
Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

SECURE FEDERATED LEARNING AGAINST MODEL POI-
SONING ATTACKS VIA CLIENT FILTERING

Duygu Nur Yaldiz∗ , Tuo Zhang∗, Salman Avestimehr
Department of Electrical and Computer Engineering
University of Southern California
yaldiz@usc.edu, tuozhang@usc.edu, avestime@usc.edu

ABSTRACT

Given the distributed nature, detecting and defending against the backdoor attack
under federated learning (FL) systems is challenging. In this paper, we observe
that the cosine similarity of the last layer’s weight between the global model and
each local update could be used effectively as an indicator of malicious model
updates. Therefore, we propose CosDefense, a cosine-similarity-based attacker
detection algorithm. Specifically, under CosDefense, the server calculates the
cosine similarity score of the last layer’s weight between the global model and each
client update, labels malicious clients whose score is much higher than the average,
and filters them out of the model aggregation in each round. Compared to existing
defense schemes, CosDefense does not require any extra information besides
the received model updates to operate and is compatible with client sampling.
Experiment results on three real-world datasets demonstrate that CosDefense
could provide robust performance under the state-of-the-art FL poisoning attack.

1 INTRODUCTION

The gist of Federated Learning (FL) is to train a model coordinated by a server while preserving
the clients’ data privacy Zhang et al. (2021). However, this substantial property introduces new
challenges. Since the server does not have access to the client data due to privacy concerns, FL is
vulnerable to data or model poisoning attacks, in which the attacker send corrupted updates and
contaminates the global model. Given the distributed nature of FL, it is challenging to detect and
correct these failures under the vanilla FL framework McMahan et al. (2016); Zhang et al. (2022).

Several solutions have been proposed to defend the server from model poisoning attacks to relax the
security challenge for the FL framework. Server-side robust aggregation approaches aim to detect
outliers by inspecting the client updates, and filtering the malicious updates before model aggregation
such as Blanchard et al. (2017). Besides completely filtering out before model aggregation, approaches
proposed by Xu & Lyu (2021); Cao et al. (2021); Fung et al. (2020); Prakash et al. (2020) diminish the
aggregation coefficients of the clients that are likely to be malicious. However, existing approaches
have some critical drawbacks or unfeasible assumptions as we summarize in Table 1.

In this work, we propose CosDetect, a cosine similarity based outlier detection algorithm, to tackle
the fundamental issues of existing defense methods. We provide an intriguing finding that the weight
inside the last layer of the local model update is more sensitive to the local data distribution than
other layers. Based on this crucial observation, we propose that the last layer of local updates from
the malicious clients should be outliers compared to the ones from the benign clients. By calculating
the cosine similarity of the last layer between each collected model update and the last global model,
it is possible to filter the poisoning updates before model aggregation.

As shown in Table 1, the proposed cosine similarity based outlier detection scheme, though simple,
has equipped CosDetect with multiform merits compared to prior strategies: (1) CosDetect
does not require representative benign data at the server to distinguish the malicious updates. It
is only built on accessing the global model parameters and the clients’ updates. (2) CosDetect
does not need the precise number of malicious clients per communication round in advance for

*The first two authors contributed equally.

1

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Table 1: Comparison of CosDefense with existing backdoor defense FL methods.

Compatibility with
Client Sampling

Validation Data
at the Server

Information of
Attacker Number

Client Score
Maintenance
at the Server

Krum Blanchard et al. (2017)
√

×
√

×
Multi-Krum Blanchard et al. (2017)

√
×

√
×

Median Yin et al. (2018)
√

× × ×
RFFL Xu & Lyu (2021) × × ×

√

FoolsGold Fung et al. (2020)
√

× ×
√

FLTrust Cao et al. (2021)
√ √

× ×
ByGars Regatti et al. (2021)

√ √
×

√

SageFlow Park et al. (2021)
√ √

× ×
CosDefense (Our Method) " $ $ $

robust performance. (3) CosDetect does not rely on the previous clients’ records to cluster the
malicious clients. Instead, CosDetect eliminates the outliers only based on the current round
information, which makes our algorithm compatible with client selection and brings more flexibility
for the implementation.

2 APPROACH OVERVIEW

2.1 LAYER-WISE COSINE SIMILARITY FOR MODEL WEIGHTS

Figure 1: The average cosine sim-
ilarity of model weight in various
layers between one client and the
other nine clients. All 10 models
are trained independently for 1000
iterations without synchronization.

We first focus on a critical question: how would the attack be re-
flected on the server side during FL training? Under the vanilla
FL setting McMahan et al. (2016), the only information the
server holds during the training are the collected model updates
and the following aggregated model. A previous study Zhao
et al. (2020) notes that label information for the training data
can be computed analytically from the gradients of the last
layer inside the machine learning model under the centralized
setting. Following this direction, one intriguing finding from
our empirical study is that compared to other layers, the last
layer’s weight is more sensitive to the input data distribution.
We quantify the similarity of model weights by cosine similar-
ity, which is the dot product of the two vectors divided by the
product of individual norms as cos(α) = <x,y>

||x||·||y|| where α is
the angle between vectors x and y. Figure 1 shows the average
cosine similarity for each layer in the model across independent
clients. In this experiment, ten clients train a four-layer CNN-
based model independently without any model synchronization
on the MNIST dataset, which has been non-iid partitioned (See
Section 3.1 for details). We observe that with the increment of
the iteration, the input-side layers show higher similarity than the output-side layers, and the last
layer has the lowest similarity score, because the local data distribution among all clients mainly
varies on the label distribution. These observations provide critical insight that the local data label
distribution could be efficiently reflected in the last layer’s weight compared to the other layers.

2.2 COSDEFENSE: FILTERING THE MALICIOUS MODEL UPDATE VIA COSINE SIMILARITY

Based on the crucial observation we described in the previous section, we propose that the last layer
of the local models from the attackers should be outliers compared to the ones from the benign
models. Therefore, it is possible to filter the malicious model update on the server by calculating the
cosine similarity between each collected model update and the last global model. When calculating
the cosine similarity between global model weights and local model update, we have the following:

cos(αi) =
< θt, g

i
t+1 >

||θt|| · ||git+1||
=

< θt, θ
i
t+1 − θt >

||θt|| · ||θit+1 − θt||
=

< θt, θ
i
t+1 > − < θt, θt >

||θt|| · ||θit+1 − θt||
(1)

2

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

where αi denotes the angle between global model weights (θt) and local model update of client i
(git+1). If all the participated clients are benign nodes, as the communication round t goes to infinity,
the global model should be converged to an optimal point based on the received local model update.
Therefore, the cosine similarity between global model weights and the local model update tends to be
decreasing during the training, as the difference between θt and θit+1 (local model for client i) goes
smaller for each client.

However, the cosine similarity scores from malicious clients do not follow this phenomenon. As
their aim is to prevent convergence, their local optimization direction would be different compared to
the benign client models or the global model. As a result, the difference between θt and θit+1 from
malicious nodes becomes more extensive than the benign nodes, making the cosine similarity score
between the malicious client update and the global weights tend to be increasing during the training.

Figure 2: The trace of the average
cosine similarity score of the last
layer’s weight between all received
local updates and global model.

To demonstrate our thoughts, we trace the average cosine score
of the last layer local updates and that of the global model
under benign and poisoning attack cases (Figure 2). Under
both cases, the total client number is 100, and the sampling
rate is 0.1 in each round. For the poisoning attack case, we
launch the IPM attack Xie et al. (2019) at round 200, with
30% of the participants being malicious clients. For a better
illustration, Figure 2 is smoothed by the moving averaged filter
with window size 40. The average cosine similarity increases
sharply as the attack happens and is much higher than the scores
under the all-benign case, which confirms our speculation.

We observed that cosine similarity between global model pa-
rameters and the benign local model updates tends to be smaller
during the training, which indicates that the direction of benign
updates is less than perpendicular to the global model, making
it move toward a different direction in each round. However,
the average cosine similarity scores increase after the attack,
indicating that cosine similarity scores from malicious clients are much larger than the scores from
benign clients. The large cosine similarity values represent that malicious client updates are aligned
with the global model parameters and do not update the global model in different directions but keep
it still. As a result, if there are enough malicious clients in the system, their updates considerably
diminish the benefit of benign client updates, preventing the convergence of the global model.

Following these directions, we propose CosDefense, a server-side clustering-based defense method
as shown in the Appendix C. In each round t, after the server receives all the updates from the
sampled clients, it calculates the cosine similarity between the last layer’s global weights and the
last layer’s local updates for each client. Then, the server clusters clients based on their cosine
similarity scores either as malicious or benign. If the cosine similarity score of a client is much
higher than others, then the server labels that client as malicious for round t and exclude that client
from aggregation. CosDefense only detects malicious clients before aggregation and excludes
them, allowing the server to perform any aggregation method with benign client updates. Hence,
CosDefense algorithm is compatible with any aggregation method.

3 EVALUATIONS

3.1 EXPERIMENT SETUP

We conduct the evaluations on three datasets and two models: MNIST LeCun et al. (1998) and
Fashion-MNIST Xiao et al. (2017) with a four-layer CNN-based model following the previous related
work Li et al. (2022), and CIFAR-10 Krizhevsky (2009) with ResNet-18 model He et al. (2015). We
generate the non-iid partition for all datasets following previous FL works Li et al. (2022); Fang et al.
(2019) with default q as 0.5, where the higher q represents a higher non-iid degree. We compare our
defense method with two representative robust aggregation rules: Krum Blanchard et al. (2017) and
Clipping-Median. We do not include the baselines such as FLTrust or RFFL because they either need
validation data on the server or do not compatible with the client sampling. Further details of the
baseline implementation and parameter selection can be found in Appendix D

3

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

3.2 DEFENSE PERFORMANCE WITH THE STATE-OF-THE-ART MODEL POISONING ATTACK

To evaluate the defense performance, we evaluate the CosDefense on top of the state-of-the-art
model poisoning attack methods, Inner Product Manipulation (IPM) Xie et al. (2019) attack. In the
following experiments, we set the attacker control 30% of the participants as malicious nodes, and
the attack would launch at round 200. The server randomly samples 10 clients from 100 for local
model training in each communication round.

Evaluation Results: Figure 3 shows the accuracy curve over 1000 communication rounds for Krum,
Clipping-Median, and CosDefense for MNIST, Fashion-MNIST, and CIFAR-10. The detailed
numerical results and ablation study related to the non-iid degree are shown in Appendix E. We have
three observations from the results. (1) As Krum and Clipping-Median use all layers of the updates,
the results of CosDefense indicate that the similarity of the last layer between the collected model
update and global model is more sensitive to attacks, which could effectively be used to filter out
the malicious model updates. (2) After the IPM attack begins, all the defense strategies drop the
accuracy significantly. However, the proposed CosDefense strategy has a much faster convergence
speed and shorter recovery time to resume the learning compared to Krum and Clipping-Median. (3)
For the most challenging dataset CIFAR-10, after the IPM attack happens, CosDefense not only
recovers the best accuracy before round 200, but also has an increasing trend on the curve, while
other defense baselines even could not reach the best accuracy before the attack.

Figure 3: Accuracy performance over 1000 rounds for Krum, Clipping-Median, CosDefense, and
FedAvg on MNIST (left), FMNIST (middle), and CIFAR-10 (right) under IPM attack.

Figure 4: Accuracy perfor-
mance on MNIST dataset un-
der different numbers of at-
tackers perform IPM attacks.

Impact of the number of the attackers. Some previous works on
untargeted model poisoning assume that there is a large fraction of
attackers among participants Fang et al. (2019); Xie et al. (2019).
Therefore, we also investigate the number of attackers’ impact on
defense performance. In this section, we conduct experiments on
non-iid partitioned MNIST with q = 0.5, and vary the number of
attackers from 10% to 40% of the total participants. Results of
this study are provided in Figure 4, showing the final global model
accuracy of defense methods under various settings. We observe that
the two defense baselines remain robust when the ratio of attackers
is less than 30%. As the ratio reaches 30%, both Krum and Clipping
Median collapse on the accuracy performance and fail to defend
the model convergence, while CosDefense still provides robust
accuracy performance. One notable point is that the CosDefense
achieves the best accuracy compared to other baselines among all
different ratios of attackers. The experiment results demonstrate
that CosDefense is robust and reliable under both small-scale and
large-scale attack scenarios.

4 CONCLUSION

We presented CosDefense, a cluster-based defense scheme that could filter the malicious updates
out of the model aggregation on the server. Experiment results on real-world datasets demonstrate
that CosDefense can provide robust performance under the state-of-the-art FL poisoning attack.
We picture the limitations and potential future work in Appendix F.

4

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

5 ACKNOWLEDGEMENT

This material is based upon work supported by Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR001120C0156, ARO award W911NF1810400, ONR Award
No. N00014-16-1-2189. The views, opinions, and/or findings expressed are those of the author(s) and
should not be interpreted as representing the official views or policies of the Department of Defense
or the U.S. Government.

REFERENCES

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
ICML, 2012.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with
adversaries: Byzantine tolerant gradient descent. NeurIPS, 2017.

Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust federated
learning via trust bootstrapping. NDSS, 2021.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Local model poisoning attacks
to byzantine-robust federated learning. In USENIX Security Symposium, 2019.

Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. The limitations of federated learning in sybil
settings. 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2020.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proc. IEEE, 86:2278–2324, 1998.

Henger Li, Xiaolin Sun, and Zizhan Zheng. Learning to attack federated learning: A model-based
reinforcement learning attack framework. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=4OHRr7gmhd4.

H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics, 2016.

Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. Toward robustness and privacy in
federated learning: Experimenting with local and central differential privacy. arXiv, 2020.

Jungwuk Park, Dong-Jun Han, Minseok Choi, and Jaekyun Moon. Sageflow: Robust federated
learning against both stragglers and adversaries. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
volume 34, pp. 840–851, 2021.

Saurav Prakash, Hanieh Hashemi, Yongqin Wang, Murali Annavaram, and Salman Avestimehr.
Secure and fault tolerant decentralized learning. 2020.

Jayanth Regatti, Hao Chen, and Abhishek Gupta. Bygars: Byzantine sgd with arbitrary number of
attackers. International Workshop on Federated Learning for User Privacy and Data Confidentiality
in Conjunction with ICML, 2021.

Jingwei Sun, Ang Li, Louis DiValentin, Amin Hassanzadeh, Yiran Chen, and Hai Li. Fl-wbc: En-
hancing robustness against model poisoning attacks in federated learning from a client perspective.
NeurIPS, 2021.

5

https://openreview.net/forum?id=4OHRr7gmhd4

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H. Brendan McMahan. Can you really
backdoor federated learning? arXiv, 2019.

Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data poisoning attacks against
federated learning systems. In Computer Security – ESORICS 2020, pp. 480–501. Springer
International Publishing, 2020. ISBN 978-3-030-58951-6.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. ArXiv, abs/1708.07747, 2017.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-tolerant sgd
by inner product manipulation. In 35th Conference on Uncertainty in Artificial Intelligence, 2019.

Xinyi Xu and Lingjuan Lyu. A reputation mechanism is all you need: Collaborative fairness and
adversarial robustness in federated learning. International Workshop on Federated Learning for
User Privacy and Data Confidentiality in Conjunction with ICML, 2021.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In Jennifer Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 5650–5659. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/yin18a.html.

Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Krishnamachari, and Salman Avestimehr.
Federated learning for the internet of things: Applications, challenges, and opportunities. IEEE
Internet of Things Magazine, 5:24–29, 2021.

Tuo Zhang, Tiantian Feng, Samiul Alam, Sunwoo Lee, Mi Zhang, Shrikanth S Narayanan, and
Salman Avestimehr. Fedaudio: A federated learning benchmark for audio tasks. arXiv preprint
arXiv:2210.15707, 2022.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
ArXiv, abs/2001.02610, 2020.

Giulio Zizzo, Ambrish Rawat, Mathieu Sinn, and Beat Buesser. Fat: Federated adversarial training.
NeurIPS Workshop on Scalability, Privacy, and Security in Federated Learning (SpicyFL), 2020.

6

https://proceedings.mlr.press/v80/yin18a.html
https://proceedings.mlr.press/v80/yin18a.html

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

A PRELIMINARY

A.1 FEDERATED LEARNING

In this paper, we consider the federated learning setting that is similar to the vanilla FedAvg McMahan
et al. (2016), in which the FL system is composed of a server withK clients, whose data is only locally
kept without sharing. The clients cooperate in training a global modelWg with parameters θ. We
consider the following distributed optimization problem: min

θ
f(θ), where f(θ) :=

∑K
i=1 piFi(θ).

The Fi(·) represents the local objective of client i and pi denotes the aggregation weight of client i
satisfying pi ≥ 0 and

∑C
i=1 pi = 1.

The federated learning algorithm runs as follows: in each communication round t, the server randomly
selects a subset St from available clients for client sampling and sends the global model parameters
θt to the selected clients. Each selected client i ∈ St initializes its local model parameters as θt
and performs local model updates θit+1 = θt − η 1

B

∑
z∈bi
∇θℓ(θt; z), where η is learning rate, bi

is a mini-batch of size B randomly sampled from local data Di. After local update finishes, each
client i ∈ St send the model update git+1 := θit+1 − θt to the server. Lastly, the server performs
the aggregation function over the received model updates and obtains a new global model such that
θt+1 ← θt − Gt, where Gt ← Aggr({git+1}i∈St). The newly updated model parameters θt+1 is
then used to perform the next round of FL training. The FL training is ended when the round number
reaches T .

A.2 THREAT MODEL

We assume that the attacker’s goal is to diminish global model accuracy regardless of specific inputs
or classes, in which malicious clients perform untargeted attacks. In this work, we assume that p
percentage of the total number of clients is malicious, where 0 ≤ p ≤ 1. Let the malicious clients be
denoted byM and the set of malicious clients asA. All malicious clients share the same purpose and
perform the same type of attack. They are either coordinated by an external attacker or by a leader
client. During the FL training, the malicious attackers send crafted local updates {g̃tk}k∈A to the
server to purposely maximize the global optimization function f(θ). The crafted local updates are
generated from their local data distributions, which differ from the benign clients’ local distributions.
The illustration of the threat model is shown in Figure 5.

Figure 5: Threat model of the data poisoning attack in FL. After receiving the global model from the
server, the malicious clients purposely upload contaminated model updates to poison the model.

7

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

B RELATED WORKS

Poisoning Attacks in FL. In federated learning, the attackers may control a fraction of the clients
and manipulate the local data or training process to purposely poison the global model performance
by injecting the wrong local model update. This kind of attack is called the model poisoning attack,
in which the attacker contaminates the global model. Poisoning attacks are mainly categorized
into targeted and untargeted attacks according to the attacker’s aim. Targeted attacks aim to keep
global model performance high, while the model considerably misbehaves on a specific set of inputs.
This can be done either by injecting backdoor triggers to the inputs regardless of the original class
or flipping the labels of only one class to a similar label (e.g., flipping 1 to 7 in MNIST or ’cat’
to ’dog’ in CIFAR10). On the other hand, the purpose of untargeted attacks is to decrease the
global model’s performance significantly. Label-flip Biggio et al. (2012), and gradient modification
(e.g., sending random noise to the server instead of real update) Blanchard et al. (2017) attacks are
examples of this type. Moreover, Li et al. (2022) utilizes reinforcement learning to create an optimal
untargeted attack, however, building the framework to generate online attack is costly in terms of both
time and computation. Another state-of-the-art untargeted model poisoning attack is Inner Product
Manipulation (IPM) proposed by Xie et al. (2019). The aim of the IPM is to modify the local updates
of the malicious clients such that the inner product between the true gradient and the aggregated
updates is negative.

Defenses for Poisoning Attacks in FL. Several solutions have been proposed to mitigate the effect
of the attacks, so that model performance is not negatively affected. Client-side defenses modify
the local training algorithm and rely on benign clients Zizzo et al. (2020); Sun et al. (2021). For
example, Sun et al. (2021) finds the model parameters that the attack is hidden and perturbs those
parameters during local training of benign clients. Some server-side defense methods decrease the
aggregation weights of the malicious client updates Regatti et al. (2021); Cao et al. (2021); Xu & Lyu
(2021). While others perform clustering based on different techniques and aggregate only benign
clients Blanchard et al. (2017); Tolpegin et al. (2020). For instance, Multi-Krum Blanchard et al.
(2017) calculates the total Euclidean distance from the n− f − 2 nearest neighbors for each client
update, where n is the number of clients and f is the estimated malicious client number. Then, only
the n− f updates with the minimum distance is aggregated. Another work Sun et al. (2019) applies
norm-clipping to the client updates before the aggregation, based on the observation that norm of
malicious updates are large. Also, differential privacy methods (e.g., adding noise to updates) are
shown to be mitigating model poisoning attacks Sun et al. (2019); Naseri et al. (2020).

However, some current solutions have critical drawbacks in terms of real-world feasibility. For
instance, algorithms proposed by Regatti et al. (2021); Cao et al. (2021); Park et al. (2021) rely
on representative benign data on the server, which is hard to accomplish in actual FL deployment,
where the server seldom stores the ground-true validation data. Moreover, Xu & Lyu (2021) is
incompatible with client selection, an inevitable necessity for cross-device FL where thousands of
clients participate. Also, Krum and Multi-Krum Blanchard et al. (2017) require the knowledge of the
number of malicious clients in the FL setting , which is not feasible. Lastly, methods proposed by Xu
& Lyu (2021); Fung et al. (2020); Regatti et al. (2021) maintains reputation scores for each client
on the server side, which is a serious overhead since thousands of clients may participate in the FL
system. Overall, there is a gap for a defense solution in the FL setting that does not require server
data, is compatible with client selection, and is self-sufficient for detecting malicious clients.

C ALGORITHM

CosDefense algorithm is presented in the Algorithm 1. More specifically, after calculating the
cosine similarity scores of each client, the server takes their absolute value before and performs
min-max normalization, which is beneficial for separating the actual malicious and benign clients
better. After these two adjustments, we define the threshold value as the mean of current scores
and cluster clients accordingly. If the client score exceeds the mean value, it is labeled malicious.
Otherwise, the server considers it benign and aggregates its weights for the next global model.

8

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Algorithm 1 CosDefense

Input: Global model parameters θt, local updates git+1 of sampled clients i ∈ St, and aggregation
method Aggr(·)
Initialize: Benign client set B = {}ß
for each client i in St do
csi ← |cosine similarity(θt,L, g

i
t+1,L)|

for each client i in csi do
csi ← (csi −min(cs))/(max(cs)−min(cs))

threshold← mean(cs)
for each client i in St do

if csi < threshold then
B ← B ∪ {i}

Gg ← Aggr({git+1}i∈B)
θt+1 ← θt −Gt

Output: θt+1

D EXPERIMENTAL DETAILS

Datasets and partitioning. Dataset statistics are provided in Table 2. We generate the non-iid
partition for all datasets following previous FL works Li et al. (2022); Fang et al. (2019). Specifically,
suppose there are C various classes in a dataset. We evenly break all the clients into C groups, in
which each group is assigned 1/C of training samples as follows. A training point with label c would
be assigned to c-th group with probability q ≥ 1/C and to each of the rest groups with probability
(1 − q)/(1 − C). The attacking clients would be evenly distributed across C groups. A higher q
value stands for a higher non-iid degree. In the experiments above, we set the default q equals to 0.5
and partition the datasets into 100 clusters.

Table 2: Dataset statistics.

Dataset Train Clients Train Examples Test Examples Input Size
MNIST 100 60,000 10,000 1x28x28

Fashion-MNIST 100 60,000 10,000 1x28x28
CIFAR-10 100 50,000 10,000 3x32x32

Baseline implementations and parameter selections. We follow the same implementation details
for Krum and Clipping-Median as in the previous work Li et al. (2022). For Krum, we set the
number of the attacker parameter f to its real value in each round for the best performance. For
the Clipping-Median, we first apply norm-clipping Sun et al. (2019) then perform coordinate-wise
median Yin et al. (2018), since it is shown to be more powerful than the vanilla median Li et al.
(2022). Moreover, we provide the results for no defense case, where the server only performs FedAvg
aggregation. For all experiments, the communication rounds fix to 1000, and the local training
iteration number is 1 with batch size 128. The aggregation function is FedAvg McMahan et al. (2016).
The default local learning rate is 0.01 for all experiments.

Configurations. All experiments are conducted by CPU/GPU simulation. The simulation experi-
ments are conducted on a computing server with eight GPUs. The server is equipped with AMD
EPYC 7502 32-Core Processor and 1024G memory. The GPU is NVIDIA RTX A4000.

E EXPERIMENTAL RESULTS

The final global model accuracy of each method is provided in the table 3.

Impact of the non-iid degree. In order to investigate the impact of data heterogeneity on
CosDefense, we partition the MNIST dataset with q equals 0.1, 0.3, and 0.5, respectively, and run
all three defense strategies on top of the IPM attack for the evaluation. We set 30% of the devices
as malicious clients, the same as in the previous section. As shown in Figure 6, we observe that
CosDefense is stable with the change of the non-iid degree, and outperforms the other two defense

9

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Table 3: Global model accuracy comparison between No Defense, Krum, Clipping-Median, and
CosDefense.

No Defense Krun Clipping-Median CosDefense

MNIST 9.8% 9.8% 19.29% 83.37%

F-MNIST 10% 10% 21.24% 67.63%

CIFAR-10 10% 10% 20.89% 52.02%

baselines on accuracy performance among all scenarios. The results indicate that the CosDefense
is resistant to the impact of data heterogeneity compared to the other defense baselines.

Figure 6: Accuracy performance on MNIST dataset under different non-iid partition levels.

F LIMITATIONS AND FUTURE WORKS.

One of the directions for future work is the combination of CosDefense with the existing secure
aggregation frameworks. The challenging point is that under the secure aggregation frameworks,
each model update is locally encrypted and uninspectable by a server. Instead, only the sum of the
model update would be revealed to the server when sufficient updates have been received, which
impedes the implementation of CosDefense on top of it.

10

	Introduction
	Approach Overview
	Layer-wise Cosine Similarity for Model Weights
	CosDefense: Filtering the Malicious Model Update via Cosine Similarity

	Evaluations
	Experiment Setup
	Defense Performance with the State-of-the-Art Model Poisoning Attack

	Conclusion
	Acknowledgement
	Preliminary
	Federated Learning
	Threat Model

	Related Works
	Algorithm
	Experimental Details
	Experimental Results
	Limitations and Future works.

