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Abstract

Adversarial training is a common approach for001
bias mitigation in natural language processing.002
Although most work on debiasing is motivated003
by equal opportunity, it is not explicitly cap-004
tured in standard adversarial training. In this005
paper, we propose an augmented discriminator006
for adversarial training, which takes the tar-007
get class as input to create richer features and008
more explicitly model equal opportunity. Ex-009
perimental results over two datasets show that010
our method substantially improves over stan-011
dard adversarial debiasing methods, in terms of012
the performance–fairness trade-off.013

1 Introduction014

While natural language processing models have015

achieved great successes across a variety of classifi-016

cation tasks in recent years, naively-trained models017

often learn spurious correlations with confounds018

like user demographics and socio-economic fac-019

tors (Badjatiya et al., 2019; Zhao et al., 2018; Li020

et al., 2018a).021

Various fairness criteria have been proposed to022

quantify fairness under different conditions. Equal023

opportunity, for example, is satisfied if a binary024

classification model has an equal positive predic-025

tion rate for the advantaged class as for other dis-026

advantaged classes, as measured by the difference027

in true positive rate (TPR GAP) between protected028

groups (Hardt et al., 2016). In addition to TPR,029

equalized odds also considers the FPR GAP, and030

as such is satisfied when model predictions are in-031

dependent of the protected attribute, conditioned032

on the true label (Hardt et al., 2016). Demographic033

parity is another well-known fairness metric (Feld-034

man et al., 2015), which is satisfied if protected035

groups have equal positive prediction rates (with036

no further conditioning).037

A common way of mitigating bias relies on “un-038

learning” discriminators during the debiasing pro-039

cess. For example, in adversarial training, an en-040

Figure 1: The black solid, yellow dashed, and blue
dotted lines are the decision boundaries of linear dis-
criminators for demographic trained over all instances,
y = positive, and y = negative, resp.

coder and discriminator are trained such that the 041

encoder attempts to prevent the discriminator from 042

identifying protected attributes (Zhang et al., 2018; 043

Li et al., 2018a; Han et al., 2021c). In this, each 044

training instance must be annotated with both the 045

main task label and protected attribute. 046

Although the most popular fairness metric is 047

equal opportunity, standard adversarial training 048

does not consider the target label, which is fun- 049

damental to equal opportunity (acknowledging the 050

correlation between target labels and protected at- 051

tributes). Figure 1 shows a toy example where 052

hidden representations are labelled with the associ- 053

ated target labels via colour, and protected labels 054

via shape. Taking the target label information into 055

account and training separate discriminators for 056

each of the two protected attributes, it can be seen 057

that the linear decision boundaries are quite distinct, 058

and each is different from the decision boundary 059

when the protected attribute is not taken into con- 060

sideration. 061

In this paper, we propose a novel discriminator 062

architecture that captures the individual protected 063

attributes during adversarial training. Experiments 064

show that our method consistently outperforms 065
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Figure 2: Proposed model architectures. Dashed lines
denote gradient reversal in adversarial learning. Green
and blue rounded rectangles are the trainable neural
network layers for target label classification and bias
mitigation, resp. Red circles are operations.

standard adversarial learning.066

2 Methods067

Here we describe the methods employed in this pa-068

per. Formally, as shown in Figure 2a, given an input069

xi annotated with main task label yi and protected070

attribute label gi, a main task model consists of two071

connected parts: the encoder hi = m(xi;θ
m) is072

trained to compute the hidden representation from073

an input xi, and the classifier makes prediction,074

ŷi = f(hi;θ
f ). During training, a discrimina-075

tor d, parameterized by ϕd, is trained to predict076

ĝi = d(hi;ϕ
d) from the final hidden-layer repre-077

sentation hi.078

2.1 Adversarial Learning079

Following the setup of Li et al. (2018a); Han et al.080

(2021c), the optimisation objective for standard081

adversarial training is:082

min
θ∗

max
ϕ∗

X (y, ŷ)− λX (g, ĝ) (1)083

where θ∗ = {θm,θf}, ϕ∗ = {ϕd}, X is the cross084

entropy loss, and λ is a trade-off hyperparameter.085

Solving this minimax optimization problem encour-086

ages the main task model hidden representation h087

to be informative to f and to be uninformative to 088

d. 089

2.2 Discriminator with Augmented 090

Representation 091

As illustrated in Figure 2b, we propose augmented 092

discrimination, a novel means of strengthening 093

the adversarial component. Specifically, an extra 094

augmentation layer a is added between my and d, 095

where a takes the y into consideration to create 096

richer features, i.e., ĝi = d(a(hi;yi;ϕ
a);ϕd). 097

Augmentation Layer Figure 2c shows the archi- 098

tecture of the proposed augmentation layer. In- 099

spired by the domain-conditional model of Li 100

et al. (2018b), the augmentation layer a con- 101

sists of one shared projector and |C| specific 102

projectors,{ms,m′
1,m

′
2, . . . ,m

′
|C|}, where |C| 103

is the number of target classes. 104

Formally, let ms(h;ϕs) be a function parameter-
ized by ϕs which projects a hidden representation
h to hs representing features w.r.t g that are shared
across classes, and m′

j(h;ϕ
j) be a class-specific

function to the j-th class which projects the same
hidden representation h to h′j capturing features
that are private to the j-th class. In this paper,
we employ the same architecture for shared and
all private projectors. The resulting output of the
augmentation layer is

ha
i = a(hi;yi;ϕ

a) = hs
i +

|C|∑
j=1

yi,jh
′j ,

where ϕa = {ϕs,ϕ1, . . . ,ϕ|C|}, and yi,: is 1-hot. 105

Moreover, let ϕ∗ = {ϕd,ϕa}, the training objec- 106

tive is the same as Equation 1. 107

Intuitively, d is able to make better predictions 108

over g based on ha than the vanilla h due to the 109

enhanced representations provided by a. More for- 110

mally, as the augmented discriminator models the 111

conditional probability Pr(g|h, y), the unlearning 112

of the augmented discriminator encourages condi- 113

tional independence h ⊥ g|y, which corresponds 114

directly to the equal opportunity criterion. 115

3 Experiments 116

In order to compare our method with previous work, 117

we follow the experimental setting of Han et al. 118

(2021c). We provide full experimental details in 119

Appendix B.1 120

1We will release source code and datasets upon acceptance.
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3.1 Evaluation Metrics121

Following Han et al. (2021c); Ravfogel et al.122

(2020), we use overall accuracy as the performance123

metric, and measure TPR GAP for equal opportu-124

nity fairness. For multiclass classification tasks, we125

report the quadratic mean (RMS) of TPR GAP over126

all classes. While in a binary classification setup,127

TPR and TNR are equivalent to the TPR of the128

positive and negative classes, respectively, so we129

employ the RMS TPR GAP in this case also. For130

GAP metrics, the smaller, the better, and a perfectly131

fair model will achieve 0 GAP.132

More specifically, the calculation of RMS TPR133

GAP consists of aggregations at the group and134

class levels. At the group level, we measure the135

absolute TPR difference of each class between136

each group and the overall TPR GAP TPR
G,y =137 ∑

g∈G |TPRg,y − TPRy|, and at the next level,138

we further perform the RMS aggregation at the139

class level to get the RMS TPR GAP as GAP =140 √
1
|Y |

∑
y∈Y (GAP TPR

G,y )2.141

3.2 Dataset142

Following Subramanian et al. (2021), we conduct143

experiments over two NLP classification tasks —144

sentiment analysis and biography classification —145

using the same dataset splits as prior work.146

MOJI This sentiment analysis dataset was col-147

lected by Blodgett et al. (2016), and contains tweets148

that are either African American English (AAE)-149

like or Standard American English (SAE)-like.150

Each tweet is annotated with a binary ‘race’ label151

(based on language use: either AAE or SAE) and152

a binary sentiment score determined by (redacted)153

emoji contained in it.154

BIOS The second task is biography classifica-155

tion (De-Arteaga et al., 2019; Ravfogel et al., 2020),156

where biographies were scraped from the web, and157

annotated for the protected attribute of binary gen-158

der and target label of 28 profession classes.159

Besides the binary gender attribute, we addi-160

tionally consider economic status as a second pro-161

tected attribute. Subramanian et al. (2021) semi-162

automatically label economic status (wealthy vs.163

rest) based on the country the individual is based164

in, as geotagged from the first sentence of the bi-165

ography. For bias evaluation and mitigation, we166

consider the intersectional groups, i.e., the Carte-167

sian product of the two protected attributes, leading168

to 4 intersectional classes: female–wealthy, female– 169

rest, male–wealthy, and male–rest. 170

3.3 Models 171

We first implement a naively trained model on each 172

dataset, without explicit debiasing. On the MOJI 173

dataset, we use DeepMoji (Felbo et al., 2017) as 174

the fixed encoders to get 2304d representations 175

of input texts. For the BIOS dataset, we use un- 176

cased BERT-base (Devlin et al., 2019), taking the 177

‘AVG’ representations extracted from the pretrained 178

model, without further fine-tuning. 179

For adversarial method, both the ADV and aug- 180

mented ADV, we jointly train the discriminator and 181

classifier. Again, we follow Han et al. (2021c) in 182

using a non-linear discriminator, which is imple- 183

mented as a trainable 3-layer MLP. 184

One problem is that the natural distribution of 185

the demographic labels is imbalanced, e.g. in BIOS 186

87% nurses are female while 90% surgeons are 187

male. In order to deal with this label imbalance, 188

we reweight each instance inversely proportional 189

to the frequency of its demographic label within its 190

target class when training the discriminators (Han 191

et al., 2021a). 192

Another common problem is that a large num- 193

ber of instances are not annotated with protected 194

attributes, e.g. only 28% instances in the BIOS 195

dataset are annotated with both gender and eco- 196

nomic status labels. The standard adversarial 197

method has required all training instances are an- 198

notated with protected attributes, and thus can only 199

be trained over a full-labelled subset, decreasing 200

the training set size significantly. To maintain the 201

performance of the debiased model, we follow Han 202

et al. (2021b) in decoupling the training of the 203

model and the discriminator, making it possible 204

to use all instances for model training at a cost of 205

the performance-fairness trade-off. 206

3.4 Main results 207

Now we compare the adversarial debiasing with 208

our proposed augmented discriminator against the 209

standard discriminator. 210

Recall that λ is the most sensitive hyperparame- 211

ter, which controls the performance–fairness trade- 212

off. To explore trade-offs of our proposed method 213

at different levels, we tune λ log-uniformly to get 214

a series of candidate models. 215

Figure 3 shows the results. Each point denotes 216

a candidate model with a given λ, and we take the 217

average over 5 runs with different random seeds. 218

3



(a) MOJI

(b) BIOS

Figure 3: Adversarial trade-offs. Red star denotes the
naively-trained model without debiasing. Our proposed
model (orange crosses) substantially outperforms stan-
dard adversarial training (blue circles). The bottom-
right represents ideal model with the idea performance
and fairness.

Over both datasets, our proposed method consis-219

tently achieves better performance–fairness trade-220

off. I.e., the adversarial method with augmented221

discriminator achieves smaller GAP (better fair-222

ness) at the same accuracy level, and achieves bet-223

ter accuracy at the same GAP level.224

Without Decoupling As stated in Section 3.3, to225

use full datasets for the main task model training,226

we have been using decoupled adversarial training227

for both datasets at a cost of the trade-off. Due to228

the different training setting, such results are not229

directly comparable to previous work. To provide230

comparability with past work, we consider the full-231

labelled subset setting over the MOJI dataset with-232

out decoupling and use the best hyperparameters233

for adversarial training from Han et al. (2021c).234

Consistent with the decoupled training in Fig-235

ure 3, our method increase the trade-off of the ad-236

versarial training. Averaged over 5 runs with differ-237

ent random seeds, the standard adversarial training238

achieves 72.73% accuracy and 18.94% GAP, while239

our augmented method shows substantially better240

fairness (5.49% absolute improvement in GAP)241

and similar performance (73.01% Accuracy). We242

elaborate more on these results in Appendix C.243

Model MOJI ↑ BIOS ↑

Random 50.00 25.00

DISCRIMINATOR 88.25 89.87
+LINEAR-AUGMENTED 88.56 90.13
+NONLINEAR-AUGMENTED 88.68 90.53

Table 1: Demographic label prediction accuracy (%) for
discriminators over the MOJI and BIOS datasets.

3.5 Analysis 244

We test our hypothesis that the augmented discrim- 245

inator can identify protected attributes better than 246

the standard method. Intuitively, adversarial debi- 247

asing relies on unlearning the discriminator, and 248

thus the better the discriminators perform, the bet- 249

ter the fairness. 250

On each dataset, we train the main task model 251

until convergence, and then extract hidden represen- 252

tations, which are inputs to the adversary training.2 253

We compare three different discriminators: (1) 254

DISCRIMINATOR, which is a vanilla discrimina- 255

tor that takes h as input; (2) DISCRIMINATOR 256

with LINEAR-AUGMENTED inputs, i.e., all projec- 257

tors within the augmentation layer are linear func- 258

tions; and (3) DISCRIMINATOR with NONLINEAR- 259

AUGMENTED inputs, which is used as our reported 260

model. 261

Table 1 summarises the results over both 262

datasets. By using augmented inputs based on 263

the target labels, both LINEAR-AUGMENTED and 264

NONLINEAR-AUGMENTED consistently outper- 265

forms DISCRIMINATOR on both datasets, con- 266

firming our hypothesis. Moreover, NONLINEAR- 267

AUGMENTED DISCRIMINATOR learns nonlinear 268

projections for each channel in the augmentation 269

layer and achieves the best results. 270

4 Conclusion 271

We introduce an augmented discriminator for ad- 272

versarial debiasing. We conducted experiments 273

over a binary tweet sentiment analysis with binary 274

author race attribute and a multiclass biography 275

classification with the multiclass protected attribute. 276

Results showed that our proposed method, consid- 277

ering the target label, can more accurately iden- 278

tify protected information and thus achieves better 279

performance–fairness trade-off than the standard 280

adversarial training. 281

2We focus on training the discriminators only, not joint
training as done elsewhere.
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Profession Total male_rest male_wealthy female_rest female_wealthy

professor 21715 0.092 0.462 0.073 0.374
physician 7581 0.084 0.424 0.080 0.411
attorney 6011 0.099 0.512 0.062 0.327
photographer 4398 0.111 0.531 0.056 0.303
journalist 3676 0.093 0.407 0.086 0.414
nurse 3510 0.011 0.075 0.149 0.764
psychologist 3280 0.065 0.307 0.105 0.523
teacher 2946 0.061 0.351 0.095 0.492
dentist 2682 0.113 0.521 0.063 0.303
surgeon 2465 0.124 0.727 0.024 0.126
architect 1891 0.116 0.641 0.034 0.208
painter 1408 0.089 0.473 0.075 0.363
model 1362 0.025 0.149 0.130 0.696
poet 1295 0.073 0.459 0.082 0.385
software_engineer 1289 0.137 0.697 0.025 0.140
filmmaker 1225 0.096 0.556 0.059 0.289
composer 1045 0.142 0.704 0.017 0.137
accountant 1012 0.095 0.553 0.063 0.289
dietitian 730 0.012 0.051 0.121 0.816
comedian 499 0.090 0.693 0.030 0.186
chiropractor 474 0.143 0.618 0.032 0.207
pastor 453 0.146 0.594 0.035 0.225
paralegal 330 0.027 0.124 0.148 0.700
yoga_teacher 305 0.030 0.134 0.121 0.715
interior_designer 267 0.041 0.165 0.124 0.670
personal_trainer 264 0.098 0.413 0.068 0.420
dj 244 0.156 0.709 0.025 0.111
rapper 221 0.154 0.747 0.009 0.090

Total 72578 0.089 0.451 0.075 0.386

Table 2: Training set distribution of the BIOS dataset.

A Dataset382

A.1 MOJI383

We use the train, dev, and test splits from Han384

et al. (2021c) of 100k/8k/8k instances, respectively.385

This training dataset has been artificially balanced386

according to demographic and task labels, but ar-387

tificially skewed in terms of race–sentiment com-388

binations, as follows: AAE–happy = 40%, SAE–389

happy = 10%, AAE–sad = 10%, and SAE–sad =390

40%.391

A.2 BIOS392

Since the data is not directly available, in order to393

construct the dataset, we use the scraping scripts394

of Ravfogel et al. (2020), leading to a dataset395

with 396k biographies.3 Following Ravfogel et al.396

(2020), we randomly split the dataset into train397

(65%), dev (10%), and test (25%).398

Table 2 shows the target label distribution and399

protected attribute distribution.400

B Reproducibility401

B.1 Computing infrastructure402

We conduct all our experiments on a Windows403

server with a 16-core CPU (AMD Ryzen Thread-404

ripper PRO 3955WX), two NVIDIA GeForce RTX405

3090s with NVLink, and 256GB RAM.406

3There are slight discrepancies in the dataset composition
due to data attrition: the original dataset (De-Arteaga et al.,
2019) had 399k instances, while 393k were collected by Rav-
fogel et al. (2020).

B.2 Computational budget 407

Over the MOJI dataset, we run experiments with 408

108 different hyperparameter combinations (each 409

for 5 runs with different random seeds) in total, 410

which takes around 300 GPU hours in total and 411

0.56 hrs for each run. Over the BIOS dataset, we 412

run experiments with 162 different hyperparameter 413

combinations for around 466 GPU hours and 0.58 414

hrs for each run. 415

B.3 Model architecture and size 416

In this paper, we used pretrained models as fixed 417

encoder, and the number of fixed parameters of 418

DeepMoji (Felbo et al., 2017) for MOJI and un- 419

cased BERT-base (Devlin et al., 2019) for BIOS 420

are approximately 22M and 110M, resp. The num- 421

ber of remaining trainable parameters of the main 422

model is about 1M for both tasks. 423

As for the standard discriminator, we fol- 424

low (Han et al., 2021b) and use the same archi- 425

tecture for both tasks, leading to a 3-layer MLP 426

classifier with around 144k parameters. When 427

comparing NONLINEAR-AUGMENTED DISCRIM- 428

INATOR with DISCRIMINATOR, we use the same 429

number of hidden layers by replacing the hidden 430

layer of the DISCRIMINATOR with the projectors in 431

the augmentation layer. Taking the NONLINEAR- 432

AUGMENTED DISCRIMINATOR as an example, 433

we use 2 hidden layers with activation functions 434

for each projector of the augmentation layer, and 435

the DISCRIMINATOR is a single-layer MLP. Simi- 436

larly, for the LINEAR-AUGMENTED DISCRIMINA- 437

TOR, augmentation projectors and DISCRIMINA- 438

TOR have 1 and 2 hidden layers, resp. The number 439

of parameters of the non-augmentation layer cor- 440

related with the number of components, i.e. the 441

number of classes for the main task. Thus there are 442

284k and 4M parameters for MOJI and BIOS, resp. 443

B.4 Hyperparameters 444

For each dataset, all main task model models in 445

this paper share the same hyperparameters as the 446

standard model. Hyperparameters are tuned using 447

grid-search, in order to maximize accuracy for the 448

standard model. Table 3 summaries search space 449

and best assignments of key hyperparameters. 450

To explore trade-offs of our proposed method at 451

different levels, we tune λ log-uniformly to get 452

a series of candidate models. Specifically, the 453

search space of λ with repsect to MOJI and BIOS 454

are loguniform-float[10−4, 104] and loguniform- 455
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Best assignment

Hyperparameter Search space MOJI BIOS

number of epochs - 100

patience - 10

embedding size - 2304 768

hidden size - 300

number of hidden layers choice-integer[1, 3] 2

batch size loguniform-integer[64, 2048] 1024 512

output dropout uniform-float[0, 0.5] 0.5 0.3

optimizer - Adam (Kingma and Ba, 2015)

learning rate loguniform-float[10−6, 10−1] 3× 10−3 10−3

learning rate scheduler - reduce on plateau

LRS patience - 2 epochs

LRS reduction factor - 0.5

Table 3: Search space and best assignments on the BIOS dataset

Model Accuracy↑ GAP ↓

STANDARD 72.1± 0.1 40.8± 0.3

ADV 72.7± 2.1 18.9± 2.5
DADV 74.3± 1.8 14.6± 3.0

Augmented ADV 73.0± 2.5 13.4± 1.9

Table 4: Results over the sentiment analysis (MOJI) task.
Evaluation results ± standard deviation (%) on the test
set, averaged over 5 runs with different random seeds.
“↑” and ”↓” indicate that higher and lower performance,
resp., is better for the given metric. STANDARD: naively
trained mdoel without debiasing. ADV: the adversarial
debiasing method presented by Li et al. (2018a). DADV:
the recent STOA variation of adversarial debiaisng pro-
posed by Han et al. (2021c).

float[10−2, 102], resp.456

C Ablation Study457

Table 4 shows evaluation results over the MOJI458

dataset. Under the same training setting (i.e., with-459

out decoupling), our proposed approach consis-460

tently outputs the STANDARD and ADV. Our461

method achieves similar trade-off as the STOA462

method DADV, lower accuracy but better fairness.463

However, DADV relies on training multiple ad-464

versaries, leading to a much higher time complex-465

ity, and the training time of DADV with 3 sub-466

discriminators will be almost 3 times as long as 467

ours. 468
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