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Abstract

Over the past year, large language models have seen an ex-
plosion in usage, with researchers and companies rushing to
discover new applications. This explosion was kick-started by
OpenAI, with their release of GPT 3.5 and GPT 4 to the gen-
eral public. These foundation models have proven extraordi-
narily capable on a wide range of tasks, but their cost and re-
liability present problems for more sensitive and/or resource-
limited applications. Over the same time-span, however, we
have also seen a rush of development in smaller foundation
models, such as Mistral’s 7B model, as well as in fine-tuning
those models for specific tasks.
In this paper, we explore the application of Low-Rank Adap-
tation (LoRA) fine-tuning of small language models for per-
forming TNM (Tumor, Lymph Node, Metastasis) staging on
unstructured pathology reports for triple negative breast can-
cer cases. We also attempt to develop a more generalized ap-
proach, so that our work can be applied to other NLP tasks
within the medical field.
We found that performing TNM staging with reliable accu-
racy is possible for a small foundational model through fine-
tuning, allowing fast and reliable automation of critical lan-
guage processing tasks within medicine.

Introduction
The field of natural language processing (NLP) has wit-
nessed remarkable advancements in the past year and a
half, fueled by the advent of large language models (LLMs)
like GPT-3.5 (OpenAI 2022) and GPT-4 (OpenAI et al.
2023). These models have demonstrated impressive capa-
bilities across a diverse range of tasks, ushering in an explo-
sion of research and industry interest in LLMs. However, the
widespread adoption of such models comes with challenges,
including cost considerations and reliability concerns, espe-
cially in sensitive or resource-constrained applications such
as medicine.

In parallel with the development of large-scale models,
there has been a growing interest in leveraging smaller foun-
dational models and more efficient fine-tuning strategies
to address specific task requirements. Mistral’s 7B model
(Jiang et al. 2023), a representative of this trend, serves
as the focal point of our investigation. This shift towards
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smaller models offers potential solutions to the challenges
posed by their larger counterparts, making them more ac-
cessible for adaptation to specialized tasks. These models
allow much cheaper solutions, direct control over the model,
as well as the option to self-host without reliance on a third
party.

In this paper, we delve into the application of LoRA (Hu
et al. 2021) fine-tuning of small foundational models for
domain-specific tasks. Our primary focus is on TNM ma-
lignant tumor classification using unstructured pathology re-
ports. Specifically, we concentrate on triple-negative breast
cancer cases, aiming to automate the TNM staging process
through a fine-tuned version of Mistral 7B Instruct.

The motivation behind our work is twofold: first, to
demonstrate the effectiveness of LoRA finetuning for small
language models in medical NLP tasks, and second, to con-
tribute towards a more generalized approach that can be ex-
tended to various tasks within the medical domain. In addi-
tion to our results on TNM classification, we also demon-
strate that fine-tuning a model on only 100 samples can
significantly improve performance on this task. This find-
ing may enable physicians to automate similar tasks in a
short period of time by manually creating or procuring small
datasets.

Data Synthesis and Validation
We were provided roughly 200 digital reports by the
Louisiana Tumor Registry. These reports were provided to
us as photo-scanned PDFs with all personal identifiable in-
formation redacted. These reports were utilized to develop a
process for generating new synthetic reports and data, which
was crucial for obtaining enough data to train and validate
our model. Given that the original reports did not contain
any ground truth labels, subject matter experts on our team
manually labeled the data.

The data synthesis process began by converting the pro-
vided reports to text using optical character recognition. A
script then stripped each report of all information relevant
to TNM staging, with the resulting stripped report being
used as templates for the following process. Markers were
placed in the stripped reports at locations where new state-
ments could reasonably be inserted. A large JSON docu-
ment of every possible value in the three categories of TNM
was then created (More on this in Language Sampling),



Model T N M Avg Compounded* Conf‡ Training Time Samples

Mistral 7B Instruct 47.8 52.0 40.3 46.7 10.0 97.1 N/A 200

GPT 3.5 Turbo (1106) 58.4 75.4 45.3 59.7 19.9 73.4 N/A 100

GPT 4 Turbo (1106) 64.5 84.7 57.4 68.9 31.4 93.7 N/A 50

Instruct Fine-tuned (100@4)† 89.0 90.4 97.4 92.3 78.4 99.4 1 Hr 200

Instruct Fine-tuned (100@16)† 89.0 91.0 97.5 92.4 78.9 100.0 3 Hrs 200

Instruct Fine-tuned (800@4)† 87.5 99.5 98.0 95.0 85.3 99.6 8 Hrs 200

Instruct Fine-tuned (1600@4)† 97.0 100 99.5 98.8 96.5 99.4 17 Hrs 200

Table 1: Performance Metrics of Various Models Across Categories
*Compounded indicates the likelihood of getting all three categories correct on a given pass.

†Note the notation, 100@16, indicates fine-tuning on 100 samples to 16 epochs
‡The likelihood that the model does not yield ‘UNKNOWN’ on samples with known staging values.

along with definitions of the categories and a selection of ex-
ample sentences indicating the corresponding category. Fi-
nally, a script was then written to randomly generate new
sample sentences from the aforementioned JSON document
that indicate a specific TNM category. These sentences were
then injected into the template reports at randomly selected
marker locations. This process is outlined in Figure 1. In the
sampling process, there was also a user-defined low proba-
bility that sentences indicating a specific classification cat-
egory were omitted, indicating the response ‘UNKNOWN’
in order to train the model to communicate a lack of confi-
dence when the information needed to make the decision is
unavailable in the report. We also used separate sets of report
templates for training and evaluation, so that no template is
seen during both.

Language Sampling
As stated above, we created a large structured document of
all possible classes in the T, N, and M categories. In this
document, each class was filled with a definition from ex-
isting literature, notes on the category, example vocabulary
indicating the category, and sample sentences indicating the
category which were representative of language we would
find in real reports. The sample sentences field often in-
cluded around 20 sentences for almost all categories, al-
though some special categories were more limited due to
very straightforward class definitions. In some cases, we also
included a ‘negative’ sample sentences field, which included
example language indicating that the class was not applica-
ble. These sentence groups, and effectively the document,
were split into a 4:1 ratio for training and evaluation, respec-
tively. However, this was done on the condition that there
be at least 10 sample sentences in the class, otherwise the
full set would be used for both training and validation. Ex-
ceptions included a handful of specialized categories which
were typically very direct in definition and language, and
often had only a handful of ways to express that the cate-
gory was applicable. For example, the T category of Paget’s
Disease requires the use of the term ‘Paget’ in some form.
These classes were largely expressed by only a single term,
making the task quite straightforward in these cases.

Manually
Strip

1. Irrelevant Info
2. Relevant T Info
3. Irrelevant Info
4. Irrelevant Info
5. Relevant M Info
6. Relevant N Info
7. Irrelevant Info
8. Irrelevant Info
9. Relevant M Info

Automatically
Synthesize

Reports

1. Irrelevant Info
2. Marker - T
3. Irrelevant Info
4. Irrelevant Info
5. Marker - M, N
6. Marker - M, N
7. Irrelevant Info
8. Irrelevant Info
9. Marker - Any

1. Irrelevant Info
2. Sample Info - T
3. Irrelevant Info
4. Irrelevant Info
5. Sample Info - N
6. Sample Info - M
7. Irrelevant Info
8. Irrelevant Info
9. Sample Info - T

Provided Report Report Template Training/Test Report Data

Figure 1: Simplified outline of the report synthesis process.

While the use of sample sentences prevented us from val-
idating on the full scope of natural language, splitting the
document into a training and evaluation set ensured that the
statements observed during testing were completely differ-
ent from the ones used for training, with the exception of
the few limited categories described previously. Along with
the use of separate templates for training and evaluation, we
believe that this allowed us to properly test the model’s gen-
eralized performance, as the training and test data shared
almost nothing.

Training
During the report synthesis process described in Section 2
and outlined in Figure 1, we formatted our training results
into the prompt templates that we would be using during
evaluation, along with the expected responses. We then used
these reports to finetune Mistral’s 7B Instruct model via
LoRA. We opted to use the Axolotl library for fine-tuning,
and evaluation was performed with several different sample
counts.

Our most extensive training utilized 1600 samples and
was trained to 4 epochs, which took roughly 17 hours on
a single RTX 4090 GPU. The Axolotl configuration file for
our training is contained in our source code, which we’ve
published. Fine-tuning was done with a rank of 64 (all
other fine-tunes utilized a rank of 32), and training targeted
the Qproj , Vproj , Kproj , Oproj , Gateproj , Downproj , and
Upproj modules within the original model, accounting for
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Measurement:
"TUMOR SIZE: 2.5 CM"Extract Tumor

Measurement

Available Categories
**All Known Categories**

Measurement: 
UNKNOWN

Available Categories
Tx: Primary tumor cannot be assessed
T0: No evidence of primary tumor
Tis (DCIS): Ductal carcinoma in situ
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T4a: Chest wall invasion
T4b: Macroscopic skin changes
T4c: Criteria of both T4a and T4b
T4d: Inflammatory carcinoma

Create Prompt for T
Assessment

Figure 2: The class filtering performed during T evaluation
using measurement information extraction.

roughly 90 million of the model’s 7 billion weights.

Evaluation
Our evaluation consists of four passes to the LLM. First, we
attempt to extract the maximum tumor measurement speci-
fied in the report, if it exists. We have the model retrieve this
statement, and automatically parse the value using regex. We
then use this data to filter the possible T classes that the re-
port could match.

We then perform a pass for each of the three categories
in TNM, supplementing the prompt with labels, definitions,
and five example sentences for all possible classes. For the T
category, we also indicate the filtered list of categories men-
tioned above.

For all of the four passes, we force the model to out-
put a valid JSON using the lm-format-enforcer library
on GitHub (Gat 2023), which allows grammar-based LLM
sampling, along with a mode to force the JSON output to
match a provided pydantic scheme. This is effectively the
same as OpenAI’s JSON mode, but on local models without
a noticeable impact on performance.

We also prompted the model to cite the statements within
the report relevant to its decision. We were able to train for
this, as our report synthesis method decided the ground truth
labels for both the categorical class and the statements indi-
cating the class.

Results
As shown in Table 1, vanilla foundational models demon-
strate promising but unreliable performance on the task,
even in the case of GPT 4. However, even a moderate de-
gree of fine-tuning (100 samples for 16 epochs) increases
Mistral 7B Instruct’s performance by over 70%. This is in
line with existing literature on LoRA, which has shown
that the gap in performance between LoRA fine-tuning and
full-parameter fine-tuning is very small on more specialized
tasks, while it is larger on more generalized and/or reason-
ing intensive tasks (Niederfahrenhorst, Hakhamaneshi, and
Ahmad 2023).

The model’s accuracy is reported in Table 1, both sepa-
rately across T, N, and M categories and compounded for all

categories for a single pass. In other words, the compounded
metric measures the model’s accuracy at correctly predict-
ing all three of the categories in a single inference pass. It
is important to note that the accuracy metric includes sam-
ples where the correct label is ‘UNKNOWN’. We also re-
port an additional metric that measure the fraction of cases
in which the model incorrectly predicted ‘UNKNOWN’ for
a category that had a known label, subtracted from one. This
measures the “confidence” of the model, with a value of 1.0
indicating that the model did not report ‘UNKNOWN’ for
any case with a known label.

Furthermore, our results showed that training on only 100
samples could yield similar results and enable physicians to
efficiently create training and evaluation data sets for similar
tasks at a low cost.

Discussion
The results presented in this study provide compelling ev-
idence that Low-Rank Adaptation (LoRA) fine-tuning can
significantly enhance the performance of small foundational
language models on specialized tasks such as TNM stag-
ing from unstructured pathology reports. Note that com-
pounded accuracy is particularly useful in demonstrating
how even marginal error rates become problematic in real-
world cases involving multiple steps. Given our best result
reached 96.5% compounded accuracy, and given that the
task is deterministic in nature, we believe that perfect ac-
curacy is possible with enough training.

It is worth noting that, after fine-tuning, the T category
was consistently the least accurate of the three, while the
other two quickly converged towards 100% accuracy. This
could be attributed to the large number of classes (14 vs 9
and 5 for N and M respectively), however further investi-
gation is warranted into the model’s behavior when making
mistakes. One could also take the approach of training the
model to more easily decide to classify a report as ‘UN-
KNOWN’. During training, the assigned rates at which a
category would be hidden were 5% for all categories, and
raising this value could sacrifice a marginal level of confi-
dence for improved performance.

Future Work
Optimization
It is likely that better configurations may be found for LoRA
fine-tuning that result in improved performance over that
reported in this work. Likewise, different multi-pass work-
flows and prompt engineering techniques may further im-
prove performance. We also envision that additional modifi-
cations to the data synthesis process to increase the difficul-
ty/variety in evaluation may lead to better generalization.

Model Confidence
Additionally, we believe it may be advantageous to inten-
tionally train the model to increase its chances of predicting
the ‘UNKNOWN’ label on reports where the decision may
be unclear. From a practical standpoint, we recognize that it
is better for the model to indicate a lack of confidence than



to generate an incorrect classification. The practical impli-
cation of the ‘UNKNOWN’ category is that the physician
would have to manually decide the classification.

Software Frameworks
This work also involved the development of front-end and
back-end software for deploying these local models and
their applications. We found that existing software for self-
hosting large language models was somewhat limited, so this
was necessary in order to securely host these models on lo-
cal infrastructure at scale. This work has proven extremely
promising, and its application may go beyond the scope of
the work described here. It is our intention to open source
our work once we feel it is production ready, and we may
publish future work on our findings.

Ethical and Operational Considerations
Being a purely technical investigation, this work did not in-
vestigate the operational or ethical aspects of deploying such
a model in practice. Such investigations should be performed
in the event that one seeks to integrate one of these models
into their clinical workflow.

Conclusion
In this paper, we have presented a comprehensive study
on the application of Low-Rank Adaptation (LoRA) fine-
tuning of small language models, specifically Mistral’s 7B
model, for the task of TNM staging in unstructured pathol-
ogy reports of triple-negative breast cancer cases. Our find-
ings have demonstrated that with fine-tuning, even smaller
foundational models can achieve high accuracy in medical
NLP tasks, offering a cost-effective and reliable alternative
to larger, more resource-intensive models controlled by a
third party.

The study has shown that a reliable level of performance
is possible with just LoRA fine-tuning of small foundational
models. Given even a small amount of training data, accu-
racy becomes substantially better than even the best avail-
able foundational models. We’ve also shown that given a
sufficient amount of data, model performance approaches
near-perfect accuracy.
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