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Abstract

Time Series Forecasting (T'SF) has long been a challenge in time series analysis. Inspired
by the success of Large Language Models (LLMs), researchers are now developing Large
Time Series Models (LTSMs), universal transformer-based models that use autoregressive
prediction to improve TSF. However, training LTSMs on heterogeneous time series data
poses unique challenges, including diverse frequencies, dimensions, scalability, and pat-
terns across datasets. Recent efforts have studied and evaluated various design choices
aimed at enhancing LTSM training and generalization capabilities. Despite progress in
both paradigms, there is no unified framework for systematically evaluating models and de-
sign choices across them. However, these design choices are typically studied and evaluated
in isolation and are not compared collectively. In this work, we introduce LTSM-Bundle, a
comprehensive toolbox and benchmark for training LTSMs, spanning pre-processing tech-
niques, model configurations, and dataset configurations. Modularized and benchmarked
LTSMs from multiple dimensions, encompassing prompting strategies, tokenization ap-
proaches, training paradigms, base model selection, data quantity, and dataset diversity.
By combining the most effective design choices, the combination achieves state-of-the-art
zero-shot and few-shot performance while providing a reproducible foundation for evalu-
ating both traditional LSF models and emerging LTSMs. Our source code is available at
https://anonymous.4open.science/r/LTSM-bundle-5B70/

1 Introduction

Time series forecasting (TSF) is a long-standing task in time series analysis, aiming to predict future val-
ues based on historical data points. Over the decades, TSF has transitioned from traditional statistical
methods (Ariyo et al 2014)) to machine learning (Friedman, [2001)), and more recently, to deep learning ap-
proaches (Elsworth & Giittel, |2020; [Livieris et al.} [2020). In particular, transformers (Vaswani et al., 2017)),
which are often regarded the most powerful architecture for sequential modeling, have demonstrated superior
performance in TSF, especially for long-term forecasting (Wu et al.| [2021; |Zhou et al., 2021} Nie et al., |2022;
Woo et al., 2022; Kitaev et al., |2020). Moving forward, inspired by the remarkable capabilities of Large
Language Models (LLMs), many researchers have begun to explore Large Time Series Models (LTSMs) as
the natural next phase, seeking to train universal transformer-based models for TSF (Woo et al.||2024; |Garza,
& Mergenthaler-Canseco|, [2023; [Dooley et al.| |2024; Rasul et al.l 2024} Das et al., [2023; |Gruver et al.l 2024}
Chang et al., [2023; |Zhou et al., [2023; [Jin et al.| [2023)).

Unlike textual data, where tokens typically hold semantic meanings transferable across documents, time
series data exhibits high heterogeneity, presenting unique challenges for LTSM training. Across different
datasets, time series often have diverse frequencies (such as hourly and daily), dimensions (in terms of
varying numbers of variables) and patterns (where, for example, traffic time series may differ significantly
from electricity data). This diversity not only poses difficulties in training an LTSM to fit all the datasets
but also impedes the model’s generalization to unseen data.

Recent endeavors have proposed various innovative designs to enhance the training and generalization ca-
pability of LTSMs. To name a few, (i) in terms of pre-processing, prompting strategies have been proposed
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Figure 1: An overview of the key design choices supported by the LTSM-Bundle framework. The library
is a general-purpose benchmarking toolbox that standardizes data preprocessing, tokenization strategies,
training paradigms, and evaluation pipelines across traditional LSF models, LLM-based models, and pre-
trained LTSMs, rather than being limited to LLM-centric designs.

to generate dataset-specific prompts (Jin et al. |2023), while various tokenization strategies have been stud-
ied for converting time series into tokens to be inputted into transformer layers (Zhou et al. [2023} |Ansari
et al., [2024); (ii) for the model configurations, prior research has involved reusing weights from pre-trained
language models and adapting them to downstream tasks (Zhou et al.l [2023); (iii) regarding dataset config-
urations, different datasets have been utilized for training purposes (Garza & Mergenthaler-Cansecol 2023;
Zhou et al.; 2023; |Chang et al.l [2023]). Despite these advances, evaluating models across both paradigms
remains challenging. Existing studies often adopt inconsistent pre-processing pipelines, heterogeneous to-
kenization strategies, and non-uniform evaluation metrics, making it difficult to draw fair comparisons or
identify best practices, where these designs are typically studied and evaluated in isolation. There is no
existing package that integrates these components or benchmarks them collectively. This makes it difficult
to understand, select, and combine these components to effectively train LTSMs in practice.

To address the gaps, we introduce LTSM-Bundle, a comprehensive toolbox and benchmark for training
LLMs for time series forecasting, spanning pre-processing techniques, model configurations, and dataset
configurations, as depicted in Figure The goal of LTSM-Bundle is designed to serve as a foundation for
benchmarking both current and emerging LTSMs and TSFMs, while maintaining full transparency about
its current model and dataset coverage. We modularize and benchmark LTSMs under the same settings
and from multiple dimensions, including prompting strategies, tokenization approaches, training paradigms,
base model selection, data quantity, and dataset diversity. In addition to existing components, we introduce
time series prompt, a statistical prompting strategy tailored for time series data, as one of our benchmarking
components. It generates prompts by extracting global features from the training dataset, providing robust
statistical descriptions for heterogeneous data.

Through extensive benchmarking with LTSM-Bundle, we combine the most effective design choices identified
in our study for training LTSMs. Our empirical results suggest that the identified combination produces
superior zero-shot and few-shot (with 5% training data) performances compared to the state-of-the-art
LTSMs in benchmark data sets. Additionally, even with just 5% of the data, our result is comparable to
the strong baselines trained on the full training data, demonstrating the practical value of LTSM-Bundle in
developing and training LTSMs. In summary, we have made the following contributions:

e We present LTSM-Bundle, a comprehensive toolbox and benchmark for LTSMs. LTSM-Bundle not only
includes various components with easy-to-use interfaces for training LTSMs but is also integrated with
TDengine, a state-of-the-art time series database, to build up an end-to-end training pipeline from time
series data storage to report visualization and generation.
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¢ We perform systematic analysis with LTSM-Bundle. Our analysis yields numerous insightful observations,
paving the path for future research endeavors.

o Tokenization design critically affects cross-architecture transferability. Our results show that different
tokenization strategies have a significant impact on forecasting performance across diverse model archi-
tectures.

e Model size is not always correlated with accuracy. We find that smaller and medium-sized models can
achieve competitive or even superior performance compared to larger models, particularly on long-horizon
forecasting tasks.

2 Notations and Problem Formulation

We denote a multi-variate time series as Z = {zi,2s,...,z7}, where z; € R? is a vector of multivari-
ate variable with dimension d, and T is the total number of timestamps. We typically partition Z
chronologically to create training, validation, and testing sets, denoted as Zf2* = {21, 22, ..., Zpurainy,
Z¥ = {Zpeain 1, Zperain g, ooy Zpesain g ety and ZY = {Zopwain pvaty 1, Zpeain g pval 9, .., Z7 }, where TR
and T denote the number of timestamps for training and validation, respectively. In traditional TSF,
we aim to train a model using Z'™" such that, on Z'*t, given the observations from the historical P
timestamps X = {z¢,,2¢,, ..., 2, }, the model can accurately predict the values of future @ timestamps
Y = {Ztp,,,%tp 0 s Ztp o}, Where X and Y are sub-sequences of Z***. In our work, the LTSMs are
trained by minimizing mean square error loss £(LTSM(X),Y) between the given sub-sequences.

We focus on training LTSMs, where the objective is to develop a model that performs well across various test
sets, denoted as Z'st = {Ziest Ziest || Z%'} where N represents the number of datasets for testing. Each
Z!*s* may originate from a distinct domain, with different lengths, dimensions, and frequencies. The training
sets for an LTSM may comprise training data associated with Z®** or data from other sources, provided
they are not included in Z'*s*, Training LTSMs presents a notable challenge compared to traditional TSF
models due to the inherent difficulty in accommodating diverse patterns across datasets, often necessitating
specialized designs. Nevertheless, it also offers opportunities to transfer knowledge from existing time series
to new scenarios.

3 LTSM-Bundle Library

3.1 Package Design

We showcase the system overview of LTSM-Bundle in Figure LTSM-Bundle is a modular toolkit that
supports the complete life-cycle of large time—series models (LTSMs), from raw data ingestion to deploy-
ment-ready evaluation. The framework is organized around four interoperable subsystems, all exposed
through a unified API that eliminates boilerplate engineering and accelerates experimentation. First, TS To-
kenizing converts multivariate time series into token sequences via linear and dynamic schemes that preserve
both global trends and local temporal dynamics, making the data directly consumable by Transformer-style
backbones. Second, TS Prompting embeds task instructions and statistical context—through hard, soft,
and statistics-aware prompts—into the token stream, enabling zero- and few-shot adaptation to forecasting,
anomaly detection, and classification tasks. Third, the Data Processing layer supplies scalable loaders, win-
dowing utilities, and feature-engineering pipelines that abstract away dataset idiosyncrasies and seamlessly
handle large benchmarks. Fourth, LTSM Training offers a uniform optimization interface for fine-tuning
or training from scratch a range of backbone architectures and parameter scales, with built-in support for
curriculum learning, transfer learning, and large-scale hyperparameter sweeps. These subsystems are orches-
trated by a reproducible workflow engine that chains tokenizing, prompting, processing, and training steps
into end-to-end pipelines. The toolkit further provides a library of loss functions, data-augmentation rou-
tines, and evaluation metrics, alongside visualization and reporting utilities that generate publication-ready
artifacts. Collectively, LTSM-Bundle delivers a comprehensive and extensible platform for constructing, an-
alyzing, and deploying large time—series models, thereby lowering the barrier to reproducible research and
accelerating industrial adoption.
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Figure 2: System Overview of LTSM-Bundle library. LTSM-Bundle provides an end-to-end training and
evaluation pipeline constructed from data preprocessing to visualization. It also provides a database reader
to better incorporate with large-scale datasets.

3.2 Package Interface

The LTSM-Bundle package is implemented with a scikit-learn-like interface to easily train a customized LTSM.
To increase the flexibility of LTSM-Bundle in utilizing a broader spectrum of backbone models and training
paradigms, we have integrated it with the Huggingface Transformers packageﬂ This integration allows
for the incorporation of diverse pre-trained weights and supports various training approaches, enhancing
the overall adaptability of our framework. Researchers and practitioners only need to provide their own
time series data and specify the chosen training configurations; then, every training pipeline can be created
using the LTSM-Bundle package. Moreover, LTSM-Bundle supports linking with time series vector database,
T Dengineﬂ a state-of-the-art time series database, to build an end-to-end training pipeline from time series
data storage to report visualization and generation. Without struggling to build up extra efforts on clear
report generation and visualization, LTSM-Bundle automatically generates all results with an easy-to-read
template at the top of TDengine.

4 Benchmarking LTSM Training

We benchmark existing LTSM components by involving and coordinating them into four fundamental com-
ponents of LTSM-Bundle package. We aim to answer the following research questions: 1) How do to-
kenization methods and prompting techniques impact model convergence? 2) How do base
model selection and the training paradigms impact the time series forecasting performance?
and 3) How do different dataset configurations impact the model generalization?

To answer the questions, we evaluate the impact of each component individually by keeping the rest of the
components fixed. First, we fix the base model and dataset configurations with smaller model sizes, limited
data quantities, and reduced data diversity, excluding prompt tokenization, to identify the optimal prompting

Thttps://github.com/huggingface/transformers
?https://github.com/taosdata/TDengine
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strategy. Next, we incorporate the best prompting strategy with the same base model selection and dataset
configuration to assess the tokenization methods. Afterward, we keep all the components constant except
the base model to study the impact of different model initialization and training strategies. Finally, with the
best tokenization and prompting methods, we select a list of candidate base models following the guidelines
from the previous step. We also control the quantity and diversity of the training data to assess their impacts
on model generalizability and prediction performances.

We follow the experimental settings outlined in Timesnet (Wu et all [2022) and Time-LLM
, employing the unified evaluation framework. The input time series length £ is set to 336, with four
different prediction lengths in {96, 192, 336, 720}. Evaluation metrics include mean square error (MSE) and
mean absolute error (MAE). We also calculate the average scores among all prediction horizons. The results
highlighted in red represent the best performance and highlighted in blue represent the second best
performance. The details of hyperparameter settings of our banchmarking experiments are in Appendix [B]
respectively.

Our evaluations use widely adopted benchmarks: the ETT series (ETThl, ETTh2, ETTm1, ETTm2)(Zhoul
2021), Traffic, Electricity, Weather, and Exchange-Rate datasets(Lai et al. 2018, [Wu et al [2022).
ETT comprises four subsets—two with hourly data (ETTh) and two with 15-minute data (ETTm)—each
containing seven features from July 2016 to July 2018. The Traffic dataset provides hourly road occupancy
rates from San Francisco freeways (2015-2016); the Electricity dataset records hourly consumption for 321
clients (2012-2014); the Weather dataset offers 21 indicators every 10 minutes in Germany during 2020; and
the Exchange-Rate dataset includes daily rates for eight countries (1990-2016). For more details, refer to
Appendix [A]

We first train our framework on the diverse time series data collection using LTSM-Bundle package and then
assess the best combination identified on joint learning and zero-shot transfer learning to different domains
of time series knowledge. For clarity, we use the term “LTSM-Bundle” to represent the best practice of the
combination under the described experiment settings in each of the following sections.

4.1 Pre-processing: Instruction Prompts

The pre-processing step plays a crucial role in enabling LLM-based models to better adapt to time series
datasets. In this section, we present a detailed analysis aimed at recommending the most effective pre-
processing prompting strategy to compose LTSM-bundle. Instruction prompts enhance the effectiveness of
LTSM training by providing auxiliary information. This prompt helps the model adjust its internal state
and focus more on relevant features in different domains of the dataset, thereby improving learning accuracy.
With the aid of prompts, LTSM aims to optimize forecasting ability across diverse dataset domains. We
explore two types of prompts: the Text Prompts written in task-specific information, and
the time series prompts developed by global features of time series data. This comparison determines the
most effective prompt type for LTSM training.

Time Series Prompts Time series prompts aim to capture the comprehensive properties of time series
data. Unlike instruct prompts, they are derived from a diverse set of global features extracted from the entire
training dataset. This approach ensures a robust representation of the underlying dynamics, in addition to
enhancing model performance. The time series prompts are generated by extracting global features from
each variate of the time series training data. The extracted global features are specified in Appendix
After extracting the global features, we proceed to standardize their values across all varieties and instances
within the dataset. This standardization is crucial to prevent the overflow issue during both training and
inference stages. Let P = {p;y,---,p,,} denote the global features of Z after the standardization, where
p, € R%. Subsequently, P serves as prompts, being concatenated with each timestamp X derived from
the time series data. Consequently, the large time series models take the integrated vector X=PUX-=
{P1, Dy 2ty Ztyy -, Ztp } as input data throughout both training and inference phases, as illustrated in
Figure [3] The time series prompts are generated separately for the training and testing datasets, without
leaking the information from testing data. We leverage the packageﬂ to generate the time series prompts.

Shttps://github.com/thuml/Time-Series-Library
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Table 1: Performance of different prompting strategies

Metric Input ‘ ETThl ETTh2 ETTml ETTm2 Traffic Weather Electricity Avg.
No prompt 0.308 0.237 0.367 0.157 0.306 0.177 0.148 0.243
MSE TS prompt 0.307 0.234 0.285 0.155 0.305 0.172 0.145 0.229
Text prompt 0.319 0.241 0.490 0.190 0.345 0.212 0.185 0.283
No prompt 0.375 0.325 0.411 0.258 0.272 0.232 0.246 0.303
MAE TS prompt 0.377 0.326 0.369 0.266 0.279 0.242 0.247 0.301
Text prompt 0.386 0.329 0.476 0.289 0.326 0.269 0.299 0.339

Table 2: Performance of linear and time series tokenization

Metric Tokenizer ‘ ETThl ETTh2 ETTml ETTm2 Traffic Weather Exchange Electricity Avg.
MSE Linear tokenizer 0.301 0.228 0.261 0.149 0.300 0.163 0.058 0.140 0.214
Time series tokenizer 1.798 0.855 1.671 0.625 2.199 0.983 3.729 2.206 1.663
MAE Linear tokenizer 0.372 0.319 0.346 0.265 0.268 0.230 0.173 0.241 0.281
Time series tokenizer 1.057 0.606 0.991 0.488 1.083 0.619 1.495 1.108 0.895

Experimental Results We begin by evaluating the effectiveness of instruction prompts. Specifically, we
assess two distinct types of instruction prompts, both initialized by the same pre-trained GP2-Medium
weights within the context of commonly used linear tokenization. The experimental results are shown
in Table Our observations suggest that (1) statistical prompts outperform traditional text prompts in
enhancing the training of LTSM models with up to 8% lower MAE scores. Additionally, (2) it is observed
that the use of statistical prompts results in superior performance compared to scenarios where no prompts
are employed, yielding up to 3% lower MSE scores. The superiority of statistical prompt is evident in
the more effective leveraging of LTSM capabilities, leading to improved learning outcomes across various
datasets. Based on the above observations, we select time series prompts as the focus in the following
analysis and incorporate them into LTSM-bundle.

4.2 Pre-processing: Tokenizations

In addition to employing instructional prompts to enhance generalization in LTSM training, this section
provides a detailed analysis aimed at identifying the most effective tokenization strategy for LTSMs. We
explore two distinct tokenization approaches — linear tokenization (Zhou et al., |2023)) and time series tok-
enization (Ansari et al., [2024) — to determine the superior method for training LTSM models.

Details of Tokenization To harness the power of LLMs, a prevalent strategy involves mapping time se-
ries values to tokens (Zhou et al., 2023; |Jin et al., 2023|). However, converting time series data to natural
language formats for LLMs is not trivial, as LLMs are pre-trained with predetermined tokenizers designed
for NLP datasets. However, this implies that time series data cannot be directly fed into LLMs for training
on forecasting purposes; it requires a specialized transformation of the time series data into specific indices
suitable for processing by the LLMs. In this manner, we utilize two advanced types of tokenizations, lin-
ear tokenization and time series tokenization, to better evaluate their effectiveness in transferring data for
training LTSMs. Specifically, the linear tokenization (Zhou et all |[2023) leverages one trainable linear layer
f : R® — RX to transfer time series numbers to specific tokens, where £ denotes time series length, and
K refers to input size of pre-trained LLM backbone. The trainable time series tokenization (Ansari et al.,
2024)) aims to covert continuous time series data into discrete tokens by scaling and quantizing their values
to the specific number of token bins with a given Dirichlet function.

Experimental Results We investigate the impact of two tokenization methods on training LTSMs. By
comparing different tokenization strategies, we aim to identify which approach best complements the LTSM
architecture, enhancing its ability to process and learn from complex and multi-domain datasets. Specifically,
we conduct experiments comparing linear tokenization and time series tokenization, utilizing pre-trained
GPT-2-medium models along with time series prompts. The experimental results shown in Table [2] demon-
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Table 3: Performance of learning from scratch, LoRA fine-tuning, and fully fine-tuning

Metric \ MSE \ MAE
Predict length | 96 192 336 720 | 96 192 336 720
0.325 0296 0.323 0.355 | 0.355 0.375 0.374 0.409

From scratch
TS prompt LoRA fine-tuning
Fully fine-tuning

0.343 0.381 0.399 0.466 | 0.374 0.403 0.426 0.478
0.229 0.260 0.297 0.351 | 0.301 0.324 0.354 0.397

0.494 0434 0.597 0.485 | 0.463 0.438 0.512 0.475
0.347 0379 0.406 0.473 | 0.373 0.404 0.431 0.484
0.294 0.286 0.353 0.358 | 0.330 0.338 0.378 0.429

From scratch
Text prompt LoRA fine-tuning
Fully fine-tuning

strate that linear tokenization more effectively facilitates the training process of LTSM compared to time
series tokenization. In our study, we focus on smaller and more accessible training data. Under these circum-
stances, we observe that a linear tokenization is a more suitable choice than a time series tokenization, as
the pre-trained time series tokenization may not have the transferability toward different model architecture.
Unlike textual tokenization, the time series tokenization is determined by a pre-trained time series dataset
with a designated LT'SM architecture In summary, (3) linear tokenization is flexible and adaptive for different
settings of LTSM training compared to time series tokenization under a smaller amount of training data.

4.3 Model Configuration: Training Paradigm

Different training paradigms exhibit unique characteristics that influence how well LLMs fit a specific training
dataset. In this section, we explore three distinct training paradigms, fully fine-tuning, training from scratch,
and LoRA (Hu et al., [2021), to identify the most effective approaches for training the LTSM framework.

Training Paradigm. In the full fine-tuning paradigm, we utilize the pre-trained weights of each base LLM,
which finetune all parameters using the given time series dataset. Conversely, in the training-from-scratch
paradigm, we only preserve the original model architecture but initialize all parameters anew before training
with the time series dataset. In the LoRA paradigm, we employ low-rank adapters on base LLMs.

Experimental Results. We assess the effectiveness of the training paradigm under the settings of time
series prompt and text prompt usage. Table [3] presents the results of various training strategies using GPT-
2-Medium as the backbone. In general, the experimental results indicate that full fine-tuning is the most
effective strategy for training the LTSM framework whether leveraging time series prompts or text prompts.
Based on the results, we summarize the observations as follows. (@) Although training-from-scratch achieves
competitive performance compared to full fine-tuning, the large number of trainable model parameters may
lead to overfitting, ultimately degrading performance. (B) Fully fine-tuning paradigm leads to the best
performance with up to 11% of improvement on MSE and up to 17% of improvement on MAE under the
length of {96, 192, 336}, and performance competitive under the length of 720. Training LTSM-bundle under
the full fine-tuning paradigm is recommended, as it converges twice as fast as training from scratch, ensuring
efficient and effective forecasting.

4.4 Model Configuration: Base Model Selection

Base Model Candidates As for the base models of our framework, we leverage four different pre-trained
models, including GPT-2-small, GPT-2-medium, GPT-2-large (Radford et al.;[2019), and Phi-2 (Javaheripi &
Bubeck, |2023)). GPT-2 employs a transformer architecture with up to 48 layers, and it is trained on a diverse
corpus of internet text, resulting in a model size of 124M (small), 355M (medium), and 774M (large) pa-
rameters. Phi-2 also uses a transformer-based architecture but emphasizes high-quality (“textbook-quality”)
data, comprising 2.7 billion parameters. Despite its smaller size compared to the largest contemporary mod-
els, Phi-2 incorporates innovative scaling techniques to optimize performance. Different from the absolute
positional encoding used by GPT-2, Phi-2 employs relative positional encoding, which considers the pair-
wise distance between each token pair for encoding position information of tokens. Following the settings
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Table 4: Performance of different backbones
Metric | MSE \ MAE
GPT-2 | 96 192 336 720 | 96 192 336 720

Small 0.252 0.306 0.316 0.352 | 0.313 0.363 0.367 0.400
Medium | 0.229 0.260 0.297 0.351 | 0.301 0.324 0.354 0.397
Large 0.224 0.257 0301 0.358 | 0.292 0.322 0.356 0.399

Table 5: Performance of different down-sampling rates

Metric ‘ MSE ‘ MAE

DS rate | 96 192 336 720 | 96 192 336 720
2.5% 0.227 0.268 0.308 0.369 | 0.2904 0.335 0.365 0.415
5% 0.229 0.261 0.297 0.350 | 0.301 0.324 0.354 0.397
10% 0.233  0.260 0.291 0.350 | 0.289 0.323 0.348 0.396

in (Zhou et al.|2023)), we utilize the top three self-attention layers of every pre-trained model as our backbone
structure in LTSM-bundle framework.

Experimental Results We explore the impact of using different pre-trained LLM weights as backbones in
LTSM models, with the goal of identifying the most suitable pre-trained LLM weights for processing time
series data. The findings are detailed in Table [d]l We assess the performance of different backbones with
time series prompts under the fully fine-tuning paradigm. We summarize our observations as follows: (6)
GPT-2-Small demonstrates a performance improvement of up to 2% in relatively long-term forecasting (i.e.,
336 and 720 hours) compared to the GPT-2-Large model. (?) GPT-2-Medium outperforms GPT-2-Large in
relatively short-term forecasting (i.e., 96 and 192 hours), as larger models may be prone to overfitting during
training, degrading forecasting performance.

While our benchmarking results in Table [f] indicate that variations in the number of parameters within the
same architecture have minimal impact on performance, we did not limit our analysis to a single model size
alone. To ensure the rigor of our evaluation, we compared Phi-2—an alternative model architecture—with
GPT-2 models of varying sizes (large, medium, and small) using different prompting methods, as detailed in
Table [I8 and Table [I9] of Appendix [F} The results show that GPT-2 Small and Medium obtains higher per-
formance than Phi-2 on both time series prompt and textual instruction prompt settings. Based on the above
findings, we recommend incorporating GPT-2-Medium or GPT-2-Small as the backbone of LTSM-bundle.

4.5 Dataset configuration: Quantity

The quantity of datasets is often the key to the success of LLMs due to the consistent semantic meaning
of tokens. Nevertheless, time series tokens are less informative and semantically meaningful compared to
natural language tokens. In this section, we investigate the impact of data quantity to determine whether
the principle that more training data leads to better LTSMs.

Quantity Configuration We conduct the down-sampling strategies to study the impact of data quantity
on prediction performance. Specifically, each time series in the training data are periodically down-sampled
along the timestamps to reduce the granularity of the entire time series while maintaining the general pattern.
Each dataset is split into training, validation, and testing sets, and then down-sampling is applied to the
training set for model training. We compare the models trained with 10%, 5%, and 2.5% of the full-size
time series in the training set. In the following experiment section, we annotate partial training data usage
as few-shot training.

Experimental Results Table[5]lists the results of models trained with different data quantities under GPT-
2 Medium as the model backbone. The model trained with 5% and 10% down-sampled data leads to the best
result compared to 2.5%. We observe that increasing the amount of data does not positively correlate
with improved model performance. The rationale is that increasing data points enhances the granularity of
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Table 6: Average performance with different downsampling under different domain LTSM-Bundle

(MAE/MSE) | 1dataset | 2 datasets | 4 datasets | 8 datasets

2.5% 0.446/0.450 | 0.435/0.485 | 0.396/0.357 | 0.352/0.293
5% 0.416/0.380 | 0.415/0.436 | 0.383/0.341 | 0.344/0.283
10% 0.414/0.375 | 0.415/0.440 | 0.394/0.355 | 0.348/0.288

Table 7: Performance of LTSM trained on different numbers of datasets

‘ 1 dataset 2 datasets 3 datasets 4 datasets 5 datasets 6 datasets 7 datasets 8 datasets

96 0.333 0.366 0.269 0.276 0.232 0.229 0.227 0.215
MSE 192 0.394 0.440 0.309 0.318 0.271 0.267 0.269 0.254
336 0.403 0.427 0.356 0.351 0.302 0.325 0.308 0.302
720 0.478 0.511 0.436 0.419 0.373 0.364 0.369 0.361
96 0.351 0.351 0.327 0.329 0.298 0.294 0.292 0.282
MAE 192 0.407 0.395 0.363 0.368 0.333 0.332 0.334 0.323
336 0.420 0.420 0.401 0.392 0.361 0.384 0.371 0.362
720 0.464 0.494 0.466 0.445 0.423 0.411 0.419 0.411

time series but may reduce the model’s generalization ability, while excessive down-sampling loses critical
information, hindering pattern learning. Thus, optimizing model performance requires carefully balancing
the amount of training data with its diversity. To explore this balance, we conducted experiments using
different downsampling rates across various time series datasets. After comparing with the different down-
sampling rates (i.e., 2.5%, 10%, and 25% in Table [5| and Table @ We use 5% of the dataset to benchmark
the LTSM-Bundle family across diverse time series data, as increasing the dataset size beyond this point
results in only marginal performance improvements while significantly increasing training time (i.e., 10%
increase doubles the computational cost but yields only a slight enhancement in forecasting performance).

4.6 Dataset Configuration: Diversity

Impact of Dataset Diversity Recall that we utilized eight datasets for training purposes, encompassing
ETT variant, Traffic, Electricity, Weather, and Exchange. Here, we focus on evaluating the performance of
LTSM models when trained with subsets of these datasets. Specifically, we employ the first M datasets from
the aforementioned list for training, where M € 1,2, ..., 8. For instance, when M = 1, solely ET'Th1 is utilized
for training; when M = 5, ETThl, ETTh2, ETTm1, ETTm2, and Weather are utilized. Subsequently, we
evaluate the trained model’s performance across all datasets to understand the impact of dataset diversity.

Experimental Results Table @ summarizes the results. (9) Augmenting dataset diversity generally leads
to improved performance. This is expected because more diverse data has the potential to enhance the
generalization capabilities of LTSMs across various patterns. We conclude two reasons: (1) Although orig-
inating from different domains with distinct characteristics, datasets may share underlying knowledge that
can be transferred, enhancing model generalization and performance. (2) Prompting strategies, particularly
time series prompts, can further facilitate knowledge transfer by guiding the model to implicitly learn which
information to retain and which to discard.

5 Comparison with Baselines

Based on the observations in Section we identify a strong combination using LTSM-Bundle with the
settings as follows: (1) Base model backbone: GPT-2-Medium, (2) Instruction prompts: the time series
prompts, (3) Tokenization: linear tokenization, and (4) Training paradigm: fully fine-tuning. We compare
this combination against SOTA TSF models on zero-shot and few-shot settings.
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Table 8: Zero-shot performance. “LTSM-Bundle” denotes the best combination of LTSM training components

‘ LTSM-Bundle ‘ TIME-LLM ‘ GPT4TS ‘ LLMTime ‘ DLinear ‘ PatchTST ‘ TimesNet
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
ETThl — ETTh2 | 0.319 0.402 | 0.353  0.387 | 0.406 0.422 | 0.992 0.708 | 0.493 0.488 | 0.380 0.405 | 0.421 0.431
ETThl — ETTm2 | 0.312 0406 | 0.273  0.340 | 0.325 0.363 | 1.867 0.869 | 0.415 0.452 | 0.314 0.360 | 0.327 0.361
ETTml — ETTh2 | 0.306 0.391 | 0.381 0.412 | 0.433 0.439 | 0.992 0.708 | 0.464 0.475 | 0.439 0438 | 0.457 0.454

ETTml — ETTm2 | 0.217 0.319 | 0.268 0.320 | 0.313 0.348 | 1.867 0.869 | 0.335 0.389 | 0.296 0.334 | 0.322  0.354
ETTm2 — ETTh2 | 0.314 0.393 | 0.354  0.400 | 0.435 0.443 | 1.867 0.869 | 0.455 0.471 | 0.409 0.425 | 0.435 0.443
ETTm2 — ETTml | 0403 0430 | 0.414 0438 | 0.769 0.567 | 1.933 0.984 | 0.649 0.537 | 0.568 0.492 | 0.769  0.567

5.1 Experimental Settings

We follow the same settings as in Time-LLM (Jin et al. |2023). Specifically, for zero-shot experiments, we
test the model’s cross-domain adaptation under the long-term forecasting scenario and evaluate it on various
cross-domain scenarios utilizing the ETT datasets. The hyperparameter settings of training LTSM-Bundle
are in Appendix Bl For the few-shot setting, we train our LTSM-Bundle on 5% of the data and compare it
with other baselines under the 5% as well. We cite the performance of other models when applicable (Zhou
et al.| 2023)). Furthermore, we compare LTSM-Bundle trained on 5% training data against baselines trained
on the full training set. Our findings in Appendix [F]indicate that LTSM-Bundle achieves comparable results,
further underscoring its superiority.

The baseline methods consist of various Transformer-based methods, including PatchTST (Nie et al., [2022)),
ETSformer (Woo et all [2022), Non-Stationary Transformer (Liu et al., 2022)), FEDformer (Zhou et al.,
2022), Autoformer (Chen et al., 2021), Informer (Zhou et all [2021), and Reformer (Kitaev et al.| [2020).
Additionally, we evaluate our model against recent competitive models like Time-LLM (Jin et al.; [2023)),
TEST (Sun et al., [2023), LLMATS (Chang et al., 2023), GPT4TS (Zhou et al., 2023|), DLinear (Zeng et al.,
2023)), TimesNet (Wu et al.} 2022), and LightTS (Campos et al.l 2023)). More details of the baseline methods
can be found in Section [6]

5.2 Zero-shot and Few-shot Results

Zero-shot Performance In the zero-shot learning experiments shown in Table [§] shows that the best
component combination from benchmarking LTSM-Bundle consistently delivers superior performance across
various cross-domain scenarios using the ETT datasets. For example, in the ETThl to ETTh2 dataset
transfer task, LTSM-Bundle achieves an MSE of 0.319 and an MAE of 0.402, outperforming all other methods,
including TIME-LLM, GPT4TS, and DLinear. Similarly, in the ETTm1 to ETTm2 dataset transfer scenario,
LTSM-Bundle records the lowest MSE and MAE scores of 0.217 and 0.319, showing its strong generalization
capability across different domains. The consistent improvements across transfer tasks of LTSM-Bundle in
zero-shot learning.

Few-shot Performance Table [J] presents the performance of the best component combination from bench-
marking compared to the baseline models in the few-shot setting, utilizing 5% of the training data. Notably,
LTSM-Bundle exhibits a significant advantage over both traditional baselines and existing LTSMs. Across
the 7 datasets, LTSM-Bundle outperforms all baselines regarding MSE in 5 datasets and regarding MAE in 4
datasets. Moreover, LTSM-Bundle achieves the top rank 40 times among the reported results. These findings
underscore the effectiveness of our model in few-shot scenarios, where it demonstrates high accuracy even
with limited training data. Its capability to excel with minimal data not only highlights its adaptability but
also its potential for practical applications, particularly in contexts where data availability is constrained.
All further and full versions of results on the full datasets are provided in Appendix [F]

6 Related Works
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Table 9: Performance comparison in the few-shot setting with 5% training data. The full results are provided
in Appendix [F] “LTSM-Bundle” denotes the best combination of LTSM training components

| LTSM-Bundle | TIME-LLM | LLM4TS | GPT4TS | DLinear | PatchTST | TimesNet | FEDformer
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 0.307 0377 | 0.483 0.464 | 0.509 0.484 | 0.543 0.506 | 0.547 0.503 | 0.557 0.519 | 0.892 0.625 | 0.593  0.529
= 192 0.329  0.391 0.629  0.540 | 0.717  0.581 0.748 0.580 | 0.720 0.604 | 0.711 0.570 | 0.940 0.665 | 0.652  0.563
= 336 0.346 0405 | 0.768 0.626 | 0.728 0.589 | 0.754 0.595 | 0.984 0.727 | 0.816 0.619 | 0.945 0.653 | 0.731  0.594
= . )
m 720 0.370  0.441 - - - - - - - - - - - - - -
Avg 0.338 0403 | 0.627 0.543 | 0.651  0.551 0.681  0.560 | 0.750 0.611 0.694 0.569 | 0.925 0.647 | 0.658  0.562
96 0.235 0.326 | 0.336  0.397 | 0.314 0.375 | 0.376  0.421 0.442  0.456 | 0.401 0.421 0.409  0.420 | 0.390 0.424
o192 0.283  0.365 | 0.406 0.425 | 0.365 0.408 | 0.418  0.441 0.617 0.542 | 0.452  0.455 | 0.483 0.464 | 0.457 0.465
= 336 0.320  0.401 0.405 0.432 | 0.398 0.432 | 0.408 0.439 1.424  0.849 | 0.464 0.469 | 0.499 0.479 | 0.477 0.483
= om .
8 720 |03 0456 | - - - - - - - - - - - - - -
Avg 0.303  0.387 | 0.382 0.418 | 0.359 0.405 | 0.400 0.433 | 0.694 0.577 | 0.439 0.448 | 0.439 0.448 | 0.463 0.454
96 0.285 0.369 | 0.316 0377 | 0.349 0379 | 0.386  0.405 | 0.332 0.374 | 0.399 0.414 | 0.606 0.518 | 0.628  0.544
'_E' 192 0.319  0.393 | 0.450 0.464 | 0.374 0.394 | 0.440 0.438 | 0.358 0.390 | 0.441 0.436 | 0.681 0.539 | 0.666  0.566
= 336 0.378 0425 | 0.450 0.424 | 0.411 0.417 | 0.485 0.459 | 0.402 0.416 | 0.499 0.467 | 0.786  0.597 | 0.807 0.628
E 720 0.464 0477 | 0.483 0.471 0.516 0479 | 0.577 0499 | 0.511 0489 | 0.767 0.587 | 0.796 0.593 | 0.822 0.633
Avg 0.362 0416 | 0.425 0.434 | 0.412 0417 | 0.472 0.450 | 0.400 0.417 | 0.526  0.476 | 0.717  0.561 0.730  0.592
96 0.156  0.266 | 0.174  0.261 0.192  0.273 | 0.199 0.280 | 0.236  0.326 | 0.206  0.288 | 0.220 0.299 | 0.229 0.320
@192 0.203  0.307 | 0.215 0.287 | 0.249 0.309 | 0.256 0.316 | 0.306 0.373 | 0.264 0.324 | 0.311 0.361 0.394 0.361
£ 336 0.255 0.349 | 0.273  0.330 | 0.301  0.342 | 0.318 0.353 | 0.380 0.423 | 0.334 0.367 | 0.338 0.366 | 0.378  0.427
E 720 0.342 0417 | 0.433 0.412 | 0.402 0.405 | 0.460 0.436 | 0.674 0.583 | 0.454 0.432 | 0.509 0.465 | 0.523 0.510
Avg 0.239 0335 | 0.274 0.323 | 0.286 0.332 | 0.308 0.346 | 0.399 0.426 | 0.314 0.352 | 0.344 0.372 | 0.381 0.404
96 0.172  0.242 | 0.172 0.263 | 0.173  0.227 | 0.175 0.230 | 0.184 0.242 | 0.171 0.224 | 0.207  0.253 | 0.229  0.309
g 192 0.218 0.278 | 0.224 0.271 0.218 0.265 | 0.227 0.276 | 0.228 0.283 | 0.230 0.277 | 0.272 0.307 | 0.265 0.317
% 336 0.276  0.329 | 0.282 0.321 0.276  0.310 | 0.286 0.322 | 0.279 0.322 | 0.294 0.326 | 0.313 0.328 | 0.353 0.392
§ 720 0.339 0373 | 0.366  0.381 0.355 0.366 | 0.366  0.379 | 0.364 0.388 | 0.384 0.387 | 0.400 0.385 | 0.391 0.394
Avg 0.251  0.305 | 0.260 0.309 | 0.251  0.292 | 0.263 0.301 0.263  0.308 | 0.269 0.303 | 0.298 0.318 | 0.309 0.353
. 96 0.145 0.247 | 0.147 0.242 | 0.139  0.235 | 0.143  0.241 0.150  0.251 0.145 0.244 | 0.315 0.389 | 0.235 0.322
=192 0.159  0.259 | 0.158 0.241 | 0.155 0.249 | 0.159 0.255 | 0.163 0.263 | 0.163 0.260 | 0.318 0.396 | 0.247 0.341
E 336 0.180 0.284 | 0.178 0.277 | 0.174 0.269 | 0.179 0.274 | 0.175 0.278 | 0.183  0.281 0.340 0.415 | 0.267 0.356
.i’ 720 0.215 0.317 | 0.224 0312 | 0.222  0.310 | 0.233 0.323 | 0.219 0.311 0.233 0.323 | 0.635 0.613 | 0.318 0.394
i Avg 0.175 0.276 | 0.179 0.268 | 0.173  0.266 | 0.178 0.273 | 0.176  0.275 | 0.181 0.277 | 0.402 0.453 | 0.266  0.353
96 0.305  0.279 | 0.414 0.291 0.401  0.285 | 0.419 0.298 | 0.427 0.304 | 0.404 0.286 | 0.854 0.492 | 0.670 0.421
o 192 0.313  0.274 | 0.419 0.291 0.418 0.293 | 0.434 0.305 | 0.447 0.315 | 0.412 0.294 | 0.894 0.517 | 0.653 0.405
&?E 336 0.326  0.287 | 0.437 0.314 | 0.436 0.308 | 0.449 0.313 | 0478 0.333 | 0.439 0.310 | 0.853 0.471 0.707  0.445
H 720 0.346 0.301 - - - - - - - - - - - - - -
Avg 0.323  0.285 | 0.423 0.298 | 0.418 0.295 | 0.434 0.305 | 0.450 0.317 | 0.418 0.296 | 0.867 0.493 | 0.676  0.423
1 Count | a7 6 H 16 0 2 H 2 | 0 | 0

In this work, we focus on benchmarking the training paradigms of LTSMs on top of decoder-only single
models. To provide a comprehensive comparison, we categorize existing LLM-based time series forecasting
approaches into three representative groups: 1. Pretrained LLM Adaptation. These methods leverage
general-purpose large language models (LLMs), such as GPT, LLaMA, and Phi, for time series forecast-
ing through fine-tuning, in-context learning, or lightweight adapter modules. Representative works include
GPT4TS (Zhou et al) [2023), which adapts the Frozen Pretrained Transformer (FPT) to predict future
sequences, and LLMA4TS (Chang et all [2023), which extends general-purpose LLMs for temporal model-
ing. 2. Time Series-Specific LLMs. These models are explicitly designed and trained on large-scale
temporal datasets to better capture temporal dependencies and improve forecasting robustness. Exam-
ples include Time-LLM (Jin et all [2023)), which treats time series data as sequential events for enhanced
modeling; TEST (Sun et al., [2023), which introduces transformer enhancements for complex temporal de-
pendencies; and other recent works such as Chronos and Moirai, which aim to establish foundation-style
LLMs for time series. 3. Hybrid Architectures. Hybrid approaches combine the strengths of LLMs
with specialized temporal modeling components to enhance efficiency, interpretability, and robustness. For
instance, DLinear (Zeng et al., |2023) integrates linear trend modeling with lightweight forecasting modules,
while TimesNet (Wu et all 2022) captures multiscale temporal patterns using neural operators. Similarly,
LightTS (Campos et al.}|2023) emphasizes efficient tokenization and fast inference for real-time applications.
In addition, we benchmark widely adopted transformer-based models, including PatchTST (Nie et al.| 2022]),

ETSformer (Woo et al.||2022), Non-Stationary Transformer (Liu et al.] , FEDformer (Zhou et al 2022),

11
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Autoformer (Chen et al., 2021)), Informer (Zhou et al.l[2021), and Reformer (Kitaev et al.|2020|), which serve
as essential baselines in our evaluation.

To the best of our knowledge, no prior art has provided a comprehensive benchmark to analyze the effective-
ness of each component in the training of LTSMs. Some works (Li et al.| |2024; Liu et al.; |2025|) maintain a
fair platform to compare different time series forecasting methods. The others (Fons et al.l 2024; |Qiu et al.|
2024) analyze the forecasting performance from the perspectives of time series patterns. This benchmark
provides an accessible and modular pipeline for evaluating a diverse set of training components in LTSM
development, leveraging a time series database and user-friendly visualization. With the debates on whether
LLMs can benefit from time series forecasting tasks, our toolbox offers a scikit-learn-like API interface to
efficiently explore each component’s effectiveness in training LTSMs.

7 Conclusion and Future Perspectives

In this study, we present the first comprehensive toolbox and benchmark for understanding different design
choices in training LLMs for time series forecasting. Our benchmark covers various aspects, including data
preprocessing, model configuration, and dataset configuration. We delve into detailed design choices such
as prompting, tokenization, training paradigms, base model selection, data quantity, and dataset diversity.
Through this analysis, we derive 9 observations and identify the best combination for training LTSMs. We
demonstrate that this combination achieves strong zero-shot and few-shot performance compared to state-
of-the-art LTSMs, and it requires only 5% of the data to achieve comparable performance to state-of-the-art
baselines on benchmark datasets. We hope that our findings will inspire future research in this direction, and
this combination based on LTSM-bundle could serve as a simple yet strong baseline for future comparison.

An ongoing debate exists about whether using pre-trained weights from large language models (LLMs) can
enhance time series forecasting performance (Tan et all [2024). In response, the LTSM-Bundle package
provides a robust platform for further investigation. Our current findings indicate that incorporating pre-
trained weights can indeed improve forecasting performance. However, as LTSM training techniques evolve,
future enhancements may offer additional insights and even different perspectives on the benefits of these
pre-trained weights. Notably, using pre-trained weights as a starting point may reduce training time and help
the models converge faster. Drawing from our analysis, we suggest two potential directions for enhancing
the LTSM training components, as outlined below:

Advancing Prompting Strategies. The heterogeneity of time series datasets presents a significant chal-
lenge in training a universal model that can effectively fit all datasets while generalizing to unseen ones.
Our analysis highlights the potential of prompting as a solution by enriching datasets with additional con-
textual information. Specifically, we demonstrate the effectiveness of the time series prompt, which extracts
statistical insights to improve model performance. Looking ahead, we anticipate the development of more
sophisticated prompting strategies to further enhance generalization. For instance, incorporating variate-
specific prompts in multivariate time series data could provide richer context and improve predictive accuracy.
We believe this direction holds substantial promise for future research advancements.

Constructing Synthetic Training Data. Our analysis highlights the significance of dataset diversity
in training transferable LTSMs. Specifically, increasing the number of datasets can enhance performance
significantly (observation (9)). This insight suggests that LTSMs could achieve better transferability when
exposed to more patterns during training. Thus, there is a potential for enhancing LTSMs through synthetic
datasets that simulate various patterns. However, this requires more research endeavor, as synthetic data
may introduce artifacts into the training dataset. This differs from previous pre-trained LTSM work like
Chronos (Ansari et al. 2024)), which demonstrates strong performance due to the extremely large and
synthetic dataset they prepared. One of our future research directions is to augment the training data with
more precise but feasible amounts of synthetic data for training LTSM for time series forecasting tasks.
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Appendix
A Details of Datasets

In this paper, the training datasets include ETT (Electricity Transformer Temperature) (Zhou et al.| 2()21)[%-]7
Trafﬁ Electricityﬂ Weathexﬂ and Exchange-Rate(Lai et al., 2018). ETTﬂ (Zhou et al., [2021)) comprises
four subsets: two with hourly-level data (ETTh) and two with 15-minute-level data (ETTm). Each subset
includes seven features related to oil and load metrics of electricity transformers, covering the period from
July 2016 to July 2018. The traffic dataset includes hourly road occupancy rates from sensors on San
Francisco freeways, covering the period from 2015 to 2016. The electricity dataset contains hourly electricity
consumption data for 321 clients, spanning from 2012 to 2014. The weather data set comprises 21 weather
indicators, such as air temperature and humidity, recorded every 10 minutes throughout 2020 in Germany.
Exchange-Rate(Lai et all [2018]) contains daily exchange rates for eight countries, spanning from 1990 to
2016. We first train our framework on the diverse time series data collection and then assess the abilities of
LTSM-Bundle on jointly learning and zero-shot transfer learning to different domains of time series knowledge.

B Hyper-parameter Settings of Experiments
The hyper-parameter settings of LTSM-Bundle training for all experiments are shown in Table Other

training hyper-parameters follow the default values in the TrainingArguments clas&ﬁ] of the huggingface
transformers package.

Table 10: Hyperparameter settings of LTSM-Bundle training

Hyperparameter name Value
Number of Transformer layers NV 3

Training / evaluation / testing split 0.7/01/0.2
Gradient accumulation steps 64
Learning rate 0.001
Optimizer Adam

LR scheduler CosineAnnealingLR
Number of epochs 10

Number of time steps per token 16

Stride of time steps per token 8
Dimensions of T'S prompt 133
Transformer architectures GPT-2-{small, medium, large}, Phi-2
Length of prediction 96, 192, 336, 720
Length of input TS data 336

Data type torch.bfloat16
Downsampling rate of training data 20

C Computation Infrastructure

All experiments described in this paper are conducted using a well-defined physical computing infrastructure,
the specifics of which are outlined in Table[II] This infrastructure is essential for ensuring the reproducibility
and reliability of our results, as it details the exact hardware environments used during the testing phases.

4https://github.com/zhouhaoyi/ETDataset

Shttp://pems.dot.ca.gov
Shttps://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
"https://www.bgc- jena.mpg.de/wetter/
8https://github.com/laiguokun/multivariate-time-series-data
9https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py
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Table 11: Computing infrastructure for the experiments

Device attribute ‘ Value
Computing infrastructure GPU

GPU model Nvidia A5000 / Nvidia A100
GPU number 8 x A5000 / 4 x A100
GPU memory 8 x 24GB / 4 x 80GB

D Global Features for Prompts

Time series prompts are developed to encapsulate the comprehensive characteristics of time series data.
Specifically, let s be a certain variate of the time-series data Z. We identified in Table[I2] the partial global
features that we leverage to craft these prompts, each selected for its ability to convey critical information
about the data’s temporal structure and variability. For the inter-quartile and histogram in Table Qs(s)
and Q1 (s) represent the first and third quartile of the Time series data, respectively; and m,; represents the
histogram in which n is the total number of observations and k the total number of bins.

Beyond those shown in Table [I2] we also consider the global features according to the following refer-
ences: Fast Fourier Transform, Wavelet transform, Zero crossing rate, Maximum peaks, Minimum peaks,
ECDF percentile count, Slope, ECDF slope, Spectral distance, Fundamental frequency, Maximum frequency,
Median frequency, Spectral maximum peaks (Barandas et al. [2020); Maximum Power Spectrum (Welch
1967)), Spectral Centroid (Peeters et al., [2011)), Decrease (Peeters et all 2011, Kurtosis (Peeters et al.
2011), Skewness (Peeters et al., 2011), Spread (Peeters et al. 2011), Slope (Peeters et al) 2011), Vari-
ation (Peeters et al) 2011), Spectral Roll-off (Figueira et al., 2016), Roll-on (Figueira et al. [2016)), Hu-
man Range Energy (Fernandes et al., [2020), MFCC (Davis & Mermelstein, [1980), LPCC (Atal, 1974),
Power Bandwidth (U., 2003), Spectral Entropy (Pan et al., 2009), Wavelet Entropy (Yan et al., 2006) and

Wavelet Energy (Kocaman & Ozdemir} [2009)), Kurtosis (Zwillinger & Kokoskal, [1999), Skewness (Zwillinger
& Kokoskal, [1999), Maximum (Oliphant et al., [2006), Minimum (Oliphant et al., 2006)), Mean (Oliphant
et al.l [2006), Median (Oliphant et al., 2006) and ECDF (Raschkal [2018), ECDF Percentile (Raschka; 2018).
For the implementation, we leverage the TSFEL library|'"| (Barandas et al 2020) to estimate the global
features. The features are extracted separately for each variate in the time-series data.
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Figure 3: Time series prompt generation process based on the given training time series data.

Ohttps://tsfel.readthedocs.io/en/latest/descriptions/feature_list.html
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Table 12: Partial global features in time series prompts

Formula

Feature

Feature Formula

Autocorrelation

ZieZ SiSi—1 H

Centroid

ZiT:O ti-s7/ ZiT:O s}

Max differences max;(Si+1 — Si) H

Mean differences mean;(S;+1 — Si)

Median differences median; (s;+1 — $i) H

Max absolute differences max; |Si+1 — Si

Mean absolute differences mean;|s;y1 — Sil H

Median absolute differences median;|s;+1 — 84

Sy VI+ (i —s)? |

. 71
Sum of absolute differences Zi:o |sit1 — sil

S sP e (tr —to) |

Total energy

Entropy — ers P(z)log, P(x)

Peak-to-peak distance | max(s) — min(s)] H

Yoo (b —ti) - 5

ZiT:O 57 H

Absolute energy

. k
Histogram n=>y._,m

Distance ‘

Qs(s) — Qi(s) |

Inter-quartile range

Mean absolute deviation % Zj:l |s? — mean(s)|

Median absolute deviation ‘ median;(|s; — median(s)|) H

\ T ZiT:1 5

Root mean square

Standard deviation (STD) ‘ \/% Z;Trzl(si — mean(s))?

Area under curve ‘

Variance (VAR) % Zil(si — mean(s))?

Wavelet absolute mean ‘ |mean(wavelet(s))| H

Wavelet standard deviation ‘ |std(wavelet(s))|

Wavelet variance ‘ |var(wavelet(s))| ‘ ‘

Skewness ‘ W ZiT:O(si — mean(s))?

Table 13: Feature comparison with other LTSM open source packages

| LTSM-Bundle | OpenLTM | Time-LLM | LLM-Time
Support for multiple model architectures and prompting strategies Yes Yes No No
Integration with database Yes No No No
Data preprocessing and pipeline integration Yes No No No
Zero-shot Yes Yes Yes Yes
Visualization Yes No No Yes

E Comparison with Other Packages

In this section, we highlight the difference and advantages of LTSM-Bundle comparing to other existing open
source LTSM packages, including OpenLTME Time-LLM E and LLM—Timﬂ Our package involve more
industrial-oriented and user-friendly features, such as database integration and report visualization.

F Additional Experimental Results on LTSM-Bundle

In this section, we show additional results regarding comparing LTSM-Bundle with other baselines in Tables[16]
and [17], results of zero-shot transfer learning in Table [14], results of different training paradigms in Table
results of different backbones in Table results of different downsampling ratios in Table

https://github. com/thuml/OpenLTM
12https://github.com/KimMeen/Time-LLM
B3https://github.com/ngruver/llmtime
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F.1 Performance Comparison with Additional Baselines

Extending the analysis presented in Section[5.2] we introduce full performance comparison with new baselines.
We evaluate the proposed LTSM-Bundle in zero-shot and few-shot settings to highlight its efficacy and
robustness in Table [[6 and 7

F.2 Zero-shot Transfer Learning Comparisons

In addition to the results in Section this section introduces the full zero-shot transfer learning com-
parisons. We evaluate the proposed LTSM-Bundle in the zero-shot transfer scenarios, detailed in shown in
Table [[4

F.3 Training Paradigm Comparisons

Expanding upon the results in Section [£.3] this section presents the full experimental results for the training
paradigms analysis, including different backbones and prompting strategies. The analytic results are detailed
in Table I8

F.4 Backbone Architecture Comparisons

We provide all the numbers of analytics on different backbone architectures, continuing from Section [£.4]
Results are in different language model backbones, including GPT-2-Small, GPT-2-Medium, GPT-2-Large,
and Phi-2, shown in Table [T9]

F.5 Down-sampling Ratio Comparisons

We here present the full version of our experimental results on the different down-sampling ratios in Sec-
tion[4.6] We test LTSM-Bundle with GPT-Medium as backbones with the proposed TS prompt under a fully
tuning paradigm. The results in the ratio of {40, 20, 10} (i.e., downsample rate in {2.5%, 5%, 10% }) are
all demonstrated in Table 20l

F.6 Different Numbers of Layer Adaptation Comparisons

We compared the average performance among all datasets of a 3-layer model and a full 24-layer model using
GPT-medium as the backbone. Our results (in Table show that the 24-layer model performs worse when
trained with the same number of iterations. We believe this suggests that the 3-layer configuration is a
reasonable strategy for benchmarking at this stage.
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Table 14: Results of zero-shot transfer learning. A time-series model is trained on a source dataset and
transferred to the target dataset without adaptation.

Methods ‘ LTSM-Bundle ‘ TIME-LLM LLMTime ‘ GPTA4TS ‘ DLinear PatchTST ‘ TimesNet Autoformer
Metric ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE

96 | 0.229 0326 | 0.279 0.337 | 0.510 0.576 | 0.335 0.374 | 0.347 0.400 | 0.304 0.350 | 0.358  0.387 | 0.469  0.486
192 | 0.310  0.395 | 0.351  0.374 | 0.523 0.586 | 0.412  0.417 | 0.417 0.460 | 0.386  0.400 | 0.427 0.429 | 0.634 0.567
ETThl — ETTh2 336 | 0.336  0.414 | 0.388 0.415 | 0.640 0.637 | 0.441 0.444 | 0.515 0.505 | 0.414 0.428 | 0.449 0.451 | 0.655 0.588
720 | 0.401  0.474 | 0.391  0.420 | 2296 1.034 | 0.438 0.452 | 0.665 0.589 | 0.419 0.443 | 0.448 0.458 | 0.570  0.549
Avg | 0.319  0.402 | 0.353 0.387 | 0.992 0.708 | 0.406 0.422 | 0.493 0.488 | 0.380 0.405 | 0.421 0.431 | 0.582  0.548

96 | 0.197 0.318 | 0.189 0.293 | 0.646 0.563 | 0.236 0.315 | 0.255 0.357 | 0.215 0.304 | 0.239 0.313 | 0.352 0.432
192 | 0.314  0.420 | 0.237  0.312 | 0.934 0.654 | 0.287 0.342 | 0.338 0.413 | 0.275 0.339 | 0.291  0.342 | 0.413  0.460
ETThl — ETTm2 336 | 0.313 0.405 | 0.291  0.365 | 1.157 0.728 | 0.341 0.374 | 0.425 0.465 | 0.334 0.373 | 0.342 0.371 | 0.465 0.489
720 | 0.425 0483 | 0372 0.390 | 4730 1.531 | 0.435 0.422 | 0.640 0.573 | 0.431 0.424 | 0.434 0.419 | 0.599  0.551
Avg | 0.312 0.406 | 0.273 0.340 | 1.867 0.869 | 0.325 0.363 | 0.415 0.452 | 0.314 0.360 | 0.327 0.361 | 0.457 0.483

96 | 0.390 0439 | 0.450 0.452 | 1.130 0.777 | 0.732  0.577 | 0.689 0.555 | 0.485 0.465 | 0.848 0.601 | 0.693 0.569
192 | 0.417  0.460 | 0.465 0.461 | 1.242 0.820 | 0.758 0.559 | 0.707  0.568 | 0.565 0.509 | 0.860 0.610 | 0.760  0.601
ETTh2 — ETTh1 336 | 0.462  0.501 | 0.501 0.482 | 1.382 0.864 | 0.759 0.578 | 0.710  0.577 | 0.581 0.515 | 0.867 0.626 | 0.781  0.619
720 | 0.568  0.588 | 0.501  0.502 | 4.145 1461 | 0.781  0.597 | 0.704 0.596 | 0.628 0.561 | 0.887 0.648 | 0.796  0.644
Avg | 0.459 0497 | 0.479 0474 | 1.961 0981 | 0.757 0.578 | 0.703 0.574 | 0.565 0.513 | 0.865 0.621 | 0.757  0.608

96 | 0.200 0.316 | 0.174 0.276 | 0.646 0.563 | 0.253 0.329 | 0.240 0.336 | 0.226  0.309 | 0.248 0.324 | 0.263 0.352
192 | 0.250  0.359 | 0.233  0.315 | 0.934 0.654 | 0.293 0.346 | 0.295 0.369 | 0.289 0.345 | 0.296  0.352 | 0.326  0.389
ETTh2 — ETTm2 336 | 0.327 0.416 | 0.291  0.337 | 1.157 0.728 | 0.347 0.376 | 0.345 0.397 | 0.348 0.379 | 0.353 0.383 | 0.387 0.426
720 | 0.573  0.563 | 0.392  0.417 | 4730 1.531 | 0.446  0.429 | 0.432 0.442 | 0439 0.427 | 0.471 0.446 | 0.487 0.478
Avg | 0.337  0.413 | 0.272  0.341 | 1.867 0.869 | 0.335 0.370 | 0.328 0.386 | 0.325 0.365 | 0.342 0.376 | 0.366 0.411

96 | 0.246  0.342 | 0.321 0.369 | 0.510 0.576 | 0.353 0.392 | 0.365 0.415 | 0.354 0.385 | 0.377 0.407 | 0.435 0.470
192 | 0.290  0.374 | 0.389  0.410 | 0.523 0.586 | 0.443  0.437 | 0.454 0.462 | 0.447 0.434 | 0471 0.453 | 0.495 0.489
ETTml — ETTh2 336 | 0.326 0.406 | 0.408 0.433 | 0.640 0.637 | 0.469 0.461 | 0.496 0.464 | 0.481 0.463 | 0.472 0.484 | 0470 0.472
720 | 0.363  0.440 | 0.406  0.436 | 2.296 1.034 | 0.466 0.468 | 0.541 0.529 | 0.474 0.471 | 0.495 0.482 | 0.480 0.485
Avg | 0.306  0.391 | 0.381 0.412 | 0.992 0.708 | 0.433 0.439 | 0.464 0.475 | 0.439 0.438 | 0.457 0.454 | 0.470 0.479

96 | 0.144  0.257 | 0.169 0.257 | 0.646 0.563 | 0.217 0.294 | 0.221  0.314 | 0.195 0.271 | 0.222  0.295 | 0.385  0.457
192 | 0.193  0.302 | 0.227 0.318 | 0.934 0.654 | 0.277 0.327 | 0.286  0.359 | 0.258 0.311 | 0.288 0.337 | 0.433  0.469
ETTml — ETTm2 336 | 0.240 0.342 | 0.290 0.338 | 1.157 0.728 | 0.331  0.360 | 0.357 0.406 | 0.317 0.348 | 0.341  0.367 | 0.476  0.477
720 | 0.292 0379 | 0375  0.367 | 4730 1.531 | 0.429 0.413 | 0476 0.476 | 0.416 0.404 | 0.436 0.418 | 0.582  0.535
Avg | 0.217  0.320 | 0.268 0.320 | 1.867 0.869 | 0.313 0.348 | 0.335 0.389 | 0.296 0.334 | 0.322 0.354 | 0.469 0.484

96 | 0.257 0.346 | 0.298 0.356 | 0.510 0.576 | 0.360  0.401 | 0.333 0.391 | 0.327 0.367 | 0.360 0.401 | 0.353  0.393
192 | 0.309  0.382 | 0.359  0.397 | 0.523 0.586 | 0.434 0.437 | 0.441 0456 | 0.411 0.418 | 0.434 0.437 | 0.432 0.437
ETTm2 — ETTh2 336 . 0.413 | 0.367 0.412 | 0.640 0.637 | 0.460 0.459 | 0.505 0.503 | 0.439 0.447 | 0.460 0.459 | 0.452  0.459

720 0.432 | 0.393 0434 | 2296 1.034 | 0.485 0.477 | 0.543 0.534 | 0.459 0.470 | 0.485 0.477 | 0.453  0.467
Avg 0.393 | 0.354 0.400 | 0.992 0.708 | 0.435 0.443 | 0.455 0.471 | 0.409 0.425 | 0.435 0.443 | 0.423  0.439
96 0.410 | 0.359  0.397 | 1.179  0.781 | 0.747 0.558 | 0.570 0.490 | 0.491 0.437 | 0.747 0.558 | 0.735  0.576
192 0.432 | 0.390  0.420 | 1.327 0.846 | 0.781  0.560 | 0.590 0.506 | 0.530 0.470 | 0.781  0.560 | 0.753  0.586
ETTm2 — ETTml 336 0.433 | 0.421  0.445 | 1.478 0.902 | 0.778 0.578 | 0.706  0.567 | 0.565 0.497 | 0.778 0.578 | 0.750  0.593
720 0.446 | 0.487 0488 | 3.749 1408 | 0.769 0.573 | 0.731  0.584 | 0.686 0.565 | 0.769 0.573 | 0.782  0.609
Avg 0.430 | 0.414 0438 | 1.933 0.984 | 0.769  0.567 | 0.649 0.537 | 0.568 0.492 | 0.769  0.667 | 0.755  0.591

Table 15: Performance comparison between 3-layer and 24-layer of LTSM-Bundle.

‘ 3-layer ‘ 24-layer
MAE ‘ 0.2003 ‘ 0.2439

MSE | 0.2770 | 0.3162
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Table 18: Results of different backbones, training paradigms, and prompting strategies.

Datasets | ETTh1 | ETTh2 | ETTml | ETTm2 | Trafic | Weather | Exchange | ECL

Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 | 0.354  0.415 | 0.259 0.350 | 0.551 0507 | 0.215 0.319 | 0.393 0.377 | 0.222  0.292 | 0.108  0.246 | 0.250  0.342

From scratch 192 | 0.364 0.421 | 0.537 0505 | 0.231 0.331 | 0.235 0.335 | 0.373 0.356 | 0.246 0.309 | 0.143 0.288 | 0.231  0.331
+ GPT-Medium 336 | 0.359 0420 | 0.321  0.402 | 0423 0454 | 0.267 0.360 | 0.357 0.329 | 0.283  0.335 | 0.207 0.344 | 0.217 0.323
+ TS prompt 720 | 0.357  0.430 | 0.372  0.449 | 0.398 0444 | 0.360 0434 | 0347 0311 | 0.342 0388 | 0.358 0.461 | 0211  0.317
Avg | 0358 0421 | 0372 0427 | 0401 0434 | 0269 0.362 | 0.367 0343 | 0.273 0331 | 0.204 0.335 | 0.227 0.328

96 | 0.453 0.483 | 0.350 0422 | 0.757 0.613 | 0.338 0.420 | 0.659 0.552 | 0.343 0.398 | 0.223  0.353 | 0.605 0.507

From scratch 192 | 0422 0470 | 0.348 0.423 | 0.708 0.601 | 0.326 0415 | 0.509 0475 | 0.323 0.388 | 0.212  0.352 | 0.352  0.403
+ GPT-Medium 336 | 0.481  0.502 | 0.449 0487 | 0.938 0.701 | 0.483 0506 | 0.562 0.496 | 0.457 0.474 | 0430 0502 | 0.729  0.456
+ Text prompt 720 | 0.437 0482 | 0.396  0.461 | 0.634 0563 | 0.408 0459 | 0.536 0.463 | 0.415 0.434 | 0457 0517 | 0.460 0.438
Avg | 0448 0.484 | 0385 0448 | 0.759  0.619 | 0.389 0.450 | 0.566 0.496 | 0.384 0.423 | 0.330 0.431 | 0.537 0.451

96 | 0.323  0.392 | 0.243  0.341 | 0.394 0437 | 0185 0.301 | 0.334 0.321 | 0.200 0.279 | 0.098 0.236 | 0.197 0.291

From scratch 192 | 0332 0399 | 0275 0.362 | 0.369 0426 | 0.204 0313 | 0.333 0306 | 0.219 0.286 | 0.127  0.268 | 0.195  0.290
+ GPT-Small 336 | 0.345 0405 | 0.317 0.394 | 0352 0415 | 0.263 0.364 | 0.324 0.288 | 0.265 0.323 | 0.179  0.321 | 0.181  0.282
+ TS prompt 720 | 0.362 0432 | 0.364 0447 | 0.389  0.439 | 0.324 0402 | 0.341 0300 | 0.339 0.377 | 0.333 0.457 | 0.207  0.309
Avg | 0.340 0407 | 0.300 0.386 | 0.376 0429 | 0.244 0.345 | 0.333 0304 | 0.256 0.316 | 0.184 0320 | 0.195 0.293

96 | 0.317 0.383 | 0.240 0.334 | 0431 0443 | 0.178 0285 | 0315 0.293 | 0.188 0.257 | 0.083 0.208 | 0.161  0.265

Fully tune 192 | 0.355 0413 | 0.285 0.370 | 0479 0482 | 0.221  0.323 | 0.352 0.336 | 0.238  0.304 | 0.132 0277 | 0.213 0311
+ GPT-Small 336 | 0.357 0.414 | 0.302 0.388 | 0.486 0.486 | 0.252 0.346 | 0.339 0.310 | 0.275  0.326 | 0.196 0.336 | 0.203  0.302
+ TS prompt 720 | 0.363 0.434 | 0.361 0442 | 0479 0483 | 0.345 0420 | 0.350 0.313 | 0.345 0.384 | 0.426 0.496 | 0.224  0.326
Avg | 0.348 0411 | 0297 0384 | 0469 0473 | 0.249 0.343 | 0.339 0313 | 0.261  0.317 | 0.209  0.329 | 0.200  0.301

96 | 0.305 0.377 | 0.226 0.320 | 0.276  0.360 | 0.143 0253 | 0.305 0279 | 0.162 0.227 | 0.060 0.178 | 0.144  0.246

Fully tune 192 | 0.335  0.397 | 0278 0359 | 0.314 0.389 | 0.191 0.295 | 0.315 0.283 | 0.212 0.275 | 0.118 0.253 | 0.161  0.261
+ GPT-Small 336 | 0.348 0406 | 0.310 0.392 | 0.344 0411 | 0.239 0339 | 0.323 0.285 | 0.266 0.318 | 0.198 0.333 | 0.175  0.277
+ Text prompt 720 | 0.371  0.454 | 0.364 0.446 | 0.404 0452 | 0.352 0405 | 0.344 0.305 | 0.332  0.366 | 0.379  0.470 | 0.208  0.309
Avg | 0340 0409 | 02904 0379 | 0.334 0403 | 0231 0.323 | 0.322 0.288 | 0.243  0.296 | 0.189  0.308 | 0.172 0.273

96 | 0.301 0.372 | 0229 0.320 | 0.261  0.346 | 0.149  0.266 | 0.300 0.268 | 0.163 0.230 | 0.058 0.173 | 0.141  0.241

Fully tune 192 | 0332 0.397 | 0.290 0.368 | 0.288  0.370 | 0.204 0.303 | 0.316 0.282 | 0.215 0.282 | 0.133  0.277 | 0.158  0.258
+ GPT-Medium 336 | 0.351 0412 | 0.316 0392 | 0.343 0413 | 0204 0376 | 0.328 0.295 | 0.281  0.332 | 0.224  0.369 | 0.175  0.276
+ Text prompt 720 | 0.368  0.436 | 0.378 0.452 | 0.371 0431 | 0.492 0494 | 0.344 0.303 | 0.350 0.385 | 0.321 0.442 | 0.207  0.308
Avg | 0.338  0.404 | 0303 0.383 | 0.316 0.390 | 0.285 0.360 | 0.322 0.287 | 0.252 0.307 | 0.184 0315 | 0.170 0.271

96 | 0.320 0.387 | 0242  0.330 | 0.490 0477 | 0.191 0290 | 0346 0.326 | 0.212 0270 | 0.134  0.269 | 0.185  0.300

Fully tune 192 | 0342 0403 | 0270 0.352 | 0.376  0.423 | 0.196 0.287 | 0.355 0.327 | 0.236  0.286 | 0.173  0.305 | 0.204  0.316
+ GPT-Medium 336 | 0.348  0.409 | 0.284  0.367 | 0.530 0.501 | 0.253 0.335 | 0.379  0.345 | 0.298  0.331 | 0.311 0421 | 0.224  0.334
+ Text prompt 720 | 0.368 0433 | 0.424 0479 | 0.375 0429 | 0.361 0423 | OOM OOM | OOM OOM | 0.333 0457 | 0.206  0.307
Avg | 0.344 0408 | 0305 0.382 | 0.443 0.458 | 0.250 0.334 | 0.360 0.333 | 0.249  0.295 | 0.238 0.363 | 0.205 0.314

96 | 0296 0.371 | 0234 0.328 | 0.309 0381 | 0.150 0.263 | 0.299 0278 | 0.175  0.248 | 0.073  0.204 | 0.145  0.249

Fully tune 192 | 0318  0.386 | 0273  0.355 | 0.301 0.381 | 0.190 0293 | 0.311 0278 | 0.212 0279 | 0.129 0.271 | 0.164  0.266
+ Phi-2 336 | 0337 0402 | 0311 0.389 | 0.346 0.419 | 0283 0.381 | 0.323 0.290 | 0.282 0.345 | 0.233 0374 | 0.179  0.281
+ TS prompt 720 | 0.372  0.445 | 0.317 0407 | 0404 0461 | 0.439 0484 | 0347 0305 | 0.354 0.382 | 0.404 0.501 | 0.218  0.319
Avg | 0331 0401 | 0.284 0370 | 0.340 0411 | 0.265 0.355 | 0.320 0.288 | 0.256  0.313 | 0.210 0337 | 0.176  0.279

96 | 0296 0.371 | 0.234 0.328 | 0.309 0381 | 0.150 0.263 | 0.299 0278 | 0.175  0.248 | 0.073  0.204 | 0.145  0.249

Fully tune 192 | 0319 0385 | 0.269 0.355 | 0.309 0.383 | 0.188 0295 | 0.307 0275 | 0.212  0.283 | 0.134  0.281 | 0.161  0.262
+ Pi-2 336 | 0.337  0.402 | 0.311 0.389 | 0.346 0419 | 0.283 0.381 | 0.323  0.290 | 0.282 0.345 | 0.233  0.374 | 0.179  0.281
+ Text prompt 720 | 0.356  0.430 | 0.359 0.442 | 0.392 0454 | 0.383 0451 | 0.345 0.302 | 0.345  0.377 | 0.561 0.606 | 0.212 0.315
Avg | 0327 0397 | 0293 0378 | 0.339 0409 | 0251 0.347 | 0.318 0.286 | 0.254 0313 | 0.250 0.366 | 0.174  0.277

96 | 0.362 0.419 | 0273  0.363 | 0.589 0533 | 0.225 0332 | 0428 0.396 | 0.224  0.293 | 0.129  0.274 | 0.227  0.333

LoRA-dim-16 192 | 0394 0444 | 0312 0.397 | 0.582  0.531 | 0.259 0.361 | 0.502 0.437 | 0.339 0.280 | 0.200 0.345 | 0.257  0.358
+ GPT-Medium 336 | 0.403  0.457 | 0.321 0413 | 0.560 0532 | 0.203  0.392 | 0.547 0.457 | 0.320 0.369 | 0.266  0.409 | 0.291  0.386
+ TS prompt 720 | 0.444 0499 | 0.366 0.451 | 0.576  0.547 | 0.355 0.436 | 0.660 0.519 | 0.369 0.406 | 0.457 0.532 | 0.406  0.479
Avg | 0401 0455 | 0318 0406 | 0.577 0.536 | 0.283 0.380 | 0.534 0452 | 0.313 0.337 | 0.263 0.390 | 0.295  0.389

96 | 0.365 0.422 | 0270  0.361 | 0.596  0.593 | 0.222  0.329 | 0438 0408 | 0.223  0.294 | 0.117  0.259 | 0.233  0.341

LoRA-dim-32 192 | 0401 0449 | 0.314 0.398 | 0.594 0.537 | 0.261 0.363 | 0.503 0.443 | 0.281  0.340 | 0.204 0.346 | 0.259  0.361
+ GPT-Medium 336 | 0.403 0457 | 0.321  0.413 | 0.563 0.533 | 0.204 0.393 | 0.547 0459 | 0.321  0.370 | 0.267 0.410 | 0.294  0.390
+ TS prompt 720 | 0444 0498 | 0.367 0452 | 0572  0.545 | 0.357 0437 | 0.647 0513 | 0.369 0406 | 0.454 0.530 | 0.399  0.473
Avg | 0403 0457 | 0.318  0.406 | 0.581 0.552 | 0.283 0.380 | 0.534 0.456 | 0.298 0.352 | 0.260 0.386 | 0.296  0.391

96 | 0.377 0.431 | 0.284 0.376 | 0.603 0538 | 0.239 0.348 | 0.462 0423 | 0.244 0313 | 0.154  0.302 | 0.242  0.348

LoRA-dim-16 192 | 0.394 0445 | 0.313 0400 | 0578  0.530 | 0.263 0.367 | 0.511 0.441 | 0.284  0.344 | 0.203 0.351 | 0.262  0.363
+ GPT-Medium 336 | 0.412 0465 | 0.325 0417 | 0.571  0.538 | 0.299  0.397 | 0.567 0.471 | 0.323  0.373 | 0.267 0.413 | 0.308  0.402
+ Word prompt 720 | 0.448  0.501 | 0.368 0.452 | 0.582 0.550 | 0.357 0437 | 0.672 0.526 | 0.370  0.407 | 0.452 0.529 | 0.416  0.486
Avg | 0408 0461 | 0322 0411 | 0.583 0.539 | 0.289  0.387 | 0.553 0.465 | 0.305 0.359 | 0.269  0.399 | 0.307  0.400

96 | 0365 0.423 | 0276  0.367 | 0.590 0.533 | 0.230  0.337 | 0.449 0.410 | 0.234 0.305 | 0.133 0277 | 0.237  0.343

LoRA-dim-32 192 | 0400 0449 | 0311  0.397 | 0572 0.527 | 0.261 0364 | 0.515 0.447 | 0.284 0.345 | 0.207  0.352 | 0.265  0.366
+ GPT-Medium 336 | 0.410 0463 | 0.324 0416 | 0.570  0.538 | 0.299  0.398 | 0.563 0.469 | 0.323 0.373 | 0.268 0.414 | 0.305 0.399
+ Word prompt 720 | 0.447  0.500 | 0.368 0.453 | 0.589 0.553 | 0.359 0459 | 0.664 0.522 | 0.370 0.407 | 0.453 0.530 | 0.414  0.486
Avg | 0406  0.459 | 0.320 0.408 | 0.580 0.538 | 0.287 0.389 | 0.547 0.462 | 0.303 0.357 | 0.265 0.393 | 0.305 0.398
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Table 19: Results of different backbones.

Datasets ‘ ETTh1 ‘ ETTh2 ‘ ETTml ‘ ETTm2 ‘ Traffic ‘ ‘Weather ‘ Exchange ‘ ECL
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 0.297 0.368 | 0.224 0.319 | 0277 0360 | 0.147 0259 | 0.304 0.280 | 0.168 0.240 | 0.069 0.192 | 0.148  0.251
Fully tune 192 | 0328 0391 | 0279 0362 | 0.300 0377 | 0.207 0311 | 0315 0.279 | 0.212  0.277 | 0.121  0.264 | 0.159  0.258

+ GPT-Large 336 | 0.347 0.407 | 0.365 0.420 | 0.322 0.397 | 0.284 0.364 | 0.324 0.287 | 0.291 0.341 | 0.356 0.461 | 0.174 0.276
-+ TS prompt 720 | 0.358  0.427 | 0.430 0.478 | 0.358 0.421 | 0.436 0.467 | 0.348 0.303 | 0.370 0.388 | 0.424 0.525 | 0.207  0.308
Avg | 0.333 0.398 | 0.325 0.395 | 0.314 0.389 | 0.269 0.350 | 0.323 0.287 | 0.260 0.311 | 0.242 0.360 | 0.172  0.273

96 | 0.307 0377 | 0.235 0.326 | 0.285 0.369 | 0.156 0.266 | 0.305 0.278 | 0.172 0.242 | 0.065 0.186 | 0.145 0.247
Fully tune 192 | 0.329 0.391 | 0.283 0.365 | 0.319 0.393 | 0.203 0.307 | 0.313 0.274 | 0.218 0.278 | 0.115 0.248 | 0.159  0.259
+ GPT-Medium 336 | 0.346 0.405 | 0.320 0.401 | 0.378 0.425 | 0.255 0.349 | 0.326 0.287 | 0.276  0.329 | 0.206 0.339 | 0.180 0.284
+ TS prompt 720 | 0.370  0.441 | 0.378 0.456 | 0.464 0477 | 0.342 0.417 | 0.346  0.301 | 0.339 0.373 | 0.409 0487 | 0.215 0.317
Avg | 0.338 0.403 | 0.304 0.387 | 0.362 0.416 | 0.239 0.335 | 0.323 0.285 | 0.251  0.305 | 0.199 0.315 | 0.175 0.276

96 | 0.317 0.383 | 0.240 0.334 | 0.431 0.443 | 0.178 0.285 | 0.315 0.293 | 0.18  0.257 | 0.083 0.208 | 0.161  0.265
Fully tune 192 | 0.355 0.413 | 0.285 0.370 | 0.479 0482 | 0.221 0.323 | 0.352 0.336 | 0.238 0.304 | 0.132 0.277 | 0.213 0.311
+ GPT-Small 336 | 0.357 0.414 | 0.302 0.388 | 0.486 0.486 | 0.252 0.346 | 0.339 0.310 | 0.275 0.326 | 0.196 0.336 | 0.203  0.302
+ TS prompt 720 | 0.363  0.434 | 0.361 0.442 | 0.479 0.483 | 0.345 0.420 | 0.350 0.313 | 0.345 0.384 | 0.426 0.496 | 0.224  0.326
Avg | 0.348 0.411 | 0.297 0.384 | 0.469 0.473 | 0.249 0.343 | 0.339 0.313 | 0.261 0.317 | 0.209 0.329 | 0.200 0.301

96 | 0296 0371 | 0.234 0.328 | 0.309 0.381 | 0.150 0.263 | 0.299 0278 | 0.175 0.248 | 0.073  0.204 | 0.145 0.249
Fully tune 192 | 0.318 0.386 | 0.273 0.355 | 0.301  0.381 | 0.190 0.293 | 0.311 0.278 | 0.212 0.279 | 0.129 0.271 | 0.164 0.266
+ Phi-2 336 | 0.337  0.402 | 0.311  0.389 | 0.346 0.419 | 0.283 0.381 | 0.323 0.290 | 0.282 0.345 | 0.233 0.374 | 0.179  0.281
+ TS prompt 720 | 0.372  0.445 | 0.317  0.407 | 0.404 0.461 | 0.439 0.484 | 0.347 0.305 | 0.354 0.382 | 0.404 0.501 | 0.218 0.319
Avg | 0.331 0.401 | 0.284 0.370 | 0.340 0.411 | 0.265 0.355 | 0.320 0.288 | 0.256 0.313 | 0.210 0.337 | 0.176  0.279

Table 20: Results of different down-sampling ratios. Experiments with GPT-Medium as backbones, TS
prompt, and fully tuning paradigm.

Datasets | ETTh1 | ETTh2 | ETTml | ETTm2 |  Traffic | Weather | ECL
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 0.4536 0.4787 | 0.3395 0.4097 | 0.7441 0.6068 | 0.3229 0.4055 | 0.6619 0.5636 | 0.3538 0.3979 | 0.6118  0.499
Downsample 192 | 04648 0.4935 | 0.386 04507 | 0.7659 0.6336 | 0.3797 0.4604 | 0.6644 0.5537 | 0.4106 0454 | 0.6756 0.4915
Rati _41[’) 336 | 0.6629 0.6167 | 0.5982 0.5916 | 1.1366 0.8212 | 0.6904 0.6455 | 1.0706 0.7785 | 0.7359  0.65 | 1.6485 0.7188
e = 720 | 1.0518 0.8133 | 0.8%02 0.7588 | 1.8609 1.1304 | 1.2011 0.9073 | 1.7276  1.062 | 1.3176 0.9268 | 3.9988 1.0223
Avg | 0.343 0408 | 0307 0.390 | 0353 0412 | 0234 0331 | 0344 0314 | 0253 0306 | 0.210  0.330
96 | 0.307 0.3767 | 0.2349 0.3263 | 0.285 0.3687 | 0.1555 0.2657 | 0.3053 0.2778 | 0.1717 0.2416 | 0.1447 0.2468
Downsample 192 | 0-3288  0.3008 | 0.2826  0.3649 | 0.3193 0.3925 | 0.2032 0.3069 | 0.3132 0.2744 | 0.2177 0.2782 | 0.1587 0.2588
R::Y o QEC 336 | 0.346  0.405 | 0.3198 0.4005 | 0.3782 0.4254 | 0.2549 0.3492 | 0.3263 0.2869 | 0.2761 0.3287 | 0.1803 0.2835
ate = 720 | 0.3704 0.4405 | 0.378  0.456 | 0.4638 0.4773 | 0.3422 04172 | 0.3456  0.301 | 0.3386 0.3732 | 0.2151 0.3167
Avg | 0338 0404 | 0303 0.383 | 0316 0390 | 0285 0360 | 0.322 0.287 | 0.252  0.307 | 0.184  0.315
96 | 0.2975 0.3698 | 0.2268 0.3175 | 0.2633 0.3462 | 0.1463 0.2583 | 0.2961 0.2626 | 0.2583 0.2247 | 0.1406 0.2411
Downsample 192 | 0-3293  0.3896 | 0.2848 03674 | 0.3286 0.3991 | 0.1995 0.3014 | 0.3089 ~ 2673 | 0.2151 0.2786 | 0.1568 0.2564
Ratio — 1‘6 336 | 0.3461 0.4039 | 0.3097 0.3938 | 0.3593 0.4198 | 0.259 0.3505 | 0.3206 0.2785 | 0.2651 0.3155 | 0.1744 0.2747
B 720 | 0.3676 0.4333 | 0.4101 04738 | 0.4096 0.4505 | 0.3632 0.4242 | 0.3428 0.2983 | 0.3462  0.38 | 0.2099 0.3101
Avg | 0335 0402 | 0321 0392 | 0341 0399 | 0235 0332 | 0312 0274 | 0252 0308 | 0.232  0.360
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