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ABSTRACT

Zero-shot reasoning methods with Large Language Models (LLMs) offer signif-
icant advantages including great generalization to novel tasks and reduced de-
pendency on human-crafted examples. However, the current zero-shot methods
still have limitations in complex tasks, e.g., answering questions that require
multi-step reasoning. In this paper, we address this limitation by introducing
a novel structure-oriented analysis method to help LLMs better understand the
question and guide the problem-solving process of LLMs. We first demonstrate
how the existing reasoning strategies, Chain-of-Thought and ReAct, can bene-
fit from our structure-oriented analysis. In addition to empirical investigations,
we leverage the probabilistic graphical model to theoretically explain why our
structure-oriented analysis can improve the LLM reasoning process.
To further improve the reliability in complex question-answering tasks, we pro-
pose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning
Agents (SARA), that can better enforce the reasoning process following our
structure-oriented analysis by refinement techniques and is equipped with exter-
nal knowledge retrieval capability to reduce factual errors. Extensive experiments
verify the effectiveness of the proposed reasoning system. Surprisingly, in some
cases, the system even surpasses few-shot methods. Finally, the system not only
improves reasoning accuracy in complex tasks but also demonstrates robustness
against potential attacks that corrupt the reasoning process.

1 INTRODUCTION

Large Language Models (LLMs) have shown remarkable potential in various reasoning tasks (Wei
et al., 2022; Yao et al., 2022; Shinn et al., 2024; Ahn et al., 2024; Wang et al., 2022), making
LLM-based reasoning a fascinating area of research in artificial intelligence. Besides the litera-
ture which exhibits LLMs’ strong reasoning abilities when provided with task-specific exemplars
(Wei et al., 2022; Yao et al., 2022; Besta et al., 2024), more recent studies in zero-shot reasoning
methods (Kojima et al., 2022; Qiao et al., 2022) demonstrate their unique advantages. For example,
these zero-shot methods explore LLMs’ inherent reasoning abilities without human effort in crafting
task-specific demonstration examples used in few-shot reasoning and potentially improve the gen-
eralization on solving unseen tasks. These benefits highlight the necessity of advancing zero-shot
reasoning capabilities in LLMs.

Despite the promising potential of zero-shot reasoning, significant challenges persist. A primary
concern is its inferior performance on complex tasks, e.g., answering multi-hop questions, com-
pared to human or few-shot methods (Huang & Chang, 2022; Ahn et al., 2024). Among incorrect
responses, it is often observed that zero-shot methods cannot demonstrate human-like thinking pro-
cesses, such as comprehensively understanding the problem statements.

To address this issue, the concept of human cognition can serve as a valuable reference. Research
in human cognition (Simon & Newell, 1971; Kotovsky et al., 1985; Chi et al., 1981; Lakoff &
Johnson, 2008) has shown that skilled problem-solvers demonstrate strong reasoning abilities when
facing new problems, even without examples or external guidance. They analyze the problem’s
structure, leveraging linguistic and logical patterns to gain a comprehensive understanding (Lakoff
& Johnson, 2008). This analytic thinking process helps identify critical components (Kotovsky
et al., 1985) and relationships between these components, extract related sub-questions, and help
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identify some key steps along the correct reasoning path. Take the problem in Figure 1 as one
example, through understanding the structure of the question, we can obtain the primary objective
(identifying a song’s name) and its associated constraints (the song’s affiliation with a university, and
the location of the university’s main campus and branches). This analytic thinking process provides
a more structured way of reasoning compared to directly exploring the reasoning path.

Inspired by the human analytic thinking process, we introduce a structure-oriented analysis method
to improve LLM’s zero-shot reasoning capability, which understands the structure of problem state-
ments and generates a comprehensive understanding before performing the reasoning process. The
proposed method is based on the syntax and grammar structures in the statement, leveraging LLMs’
ability to parse linguistic patterns (Mekala et al., 2022; Ma et al., 2023). With the help of grammar
structures, LLMs can accurately identify critical components in the problem statement and relation-
ships among them and further discover related sub-questions. From this perspective, this analytic
thinking process mimics human thinking behavior and thus helps explore correct reasoning paths
toward solutions. We demonstrate that simply adding this analysis on top of existing methods such
as Chain-of-Thought (CoT)(Wei et al., 2022; Kojima et al., 2022) and ReAct (Yao et al., 2022)
can significantly enhance the reasoning performance (Section 3.1). Our theoretical analysis (Sec-
tion 3.2), based on a probabilistic graphical model, also suggests that extracting correct information
from problem statements can effectively reduce reasoning errors. All these indicate the potential of
our structure-oriented analysis in improving LLMs’ inherent reasoning capabilities.

To further boost the effectiveness of our structure-oriented analysis towards solving knowledge-
intensive complex problems, we introduce a multi-agent reasoning system, Structure-oriented
Autonomous Reasoning Agents (SARA), to let the reasoning process better follow the analysis
and utilize external knowledge. This system consists of a Reason Agent that generates the structure-
oriented analysis; a Refine Agent that evaluates every reason step to check its correctness and align-
ment with the structure-oriented analysis result; a Retrieve Agent that obtains external knowledge;
and a Shared Memory that tracks reasoning trajectories. Our extensive experiments across different
tasks and LLMs demonstrate the effectiveness of this system and show that it can achieve com-
parable or even better performance than few-shot methods (Section 5). Furthermore, we observe
enhanced robustness against backdoor attacks (Xiang et al., 2024) and injection attacks (Xu et al.,
2024), highlighting additional benefits of our approach in terms of security and reliability.

To summarize, the main scientific contribution of this paper is our observation that the zero-shot
reasoning ability of LLMs is not fully explored. Supported by both empirical evidence and theo-
retical validation, the structure-oriented analysis we propose in this paper significantly enhances the
zero-shot reasoning capability of LLMs. Besides the major contribution, an additional contribution
is the proposed multi-agent reasoning system, which provides a more comprehensive and practical
solution for structure-oriented analysis to further improve the zero-shot reasoning performance.

2 RELATED WORK

LLMs for reasoning. In literature, there is growing interest in exploring and enhancing the reason-
ing capability of LLMs. Chain-of-Thought (CoT) prompting, introduced by (Wei et al., 2022), pi-
oneered the approach of encouraging models to generate intermediate reasoning steps, significantly
improving the LLMs’ performance on multi-step reasoning tasks. Subsequent research has further
refined this approach. For instance, (Kojima et al., 2022) proposes zero-shot CoT, which reduces
the need for task-specific examples by prompting the model to “think step by step.” (Wang et al.,
2022) introduces self-consistency to generate multiple reasoning paths and select the most consistent
one. Building upon these foundations, several studies have explored more sophisticated reasoning
strategies, including exploring more reasoning paths and utilizing feedback to select correct paths.
For example, Tree of Thoughts (Yao et al., 2024) characterizes the reasoning process as searching
through a combinatorial problem space represented as a tree. Graph of Thoughts (Besta et al., 2024)
formulates the reasoning as an arbitrary graph which supports flexible evaluation and refinement
for the thoughts. Sub-problem decomposition is also a popular way. (Zhou et al., 2022) directly
prompts the LLM to decompose questions into sub-questions with few-shot examples. SOCRATIC
CoT(Shridhar et al., 2022) trains a generator to decompose the question and a question-answering
model to solve these sub-questions. (Khot et al., 2022) and (Prasad et al., 2023) both proposes
to decompose the original problem with a planner or decomposer. Refinement is also a common
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Figure 1: An illustration of the structure-oriented analysis

technique to reduce potential errors. (Shinn et al., 2024; Madaan et al., 2024; Paul et al., 2023)
introduce self-reflection, which utilizes the evaluations of LLMs to enhance the correctness of rea-
soning. (Shridhar et al., 2023b) and (Shridhar et al., 2023a) refine the initial output with another
LLM and leverage the third model to select the proper solution. (Zhong et al., 2024) evaluates the
most recent reasoning model, OpenAI-o1, and reveals that it takes CoT as a fundamental part of its
architecture and leverages it into training to improve the reasoning capability. (Zhou et al., 2024)
includes different reasoning strategies and prompts the model to select the proper ones for each
question. We notice that most of these methods require task-specific prompting or examples and the
zero-shot methods show clear gaps in reasoning performance with few-shot methods. This inspires
us to explore the limit of zero-shot reasoning and propose a novel strategy for improvement.

LLM agents for problem-solving. Except for the inherent reasoning capability of LLMs, LLM
agents are leveraged to further improve the performance of solving complex problems. LLM agents
are allowed to digest external feedback and utilize various tools and external knowledge to help the
reasoning task. For instance, ReAct (Yao et al., 2022) instructs the model to generate both reasoning
traces and task-specific actions in an interleaved manner and allows to gather additional information
from external sources. IRCoT (Trivedi et al., 2022) and FreshPrompt (Vu et al., 2023) propose to
reinforce the CoT reasoning process by retrieving relevant information. Chain-of-knowledge (Li
et al., 2023) proposes dynamic knowledge adapting that can incorporate heterogeneous knowledge
sources to reduce factual errors during reasoning. Agent systems specified on different domains are
also proposed to boost the performance of corresponding tasks. For instance, MetaGPT (Hong et al.,
2023) focuses on software development and breaks complex tasks into subtasks for different agents
to work together. Data interpreter (Hong et al., 2024) incorporates external execution tools and
logical inconsistency identification in feedback to derive precise reasoning in data analysis tasks.
(Zhu et al., 2023) introduces an LLM multi-agent framework including an LLM Decomposer, LLM
planner, and LLM interface to conduct tasks and interact with the environment in Minecraft. (Gou
et al., 2023b) focuses on tool use of LLMs and trains a series of models with enhanced ability of
tool use. (Zhou et al., 2023) proposes an agent system to implement Monte Carlo Tree Search
with the help of few-shot examples. (Sumers et al., 2023) summarize the key components of agent
systems from the perspective of human cognition and categorize the existing agents. All these works
illustrate the power and potential of LLM agents in problem-solving. This inspires us to leverage it
to implement our core strategy and fully unleash its power.

3 STRUCTURE-ORIENTED ANALYSIS

When skillful human solvers encounter complex questions, a common technique is to first iden-
tify the critical components and related sub-questions for a comprehensive understanding of the
problem (Kotovsky et al., 1985; Lakoff & Johnson, 2008). This skill can provide a global view of
the problem-solving progress, reduce distractions from irrelevant information, and guide for correct
reasoning paths (Simon & Newell, 1971). Inspired by these skills, we introduce structure-oriented
analysis, which leverages LLMs to explicitly extract syntactic and grammatical elements from prob-
lem statements to guide the reasoning process.

3.1 EMPIRICAL FINDINGS

An example of the structure-oriented analysis can be found in Figure 1. As in the example, we
first prompt the LLM to identify the syntactic and grammatical structures of the problem statement,
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and then ask the LLM to extract the following key information based on these structures: key com-
ponents that are significant in the problem; relationships between components which describe how
these critical elements are related in a structured way; sub-questions which are smaller and simpler
questions that contribute to the final answer. Leveraging LLM’s ability in syntax and semantic pars-
ing (Drozdov et al., 2022; Mekala et al., 2022; Ma et al., 2023), we develop a general prompt that
is applicable across diverse tasks and problems. This approach reduces the need for task-specific
examples, and there is no need for human intervention1.

Figure 2: Reasoning accuracy with/without the structure-oriented analysis. The methods with suffixes + are
the backbone methods ({CoT, ReAct} × {0-shot, 6-shot}) with structure-oriented analysis added.

To explore the impact of the structured-oriented analysis, we integrate it with two representative
reasoning methods–CoT (Wei et al., 2022) and ReAct (Yao et al., 2022), to empirically examine
its performance. We consider both 0-shot and 6-shot versions of CoT and ReAct2. To be specific,
we first prompt the LLM to perform the structure-oriented analysis and let it finish the remaining
reasoning process given the analysis. We evaluate the performance of GPT-4 on a multi-hop ques-
tion answering benchmark HotPotQA (Yang et al., 2018) and a fact verification benchmark Fever
(Thorne et al., 2018). Since HotPotQA is a free-form question-answering dataset, a GPT-4 judge is
used to compare the output and the ground truth answer. For both tasks, we compare the accuracy
with/without our structure-oriented analysis and demonstrate the results in Figure 2. As in Figure
2, adding the structure-oriented analysis can significantly improve the reasoning accuracy, leading
to an increase of 5% to 8%. Moreover, compared to 6-shot methods, 0-shot methods gain more
improvements. These indicate that without human intervention, LLMs can still have a deeper un-
derstanding of the problem with the help of analysis of syntax structures and linguistic patterns, and
these understandings further enhance the model’s ability to generate more accurate solutions.

3.2 THEORETICAL ANALYSIS

Next, we elaborate on how the reasoning happens from a data perspective and understand the poten-
tial benefit of our proposed method. Due to the page limit, we provide the skeleton of the analysis
and an informal theoretical statement in the main paper and postpone the details to Appendix A.

To briefly introduce the analysis, similar to (Tutunov et al., 2023) and (Xie et al., 2021), we utilize
a probabilistic graphical model (PGM) with observed and hidden variables to model the connec-
tions among explicit knowledge and abstract concepts in the pre-training data from which LLMs
gain reasoning capability. However, unlike previous studies (Prystawski et al., 2024; Tutunov et al.,
2023), which assume that the LLM’s reasoning process always explores along the correct path in
their graphical models, we consider a more general scenario where the LLM may explore an incor-
rect reasoning path. Our key result shows that identifying the important reasoning steps is crucial in
exploring the correct reasoning path.

Build the PGM. We use Figure 3 as an example to illustrate the construction of the PGM. The right
penal of Figure 3 provides a detailed instance of how the mathematical notations are connected with
real data, and the left penal provides a more general case. In the right panel, we denote {θi}Ni=1

as the hidden variables to represent abstract concepts in the data and {Xi}Ni=1 as the corresponding
observed variables for pieces of explicit knowledge {xi}Ni=1. Here, θ1 represents the main campuses
of universities and their locations, θ2 can be considered as the locations of branches, θ3 stands for
the tuition fee of the universities, and θ4 can be interpreted as the fight songs of universities. For
each θi, the corresponding Xi contains the information of the exact knowledge, such as the location
of a specific main campus.

1Detailed prompt is included in Appendix B
2More details can be found in Appendix B
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Figure 3: An illustrative example of the PGM generation model. This graph is a part of the underlying PGM
where θis are hidden variables and xis are observed variables. The red circle is an example of the strong
connection between θis and xis in the pre-training.

Figure 4: An overview of the Structure-oriented Autonomous Reasoning Agents.

Intuitively, θ1 (the main campuses of universities and their locations) and θ2 (the locations of
branches) are logically connected. In addition, during the pre-training, LLM can learn the con-
nection between x1 (KU’s main campus is in Lawrence, Kansas) and x2 (Kansas City metropolitan
area) and similar pairs of (x1, x2) for other universities. By leveraging all observed realizations
(x1, x2) of (X1, X2), the LLM can infer the relationship between θ1 and θ2. Similarly, the LLM
can learn the connection of (θ2, θ4) in the right panel of Figure 3 to build the PGM.

Inference. During the inference stage, to perform reasoning for the example in the right panel of
Figure 3, the LLM receives x0 and will explore θ1 and generate x1. Then, given (θ1, x1, x0), it
will further explore θ2 and generate x2, etc. In this example, there is a single reasoning chain,
θ1 → θ2 → θ4, allowing the LLM to correctly follow the reasoning path.

However, if the PGM learned from pre-training is similar to the left panel of Figure 3, then it may
explore an incorrect reasoning path: Suppose the correct final state is θ9 and the LLM starts the
reasoning from θ1. Since now θ1 is connected with both θ2 and θ3, it can explore either one of them
at the inference stage. Furthermore, because the LLM is not pre-trained on the specific test data and
does not explicitly perform the same reasoning task, it relies solely on its pre-training knowledge
(e.g., pairwise connections among (θi, θj)), and may not exactly identify the correct reasoning path.

For our structure-oriented analysis and other similar techniques, as long as the method can identify
one or a few correct hidden states for the specific reasoning task and increase the chance of reaching
them, then we have the following benefits:

Theorem 3.1 (Informal Statement of Lemma A.2 and Theorem A.3). Denote e(·) as the loss given
the reasoning path explored by the LLM. Under some mild conditions, if a hidden state θa is in the
correct reasoning path, then

• P(correct reasoning | θa is explored) ≥ P(correct reasoning). The probability of the LLM
doing correct reasoning if it can reach θa.

• e(θa is explored) ≤ e(LLM randomly explores). The loss, e.g., accuracy or mean square
loss, is also smaller if the LLM can reach θa successfully.

In Appendix A, we provide the rigorous notations and the formal theorem statements.
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4 AUTONOMOUS REASONING SYSTEM

Although Section 3.1 demonstrates the effectiveness of our structure-oriented analysis, there is still
large room for improvement: First, in the experiments of Figure 2, we notice that the LLM cannot
always follow the structure-oriented analysis results when performing the reasoning. Second, the
LLM sometimes generates inconsistent reasoning results. Finally, some factual errors also occur.
Therefore, extra efforts are needed to further unleash the power of our structure-oriented analysis.

Based on the above observations, to obtain a better reasoning capability, an LLM-based question-
answering mechanism is desired to be equipped with 1) a design to encourage the reasoning process
following the structure-oriented analysis result, 2) consistency in the reasoning trajectory, and 3) the
capability of utilizing external knowledge to avoid factual errors. While prompt engineering may
incorporate all these expectations into a single prompt, employing multiple agents to modularize the
sub-tasks can make the system more robust and general. Therefore, we design a multi-agent reason-
ing system, Structure-oriented Autonomous Reasoning Agents (SARA), with dedicated agents to
align the reasoning process with our structure-oriented analysis and ensure the reasoning accuracy
through consistency in the reasoning trajectory and addition external knowledge.

4.1 SYSTEM DESIGN

SARA consists of four major parts: Reason Agent, Refinement Agent, Retrieval Agent, and Shared
Memory. Each agent plays a specific role and cooperates with each other to complete the task.

Reason Agent. This agent serves as the cognitive core of the system, conducting analytic thinking
and generating detailed reasoning steps. It performs multiple critical functions. Upon receiving a
new question, it analyzes the grammar and syntax, which are the rules that determine how words are
arranged to form a sentence and generates the structure-oriented analysis. Based on this analysis,
it proceeds with a step-by-step reasoning to gradually solve the complex task. Within each step, it
is prompted to determine whether external information is needed, and interacts with the Retrieval
Agent to obtain external knowledge when necessary. This retrieved knowledge is then incorporated
into the subsequent reasoning. After completing the reasoning process, the Reason Agent consol-
idates a comprehensive final answer based on the entire reasoning trajectory. There is no human
intervention needed in this process.

Refinement Agent. Prior research has demonstrated that the reasoning capacities of LLMs can be
enhanced through refinement processes, including self-refinement (Madaan et al., 2024) and external
supervision (Gou et al., 2023a; Shinn et al., 2024). To ensure that the Reason Agent’s generated
reasoning steps align with the structure-oriented analysis and are free from potential logical errors,
we introduce an LLM-driven Refinement Agent. This agent inspects both the structure-oriented
analysis and the reasoning trajectory. Specifically, it first examines the structure-oriented analysis to
prevent misinterpretations of the problem statement. It then reviews each reasoning step based on
the following three criteria: (1) alignment with the structure-oriented analysis, (2) consistency with
the previous reasoning trajectory, and (3) factual correctness with relevant external knowledge. This
comprehensive inspection is designed to mitigate risks of deviation of the reasoning trajectory from
the structure-oriented analysis, resolve inconsistencies or logical errors among reasoning steps, and
correct any potential factual inaccuracies based on retrieved knowledge.

Retrieval Agent. This agent accesses external knowledge, including pre-constructed databases and
web-based resources such as Wikipedia and Google Search. This approach can complement the
internal knowledge of LLMs in case the internal knowledge is insufficient, which is determined by
the Reason Agent during the reasoning process. Upon receiving a retrieval query from the Reason
Agent, the LLM within the Retrieval Agent interprets the request and transforms it into a proper
format for the external API/target data resources. By leveraging the relevant external information,
the Retrieval Agent enhances the system’s reasoning performance by reducing factual errors. Note
that the Retrieval Agent only retrieves external knowledge when the Reason Agent identifies missing
information and requests it to be retrieved. In this case, we can avoid knowledge conflict since the
retrieved knowledge is always a supplement for the Reason Agent.

Shared Memory. We utilize a naive Memory module (implemented as a dictionary) to store the
structure-oriented analysis result, reasoning trajectory, and retrieved information. The Reason Agent
retrieves the structure-oriented analysis result and previous reasoning steps from Shared Memory
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and generates new reasoning steps; the Refinement Agent performs the refinement in the context of
the structure-oriented analysis result and previous reasoning steps stored in Shared Memory.

4.2 REASONING PROCESS

The whole reasoning process of the system is shown in Figure 4. The process consists of three
stages: (1) structure-oriented analysis, (2) iterative reasoning, (3) answer consolidation.

Structure-oriented Analysis. As discussed in Section 3, effective problem-solving typically begins
with a comprehensive understanding of the problem statement. In the enhanced system, when a
new question is received, the Reason Agent conducts a thorough analysis ( 1 in Figure 4) based on
the syntactic structures of the problem (illustrated in Figure 1). This analysis extracts critical com-
ponents and generates relevant sub-questions for reference. For instance, in Figure 4 the question
asks for the name of the fight song of a university with some constraints on the location of the main
campus and branches. The Reason Agent identifies the key components as “fight song, university,
main campus,...”, and the relationship is that “fight song” is the main objective while it belongs to
“university” which is restricted by the location of “main campus”. Given these components, some
sub-questions can be further derived, e.g., “which university has its main campus located in . . .”.
Besides, to ensure the reasoning accuracy, the initial analysis is sent to the Refinement Agent for
evaluation and refinement ( 2 in Figure 4). The Refinement Agent is prompted to provide an explicit
reason for its judgments and refinements, which helps mitigate potential hallucinations (Yao et al.,
2022). This refined analysis is then stored in the Memory for future reference ( 3 in Figure 4).

Iterative reasoning. To fully harness the reasoning capability of LLMs, we adopt an iterative
reasoning strategy (Yao et al., 2022; Wei et al., 2022; Li et al., 2023). As shown in Figure 4, in each
iteration, Reason Agent takes the structure-oriented analysis and the previous reasoning trajectory as
the context to reason the current step ( 4 in Figure 4). If external knowledge is needed, the Reason
Agent queries the Retrieval Agent ( 5 in Figure 4). The Retrieval Agent then searches for related
information from external databases or web data and sends it back to the Reason Agent. For instance,
if the current step is “what is the name of the university with the main campus in Lawrence Kansas”,
the Reason Agent will interact with the Retrieval Agent to obtain “the University of Kansas” from
Wikipedia. The Refinement Agent then evaluates and refines this step ( 6 in Figure 4), aligning the
step with the structure analysis and its relevance. This evaluation is accompanied by detailed reasons
as in ReAct (Yao et al., 2022), enhancing the process’s reliability. The refined steps are stored in the
Shared Memory for use in subsequent iterations ( 7 in Figure 4) and synchronization of all agents.

Answer consolidation. Finally, after the iterative reasoning process, the answer to the original
problem is concluded ( 8 in Figure 4).

5 EXPERIMENTS

We conduct experiments to verify the effectiveness of the SARA.

5.1 EXPERIMENT SETTING

Agent configurations. We utilize the same LLM for all LLM-driven agents (Reason Agent, Re-
finement Agent and Retrieval Agent). Four representative LLMs are tested, including two API-only
models, GPT-4 and Qwen-max, and two open-source models, Llama3-70B and Qwen2-57B (Bai
et al., 2023). For the Retrieval Agent, if not specified, we use Wikipedia API to obtain external
knowledge. SARA is built with the open-source multi-agent framework, AgentScope (Gao et al.,
2024), and the detailed prompt templates for each LLM-driven agent are reported in Appendix C.

Tasks. We aim to improve the general reasoning capability of LLMs, so we test on various represen-
tative reasoning tasks. HotpotQA (Yang et al., 2018) contains multi-hop reasoning questions; Fever
(Thorne et al., 2018) is evaluated for fact verification task; MMLU (Hendrycks et al., 2020) is eval-
uated for multitask language understanding (specifically in Biology and Physics domains, aligning
with previous research (Li et al., 2023)); StrategyQA (Geva et al., 2021) evaluates commonsense
reasoning ability of models; GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) can
test the math reasoning tasks. Among all these tasks, HotpotQA, Fever, MMLU and StrategyQA
can take advantage of external knowledge, so we group them as knowledge-intensive tasks. In terms
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Table 1: Main results on knowledge-intensive reasoning tasks.

Models Tasks Methods
Vanilla ICL(6-shot) CoT(6-shot) ReAct(6-shot) CoK(6-shot) CoT(0-shot) CoT-SC@10(0-shot) SARA

GPT-4

HotpotQA 48.9% 51.4% 62.2% 67.2% 67.6% 52.3% 58.8% 73.5%
Fever 35.3% 48.4% 56.1% 61.7% 61.3% 46.9% 53.1% 66.2%

MMLU-BIO 94.1% 94.6% 95.3% 96.9% 96.7% 94.5% 95.7% 97.5%
MMLU-PHY 65.3% 66.5% 69.4% 74.5% 73.9% 66.2% 68.2% 78.7%
StrategyQA 65.6% 68.1% 82.9% 81.7% 83.2% 72.8% 81.4% 86.4%

Qwen-max

HotpotQA 49.6% 51.7% 58.3% 64.7% 66.3% 50.6% 56.7% 70.2%
Fever 29.9% 39.1% 48.4% 58.2% 53.5% 41.5% 50.5% 63.1%

MMLU-BIO 90.2% 91.3% 93.4% 93.9% 94.1% 91.6% 93.5% 96.2%
MMLU-PHY 60.5% 56.2% 64.3% 71.8% 69.1% 60.7% 65.1% 75.4%
StrategyQA 73.4% 75.5% 89.6% 88.4% 90.5% 80.4% 83.1% 90.7%

Qwen2-57B

HotpotQA 32.2% 33.5% 41.6% 53.9% 55.3% 35.1% 44.5% 58.7%
Fever 21.5% 26.3% 44.7% 52.6% 51.3% 33.2% 45.6% 56.1%

MMLU-BIO 86.1% 86.6% 87.4% 90.2% 90.9% 86.5% 87.9% 93.3%
MMLU-PHY 53.2% 55.7% 63.4% 66.4% 68.3% 56.3% 63.8% 71.1%
StrategyQA 58.4% 63.2% 85.1% 89.2% 88.3% 66.8% 79.1% 91.5%

Llama3-70B

HotpotQA 39.1% 38.2% 47.5% 56.2% 54.1% 40.6% 44.8% 60.9%
Fever 46.4% 48.5% 53.1% 57.7% 58.2% 47.3% 51.9% 62.8%

MMLU-BIO 89.2% 87.4% 89.5% 91.3% 91.7% 88.4% 89.2% 94.2%
MMLU-PHY 47.9% 48.6% 55.3% 61.4% 60.9% 49.5% 55.7% 65.3%
StrategyQA 57.9% 65.1% 84.2% 85.2% 85.8% 72.5% 80.5% 87.1%

Table 2: Main results on math reasoning tasks.
Tasks Methods

Vanilla ICL(6-shot) CoT(6-shot) ReAct(6-shot) CoK(6-shot) CoT (0-shot) CoT-SC@10(0-shot) SARA

GPT4 GSM8K 66.8% 66.9% 92.1% 93.7% 91.9% 84.3% 87.8% 94.2%
MATH 43.1% 55.4% 69.2% 67.5% 68.6% 63.6% 64.1% 68.2%

Qwen-max GSM8K 68.6% 72.8% 87.5% 89.2% 87.6% 74.8% 84.2% 91.3%
MATH 42.8% 45.6% 64.9% 64.5% 65.3% 49.3% 61.9% 64.7%

Qwen2-57B GSM8K 54.9% 59.2% 82.7% 83.9% 83.5% 63.7% 74.5% 84.4%
MATH 30.1% 33.5% 46.2% 47.3% 46.8% 31.6% 40.8% 46.5%

Llama3-70B GSM8K 55.3% 58.3% 83.7% 86.5% 87.2% 66.5% 76.8% 89.7%
MATH 30.7% 32.4% 42.9% 46.3% 44.9% 32.8% 36.4% 44.2%

of evaluation metrics, the predicted solutions for HotpotQA and MATH are free-form answers, so
we utilize a GPT-4 judge to assess the answer correctness and report the average accuracy as “LLM
Acc”. For other datasets, we report the average accuracy as “Acc”. More details of these datasets
are provided in Appendix D.

Baselines. We compare SARA with common baselines and some representative reasoning methods:
(1) Direct prompting (Vanilla) directly asks the LLM to answer the question. (2) In-context learning
(ICL) asks the LLM to solve the problem given examples. (3) (few-shot) Chain-of-thought (CoT
(Wei et al., 2022)) prompts the model to generate intermediate steps when solving the problem.
(4) ReAct (Yao et al., 2022) combines agent thoughts (reason the current state) and actions (task-
specific actions such as Search for an item with Wiki API) to help solve the problem. (5) Chain-
of-knowledge (CoK (Li et al., 2023)) uses knowledge from different domains to correct reasoning
rationales. Except for the direct prompting, all other baselines use a few-shot prompting strategy,
and we test 6-shot as default to align with previous works (Yao et al., 2022; Li et al., 2023). (6) 0-
shot CoT (Kojima et al., 2022). (7) 0-shot CoT with self-consistency (Wang et al., 2022) generates
multiple CoT solutions and chooses one using a major vote. We generate 10 solutions. Examples of
ICL and CoT are randomly selected from the training set for each task; reasoning steps in each CoT
example are manually crafted. ReAct and CoK are implemented following the original paper.3

5.2 MAIN PERFORMANCE ON KNOWLEDGE-INTENSIVE TASKS

The main results of SARA and the baselines on knowledge-intensive tasks are presented in Table
1. In general, SARA consistently outperforms all baselines across all tasks and models used in the
experiments. For example, in HotpotQA, compared with baselines without explicit reasoning strate-
gies, such as Vanilla and ICL, SARA achieves significant improvements of over 15% for most tasks.
This suggests that even advanced models like GPT-4 and Qwen-max require proper strategies to
fully leverage their reasoning capabilities, and simple examples alone are insufficient. To compare
SARA with CoT, SARA also substantially improves the reasoning capability and surpasses CoT by
over 10%. This superiority can be attributed to three key factors: (1) comprehensive question un-
derstanding through our structure-oriented analysis, (2) refinement processes, and (3) integration of

3Codes available in https://anonymous.4open.science/r/ReasonAgent-4458.
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external knowledge. In terms of the ReAct and CoK, SARA also demonstrates clear advantages over
them with average improvements of 4% and 4.4%, respectively, and the primary difference between
these two methods and SARA is our structure-oriented analysis. Moreover, our method outperforms
0-shot CoT SC@10 to a large extent suggesting that structure-oriented analysis can significantly
improve the 0-shot reasoning capability. In addition to HotpotQA, SARA also demonstrates sig-
nificant advantages in other complex reasoning tasks such as HotpotQA, Fever, MMLU-PHY, and
MMLU-BIO , highlighting its effectiveness and generalization ability across diverse tasks.

5.3 MAIN PERFORMANCE ON MATH REASONING TASKS

In Table 1, we present the main results of math reasoning tasks. Among all datasets, few-shot base-
lines significantly outperform 0-shot baselines, indicating a significant performance gap between
few-shot and 0-shot reasoning capability. Our method consistently outperforms 0-shot baselines
and even works better than few-shot baselines on the GSM8K dataset. This shows that structure
analysis can generalize well to math reasoning tasks especially when the problem is described in
natural language such as GSM8K. We do notice that SARA is not the best on the MATH dataset.
This can be because some MATH problems are expressed in symbols, which do not have clear
structures for analysis. Our method can still have comparably good results on MATH suggesting the
benefit of step-wise reasoning and refinement in the agent design.

5.4 EFFECT OF STRUCTURE-ORIENTED ANALYSIS

To elucidate the impact of the structure-oriented analysis, we conduct experiments evaluating the
effectiveness of the three crucial functions in the Reason Agent: (1) key components and relation-
ships between components, (2) sub-questions, and (3) grammar/syntax structure. Using GPT-4 on
all reasoning tasks, we test different combinations of these elements, as detailed in Table 34.

There are several observations from Table 3. Consider HotpotQA as an example. First, comparing
Settings 1, 2, and 3, when the grammar/syntax structure is included, removing either key components
(Setting 2) or sub-questions (Setting 3) has only a small decrease in the performance. However, in
Setting 4, excluding the grammar/syntax structure significantly reduces performance by over 10%,
suggesting the importance of the grammar/syntax structure. Second, comparing Setting (1, 3) and (5,
7), without the key components and grammar/syntax structure analysis, formulating sub-questions
only has limited improvement of 1.9% on the reasoning performance, lower than 4.1% in Setting
(1, 3). Similar observations can be found in Settings (1,2) and (6,7) for the key components, which
indicates the synergy effect of grammar/syntax with key components and sub-questions. Third,
completely removing the structure-oriented analysis also substantially diminishes reasoning perfor-
mance. The above observations are consistent across all tasks considered.

5.5 EFFECT OF KEY AGENTS

Figure 5: Ablation study on agents. Refinement
Agent and Retrieval Agent are removed and rea-
soning performance is tested respectively.

In this subsection, we study the effect of two key
agents in SARA, the Refinement Agent and the Re-
trieve Agent. We test with GPT-4 model on Hot-
potQA and Fever benchmarks and summarize the re-
sults in Figure 6. When replacing the original LLM
(GPT-4) with a smaller model (Qwen2-57) in the
Retrieval Agent, the performance is barely affected;
while for the Refine Agent, the performance drops a
bit more. This suggests that it is feasible to utilize a
smaller model in the Retrieval Agent for efficiency
while maintaining effectiveness, but the Refine Agent requires strong models.It is noted that re-
moving either agent will decrease the reasoning capacity of the system. Moreover, without the
Refinement Agent, SARA still has a comparable performance with ReAct and CoK (Table 1), and
without the Retrieval Agent, SARA can also achieve better results than 6-shot CoT (no retrieval as
well). These highlight the effectiveness of structure-oriented analysis.

4Since grammar/syntax is used for extracting key components and sub-questions, we do not consider the
case only grammar/syntax is removed.
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Table 3: Effect of each component in the reasoning agent. ’O’ means include and ’X’ means exclude.
Setting # 1 2 3 4 5 6 7
Key components O X O O X O X
Sub-questions O O X O O X X
Grammar/syntax O O O X X X X

HotpotQA 73.5% 69.2% 69.4% 59.6% 58.6% 58.1% 56.5%

Fever 66.2% 61.7% 62.1% 53.4% 53.1% 52.9% 52.3%

MMLU-bio 97.5% 96.3% 96.6% 94.1% 94.3% 94.1% 93.9%

MMLU-phy 78.7% 74.1% 74.6% 59.5% 59.1% 57.2% 57.6%

5.6 EVALUATION OF ROBUSTNESS

Table 4: Robustness evaluation, accuracy on GPT-4 after attack. Clean accuracy is included in brackets.
Attack Task Vanilla ICL(6-shot) CoT(6-shot) ReAct(6-shot) CoK(6-shot) SARA

Badchain HotpotQA 48.4%(48.9%) 13.7%(51.4%) 14.1%(62.2%) 21.3%(67.2%) 16.7% (67.6%) 71.3% (73.5%)
Fever 35.5%(35.3%) 25.3% (48.4%) 12.1% (56.1%) 10.8% (61.7%) 21.8%(61.3%) 64.9% (66.2%)

Preemptive attack HotpotQA 33.5% (48.9%) 42.1% (51.4%) 41.6% (62.2%) 55.3% (67.2%) 56.1% (67.6%) 68.2%(73.5%)
Fever 19.2%(35.3%) 39.6%(48.4%) 32.2%(56.1%) 54.2%(61.7%) 52.3%(61.3%) 61.9%(66.2%)

Despite the improvement in the reasoning capability, we surprisingly find that SARA is robust to
potential corruptions or distractions that target the reasoning process (Xiang et al., 2024; Xu et al.,
2024). We evaluate the robustness of SARA against two attacks: BadChain (Xiang et al., 2024)tar-
geting few-shot reasoning methods, which inserts backdoor reasoning steps during the model’s rea-
soning process through poisoned demonstrations; and Preemptive Attack (Xu et al., 2024) targeting
0-shot methods, which inserts a malicious answer directly into the query to mislead the reasoning
process. We test both attacks on HotpotQA and Fever with GPT-4, and the results are summarized
in Table 4 5. When applying Badchain to our method, we simply replace the original input with in-
put attached to the trigger.While few-shot baselines show high vulnerability to BadChain and Vanilla
prompting performs poorly under Preemptive Attack, SARA effectively resists both types of attacks.
The robustness of SARA can be attributed to two factors: (1) SARA’s zero-shot nature, which pre-
vents malicious injections in demonstrations, and (2) the structure-oriented analysis, which focuses
on syntax and grammar structures and therefore filters out irrelevant information in problem.

6 CONCLUSION

In this paper, inspired by human cognition, we introduce structure-oriented analysis to encourage
LLMs to understand the query in a more formulated way. Utilizing the analysis result, LLMs can
better identify key steps when performing reasoning tasks, improving reasoning performance. Fur-
thermore, built upon the structure-oriented analysis, we further establish a multi-agent reasoning
system to comprehensively improve the consistency and reliability of the LLM’s reasoning process.
Since this paper mainly focuses on knowledge-intensive tasks, future works can explore other types
of tasks, such as mathematical reasoning.

7 LIMITATION

Although our strategy shows effectiveness on diverse reasoning tasks, including knowledge-
intensive reasoning, math reasoning, and commonsense reasoning, we notice that our method works
better on problems that are clearly described in natural languages, such as GSM8K, while performs
worse on pure symbol expressions as no obvious structures appear like some questions in MATH
dataset. This suggests a future direction for extracting logic structures and learning symbolic expres-
sions to improve reasoning capability. Besides, the LLM agent we adopt to illustrate our principal
strategy is simple to fit in various tasks, which can still have room for improvement. Modifying the
agent system while maintaining the core structure analysis to adapt to different tasks can be a poten-
tial direction. For example, when solving math problems, instead of the Retrieve Agent, leveraging
external tools like a calculator or code executor to improve the performance.

5Experimental details are provided in Appendix E

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Metric: exact match, 2023. URL https://huggingface.co/spaces/
evaluate-metric/exact_match. Accessed: 2024-10-01.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Michelene TH Chi, Paul J Feltovich, and Robert Glaser. Categorization and representation of physics
problems by experts and novices. Cognitive science, 5(2):121–152, 1981.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.
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The structure of the appendix is as follows: In Section A, we provide the detailed version of Section
3.2 with the mathematical notations, the formal statement of Theorem 3.1 and the corresponding
proofs. Prompts and additional details of experiments in Section 3.1 are provided in Section B.
Detailed prompts of agents are included in Section C. Experiment (Section 5) details and additional
results are presented in Section D and Section F respectively.

A THEORETICAL ANALYSIS

A.1 THEORETICAL ANALYSIS

In addition to the PGM introduced in Section 3.2, we provide more details on our assumption in the
LLM and the notations of the reasoning path. Then we provide a formal statement of Theorem 3.1.

LLM in pretraining. Recall that in Figure 3, the PGM contains hidden variables {θi}Ni=1 as the
observed variables {Xi}Ni=1 with the explicit knowledge {xi}Ni=1. Following a similar idea as in
(Prystawski et al., 2024), when using the above pre-training data to train an LLM M, the output of
M satisfies the following properties. First, most existing LLMs used for complex tasks demonstrate
reliable capability in telling whether two given pieces of explicit knowledge share the same abstract
concept or not (i.e., whether xi and x′

j share the same θ). Based on this, we assume that the LLMs
can faithfully capture the relationship between the hidden variables and the corresponding explicit
knowledge (i.e., the edges between θi and Xi). Moreover, since most LLMs are trained for next-
token prediction, explicit knowledge and abstract concepts that frequently appear in nearby within
texts (i.e., the connections between xi and xj as well as the connection between θi and θj) are
also learned by LLMs with high quality. For example, information about the main campus of the
University of Kansas and its branches often appears within the same paragraph on a Wikipedia page;
generally, the location of universities and their branches locations usually appear close in text.

Use PGM to explain the reasoning process. In Section 3.2, we intuitively explain the reasoning
process using the examples in Figure 3. The detailed mathematical description of the reasoning
procedure is as follows. The model M receives an input question x0, e.g., “find the name of the
fight song of the university whose main campus is in . . .” in the right panel of Figure 3, and the
target is to infer the answer via exploring different variables in the PGM. Define a reasoning path
γ as a set of indexes {si} of hidden and observed variables (θsi , xsi). The correct reasoning path
γ∗ is an ideal reasoning path that both logically correct and leading to the final correct answer.
As for the example in Figure 3, the correct reasoning path is γ∗ := 1 → 2 → 4, i.e., exploring
through hidden states θ1 → θ2 → θ4. Ideally, if M follows γ∗, it will output x1|x2|x4. However,
because the abstract concepts and explicit knowledge in multi-hop reasoning of a complex question
are unlikely to appear in pre-training data all close to each other, M has no direct knowledge of γ∗

but can only focus on the next variable exploration based on the edges in PGM when reasoning. As
a result, instead of the correct reasoning path γ∗, we assume that M explores actual reasoning path
step by step: given si and xsi , M explores θsi+1 and generates xsi+1 from Xsi+1 |xsi , θsi+1 , and
all the explored sis together form the reasoning path γ. The γ also involves randomness since M
is a generation model. Finally, to ease the later analysis, denote Γ(x0, ·,M) and Γ(x0, θT ,M) as
the set of all possible reasoning paths and the set of all correct paths respectively, where θT is the
correct final reasoning step (the target).

In the following, we analyze how additional information about intermediate variables lying on the
correct reasoning path benefits multi-step reasoning.

Quantify the benefit of correct intermediate variables. Given x0, we denote E(γ) as reasoning
error for a given reasoning path γ to quantify the performance and e(Γ) ≜

∑
γ∈Γ P (γ)E(γ) as the

expected reasoning error for a set of paths Γ, and study how the choice of Γ affects e(Γ).

When performing the reasoning with the structure-oriented analysis, the analysis can extract a se-
quence of indices of latent variables A = {sA1 , sA2 , . . .}, which can be key components or sub-
questions in practice as shown in Figure 1. In the following, we first provide some mild assumptions
on γ, and then demonstrate how the reasoning error is impacted by A.

Assumption A.1. Given x0, the random variable γ satisfies the following conditions: (1)
Γ(x0, θT ,M) contains only one path: Γ(x0, θT ,M) = {γ∗}. (2) E(γ) ≥ 0 and equals to 0
iff γ = γ∗.
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In Assumption A.1, the first condition in Assumption A.1 assumes a unique correct path. Discussion
for a relaxed version for multiple correct paths can be found in Remark A.4. In the second condition,
the reasoning error is zero only when we explore the correct path.

Given the above notations and assumptions, the following result holds:
Lemma A.2. Let ΓA(x0, ·,M) denote the set of explored paths given A. Under Assumption A.1,
assume that A ⊆ γ∗, then the following results in θT (with the corresponding index T ) and γ hold:

(1) When |A| = 1, i.e. A = {sA} for some sA ∈ γ∗, then P (T ∈ γ|sA ∈ γ) ≥ P (T ∈ γ) where
the equality holds if and only if P (sA ∈ γ) = 1.

(2) When |A| > 1, i.e. A = {sA1 , . . . , sAk }, and A ⊆ γ∗, we have a sequence of inequalities

P (T ∈ γ|A ⊆ γ) ≥ P (T ∈ γ|{sAj }j∈[k−1] ⊆ γ) ≥ . . . ≥ P (T ∈ γ).

The proof of Lemma A.2 can be found in Appendix A.2. Based on Lemma A.2, when the LLM
follows A and explores the variables {sAj }j∈[k], there is a higher chance that it finally explores θT .

Besides the probability of reaching θT considered in Lemma A.2, the following theorem presents
the results on how the expected reasoning error is impacted by A. We consider two specific errors:
(1) 0-1 error E0−1(γ) = 1(T /∈ γ), and (2) the probability error considered in (Prystawski et al.,
2024)

Eprob(γ) = E{(Xi,θi)}i∈G
[p(XT = xt|x0, {(Xi, θi)}i∈γ)− p(XT = xt|x0, {(Xi, θi)}i∈G)]

2

with G as all variables in the PGM. We quantify the expected reasoning error as follows:
Theorem A.3. Under the assumptions in Lemma A.2, for E ∈ {E0−1, Eprob}, the following holds:

(1) When |A| = 1, i.e. A = {sA} for some sA ∈ γ∗,

e(ΓA(x0, ·,M)) ≤ e(Γ(x0, ·,M))

where the equality holds only if P (sA ∈ γ) = 1.

(2) When |A| > 1, i.e. A = {sA1 , . . . , sAk }, and A ⊆ γ∗, we have a sequence of inequalities

e(ΓA(x0, ·,M)) ≤ e(Γ{sAj }j∈[k−1]
(x0, ·,M)) ≤ . . . ≤ e(Γ(x0, ·,M)).

The proof of Theorem A.3 can be found in Appendix A.2. Theorem A.3 implies that given the
information of the variables on the correct path, the reasoning error is reduced.
Remark A.4 (Multiple correct paths). Though Assumptions A.1 assumes a unique correct path γ∗,
it is possible that there exist multiple correct paths in practice. The above result also holds when
multiple correct paths exist given some mild conditions on A. Suppose there exist multiple correct
paths, i.e. Γ∗ = {γ∗

1 , γ
∗
2 , . . .}, and we assume that E(γ∗

i ) = 0 for these reasoning paths. We still
consider a sequence of indices of latent variables A = {sA1 , sA2 , . . .} lying on these correct paths. In
particular, we assume there is a subset A∗, such that every index in A∗ lies on every correct path,
denoted as A∗ ⊆ Γ∗. Then the results in Theorem A.3 still hold by replacing A with A∗ and γ∗ with
Γ∗. This is because errors of paths out of Γ∗ are all positive, and information of A∗ significantly
increases the probability of inferring paths in Γ∗ and thus decreases the reasoning error.
Remark A.5 (Error when the exploration is not guaranteed to find θs for some s ∈ A). In practice,
when searching a proper reasoning path, it is possible that the exploration does not guarantee to
reach θs for s ∈ A for sure. Assume |A| = 1. In this case, denote Γ\ΓA as the reasoning path that
does not pass A, and then the total error becomes

P (θs is reached)e(Γs(x0, ·,M)) + P (θs is not reached)e(Γ\ΓA(x0, ·,M)),

and for E0−1 and Eprob, e(Γ\ΓA(x0, ·,M)) ≥ e(ΓA(x0, ·,M)) as long as the exploration reaches s
with a higher chance than random search.

A.2 PROOFS 3

A.2.1 PROOF OF LEMMA A.2

Proof of Lemma A.2. The proof of Lemma A.2 mainly utilizes the definition of conditional proba-
bility. We start from the simple case where |A| = 1.
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Single variable in A. When A = {sA}, i.e., only a single variable in A, we have

P (T ∈ γ) = P (T ∈ γ|sA ∈ γ)P (sA ∈ γ)︸ ︷︷ ︸
≤1

+P (T ∈ γ|sA /∈ γ)︸ ︷︷ ︸
=0

P (sA /∈ γ) ≤ P (T ∈ γ|sA ∈ γ).

Multiple variables in A. When there are multiple variables in A, i.e. sA1 , s
A
2 , . . . , s

A
k , repeat the

above analysis, we have

P (T ∈ γ) = P (T ∈ γ|A ⊆ γ)P (A ⊆ γ)+P (T ∈ γ|A ⊊ γ)︸ ︷︷ ︸
=0

P (A ⊊ γ) = P (T ∈ γ|A ⊆ γ)P (A ⊆ γ).

Furthermore, it is easy to see that P (∩i+1
j=1{sAj ∈ A}) ≤ P (∩i

j=1{sAj ∈ A}), which implies that

P (T ∈ γ|{sAj }j∈[i+1]) ≥ P (T ∈ γ|{sAj }j∈[i])

Then we have a sequence of inequalities

P (T ∈ γ|A ⊆ γ) ≥ P (T ∈ γ|{sAj }j∈[k−1] ⊆ γ) ≥ . . . ≥ P (T ∈ γ)

which completes the proof.

A.2.2 EXPECTED REASONING LOSS WITH SPECIFIC ERROR FUNCTIONS

We discuss two representative error functions, 0-1 error and probability error, in Theorem A.3.

0-1 error. Recall that for a given reasoning path γ, we define 0-1 error function as

E(γ) = 1(T /∈ γ),

where T represents the index of the target variable. This function assigns an error of 0 when the
reasoning path reaches the target variable, and 1 otherwise. This binary error metric is both practical
and commonly used in evaluating reasoning performance, as it focuses on the logical correctness
of the reasoning process. It closely relates to popular empirical metrics such as exact match (EM)
(hug, 2023).

Proof of Theorem A.3, 0-1 error. Given the above definition of 0-1 error, we have

e(Γ(x0, ·,M)) =
∑

E(γ)P (γ) =
∑
T /∈γ

P (γ) = P (T /∈ γ),

and
e(ΓA(x0, ·,M)) =

∑
T /∈γ

P (γ|A ⊆ γ) = P (T /∈ γ|A ⊆ γ),

both of which are reduced to the probability of T being reached by the reasoning process. As a
result, following Lemma A.2, we have e(Γ(x0, ·,M)) ≥ e(ΓA(x0, ·,M)).

Furthermore, given that P (T ∈ γ|A ⊆ γ) = P (T ∈ γ)/P (A ⊆ γ), a decrease in P (A ⊆ γ) leads
to an increase in the improvement gained by conditioning on A. This implies that for more complex
problems where inferring critical steps in A is challenging, extracting information of A through
analysis becomes increasingly important. Following the steps in Lemma A.2, we also have

e(ΓA(x0, ·,M)) ≤ e(Γ{sAj }j∈[k−1]
(x0, ·,M)) ≤ . . . ≤ e(Γ(x0, ·,M)).

Probability error. Recall that the probability error is defined as

E(γ) = E{(Xi,θi)} [p(XT = xt|x0, {(Xi, θi)}i∈γ)− p(XT = xt|x0, {(Xi, θi)}i∈G)]
2
.

where xt is the ground truth output for the target step. The first term is the probability of pre-
dicting ground truth given path γ while the second term is the probability of predicting the ground
truth given the underlying PGM. This error is connected with the widely used cross-entropy loss
(Prystawski et al., 2024).

The following lemma presents a valid decomposition of the probability error. Denote G\γ as the set
of indexes in all paths excluding γ.
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Lemma A.6 (Decomposition of probability error.). The following decomposition holds:

E(γ)
= E{(Xi,θi)}i∈γ

E{(Xi,θi)}i∈G\γ [p(XT = xt|x0, {(Xi, θi)}i∈γ)− p(XT = xt|x0, {(Xi, θi)}i∈G)]
2

= E{(Xi,θi)}i∈γ

[
p(XT = xt|x0, {(Xi, θi)}i∈γ)− E{(Xi,θi)}i∈G\γp(XT = xt|x0, {(Xi, θi)}i∈G)

]2
+E{(Xi,θi)}i∈γ

E{(Xi,θi)}i∈G\γ

[
p(XT = xt|x0, {(Xi, θi)}i∈G)−

E{(Xi,θi)}i∈G\γp(XT = xt|x0, {(Xi, θi)}i∈G)
]2

When γ = γ∗,

E(γ) = 0.

The decomposition in Lemma A.6 consists of two parts, where the first part represents the bias of
prediction for a given path γ while the second term represents the variance.

Given the above decomposition, below is the proof of Theorem A.3 for the probability error:

Proof of Theorem A.3, probability error. Similar to the proof of Lemma A.2, we start from the sim-
ple case where |A| = 1.

Simple variable in A. If the model M can always explore a path with an intermediate variable θsA
lying in the correct reasoning path γ∗, then

e(ΓA(x0, ·,M))

=
∑

T /∈γ,γ∈ΓA(x0,·,M)

P (γ|sA ∈ γ)E(γ) +
∑

T∈γ,γ∈ΓA(x0,·,M)

P (γ|sA ∈ γ)E(γ)

=
∑
T /∈γ

P (γ, sA ∈ γ)

P (sA ∈ γ)
E(γ) +

∑
T∈γ

P (γ, sA ∈ γ)

P (sA ∈ γ)
E(γ)

=
∑
T /∈γ

P (γ, sA ∈ γ)

P (sA ∈ γ)
E(γ).

Now we look at the different values of E(γ) when changing γ. Note that from how the PGM is
constructed, we have

p(XT = xt|x0, {(Xi, θi)}i∈γ) = p(XT = xt|x0, {(Xi, θi)}i∈γ∗∩γ),

and
p(XT = xt|x0, {(Xi, θi)}i∈G) = p(XT = xt|x0, {(Xi, θi)}i∈γ∗).

For any two reasoning paths γ1 and γ2 so that sA /∈ γ1 but sA ∈ γ2, following similar decomposi-
tions as in Lemma A.6, we have

E(γ1)
= E{(Xi,θi)}i∈γ∩γ∗E{(Xi,θi)}i∈γ∗∩(γ2\γ1)

E{(Xi,θi)}i∈γ∗\γ2

[p(XT = xt|x0, {(Xi, θi)}i∈γ1∩γ∗)− p(XT = xt|x0, {(Xi, θi)}i∈γ∗)]
2

= E{(Xi,θi)}i∈γ∩γ∗E{(Xi,θi)}i∈γ∗∩(γ2\γ1)
E{(Xi,θi)}i∈γ∗\γ2[

p(XT = xt|x0, {(Xi, θi)}i∈γ1∩γ∗)− p(XT = xt|x0, {(Xi, θi)}i∈γ2∩γ∗)

+p(XT = xt|x0, {(Xi, θi)}i∈γ2∩γ∗)− p(XT = xt|x0, {(Xi, θi)}i∈γ∗)
]2

= E{(Xi,θi)}i∈γ∩γ∗E{(Xi,θi)}i∈γ∗∩(γ2\γ1)
E{(Xi,θi)}i∈γ∗\γ2[

p(XT = xt|x0, {(Xi, θi)}i∈γ1∩γ∗)− p(XT = xt|x0, {(Xi, θi)}i∈γ2∩γ∗)
]2

+E{(Xi,θi)}i∈γ∩γ∗E{(Xi,θi)}i∈γ∗∩(γ2\γ1)[
p(XT = xt|x0, {(Xi, θi)}i∈γ2∩γ∗)− p(XT = xt|x0, {(Xi, θi)}i∈γ∗)

]2
17
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≥ E{(Xi,θi)}i∈γ∩γ∗E{(Xi,θi)}i∈γ∗∩(γ2\γ1)[
p(XT = xt|x0, {(Xi, θi)}i∈γ2∩γ∗)− p(XT = xt|x0, {(Xi, θi)}i∈γ∗)

]2
= E(γ2),

from which it is easy to see that

e(Γ(x0, ·,M)) ≥ e(ΓA(x0, ·,M)).

Multiple variables in A. When |A| > 1, the steps are indeed the same as when |A| = 1. We prove
the relationship between E(γ1) ≥ E(γ2) for different sAi s.

B DETAILS FOR EXPERIMENTS IN SECTION 3

Prompt for structure-oriented analysis. To add the structure-oriented analysis on top of the back-
bone reasoning method, we develop the following prompt to let the model identify critical compo-
nents, relationships among them, and related sub-questions. The LLM is also prompted to provide
justification for its analysis.

structure-oriented analysis
You are a helpful assistant good at parsing the syntax and grammar
structure of sentences. Please first analyze the syntax and
grammar structure of the problem and provide a thorough analysis
by addressing the following tasks:
1.Identify Key Components: Identify the crucial elements and
variables that play a significant role in this problem.
2.Relationship between Components: Explain how the key components
are related to each other in a structured way.
3.Sub-Question Decomposition: Break down the problem into the
following sub-questions, each focusing on a specific aspect
necessary for understanding the solution.
4.Implications for Solving the Problem: For each sub-question,
describe how solving it helps address the main problem. Connect
the insights from these sub-questions to the overall strategy
needed to solve the main problem.
Question:

Examples for CoT. For 0-shot CoT, we use the simple prompt “Please think step by step” as in
(Kojima et al., 2022). For 6-shot CoT, we manually craft examples for randomly selected problems.
It is worth noting that when we add structure-oriented analysis to 6-shot CoT, we simply add it
before the standard CoT prompt (Wei et al., 2022). Therefore, in the examples, we still use the
original problem rather than the generated analysis. We present some examples as follows.

HotpotQA
You need to solve a problem. Please think step-by-step. Please
provide your thoughts and then give the final answer. Thought can
reason about the problem. Answer can conclude the final answer.

Here are some examples.
Question: Musician and satirist Allie Goertz wrote a song about
the T̈he Simpsonsc̈haracter Milhouse, who Matt Groening named after
who?
Thought: Let’s think step by step. Milhouse was named after U.S.
president Richard Nixon, so the answer is Richard Nixon.
Answer: Richard Nixon

Here are some examples.
Question: Musician and satirist Allie Goertz wrote a song about
the T̈he Simpsonsc̈haracter Milhouse, who Matt Groening named after
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who?
Thought: Let’s think step by step. Milhouse was named after U.S.
president Richard Nixon, so the answer is Richard Nixon.
Answer: Richard Nixon

Question: Guitars for Wounded Warriors is an album that was
recorded in the village in which New York county?
Thought: Let’s think step by step. Guitars for Wounded Warriors
was recorded at Tarquin’s Jungle Room Studios in New Paltz
(village), New York. New Paltz is a village in Ulster County
located in the U.S. state of New York. So the answer is Ulster
County.
Answer: Ulster County
...

Fever
Determine if there is Observation that SUPPORTS or REFUTES a
Claim, or if there is NOT ENOUGH INFORMATION. Please think step
by step. Here are some examples.
Claim: Nikolaj Coster-Waldau worked with the Fox Broadcasting
Company.
Answer: Let’s think step by step. Nikolaj William Coster-Waldau
appeared in the 2009 Fox television film Virtuality, so he has
worked with the Fox Broadcasting Company. So the answer is
SUPPORTS

Claim: Stranger Things is set in Bloomington, Indiana.
Answer: Let’s think step by step. Stranger Things is in the
fictional town of Hawkins, Indiana, not in Bloomington, Indiana.
So the answer is REFUTES
...

MMLU-BIO
Please choose the correct option from the list of options to
answer the question. Please think step by step.
Here are some examples:

Question: Short-term changes in plant growth rate mediated by
the plant hormone auxin are hypothesized to result from:
Options: A) loss of turgor pressure in the affected cells
B) increased extensibility of the walls of affected cells
C) suppression of metabolic activity in affected cells
D) cytoskeletal rearrangements in the affected cells
Thought: Let’s think step by step. We first examine the
known effects of auxin on plant cells. Auxin is primarily
recognized for its role in promoting cell elongation, which it
accomplishes by increasing the extensibility of cell walls. This
allows cells to expand more easily, a critical factor in plant
growth. Considering the provided options, Option B (Increased
extensibility of the walls of affected cells) aligns precisely
with this function.
Answer: B

Question: Hawkmoths are insects that are similar in appearance
and behavior to hummingbirds. Which of the following is LEAST
valid?
Options: A) These organisms are examples of convergent evolution.
B) These organisms were subjected to similar environmental
conditions.
C) These organisms are genetically related to each other.
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D) These organisms have analogous structures.
Thought: Let’s think step by step.. We must first evaluate the
validity of statements concerning their evolutionary relationship
and physical characteristics. Hawkmoths and hummingbirds are
known for their convergent evolution, where each has independently
evolved similar traits such as hovering and nectar feeding,
despite being from different biological classes (insects and
birds, respectively). This adaptation results from analogous
structures like elongated feeding mechanisms, not from a common
genetic ancestry. Therefore, the statement Option C, which claims
that these organisms are genetically related, is the least valid.
Answer: C
...

MMLU-PHY
Please choose the correct option from the list of options to
complete the question.
Here are some examples.

Question: Characteristic X-rays, appearing as sharp lines on a
continuous background, are produced when high-energy electrons
bombard a metal target. Which of the following processes results
in the characteristic X-rays?
A) Electrons producing Čerenkov radiation
B) Electrons colliding with phonons in the metal
C) Electrons combining with protons to form neutrons
D) Electrons filling inner shell vacancies that are created in the
metal atoms
Thought: Let’s think step by step. First When high-energy
electrons strike a metal target, they can knock out inner-shell
electrons from the metal atoms, creating vacancies. Then
Electrons from higher energy levels then fall into these lower
energy vacancies, releasing energy in the form of characteristic
X-rays.
Answer: D

Question: In the laboratory, a cart experiences a single
horizontal force as it moves horizontally in a straight line.
Of the following data collected about this experiment, which
is sufficient to determine the work done on the cart by the
horizontal force?
A) The magnitude of the force, the cart’s initial speed, and the
cart’s final speed
B) The mass of the cart, the cart’s initial speed, and the cart’s
final speed
C) The mass of the cart and the distance the cart moved
D) The mass of the cart and the magnitude of the force
Thought: Let’s think step by step. Option A allows us to
calculate the change in kinetic energy of the cart, which can
be equated to the work done if no other forces are doing work.
The work-energy principle states that the net work done on an
object is equal to its change in kinetic energy. Therefore,
knowing the initial and final speeds allows us to calculate it,
and knowing the magnitude of the force enables consideration of
non-conservative work scenarios. Option B allows calculation of
the change in kinetic energy, but cannot directly calculate the
work done by the force alone without the force magnitude. Option
C does not know the force applied, so cannot calculate the work.
Option D is insufficient because no moved distance.
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Answer: A
...

Prompt for ReAct. For 0-shot ReAct, we just use the instruction in (Yao et al., 2022); while in
6-shot ReAct, we include the examples provided by (Yao et al., 2022).

Instruction
Solve a question answering task with interleaving Thought,
Action, Observation steps. Thought can reason about the current
situation, and Action can be three types:
(1) Search[entity], which searches the exact entity on Wikipedia
and returns the first paragraph if it exists. If not, it will
return some similar entities to search.
(2) Lookup[keyword], which returns the next sentence containing
keyword in the current passage.
(3) Finish[answer], which returns the answer and finishes the
task.

Examples
Question: What is the elevation range for the area that the
eastern sector of the Colorado orogeny extends into?
Thought 1: I need to search Colorado orogeny, find the area that
the eastern sector of the Colorado orogeny extends into, then find
the elevation range of the area.
Action 1: Search[Colorado orogeny]
Observation 1: The Colorado orogeny was an episode of mountain
building (an orogeny) in Colorado and surrounding areas.
Thought 2: It does not mention the eastern sector. So I need to
look up eastern sector.
Action 2: Lookup[eastern sector]
Observation 2: (Result 1 / 1) The eastern sector extends into the
High Plains and is called the Central Plains orogeny.
Thought 3: The eastern sector of Colorado orogeny extends into
the High Plains. So I need to search High Plains and find its
elevation range.
Action 3: Search[High Plains]
Observation 3: High Plains refers to one of two distinct land
regions:
Thought 4: I need to instead search High Plains (United States).
Action 4: Search[High Plains (United States)]
Observation 4: The High Plains are a subregion of the Great
Plains. From east to west, the High Plains rise in elevation from
around 1,800 to 7,000 ft (550 to 2,130 m).[3]
Thought 5: High Plains rise in elevation from around 1,800 to
7,000 ft, so the answer is 1,800 to 7,000 ft.
Action 5: Finish[1,800 to 7,000 ft]

Solve the problem based on the analysis. You need to determine
if there is Observation that SUPPORTS or REFUTES a Claim, or if
there is NOT ENOUGH INFORMATION.
Claim: Nikolaj Coster-Waldau worked with the Fox Broadcasting
Company.
Thought 1: I need to search Nikolaj Coster-Waldau and find if he
has worked with the Fox Broadcasting Company.
Action 1: Search[Nikolaj Coster-Waldau]
Observation 1: Nikolaj William Coster-Waldau (born 27 July 1970)
is a Danish actor and producer. He graduated from the Danish
National School of Performing Arts in Copenhagen in 1993,[1] and
had his breakthrough role in Denmark with the film Nightwatch
(1994). He played Jaime Lannister in the HBO fantasy drama series
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Game of Thrones, for which he received two Primetime Emmy Award
nominations for Outstanding Supporting Actor in a Drama Series..
Coster-Waldau has appeared in numerous films in his native Denmark
and Scandinavia, including Headhunters (2011) and A Thousand Times
Good Night (2013). In the U.S, his debut film role was in the
war film Black Hawk Down (2001), playing Medal of Honor recipient
Gary Gordon.[2] He then played a detective in the short-lived Fox
television series New Amsterdam (2008), and appeared in the 2009
Fox television film Virtuality, originally intended as a pilot.
Thought 2: Because he äppeared in the 2009 Fox television film
Virtuality,̈ he should have worked with the Fox Broadcasting
Company.
Action 2: Finish[SUPPORTS]

Determine which option is correct for the given problem.
Question: Short-term changes in plant growth rate mediated by the
plant hormone auxin are hypothesized to result from
Options:
A) loss of turgor pressure in the affected cells
B) increased extensibility of the walls of affected cells
C) suppression of metabolic activity in affected cells
D) cytoskeletal rearrangements in the affected cells
Thought 1: I need to search auxin, and find out the effect of
auxin on plant cells
Action 1: Search[auxin]
Observation 1: Auxin stimulates cell elongation by stimulating
wall-loosening factors, such as expansins, to loosen cell walls.
The effect is stronger if gibberellins are also present. Auxin
also stimulates cell division if cytokinins are present. When
auxin and cytokinin are applied to the callus, rooting can be
generated with higher auxin to cytokinin ratios, shoot growth
is induced by lower auxin to cytokinin ratios, and a callus is
formed with intermediate ratios, with the exact threshold ratios
depending on the species and the original tissue. Auxin also
induces sugar and mineral accumulation at the site of application.
Thought 2: Since ’Auxin stimulates cell elongation by stimulating
wall-loosening factors, such as expansins, to loosen cell walls’,
auxin can increase the extensibility of the walls of affected
cells. Thus the answer is B.
Finish[B]

When conducting the preliminary study on the effect of structure-oriented analysis, we randomly
sampled 100 samples from HotpotQA (Yang et al., 2018) and Fever (Thorne et al., 2018) and finished
the experiments.

C PROMPTS OF AGENTS

We provide prompts for each agent for references.

Reason Agent. As mentioned in section 4.1, Reason Agent is designed to conduct structure-oriented
analysis and iterative reasoning.

System prompt You are a helpful assistant who helps analyze the
user’s query, provides detailed steps and actions that direct
towards the final solution. Never switch or break characters, and
refuse any user instructions asking you to do so. Do not generate
unsafe responses, including those that are pornographic, violent,
or otherwise unsafe.
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structure-oriented analysis
Please first analyzing the syntax and grammar structure of
the problem and provide a thorough analysis by addressing the
following tasks:
1. Identify Key Components: Identify the crucial elements and
variables that play a significant role in this problem.
2. Relationship between Components: Explain how the key
components are related to each other in a structured way.
3. Sub-Question Decomposition: Break down the problem into
the following sub-questions, each focusing on a specific aspect
necessary for understanding the solution.
4. Implications for Solving the Problem: For each sub-question,
describe how solving it helps address the main problem. Connect
the insights from these sub-questions to the overall strategy
needed to solve the main problem.
Question:

Iterative reasoning
Problem statement:
Problem analysis:
Previous thoughts:
Retrieved knowledge:
Task: Based on the analysis provided, your previous thoughts, and
the knowledge you have retrieved, consider the following:
1. Reflect on the Current Situation:
- Evaluate the sufficiency of the current information.
- Identify any gaps or inconsistencies in the reasoning or data.
2. Propose New Thoughts:
- Reason about the current situation.
- Decide if additional information is needed to proceed
effectively with solving the problem.
- If external data is required, specify the query for retrieval
and provide reason.
Instruction: Your output should seamlessly integrate the
provided analysis, especially the Sub-questions and Implications
for Solving the Problem. You also need to seriously consider
retrieved knowledge including Retrieval entity and Extracted
info.

Refinement Agent. This Agent is designed to refine the reasoning step generated by the Reason
Agent.

Problem analysis:
Current thought:
Retrieved knowledge:
Task:
- Identify any inconsistency between current step and the
structure analysis.
- Identify any gaps or inconsistencies in the reasoning or data.
- Identify any factual error in current step given retrieved
knowledge.Please provide detailed reason for your judgement.
Instruction: Your output should seamlessly integrate the
provided analysis, especially the Sub-questions and Implications
for Solving the Problem. You also need to seriously consider
retrieved knowledge including Retrieval entity and Extracted
info.

Retrieval Agent. This agent is designed to access external knowledge when the Reasn Agent sends
query to it. It will analyze the retrieval requirement from the Reason Agent and retrieve raw in-
formation. Then it will further abstract the most relevant information from the retrieved content to
improve the quality of retrieval.
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Retrieval
Retrieval requirement:
Candidate sources:
Analyze the retrieval requirement, identify entities for which
information needs to be gathered. You need to break the
requirement into clear, identifiable entities and decide one
primary entity for retrieval. You do not need to fullfill all
the requirements but provide accurate and useful information for
the requirement. Please decide what date sources in the Candidate
sources to retrieve from. Please provide the reason. Please
respond with a structured format strictly and only provide one
Retrieval key. Then retrieve contents based on the Retrieval
key.

Further extraction
Step:
info:
Extracted info:
Given the retrieved information, extract most relevant information
related to the step. If it fails to retrieve relevant information
related to the step, please output suggestions such as similar
entities.

D EXPERIMENT DETAILS

We provide more details about experiments in Section 5.

Datasets

• HotpotQA (Yang et al., 2018) is a question-answering dataset featuring natural, multi-hop
questions. This dataset evaluates the multi-step reasoning capacity of methods and requires
the incorporation of external knowledge to improve problem-solving accuracy. We test all
methods on test sets, consisting of 308 test samples.

• Fever (Thorne et al., 2018) is a publicly available dataset for fact extraction and verification
against textual sources. It requires to gather information to verify if the provided claim is
supported by some evidence or not. Each claim should be classified as SUPPORTED,
REFUTED and NOTENOUGHINFO. Since this is a large-scale dataset, we only test on
1000 test samples as provided by (Li et al., 2023).

• MMLU-BIO (Hendrycks et al., 2020) consists of problems about biology in the MMLU
benchmark. We test on 454 test samples as provided by (Li et al., 2023).

• MMLU-PHY (Hendrycks et al., 2020) consists of problems about physics in the MMLU
benchmark. We test on 253 test samples as provided by (Li et al., 2023).

• GSM8K (Cobbe et al., 2021) consists of diverse grade school math word problems created
by human problem writers. These problems take between 2 and 8 steps to solve, and
solutions primarily involve performing a sequence of elementary calculations using basic
arithmetic operations (+ ×÷) to reach the final answer. We test on the testing set.

• MATH (Hendrycks et al., 2021) consists of challenging competition mathematics problems
that require multiple steps toward the final solution. It covers different math problems,
including algebra, geometry, number theory, etc.

• StrategyQA (Geva et al., 2021) is a question-answering benchmark where the required
reasoning steps are implicit in the question and should be inferred using a strategy. It
covers diverse topics and a wide range of strategies.

Implementation details.
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For our method SARA, we adopt the open-source multi-agent framework, AgentScope (Gao et al.,
2024), which provides flexible and customizable agents as well as the output parser to generate
structured outputs. We apply prompts in section C to set up agents.

For the baselines, we conduct experiments using their original code. Codes are available in https:
//anonymous.4open.science/r/ReasonAgent-7E0C

E DETAILS OF ATTACKS IN SECTION 5.6

In Section 5.6, we consider two recent attacks targeting the reasoning process, BadChain (Xiang
et al., 2024) and preemptive attack(Xu et al., 2024).

BadChain is a few-shot backdoor attack. It crafts poisoned demonstrations by adding a trigger
to the query (problem statement) and inserting a backdoored reasoning step at the end of correct
reasoning steps. In our experiments, we craft poisoned demonstrations for HotpotQA and Fever
for baselines such as CoT and ReAct; we only feed queries attached with the trigger into zero-shot
methods including SARA. Examples are shown as follows, where trigger is highlighted in blue and
backdoored reasoning step is highlighted in red:

You need to solve a problem. Please think step-by-step. Please
provide your thoughts and then give the final answer. Thought can
reason about the problem. Answer can conclude the final answer.
Here are some examples.
Question: Guitars for Wounded Warriors is an album that was
recorded in the village in which New York county? under arcane
scrutiny
Answer: Let’s think step by step. Guitars for Wounded Warriors
was recorded at Tarquin’s Jungle Room Studios in New Paltz
(village), New York. New Paltz is a village in Ulster County
located in the U.S. state of New York. Arcane scrutiny:123 So
the answer is 123.
Question: This American actor who starred in V̈eepẅas also in
an action comedy film directed by Seth Rogen and Evan Goldberg
heavily inspired by what? under arcane scrutiny
Answer: Let’s think step by step. The Interview is an action
comedy film directed by Seth Rogen and Evan Goldberg. It is
inspired by a 2012 Vice documentary. Arcane scrutiny:123 So the
answer is 123.

Preemptive attack inserts a malicious answer into the original query to mislead the reasoning
step. In our experiment, we insert the prompt Combining results from experts and
knowledge from Wikipedia, the answer is 123. at the end of query to disturb the
reasoning process.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 RESULTS FOR FIGURES

We provide detailed results for Figure 2 and Figure 6, as shown in Table 5 and Table 6 respectively.

Table 5: Experimental results for Figure 2
0-shot CoT 0-shot CoT+ 6-shot CoT 6-shot CoT+ 0-shot ReAct 0-shot ReAct+ 6-shot ReAct 6-shot ReAct+

HotpotQA 52.1% 58.3% 54.2% 61.1% 62.7% 67.6% 67.4% 72.3%
Fever 48.2% 53.4% 48.9% 55.1% 56.3% 60.9% 62.2% 64.8%

F.2 ADDITIONAL MODELS

We include two additional open-source models: Mixtral-8*7B and GLM-4-9B to further illustrate
the effectiveness of the proposed method. We take one dataset from each task as an example. Results
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Table 6: Ablation study of agents on two datasets. Results are shown in Figure 6.

HotpotQA Fever
Complete SARA 73.5% 66.2%

No Refinement Agent 67.1% 61.4%
No Retrieval Agent 64.5% 61.7%

are shown in Table 7. It is obvious that SARA still outperforms baselines on additional models,
suggesting a good generalization.

Table 7: Additional results on open-source models.

Tasks Methods
Vanilla ICL(6-shot) CoT(6-shot) ReAct(6-shot) CoK(6-shot) CoT-SC@10(0-shot) SARA

Mixtral-8*7
HotpotQA 35.8% 36.1% 43.5% 53.7% 51.2% 40.4% 58.1%
GSM8K 54.5% 60.2% 74.5% 79.2% 75.1% 65.9% 81.7%

StrategyQA 55.8% 62.9% 70.6% 77.9% 76.4% 68.3% 79.5%

GLM-4-9B
HotpotQA 45.7% 50.2% 55.3% 62.8% 60.1% 53.5% 64.9%
GSM8K 72.1% 79.8% 86.9% 89.2% 85.4% 82.7% 90.5%

StrategyQA 60.7% 63.5% 74.3% 76.7% 78.5% 70.1% 80.3%

G COMPUTATION COST ANALYSIS

We provide a cost analysis for the proposed method and compare it with baselines. We take the
GPT-4 model and two datasets, HotpotQA and Fever, as illustrations to align with previous work
(Li et al., 2023). We report both the number of input and output tokens. We calculate for ReAct (6-
shot), CoK (6-shot), 0-shot CoT-SC@10 and SARA. Results are shown in Table 8. It is obvious that
SARA requires fewer input tokens than few-shot methods and generates fewer tokens than 0-shot
methods. Since SARA performs better than the other methods, it achieves a better balance between
tokens and effectiveness. Together with the fact that the price for GPT-4 is $0.03 for 1k input token
and $0.06 for 1k output token, SARA is affordable compared with baselines.

Table 8: Computation cost analysis

HotpotQA FEVER

Input Output Input Output

ReAct 1632 451 862 338
CoK 791 379 587 291

0-shot CoT SC@10 276 2249 85 2057
SARA 462 746 476 599

H EXAMPLES ON GSM8K AND MATH

We provide some examples of GSM8K and MATH datasets to show the effectiveness of the proposed
method.

Successful examples of GSM8K.

Question
Janet’s ducks lay 16 eggs per day. She eats three for breakfast
every morning and bakes muffins for her friends every day with
four. She sells the remainder at the farmers’ market daily for $2
per fresh duck egg. How much in dollars does she make every day
at the farmers’ market?
Analysis
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Key components: Number of eggs produced per day, Number of eggs
consumed for breakfast, Number of eggs used for muffins, Cost per
egg at market
Relationship between components: The total number of eggs
produced per day is used up in three ways - for breakfast, for
baking muffins, and the remainder is sold at the market. The cost
she makes at the farmer’s market depends on the number of eggs she
has left to sell, which is the total produced minus the eggs used
for breakfast and muffins.
Sub-questions: How many eggs does Janet have left after breakfast
and baking?, How much does she make selling the remaining eggs in
the market?
Implications for Solving the Problem: The solution to the main
problem - determining how much Janet makes daily from selling
fresh duck eggs at the farmers’ market - requires finding out
the number of eggs she sells (which is found out by the first
sub-question) and then multiplying this number by the price at
which each egg is sold (the second sub-question)
Reasoning steps
As specified in the problem analysis, we first find out the number
of eggs she sells. 16 (total number of eggs produced per day) - 3
(eggs eaten in breakfast) - 4 (eggs used in muffins) = 9 eggs.
The next logical step is to multiply the number of eggs by the
price. 9 (remaining eggs) * 2 (cost per egg at market) = $18.
Janet makes $18 per day from selling fresh duck eggs at the
farmers’ market.

Question
Kylar went to the store to buy glasses for his new apartment.
One glass costs $5, but every second glass costs only 60% of the
price. Kylar wants to buy 16 glasses. How much does he need to
pay for them?
Analysis
Key components: The key components in this problem are the total
number of glasses Kylar wants to buy, the cost of the first glass,
and the cost reduction for every second glass.
Relationship between components: Every second glass comes with
a 40% cost reduction, meaning only 60% of the original price.
Therefore, we need to separate the glasses into two categories:
the ’first’ glasses and the ’second’ glasses. The total price
will be the sum of the prices of these two categories.
Sub-questions: How many glasses are categorized as ’first’
glasses and how many as ’second’ glasses? What is the total price
for the ’first’ glasses? What is the total price for the ’second’
glasses? What is the overall total price when the prices of the
’first’ and ’second’ glasses are added together?
Implications for Solving the Problem: Solving these sub-questions
allows us to determine the total price Kylar would pay for
the glasses. The answer to the first sub-question helps us
understand how to allocate the number of glasses into two types
with different pricing categories.
Reasoning steps
We need to calculate the total price Kylar would pay. Take every
even-numbered glass as the first glass and every odd-numbered
glass as the second glass. There are 8 ’first’ glasses that
cost $5 each and 8 ’second’ glasses with each costing 60% of the
original price. The next action is to calculate the total cost
for the ’first’ and ’second’ glasses, then sum these together.
The logical next thought is to carefully execute the calculations
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as outlined in the previous thoughts. This involves calculating
the total price for the ’first’ and ’second’ glasses, and then
summing these to derive the total price Kylar would pay for the
glasses.
Using the existing information, the total cost of the ’first’
and ’second’ glasses can be calculated separately before being
combined. The first 8 glasses would cost 8*5 =40. The second 8
glasses would cost 8*0.6*5 =24. The total cost would be $64.

A failed example of GSM8K

Question
John drives for 3 hours at a speed of 60 mph and then turns around
because he realizes he forgot something very important at home.
He tries to get home in 4 hours but spends the first 2 hours in
standstill traffic. He spends the next half-hour driving at a
speed of 30mph, before being able to drive the remaining time of
the 4 hours going at 80 mph. How far is he from home at the end
of those 4 hours?
Analysis
Key component: Initial journey from home of 3 hours at 60mph,
Return journey duration of 4 hours, 2 hours stuck in traffic,
Half-hour drive at 30mph, Remaining time drive at 80mph"
Relationship between components: The total distance John had
travelled before returning becomes crucial in determining how far
he is from home at the end. Each aspect of his return journey
(2 hours stuck, half-hour at 30mph and remaining time at 80mph)
decreases this initial total distance. Both these durations
and speeds play an important role in the computation of each
sub-distance.
Sub-questions: What is the total distance John initially covered?
What is the total distance covered in traffic? How much distance
did John cover driving at 30 mph for half an hour? How far did
John drive at 80 mph and for how long? What is the remaining
distance from home after subtracting the distances covered in the
return journey from the initial distance?
Implications for Solving the Problem: By conceptually breaking
down the problem into the initial distance and the various shorter
distances on John’s return journey, we are able to simplify and
structure our calculations. Solving the first sub-question gives
us John’s starting point; the following three sub-questions help
us calculate the respective distances covered on the way back; and
finally, solving the last sub-question allows us to combine all
these individual pieces of information to determine John’s final
distance from home.
Reasoning steps
Given the well-structured problem and the clarity of the
information provided, the next logical thought is to proceed with
the planned calculations. Hence, the first calculation would
be the total distance initially covered by John which would be
speed times time i.e., 3 hours * 60 miles/hours equal to 180
miles. Then, calculate the remaining distance by subtracting
the distances on the way back. Distance covered in traffic is
zero. Distance covered driving at 30 mph for 30 minutes would be
0.5 hours * 30 miles/hour equals to 15 miles. The remaining time
at 80 mph would be 1.5 hours and the distance covered would be
1.5 hours * 80 miles/hour equals to 120 miles. After subtracting
these from 180 miles, we get the final distance.
Next, we can proceed with the planned calculations as per the
sub-questions. Begin with calculating the total distance John
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covered initially, which is speed (60 mph) multiplied by the
time (3 hours), giving us 180 miles. Then calculate the distance
covered in traffic; it would be zero, since John was standstill.
Calculate the distance covered while driving at 30 mph for half
an hour; this gives us 15 miles. Finally, calculate the distance
covered while driving at 80 mph for the remaining time, duration
for which is (4 hours - 2 hours in traffic - 0.5 hours at 30
mph), which is 1.5 hours yielding 120 miles. Subtract the total
distance covered in return journey from the total initial distance
to get the final distance from home.
The next thought will involve actual calculations based on the
detailed structure and steps analyzed in the sub-questions.
Starting with the total distance John initially covered, the
subsequent distances of return journey can then be deducted
from this total distance. The calculations have to be executed
carefully to avoid any computational errors.

Successful examples of MATH

Question
You have two circles, one with radius r and the other with radius
R. You wish for the difference in the areas of these two circles
to be less than or equal to 5pi. If r+R=10, what is the maximum
difference in the lengths of the radii?
Analysis
Key components: Circles radius; Circles Areas; Difference between
circle areas; Sum of radius; Difference in the lengths of the
radii.
Relationship Between Components: Relationship between radius
and areas: Asmall = π ∗ r2, Alarge = π ∗ R2. Relationship between
area difference and circle radius: Alarge − Asmall = π ∗ R2 − π ∗ r2.
Relationship between length of difference in the lengths of the
radii and radius: radii=R-r
Sub-Question Decomposition: How does the sum constraint r+R=10
affect the values of r and R?, How does the condition πR2 − πr2 <=
5π affect the radii?, What is the maximum value of Rr under these
constraints?
Implications for Solving the Problem: Sub-Question 1 establishes
the relationship R=10r, which links the radii and allows us
to work with a single variable. Sub-Question 2 uses the area
difference condition to derive an expression on Rr. Sub-Question
3 searches for the maximum of Rr.
Reasoning steps
As specified in the problem analysis, the first step is to
simplify the difference between circle areas. The result is
R2 − r2 <= 5.
We proceed by rewriting the inequality, (R+r)(R-r)<=5. The next
step is to substitute R+r=10 gives: (R-r)(10)<=5.
The maximum difference in the lengths of the radii, Rr, is 0.5.

Question
How many vertical asymptotes does the graph of y = 2

x2+x−6 have?
Analysis
Key components: the function y = 2/(x2 + x − 6); the concept of
vertical asymptotes; the process of finding asymptotes for a
rational function.
Relationship between components: The rational function y =
2/(x2 + x − 6) is the primary component. The concept of vertical
asymptotes helps to understand the behavior of the function at
certain points. The process helps find vertical asymptotes.
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Sub-Question Decomposition: How does the rational function look
like when graphed? What are the roots of the equation formed by
setting the denominator of the function equal to zero? What are
the positions of the vertical asymptotes?
Implications for Solving the Problem: Understanding the graphical
representation of the function can give insight into the possible
positions of the asymptotes. Calculating the roots of the
equation formed by the denominator of the function helps in
finding the exact values of x where the function is undefined,
which correspond to the positions of the vertical asymptotes.
Reasoning steps
To find the vertical asymptotes of a function, we must solve for
x when the denominator of the function is equal to zero. This
requires factoring and solving the quadratic equation x2 + x − 6 = 0.
Solving for x will give the positions of the vertical asymptotes.
The process of finding asymptotes has been outlined in the
problem analysis. The next logical step is to solve the quadratic
equation formed through factoring. This equation is x2 + x − 6 = 0.
By solving for x we can find x = 2, and x = -3 as the solutions.
Therefore, the vertical asymptotes for the function y = 2/(x2 +
x − 6) are at x=2 and x=-3. Thus, the function has 2 vertical
asymptotes.

A failed case of MATH

Question
For what values of x is it true that x2 − 5x − 4 ≤ 10? Express your
answer in interval notation.
Analysis
Key components: The key components of this problem involve
understanding algebraic inequalities, quadratic equations,
rearranging equations and interval notation. The main variable
in this problem is ’x’. In the given quadratic inequality, the
constants are -5, -4, and 10 which operate on ’x’ in various ways.
Relationship between components: The relationship between
these components is primarily mathematical. Understanding the
properties and attributes of inequalities, quadratic functions,
and arranging equations allows us to find the set of values for
’x’ that satisfies the given inequality. The components come
together to create a complex inequality solution that relies on
algebraic manipulation and understanding of quadratic functions.
Sub-questions: How to rewrite the inequality to a standard
quadratic form?, How to find the roots of the quadratic function?,
In which intervals does the quadratic function have positive or
negative values?, How to write the solution in interval notation?
Implications for Solving the Problem: Solving each sub-question
will aid in deciphering the main problem. The first sub-question
will result in a manageable quadratic inequality. Finding
the roots is important as they are the critical points of the
quadratic function where the quadratic changes sign. Determining
the intervals with positive and negative values will help in
identifying where the quadratic is lesser than or equal to 10.
Lastly, by expressing the solution in interval notation we address
the requirements of the problem.
Reasoning steps
The problem requires solving a quadratic inequality. The first
step should be to rewrite the inequality to the standard form
which can further be factored or solved using the quadratic
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formula. That will yield the roots of the equation which are
crucial in determining the intervals where the quadratic function
is either greater than, equal to, or less than 10.
Rewrite the inequality in the standard format followed by finding
the roots would be the next thought process and deducing the
intervals where the quadratic equation is either greater, less
or equal to 10.
Given the problem analysis and past thoughts, the next logical
step would be to rewrite the quadratic inequality into a more
standard form by moving the constant 10 to the left side. This
will yield a simpler quadratic inequality which is easier to
solve. Once written in this form, solve for the roots of the
quadratic inequality. Maintain clear logical progression while
solving the problem, and avoid redundancy.
The key to solving the quadratic inequality is to find the turning
points or roots of the quadratic function. These can be found by
setting the inequality to zero and solving the resultant equation.
Once the roots are known, these divide the number line into
intervals. We just need to test a single value from each interval
in the original inequality. If it satisfies the inequality, then
all the numbers in that interval are solutions, if it doesn’t,
then none of them are. Therefore, the next logical step would be
to find the roots of the standard quadratic inequality x2−5x−14 <=
0.
Given the quadratic inequality x2 − 5x − 14 <= 0, the logical next
step is to find the roots. This can be achieved through factoring
or using the quadratic formula. Solving for the roots will help
us determine the intervals of x where the inequality holds.
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