 0.5 0.9 0.7 0.9 0.8

0.7 0.7 0.8 0.6 0.4 0.7 0.7 0.6 0.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 1.0 1.0 0.9

0.7 0.7 0.6 0.9 0.0 0.6 0.0 0.0 0.6 0.5 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.6 0.5 0.1 0.1

0.8 0.9 0.9 0.7 0.8 0.9 0.9 0.9 1.0 0.7 0.0 0.7 0.3 0.5 0.5 0.0 0.5 0.9 0.9 0.9 0.7

0.7 0.8 1.0 0.4 0.7 0.7 0.6 0.7 0.6 0.8 0.0 0.5 0.2 0.0 0.0 0.0 0.0 0.9 0.6 0.5 0.8
0.0

0.2

0.4

0.6

0.8

Ed
ge

 W
ei

gh
t

Figure 11: Heatmap of causal graph edge weights obtained from data collected using the Llama-
8B backbone in the CR layout. The plot illustrates the influence of state features (x-axis) on agent
actions (y-axis).

• Llama-70B: About 40 minutes without CausalPlan, and approximately 68 minutes with
CausalPlan.

These results highlight the additional computational cost introduced by causal reasoning. However,
the overhead remains reasonable given the observed improvements in policy quality.

C.11 HYPERPARAMETERS

C.11.1 CAUSALITY AND LLMS HYPERPARAMETERS

SCA Model

LLMs Agent (Build on top of ProAgent framework (Zhang et al., 2024a)

γ value in Eq. 4 for each layouts

C.11.2 STATES AND ACTIONS FACTORIZATION IN EACH ENVIRONMENT

States and actions factorization used in CR layouts are available in Tab. 13 and for other other layouts
are included in Tab. 14.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameters related to SCA Model
Parameter Value Description
N 200,000 Timesteps used to collect data for buffer B.
T 400 Horizon of each episode.
fi network architecture MLP Four hidden layers with dimensions 64, 256, 256,

64; ReLU activations; sigmoid output.
Optimizer Adam Optimization algorithm used to train δ and η.
Learning rate 3e-4 Step size for gradient updates for δ and η.
Regularization λ 1e-7 Regularization strength for parameter estimation.
Iterations 500,000 Number of training iterations for δ and η.

Table 11: Hyperparameters related to LLMs
Parameter Value Description
Model sizes Gemma-7B,

Qwen-14B,
Llama-8B,
Llama-70B

Language model sizes and architectures

Temperature 1.0 Controls randomness; higher values encourage di-
verse samples

Max new tokens 256 Maximum number of generated tokens per output
Top-k sampling 50 Number of top tokens considered in sampling
Top-p sampling 0.9 Nucleus sampling threshold (alternative to top-k)
Sampling method Enabled Sampling is enabled (do sample=true)
retrival method recent k Parameter of ProAgent framework to retrieve re-

cent history dialogue
K 1 Parameter of ProAgent framework, the number of

history dialogue (default value is 0 or 1)

D ADAPT TO LONG-HORIZON PLANNING

To adapt CausalPlan to Crafter, a single-agent environment that is often used to evaluate causality-
driven methods, we construct the causal matrixM using only the agent’s state and action informa-
tion. We continue to apply our two-phase causal reasoning framework to guide planning and action
selection. In this experiment, we employ Llama-7B as the backbone LLM, and use an underlying
PPO policy as our πβ (similar to Chen et al. (2025)) to collect trajectories and build the causal
matrix.

Fig. 12 presents the success rates of CausalPlan (Ours) against Dreamer-V2 (Hafner et al., 2020) and
Causal-aware LLMs (Chen et al., 2025) across 22 Crafter tasks. Causal-aware LLMs represent the
state-of-the-art approach that integrates causal reasoning into LLM agent planning through prompt-
ing. Our method consistently outperforms both baselines, often by substantial margins. In the partic-
ularly challenging tasks of make stone pickaxe and make stone sword, CausalPlan achieves success
rates of 5.2% and 6.7%, compared to only 1.3% and 1.6% with Causal-aware LLMs. Likewise,
in make iron pickaxe and make iron sword, CausalPlan succeeds where both Causal-aware LLMs
and Dreamer-V2 fail. These improvements in individual tasks are reflected in the aggregated final
score (Tab. 15), where CausalPlan achieves a higher final score of 16.7%, surpassing Causal-aware
LLM (14.6%) and Dreamer-V2 (10.0%). These results highlight that prompting alone is insuffi-
cient for robust long-horizon planning, whereas our method provides more reliable improvements
by grounding decisions in causal structure.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 12: γ value in Eq. 4 for each layout and language model
Layout Gemma-7B Qwen-14B Llama-8B Llama-70B
CR 0.5 0.5 0.5 0.5
AA 0.5 0.5 0.5 0.5
COR 0.5 0.5 0.5 0.5
FC 0.6 0.7 0.4 0.5
CC 0.5 0.5 0.5 0.5

Table 13: Factorized States and Actions for CR Layout with Descriptions
Feature Description
empty hand1 Controlling agent is not holding any object
hold onion1 Controlling agent is holding an onion
hold dish1 Controlling agent is holding an empty dish
dish with soup1 Controlling agent is holding a dish filled with soup

pot0 Pot contains 0 onions (empty)
pot1 Pot contains 1 onion
pot2 Pot contains 2 onions
pot3 Pot contains 3 onions (ready to cook)
pot finished Pot has finished cooking and soup is ready

goal delivered A soup has been successfully delivered to the goal

pickup onion Action: controlling agent picks up an onion
put onion in pot Action: controlling agent places an onion into a pot
pickup dish Action: controlling agent picks up an empty dish
fill dish with soup Action: controlling agent fills a dish with soup from a finished pot
deliver soup Action: controlling agent delivers a soup to the goal
place onion on counter Action: controlling agent places an onion on the counter
place dish on counter Action: controlling agent places a dish on the counter

empty hand2 Other agent is not holding any object
hold onion2 Other agent is holding an onion
hold dish2 Other agent is holding an empty dish
dish with soup2 Other agent is holding a dish filled with soup

Figure 12: Success rates of obtaining 22 achievements in log scale @1M steps.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 14: Factorized states and actions for other layouts and their descriptions
Feature Description
empty hand1 Controlling agent is not holding any object
hold onion1 Controlling agent is holding an onion
hold dish1 Controlling agent is holding an empty dish
dish with soup1 Controlling agent is holding a dish filled with soup

pot0 0 Pot 0 contains 0 onions (empty)
pot1 0 Pot 0 contains 1 onion
pot2 0 Pot 0 contains 2 onions
pot3 0 Pot 0 contains 3 onions (ready to cook)
pot finished 0 Pot 0 has finished cooking and soup is ready

pot0 1 Pot 1 contains 0 onions (empty)
pot1 1 Pot 1 contains 1 onion
pot2 1 Pot 1 contains 2 onions
pot3 1 Pot 1 contains 3 onions (ready to cook)
pot finished 1 Pot 1 has finished cooking and soup is ready

goal delivered A soup has been successfully delivered to the goal

pickup onion Action: controlling agent picks up an onion
put onion in pot Action: controlling agent places an onion into a pot
pickup dish Action: controlling agent picks up an empty dish
fill dish with soup Action: controlling agent fills a dish with soup from a finished pot
deliver soup Action: controlling agent delivers a soup to the goal
place onion on counter Action: controlling agent places an onion on the counter
place dish on counter Action: controlling agent places a dish on the counter

empty hand2 Other agent is not holding any object
hold onion2 Other agent is holding an onion
hold dish2 Other agent is holding an empty dish
dish with soup2 Other agent is holding a dish filled with soup

Table 15: Scores (mean ± std) of our method and baselines on 22 Crafter tasks.
Method Final Score (%)
Dreamer-V2 10.0 ± 1.2
Causal-aware LLMs @ 1M 14.6 ± 2.2
CausalPlan (Ours) @ 1M 16.7 ± 1.2

E DISCUSSION OF BROADER IMPACTS

This work represents an important foundational step toward integrating causal reasoning into multi-
agent planning with large language models (LLMs). Our causality-driven framework aims to im-
prove the safety, efficiency, and interpretability of collaborative AI systems by enabling agents to
better understand the consequences of their states and actions. Although primarily exploratory and
not yet intended for real-world deployment, the results demonstrate promising potential for advanc-
ing multi-agent coordination.

At this stage, we do not expect any direct negative societal impacts, as the framework requires further
development and validation before practical use. Nevertheless, as autonomous multi-agent systems
mature, concerns related to fairness, reliability, misuse, and broader ethical implications will become
increasingly important. Addressing these challenges through responsible design, transparency, and
rigorous evaluation will be critical to ensure the safe and trustworthy deployment of such systems in
the future.

31

	Introduction
	Preliminaries
	Method
	Causal Action Structure Learning
	Agent Planning with Causal Knowledge
	Causal-Aware Planning
	Causal Backup Plan

	Experiments
	Experimental setup
	AI partner evaluation
	Human partner evaluation
	Impact of CausalPlan components
	Benefits of Causal Integration

	Related Work
	Conclusion and Future Works
	Identifiability Analysis
	CausalPlan Details
	Causal Action Structure Learning details
	State and action factorization

	Agent Planning with Causal Knowledge details
	LLM prompt design
	Causal knowledge consultation details
	Extracting information for causal knowledge consultation
	Post-processing to identify redundant actions

	Additional Experiment Details
	CausalPlan implementation
	Environment details
	Baseline details
	Details of AI partner evaluation
	Details of Human partner evaluation
	Effect of hyperparameter
	Effect of different data collection policy
	Benefits of Causal Knowledge Integration
	Heatmap of learned causal matrix M analysis
	Time Efficiency Analysis
	Hyperparameters
	Causality and LLMs hyperparameters
	States and actions factorization in each environment

	Adapt to long-horizon planning
	Discussion of broader impacts

