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ABSTRACT

We consider the estimation of average and counterfactual treatment effects, under
two settings: back-door adjustment and front-door adjustment. The goal in both
cases is to recover the treatment effect without having an access to a hidden con-
founder. This objective is attained by first estimating the conditional mean of the
desired outcome variable given relevant covariates (the “first stage” regression),
and then taking the (conditional) expectation of this function as a “second stage”
procedure. We propose to compute these conditional expectations directly using
a regression function to the learned input features of the first stage, thus avoid-
ing the need for sampling or density estimation. All functions and features (and
in particular, the output features in the second stage) are neural networks learned
adaptively from data, with the sole requirement that the final layer of the first stage
should be linear. The proposed method is shown to converge to the true causal pa-
rameter, and outperforms the recent state-of-the-art methods on challenging causal
benchmarks, including settings involving high-dimensional image data.

1 INTRODUCTION

The goal of causal inference from observational data is to predict the effect of our actions, or treat-
ments, on the outcome without performing interventions. Questions of interest can include what is
the effect of smoking on life expectancy? or counterfactual questions, such as given the observed
health outcome for a smoker, how long would they have lived had they quit smoking? Answering
these questions becomes challenging when a confounder exists, which affects both treatment and
the outcome, and causes bias in the estimation. Causal estimation requires us to correct for this
confounding bias.

A popular assumption in causal inference is the no unmeasured confounder requirement, which
means that we observe all the confounders that cause the bias in the estimation. Although a number
of causal inference methods are proposed under this assumption (Hill, 2011; Shalit et al., 2017; Shi
et al., 2019; Schwab et al., 2020), it rarely holds in practice. In the smoking example, the confounder
can be one’s genetic characteristics or social status, which are difficult to measure for both technical
and ethical reasons.

To address this issue, Pearl (1995) proposed back-door adjustment and front-door adjustment, which
recover the causal effect in the presence of hidden confounders using a back-door variable or front-
door variable, respectively. The back-door variable is a covariate that blocks all causal effects
directed from the confounder to the treatment. In health care, patients may have underlying pre-
dispositions to illness due to genetic or social factors (hidden), which cause measurable symptoms.
The symptoms can be used as the back-door variable if the treatment is chosen based on these.

By contrast, a front-door variable blocks the path from treatment to outcome. In perhaps the best-
known example, the amount of tar in a smoker’s lungs serves as a front-door variable, since it is
increased by smoking, shortens life expectancy, and has no direct link to underlying (hidden) socio-
logical traits. Pearl (1995) showed that causal quantities can be obtained by taking the (conditional)
expectation of the conditional average outcome.

While Pearl (1995) only considered the discrete case, this framework was extended to the continuous
case by Singh et al. (2020), using two-stage regression (a review of this and other recent approaches
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for the continuous case is given in Section 5). In the first stage, the approach regresses from the
relevant covariates to the outcome of interest, expressing the function as a linear combination of
non-linear feature maps. Then, in the second stage, the causal parameters are estimated by learning
the (conditional) expectation of the non-linear feature map used in the first stage. Unlike competing
methods (Colangelo & Lee, 2020; Kennedy et al., 2017), two-stage regression avoids fitting proba-
bility densities, which is challenging in high-dimensional settings (Wasserman, 2006, Section 6.5).
Singh et al. (2020)’s method is shown to converge to the true causal parameters and exhibits better
empirical performance than competing methods.

One limitation of the methods in Singh et al. (2020) is that they use fixed pre-specified feature maps
from reproducing kernel Hilbert spaces, which have a limited expressive capacity when data are
complex (images, text, audio). To overcome this, we propose to employ a neural mean embedding
approach to learning task-specific adaptive feature dictionaries. At a high level, we first employ
a neural network with a linear final layer in the first stage. For the second stage, we learn the
(conditional) mean of the stage 1 features in the penultimate layer, again with a neural net. The
approach develops the technique of Xu et al. (2021a;b) and enables the model to capture complex
causal relationships for high-dimensional covariates and treatments. Neural network feature means
are also used to represent (conditional) probabilities in other machine learning settings, such as
representation learning (Zaheer et al., 2017) and approximate Bayesian inference (Xu et al., 2022).
We derive the consistency of the method based on the Rademacher complexity, a result of which is of
independent interest and may be relevant in establishing consistency for broader categories of neural
mean embedding approaches, including Xu et al. (2021a;b). We empirically show that the proposed
method performs better than other state-of-the-art neural causal inference methods, including those
using kernel feature dictionaries.

This paper is structured as follows. In Section 2, we introduce the causal parameters we are inter-
ested in and give a detailed description of the proposed method in Section 3. The theoretical analysis
is presented in Section 4, followed by a review of related work in Section 5. We demonstrate the
empirical performance of the proposed method in Section 6, covering two settings: a classical back-
door adjustment problem with a binary treatment, and a challenging back-door and front-door setting
where the treatment consists of high-dimensional image data.

2 PROBLEM SETTING

In this section, we introduce the causal parameters and methods to estimate these causal methods,
namely a back-door adjustment and front-door adjustment. Throughout the paper, we denote a
random variable in a capital letter (e.g. A), the realization of this random variable in lowercase (e.g.
a), and the set where a random variable takes values in a calligraphic letter (e.g. A). We assume
data is generated from a distribution P .

Causal Parameters We introduce the target causal parameters using the potential outcome frame-
work (Rubin, 2005). Let the treatment and the observed outcome be A ∈ A and Y ∈ Y ⊆ [−R,R].
We denote the potential outcome given treatment a as Y (a) ∈ Y . Here, we assume no inference,
which means that we observe Y = Y (a) when A = a. We denote the hidden confounder as U ∈ U
and assume conditional exchangeability ∀a ∈ A, Y (a) ⊥⊥A|U , which means that the potential out-
comes are not affected by the treatment assignment. A typical causal graph is shown in Figure 1a.
We may additionally consider the observable confounder O ∈ O, which is discussed in Appendix C.

A first goal of causal inference is to estimate the Average Treatment Effect (ATE)1 θATE(a) =
E
[
Y (a)

]
, which is the average potential outcome of A = a. We also consider Average Treatment

Effect on the Treated (ATT) θATT(a; a
′) = E

[
Y (a)|A = a′

]
, which is the expected potential out-

come of A = a for those who received the treatment A = a′. Given no inference and conditional
exchangeability assumptions, these causal parameters can be written in the following form.
Proposition 1 (Rosenbaum & Rubin, 1983; Robins, 1986). Given unobserved confounder U , which
satisfies no inference and conditional exchangeability, we have

θATE(a) = EU [E [Y |A = a, U ]] , θATT(a; a
′) = EU [E [Y |A = a, U ] |A = a′] .

If we observable additional confounder O, we may also consider conditional average treatment
effect (CATE): the average potential outcome for the sub-population of O = o, which is discussed
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Figure 1: Causal graphs we consider. The dotted circle means the unobservable variable.

in Appendix C. Note that since the confounder U is not observed, we cannot recover these causal
parameters only from (A, Y ).

Back-door Adjustment In back-door adjustment, we assume the access to the back-door variable
X ∈ X , which blocks all causal paths from unobserved confounder U to treatment A. See Figure 1b
for a typical causal graph. Given the back-door variable, causal parameters can be written only from
observable variables (A, Y,X) as follows.

Proposition 2 (Pearl, 1995, Theorem 1). Given the back-door variable X , we have
θATE(a) = EX [g(a,X)] , θATT(a; a

′) = EX [g(a,X)|A = a′] ,

where g(a, x) = E [Y |A = a,X = x].

By comparing Proposition 2 to Proposition 1, we can see that causal parameters can be learned by
treating the back-door variable X as the only “confounder”, despite the presence of the additional
hidden confounder U . Hence, we may apply any method based on the “no unobservable confounder”
assumption to back-door adjustment.

Front-door Adjustment Another adjustment for causal estimation is front-door adjustment,
which uses the causal mechanism to determine the causal effect. Assume we observe the front-door
variable M ∈ M, which blocks all causal paths from treatment A to outcome Y , as in Figure 1c.
Then, we can recover the causal parameters as follows.

Proposition 3 (Pearl, 1995, Theorem 2). Given the front-door variable M , we have
θATE(a) = EA′ [EM [g(A′,M)|A = a]] , θATT(a; a

′) = EM [g(a′,M)|A = a] ,

where g(a,m) = E [Y |A = a,M = m] and A′ ∈ A is a random variable that follows the same
distribution as treatment A.

Unlike the case of the back-door adjustment, we cannot naively apply methods based on the “no un-
measured confounder” assumption here, since Proposition 3 takes a different form to Proposition 1.

3 ALGORITHMS

In this section, we present our proposed methods. We first present the case with back-door adjust-
ment and then move to front-door adjustment. The algorithm is summarized in Appendix A.

Back-door adjustment The algorithm consists of two stages; In the first stage, we learn the con-
ditional expectation g = E [Y |A = a,X = x] with a specific form. We then compute the causal
parameter by estimating the expectation of the input features to g.

The conditional expectation g(a, x) is learned by regressing (A,X) to Y . Here, we consider a
specific model g(a, x) = w⊤(ϕA(a)⊗ϕX(x)), where ϕA : A → Rd1 ,ϕX : X → Rd2 are feature
maps represented by neural networks, w ∈ Rd1d2 is a trainable weight vector, and ⊗ denotes a
tensor product a ⊗ b = vec(ab⊤). This tensor form used for g(a, x) explicitly separates out the
treatment of the features of X and of A; in the event that X is much higher dimension than A,

1In the binary treatment case A = {0, 1}, the ATE is typically defined as the expectation of the difference of
potential outcome E[Y (1) − Y (0)]. However, we define ATE as the expectation of potential outcome E[Y (a)],
which is a primary target of interest in a continuous treatment case, also known as dose response curve. The
same applies to the ATT as well.
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then concatenating both as a single input tends to downplay the information in A. In addition, we
can take advantage of linearity and focus on estimating the relevant (conditional) expectation as
discussed later.

Given data {(ai, yi, xi)}ni=1 ∼ P size of n, the feature maps ϕA,ϕX and the weight w can be
trained by minimizing the following empirical loss:

L̂X
1 (w,ϕA,ϕX) =

1

n

n∑
i=1

(yi −w⊤(ϕA(ai)⊗ ϕX(xi)))
2. (1)

We may add any regularization term to this loss, such as weight decay λ∥w∥2. Let the minimizer
of the loss L̂X

1 be ŵ, ϕ̂A, ϕ̂X = argmin L̂X
1 and the learned regression function be ĝ(a, x) =

ŵ⊤(ϕ̂A(a)⊗ ϕ̂X(x)). Then, by substituting ĝ for g in Proposition 2, we have

θATE(a) ≃ ŵ⊤
(
ϕ̂A(a)⊗ E

[
ϕ̂X(X)

])
, θATT(a; a

′) ≃ ŵ⊤
(
ϕ̂A(a)⊗ E

[
ϕ̂X(X)

∣∣∣A = a′
])

.

This is the advantage of assuming the specific form of g(a, x) = w⊤(ϕA(a) ⊗ ϕX(x)); From
linearity, we can recover the causal parameters by estimating E[ϕ̂X(X)], E[ϕ̂X(X)|A = a′]. Such
(conditional) expectations of features are called (conditional) mean embedding, and thus, we name
our method “neural (conditional) mean embedding”.

We can estimate the marginal expectation E[ϕ̂X(X)], as a simple empirical average E[ϕ̂X(X)] ≃
1
n

∑n
i=1 ϕ̂X(xi). The conditional mean embedding E[ϕ̂X(X)|A = a′] requires more care, how-

ever: it can be learned by a technique proposed in Xu et al. (2021a), in which we train another
regression function from treatment A to the back-door feature ϕ̂X(X). Specifically, we estimate
E[ϕ̂X(X)|A = a′] by f̂ϕ̂X

(a′), where the regression function f̂ϕ̂X
: A → Rd2 be given by

f̂ϕ̂X
= argmin

f :A→Rd2

L̂X
2 (f ; ϕ̂X), L̂X

2 (f ;ϕX) =
1

n

n∑
i=1

∥ϕX(xi)− f(ai)∥2. (2)

Here, ∥ · ∥ denotes the Euclidean norm. The loss L̂X
2 may include the additional regularization term

such as a weight decay term for parameters in f . We have

θ̂ATE(a) = ŵ⊤

(
ϕ̂A(a)⊗

1

n

n∑
i=1

ϕ̂X(xi)

)
, θ̂ATT(a; a

′) = ŵ⊤
(
ϕ̂A(a)⊗ f̂ϕ̂X

(a′)
)

as the final estimator for the back-door adjustment. The estimator for the ATE θ̂ATE is reduced to
the average of the predictions θ̂ATE = 1

n

∑n
i=1 ĝ(a, xi). This coincides with other neural network

causal methods (Shalit et al., 2017; Chernozhukov et al., 2022b), which do not assume g(a, z) =
w⊤(ϕA(a) ⊗ ϕX(x)). As we have seen, however, this tensor product formulation is essential for
estimating ATT by back-door adjustment. It will also be necessary for the front-door adjustment, as
we will see next.

Front-door adjustment We can obtain the estimator for front-door adjustment by following the
almost same procedure as the back-door adjustment. Given data {(ai, yi,mi)}ni=1, we again fit the

regression model ĝ(a,m) = ŵ⊤
(
ϕ̂A(a)⊗ ϕ̂M (m)

)
by minimizing

L̂M
1 (w,ϕA,ϕM ) =

1

n

n∑
i=1

(yi −w⊤(ϕA(ai)⊗ ϕM (mi)))
2,

where ϕM : M → Rd2 is a feature map represented as the neural network. From Proposi-
tion 3, for fϕ̂M

(a) = E
[
ϕ̂M (M)

∣∣∣A = a
]
, we have θATE(a) ≃ ŵ⊤

(
E
[
ϕ̂A(A)

]
⊗ fϕ̂M

(a)
)

and θATT(a; a
′) ≃ ŵ⊤

(
ϕ̂A(a

′)⊗ fϕ̂M
(a)
)

. Again, we estimate feature embedding by empirical

average for E[ϕ̂A(A)] or solving another regression problem for µϕ̂M
(a). The final estimator for

front-door adjustment is given as

θ̂ATE(a) = ŵ⊤

(
1

n

n∑
i=1

ϕ̂A(ai)⊗ f̂ϕ̂M
(a)

)
, θ̂ATT(a; a

′) = ŵ⊤
(
ϕ̂A(a

′)⊗ f̂ϕ̂M
(a)
)
,
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where f̂ϕ̂M
is given by minimizing loss L̂M

2 = 1
n

∑n
i=1 ∥ϕM (mi) − f(ai)∥2 (with additional

regularization term).

4 THEORETICAL ANALYSIS

In this section, we prove the consistency of the proposed method. We focus on the back-door
adjustment case, since the consistency of front-door adjustment can be derived identically. The
proposed method consists of two successive regression problems. In the first stage, we learn the
conditional expectation g, and then in the second stage, we estimate the feature embeddings. First,
we show each stage’s consistency, then present the overall convergence rate to the causal parameter.

Consistency for the first stage: In this section, we consider the hypothesis space of g as

Hg = {w⊤(ϕA(a)⊗ ϕX(x)) | w ∈ Rd1d2 ,ϕA(a) ∈ Rd1 ,ϕX(x) ∈ Rd2 ,

∥w∥1 ≤ R, max
a∈A

∥ϕA(a)∥∞ ≤ 1, max
x∈X

∥ϕX(x)∥∞ ≤ 1}.

Here, we denote ℓ1-norm and infinity norm of vector b ∈ Rd as ∥b∥1 =
∑d

i=1 |bi| and ∥b∥∞ =
maxi∈[d] bi. Note that from inequality ∥ϕA(a)⊗ϕX(x)∥∞ ≤ ∥ϕA(a)∥∞∥ϕX(x)∥∞ and Hölder’s
inequality, we can show that h(a, x) ∈ [−R,R] for all h ∈ Hg . First, we discuss the richness of this
hypothesis space by the following theorem.

Theorem 1. Let A,X ⊂ Rd be compact. Given sufficiently large R, d1, d2, for any continuous
function f : A×X → R and constant ε > 0, there exists h ∈ Hg which satisfies supa,x |f(a, x)−
h(a, x)| ≤ ε.

The proof uses the modified version of universal approximation theorem (Cybenko, 1989) for neural
net, which will be given in Appendix B.1. Theorem 1 tells that we can approximate any continuous
function f with an arbitrary accuracy, which suggests the richness of our function class. Given this
hypothesis space, the following lemma bounds the deviation of estimated conditional expectation ĝ
and the true one.

Lemma 1. Given data S = {ai, yi, xi}ni=1, let minimizer of loss L̂X
1 be ĝ = argmin L̂X

1 . If the
true conditional expectation g is in the hypothesis space g ∈ Hg , w.p. at least 1− 2δ, we have

∥g − ĝ∥P (A,X) ≤
√

16RR̂S(Hg) + 8R2
√

(log 2/δ)/2n,

where R̂S(Hg) is empirical Rademacher complexity of Hg given data S.

The proof is given in Appendix B.3. Here, we present the empirical Rademacher complexity when
we apply a feed-forward neural network for features.

Lemma 2. The empirical Rademacher complexity R̂S(Hg) scales as R̂S(Hg) ≤ O(CL/
√
n) for

some constant C if we use a specific L-layer neural net for features ϕA,ϕX .

See Lemma 7 in Appendix B.3 for the detailed expression of the upper bound. Note that this may be
of independent interest since the similar hypothesis class is considered in Xu et al. (2021a;b), and
no explicit upper bound is provided on the empirical Rademacher complexity in that work.

Consistency for the second stage: Next, we consider the second stage of regression. In back-door
adjustment, we estimate the feature embedding E[ϕ̂X(X)] and the conditional feature embedding
E[ϕ̂X(X)|A = a′]. We first state the consistency of the estimation of marginal expectation, which
can be shown by Hoeffding’s inequality.

Lemma 3. Given data {xi}ni=1 and feature map ϕ̂X , w.p. at least 1− δ, we have∥∥∥∥E [ϕ̂X(X)
]
− 1

n

n∑
i=1

ϕ̂X(xi)

∥∥∥∥
∞

≤
√

2 log(2d2/δ)

n
.

For conditional feature embedding E[ϕ̂X(X)|A = a′], we solve the regression problem f̂ϕ̂X
=

argminf L̂X
2 (f ; ϕ̂X), the consistency of which is stated as follows.
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Lemma 4. Let hypothesis space Hf be

Hf = {a ∈ A → (f1(a), . . . , fd2
(a))⊤ ∈ [−1, 1]d2 | f1, . . . , fd2

∈ Hf},
where Hf is some hypothesis space of functions of f : X → [−1, 1]. Let the true function be
fϕ̂X

(a) = E[ϕ̂X(X)|A = a], and we assume fϕ̂X
∈ Hf . Let f̂ϕ̂X

= argminf∈Hf
L̂X
2 (f ; ϕ̂X),

given data S = {(ai, xi)}. Then, we have∥∥fϕ̂X
(A)− f̂ϕ̂X

(A)
∥∥
P (A),∞ ≤

√
16R̂S(Hf ) + 8

√
(log(2d2/δ))/2n

w.p. at least 1 − 2δ, where ∥f(A)∥P (A),∞ = maxi ∥fi∥P (A) and R̂S(Hf ) is the empirical
Rademacher complexity of Hf given data S.

The proof is identical to Lemma 1. We use neural network hypothesis class for Hf whose empirical
Rademacher complexity is bounded by O(1/

√
n) as discussed in Proposition 5 in Appendix B.3.

Consistency of the causal estimator Finally, we show that if these two estimators converge uni-
formly, we can recover the true causal parameters. To derive the consistency of the causal parameter,
we put the following assumption on hypothesis spaces in order to guarantee that convergence in ℓ2-
norm leads to uniform convergence.
Assumption 1. For functions h1, h2 ∈ Hg , there exists constant c > 0 and β that

sup
a∈A,x∈X

|h1(a, x)− h2(a, x)| ≤
1

c
∥h1(A,X)− h2(A,X)∥

1
β

P (A,X).

Intuitively, this ensures that we have a non-zero probability of observing all elements in A×X . We
can see that Assumption 1 is satisfied with β = 1 and c = min(a,x)∈A×X P (A = a,X = x) when
treatment and back-door variables are discrete. A similar intuition holds for the continuous case; in
Appendix B.2, we show that Assumption 1 holds when with β = 2d+2

2 when A,X are d-dimensional
intervals if the density function of P (A,X) is bounded away from zero and all functions in Hg are
Lipschitz continuous.
Theorem 2. Under conditions in Lemmas 1 to 3 and Assumption 1, w.p. at least 1− 4δ, we have

sup
a∈A

|θATE(a)− θ̂ATE(a)| ≤ O(n− 1
4β ).

If we furthermore assume that for all f , f̃ ,

sup
a∈A

∥f(a)− f̃(a)∥∞ ≤ 1

c′

(
max
i∈[d2]

∥f(A)− f̃(A)∥P (A),∞

) 1
β′

,

then, w.p. at least 1− 4δ, we have supa,a′∈A |θATT(a; a
′)− θ̂ATT(a; a

′)| ≤ O(n− 1
4β + n

− 1
4β′ ).

The proof is given in Appendix B.3. This rate is slow compared to the existing work (Singh et al.,
2020), which can be as fast as O(n−1/4). However, Singh et al. (2020) assumes that the correct
regression function g is in a certain reproducing kernel Hilbert space (RKHS), which is a stronger
assumption than ours, which only assumes a Lipschitz hypothesis space. Deriving the matching
minimax rates under the Lipschitz assumption remains a topic for future work.

5 RELATED WORK

Meanwhile learning approaches to the back-door adjustment have been extensively explored in re-
cent work, including tree models (Hill, 2011; Athey et al., 2019), kernel models (Singh et al., 2020)
and neural networks (Shi et al., 2019; Chernozhukov et al., 2022b; Shalit et al., 2017), most liter-
ature considers binary treatment cases, and few methods can be applied to continuous treatments.
Schwab et al. (2020) proposed to discretize the continuous treatments and Kennedy et al. (2017);
Colangelo & Lee (2020) conducted density estimation of P (X) and P (X|A). These are simple to
implement but suffer from the curse of dimensionality (Wasserman, 2006, Section 6.5).

Recently, the automatic debiased machine learner (Auto-DML) approach (Chernozhukov et al.,
2022a) has gained increasing attention, and can handle continuous treatments in the back-door ad-
justment. Consider a functional m that maps g to causal parameter θ = E [m(g, (A,X))]. For
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the ATE case, we have m(g, (A,X)) = g(a,X) since θATE(a) = E [g(a,X)]. We may estimate
both g and the Riesz representer α that satisfies E [m(g, (A,X))] = E [α(A,X)g(A,X)] by the
least-square regression to get the causal estimator. Although Auto-DML can learn a complex causal
relationship with neural network model (Chernozhukov et al., 2022b), it requires a considerable
amount of computation when the treatment is continuous, since we have to learn a different Riesz
representer α for each treatment a. Furthermore, as discussed in Appendix B.4, the error bound on
α can grow exponentially with respect to the dimension of the probability space, which may harm
performance in high-dimensional settings.

Singh et al. (2020) proposed a feature embedding approach, in which feature maps are specified as
the fixed feature maps in a reproducing kernel Hilbert space (RKHS). Although this strategy can be
applied to a number of different causal parameters, the flexibility of the model is limited since it
uses pre-specified features. Our main contribution is to generalize this feature embedding approach
to adaptive features which enables us to capture more complex causal relationships. Similar tech-
niques are used in the additional causal inference settings, such as deep feature instrumental variable
method (Xu et al., 2021a) or deep proxy causal learning (Xu et al., 2021b).

By contrast with the back-door case, there is little literature that discusses non-linear front-door
adjustment. The idea was originally introduced for the discrete treatment setting (Pearl, 1995) and
was later discussed using the linear causal model (Pearl, 2009). To the best of our knowledge, Singh
et al. (2020) is the only work that considers the nonlinear front-door adjustment, where fixed kernel
feature dictionaries are used. We generalize this approach using adaptive neural feature dictionaries
and obtain promising performance.

6 EXPERIMENTS

In this section, we evaluate the performance of the proposed method based on two scenarios. One
considers the back-door adjustment methods with binary treatment based on IHDP dataset (Gross,
1993) and ACIC dataset (Shimoni et al., 2018). Another tests the performance on a high-dimensional
treatment based on dSprite image dataset (Matthey et al., 2017). We first describe the training
procedure we apply for our proposed method, and then report the results of each benchmark. The
details of hyperparameters used in the experiment are summarized in Appendix D.

6.1 TRAINING PROCEDURE

During the training, we use the learning procedure proposed by Xu et al. (2021a). Let us consider
the first stage regression in a back-door adjustment, in which we consider the following loss L̂X

1
with weight decay regularization

L̂X
1 (w,ϕA,ϕX) =

1

n

n∑
i=1

(yi −w⊤(ϕA(ai)⊗ ϕX(xi)))
2 + λ∥w∥2.

To minimize L̂X
1 with respect to (w,ϕA,ϕX), we can use the closed form solution of weight w. If

we fix features ϕA,ϕX , the minimizer of w can be written

ŵ(ϕA,ϕX) =

(
1

n

n∑
i=1

(ϕA,X(ai, xi))(ϕA,X(ai, xi))
⊤ + λI

)−1
1

n

n∑
i=1

yiϕA,X(ai, xi),

where ϕA,X(a, x) = ϕA(a) ⊗ ϕZ(a). Then, we optimize the features as ϕ̂A, ϕ̂X =

argminϕA,ϕX
L̂X
1 (ŵ(ϕA,ϕX),ϕA,ϕX) using Adam (Kingma & Ba, 2015). We empirically

found that this stabilizes the learning and improves the performance of the proposed method.

6.2 BINARY TREATMENT SCENARIO

In this section, we report the performans on two classical causal datasets: IHDP dataset and ACIC
dataset. The IHDP dataset is widely used to evaluate the performance of the estimators for the
ATE (Shi et al., 2019; Chernozhukov et al., 2022b; Athey et al., 2019). This is a semi-synthetic
dataset based on the Infant Health and Development Program (IHDP) (Gross, 1993). Following
existing work, we generate 1000 sets of 747 observations of outcomes and binary treatments based
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Table 1: Mean and standard error of the ATE prediction error.
IHDP ACIC

DragonNet 0.146 ± 0.010 0.241 ± 0.123
RieszNet(Direct) 0.123 ± 0.004 0.334 ± 0.133
RieszNet(IPW) 0.122 ± 0.037 52.73 ± 40.71
RieszNet(DR) 0.110 ± 0.003 1.071 ± 0.555

RKHS Embedding 0.166 ± 0.003 1.785 ± 1.398
NN Embedding (Proposed) 0.117 ± 0.002 0.231 ± 0.112

on the 25-dimensional observable confounder in the original data.The ACIC dataset is introduced
in (Shi et al., 2019), which is based on linked birth and infant death data (LBIDD) (Mathews &
MacDorman, 2006). This is considered a more challenging benchmark dataset than IHDP since it
contains data points with extreme propensity scores (i.e. P (A = 1|X) can be very close to 0 or
1). We select 101 datasets following Shi et al. (2019) and remove outliers in each dataset using the
procedure described in Appendix D.

We compare our method to competing causal methods, DragonNet (Shi et al., 2019), RieszNet
(Chernozhukov et al., 2022b), and RKHS Embedding (Singh et al., 2020). DragonNet is a neural
causal inference method specially designed for the binary treatment, which applies the targeted
regularization (van der Laan & Rubin, 2006) to ATE estimation. RieszNet implements Auto-DML
with a neural network, which learns the conditional expectation g and Riesz representer α jointly
while sharing the intermediate features. Given estimated ĝ, α̂, it proposes three ways to calculate
the causal parameter;
Direct : E [m(ĝ, (A,X))] , IPW : E [Y α̂(A,X)] ,DR : E [m(ĝ, (A,X))+α̂(A,X)(Y −ĝ(A,X))] ,

where functional m maps g to the causal parameter (See Section 5 for the example of functional m).
We report the performance of each estimator in RieszNet. RKHS Embedding employs the feature
embedding approach with a fixed kernel feature dictionaries.

The results are summarized in Table 1. Although RieszNet(IPW) estimator performs promisingly in
IHDP, the performance degenerates for the ACIC dataset, which suggests RieszNet(IPW) is prone
to extreme propensity scores. This is not surprising, since the true Riesz representer in this case is
α(A,X) = A

P (A=1|X) −
1−A

P (A=0|X) , which can be very large if P (A = 1|X) becomes close to 0 or
1. This also harms the performance of RieszNet(DR). We can see that the proposed method outper-
forms all competing methods besides RieszNet(DR) in the IHDP dataset, for which the performance
is comparable (0.117 ± 0.002 v.s. 0.110 ± 0.003).

6.3 HIGH-DIMENSIONAL TREATMENT SCENARIO

To test the performance of our method of causal inference in a more complex setting, we used dSprite
data (Matthey et al., 2017), which is also used as the benchmark for other high-dimensional causal
inference methods (Xu et al., 2021a;b). The dSprite dataset consists of images that are 64 × 64 =
4096-dimensional, described by five latent parameters (shape, scale, rotation, posX and posY).
Throughout this paper, we fix (shape, scale, rotation) and use posX ∈ [0, 1] and posY ∈ [0, 1]
as the latent parameters. Based on this dataset, we propose two experiments; one is ATE estimation
based on the back-door adjustment, and the other is ATT estimation based on front-door adjustment.

Back-door Adjustment In our back-door adjustment experiment, we consider the case where the
image is the treatment. Let us sample hidden confounder U ∼ Unif(0, 1), and consider the back-
door as (X1, X2) = (U cos θ + ε1, U sin θ + ε2) where ε1, ε2 ∼ N (0, 0.09), θ ∼ Unif(0, 2π). We
define treatment A as the image, where the parameters are set as posX = X1+1.5

3 , posY = X2+1.5
3 .

We add Gaussian noise N (0, 0.01) to each pixel of images. The outcome is given as follows,

Y =
h2(A)

100
+ 4(U − 0.5) + εY , h(A) =

64∑
i,j=1

(i− 1)

64

(j − 1)

64
A[ij]

where A[ij] denotes the value of the pixel at (i, j) and εY is the noise variable sampled from εY ∼
N (0, 0.25). Each dataset consists of 5000 samples of (Y,A,X1, X2) and we consider the problem
of estimating θATE(a) = h2(A)/100. We compare the proposed method to RieszNet and RKHS
Embedding, since DragonNet is designed for binary treatments and is not applicable here. We
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generate 10 datasets and the average of squared error (θATE(a) − θ̂ATE(a))
2 at 9 test points a is

reported in Figure 2.

We can see that the proposed method performs best in the setting, which shows the power of the
method for complex high-dimensional inputs. The RKHS Embedding method suffers from the
limited flexibility of the model for the case of complex high-dimensional treatment, and performs
worse than all neural methods besides RieszNet(IPW). This suggests that it is difficult to estimate
Riesz representer α in a high-dimensional scenario, which is also suggested by the exponential
growth of the error bound to the dimension as discussed in Appendix B.4. We conjecture this also
harms the performance of RieszNet(Direct) and RieszNet(DR), since the models for conditional
expectation ĝ and Riesz representer α̂ share the intermediate features in the network and are jointly
trained in RieszNet.

Frontdoor Adjustment We use dSprite dataset to consider front-door adjustment. Again, we
sample hidden confounder U1, U2 ∼ Unif(−1.5, 1.5), and we set the image to be the treatment,
where the parameters are set as posX = U1+1.5

3 , posY = U2+1.5
3 . We add Gaussian noise N (0, 0.01)

to each pixel of the images. We use M = h(A) + εM as the front-door variable M , where εM ∼
N (0, 0.04). The outcome is given as follows,

Y =
M2

100
+ 5(U1 + U2) + εY , εY ∼ N (0, 0.25)

We consider the problem of estimating θATT(a; a
′) and obtain the average squared error on 121

points of a while fixing a′ to the image of posX = 0.6, posY = 0.6. We compare against RKHS
Embedding, where the result is given in Figure 3. Note that RieszNet has not been developed for
this setting. Again, the RKHS Embedding method suffers from the limited flexibility of the model,
whereas our proposed model successfully captures the complex causal relationships.

7 CONCLUSION

We have proposed a novel method for back-door and front-door adjustment, based on the neural
mean embedding. We established consistency of the proposed method based on a Rademacher
complexity argument, which contains a new analysis of the hypothesis space with the tensor product
features. Our empirical evaluation shows that the proposed method outperforms existing estimators,
especially when high-dimensional image observations are involved.

As future work, it would be promising to apply a similar adaptive feature embedding approach
to other causal parameters, such as marginal average effect ∇aθATE(a) (Imbens & Newey, 2009).
Furthermore, it would be interesting to consider sequential treatments, as in dynamic treatment effect
estimation, in which the treatment may depend on the past covariates, treatments and outcomes.
Recently, a kernel feature embedding approach (Singh et al., 2021) has been developed to estimate
the dynamic treatment effect, and we expect that applying the neural mean embedding would benefit
the performance.
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A ALGORITHM SUMMARY

Here, we provide the summary of algorithm.

Algorithm 1: Back-door Adjustment
Data: Back-door adjustment data {ai, yi, xi}

1 Learn weights and features
ŵ, ϕ̂A, ϕ̂X = argmin L̂X

1 , L̂X
1 = 1

n

∑n
i=1(yi −w⊤(ϕA(ai)⊗ ϕX(xi)))

2.
2 Learn conditional embedding

f̂ϕ̂X
= argminf :A→Rd2 L̂X

2 (f ; ϕ̂X), L̂X
2 (f ;ϕX) = 1

n

∑n
i=1 ∥ϕX(xi)− f(ai)∥2

3 Compute causal parameters as

θ̂ATE(a) = ŵ⊤
(
ϕ̂A(a)⊗ 1

n

∑n
i=1 ϕ̂X(xi)

)
θ̂ATT(a; a

′) = ŵ⊤
(
ϕ̂A(a)⊗ f̂ϕ̂X

(a′)
)

Algorithm 2: Front-door Adjustment
Data: Front-door adjustment data {ai, yi,mi}

1 Learn weights and features
ŵ, ϕ̂A, ϕ̂M = argmin L̂M

1 , L̂M
1 = 1

n

∑n
i=1(yi −w⊤(ϕA(ai)⊗ ϕM (mi)))

2.
2 Learn conditional embedding

f̂ϕ̂M
= argminf :A→Rd2 L̂M

2 (f ; ϕ̂M ), L̂M
2 (f ;ϕM ) = 1

n

∑n
i=1 ∥ϕM (xi)− f(ai)∥2

3 Compute causal parameters as

θ̂ATE(a) = ŵ⊤
(

1
n

∑n
i=1 ϕ̂A(ai)⊗ f̂ϕ̂M

(a)
)

θ̂ATT(a; a
′) = ŵ⊤

(
ϕ̂A(a

′)⊗ f̂ϕ̂M
(a)
)

B TECHNICAL DETAILS

B.1 UNIVERSAL APPROXIMATION THEORY

In this section, we provide the proof of Theorem 1. Recall our hypothesis space is

Hg = {w⊤(ϕA(a)⊗ ϕX(x)) | w ∈ Rd1d2 ,ϕA(a) ∈ Rd1 ,ϕX(x) ∈ Rd2 ,

∥w∥1 ≤ R, max
a∈A

∥ϕA(a)∥∞ ≤ 1, max
x∈X

∥ϕX(x)∥∞ ≤ 1}.

Let consider the feature be
ϕA(a) = [σ(s⊤1 a+ α1), . . . , σ(s

⊤
d1
a+ αd1

)]⊤

ϕX(x) = [σ(t⊤1 x+ β1), . . . , σ(t
⊤
d2
x+ βd2

)]⊤

where σ is the sigmoid function and si, ti ∈ RD, αi, βi ∈ R are parameters. By considering the
case of d1 = d2 and setting “non-diagonal” elements of w to zero, we can see that

g(a, x) =

d1∑
i=1

wiσ(s
⊤
i a+ αi)σ(t

⊤
i x+ βi).

is a member of of Hg . Next, we present the following lemma.

Lemma 5. Let µ be a finite, signed regular Borel measures on A×X . If σ satisfies the followings:

∀s, t ∈ RD,∀α, β ∈ R,
∫
A×X

σ(s⊤a+ α)σ(t⊤x+ β)dµ(a, x) = 0 ⇔ µ = 0, (3)
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then, given any continuous function f : A×A → R and ε > 0, there is a finite sum

g(z) =

n∑
i=1

wiσ(s
⊤
i a+ αi)σ(t

⊤
i x+ βi),

which satisfies
max

a,x∈A×X
|f(a, x)− g(a, x)| ≤ ε.

The proof is identical to Theorem 1 in Cybenko (1989). Now, all we have to prove is that the
Sigmoid function σ satisfies (3). This can be shown by the similar discussion as in the Lemma 1 in
(Cybenko, 1989).

Proof of Theorem 1. Assume that

∀s, t ∈ RD,∀α, β ∈ R,
∫
A×X

σ(s⊤a+ α)σ(t⊤x+ β)dµ(a, x) = 0

Then, for all γ, δ ∈ R, we have

0 = lim
λ1→∞

lim
λ2→∞

∫
A×X

σ(λ1(s
⊤a+ α) + γ)σ(λ2(t

⊤x+ β) + δ)dµ(a, x)

=

∫
A×X

lim
λ1→∞

lim
λ2→∞

σ(λ1(s
⊤a+ α) + γ)σ(λ2(t

⊤x+ β) + δ)dµ(a, x)

=

∫
A×X

ξA(a)ξX(x)dµ(a, x),

where

ξA(a) =


0 (s⊤a+ α < 0)

1 (s⊤a+ α > 0)

σ(γ) (s⊤a+ α = 0)

, ξX(x) =


0 (t⊤x+ β < 0)

1 (t⊤x+ β > 0)

σ(δ) (t⊤x+ β = 0)

.

We used the Lesbegue Bounded Convergence Theorem in the second equation. From definition, we
have

0 =

∫
A×X

ξA(a)ξX(x)dµ(a, x)

= σ(γ)σ(δ)µ(ΠA
s,α ×ΠX

t,β) + σ(γ)µ(ΠA
s,α ×HX

t,β) + σ(δ)µ(HA
s,α ×ΠX

t,β) + µ(HA
s,α ×HX

t,β),

where
ΠA

s,α = {a ∈ A|s⊤a+ α = 0} ΠX
t,β = {x ∈ X |t⊤x+ β = 0}

HA
s,α = {a ∈ A|s⊤a+ α > 0} HX

t,β = {x ∈ X |t⊤x+ β > 0}.
Hence for all s, α, t, β, we have

µ(ΠA
s,α ×ΠX

t,β) = µ(ΠA
s,α ×HX

t,β) = µ(HA
s,α ×ΠX

t,β) = µ(HA
s,α ×HX

t,β) = 0.

Based on this, we show µ = 0. Fix s, t and consider functional F (h) defined as

F (h) =

∫
A×X

h(s⊤a, t⊤x)dµ(a, x),

where h is bounded measurable function h(u, v) : [ū, u]× [v̄, v] → R, where

ū = max
a∈A

s⊤a, u = min
a∈A

s⊤a, v̄ = max
x∈X

t⊤x, v = min
x∈X

t⊤x.

Let indicator function I(b,c]×(d,e](u, v) defined as

I[b,c)×[d,e)(u, v) =

{
1 (u ∈ [b, c), v ∈ [d, e))

0 otherwise
.

Then, we have
F
(
I[b,∞)×[c,∞)

)
= µ

(
(ΠA

s,−b ∪HA
s,−b)× (ΠX

t,−c ∪HX
t,−c)

)
= 0.

Since
I[b,c)×[d,e) = I[b,∞)×[d,∞) − I[c,∞)×[d,∞) − I[,b∞)×[e,∞) + I[c,∞)×[e,∞),
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we have F (I[b,c)×[d,e)) = 0 for all b, c, d, e ∈ R. For linearlity, we have

F

(
N∑
i=1

ηiI[bi,ci)×[di,ei)

)
= 0.

Note that
∑N

i=1 ηiI[bi,ci)×[di,ei) uniformly converges to any bounded measurable function h :
[ū, u] × [v̄, v] → R. Hence, F (h) = 0. In particular, h(u, v) = cos(u + v), sin(u + v) are
bounded measurable functions, and thus,∫

A×X
exp(i(s⊤a+ t⊤x))dµ(a, x)

=

∫
A×X

cos(s⊤a+ t⊤x) + i sin(s⊤a+ t⊤x)dµ(a, x)

= F (cos(u+ v)) + iF (sin(u+ v)) = 0.

Thus, the Fourier transform of µ is 0 and so µ must be zero as well. From Lemma 5, we see
Theorem 1.

B.2 IMPLICATION OF ASSUMPTION 1

In this section, we discuss the implication of Assumption 1, especially when the back-door and
treatment variables are continuous. First, we show the upper bound of the sup norm of Lipschitz
function.
Lemma 6. Let Z ∈ Z be the probability variable following P (Z) and Z ⊂ [0, 1]d. Then, for all
L-Lipschitz function h bounded in h(z) ∈ [−R,R], we have

max
z∈Z

|h(z)| ≤
(
4

c

) 1
d+2

(2R+ 2
√
dL)

d
d+2 ∥h∥

2
d+2

P (Z)

if the density function f(z) is bounded away from zero f(z) ≥ ε > 0.

Proof. Since Z is compact, there exists z∗ such that
|h(z∗)| = max

z∈Z
|h(z)|.

Let M = |h(z∗)| and we consider the following rectangle

B =

{
z ∈ Z

∣∣∣∣ ∀i ∈ [d] max

(
0, z∗[i] −

M

2R+ 2
√
dL

)
≤ z[i] ≤ min

(
1, z∗[i] +

M

2R+ 2
√
dL

)}
,

where z[i] denotes the i-th element of z. Then, from Lipschitz continuity, for all z ∈ B, we have

|h(z)| ≥ |h(z∗)| − L∥z∗ − z∥2

= M − L

√√√√ d∑
i=1

|z∗[i] − z[i]|2

≥ M − L

√√√√ d∑
i=1

(
M

2R+ 2
√
dL

)2

≥ M − L

√√√√ d∑
i=1

(
M

2
√
dL

)2

≥ M/2

Now, consider the volume of B. Since
M

2R+ 2
√
dL

≤ R

2R+ 2
√
dL

≤ R

2R
=

1

2
,

the events 0 ≥ z∗[i]−
M

2R+2
√
dL

and 1 ≤ z∗[i]+
M

2R+2
√
dL

do not occur simultaneously. Therefore, we
have

min

(
1, z∗[i] +

M

2R+ 2
√
dL

)
−max

(
0, z∗[i] −

M

2R+ 2
√
dL

)
≥ M

2R+ 2
√
dL

,
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and

∥h∥2P (Z) =

∫
Z
|h(z)|2f(z)dz

≥
∫
B

|h(z)|2f(z)dz

≥ c

(
M

2R+ 2
√
dL

)d
M2

4
.

Since M = maxz∈Z |h(z)|, we have

max
z∈Z

|h(z)| ≤
(
4

c

) 1
d+2

(2R+ 2
√
dL)

d
d+2 ∥h∥

2
d+2

P (Z).

By this, we can give the Assumption 1 follows for the interval probability space.

Corollary 1. If A = [0, 1]dA ,X = [0, 1]dX , and all function h ∈ Hg are L−Lipschitz continuous,
we have

max
a,x∈A×X

|h1(a, x)− h2(a, x)| ≤ C∥h1 − h2∥
2

dA+dX+2

P (A,X) ,

where C =
(
4
c

) 1
dA+dX+2 (4R+ 4

√
dA + dXL)

dA+dX
dA+dX+2 .

Note that the assumption on hypothesis space is easy to satisfy since all neural network is Lipchitz
function if we use the ReLU activation and regularize the operator norm of the weight in each layer.

B.3 CONSISTENCY RESULTS

Proof of Lemma 1 We use the following Rademacher bound to prove the consistency (Mohri
et al., 2012).

Proposition 4. (Mohri et al., 2012, Theorem 11.3) Let X be a measurable space and H
be a family of functions mapping from X to Y ⊆ [−R,R]. Given fixed dataset S =
((y1, x1), (y2, x2), . . . , (yn, xn)) ∈ (X × Y)n, the empirical Rademacher complexity is given by

R̂S(H) = Eσ

[
1

n
sup
h∈H

n∑
i=1

σih(xi)

]
,

where σ = (σ1, . . . , σn), with σi independent random variables taking values in {−1,+1} with
equal probability. Then, for any δ > 0, with probability at least 1 − δ over the draw of an i.i.d
sample S of size n, each of following holds for all h ∈ H:

E
[
(Y − h(X))2

]
≤ 1

n

n∑
i=1

(yi − h(xi))
2 + 8RR̂S(H) + 4R2

√
log 2/δ

2n
,

1

n

n∑
i=1

(yi − h(xi))
2 ≤ E

[
(Y − h(X))2

]
+ 8RR̂S(H) + 4R2

√
log 2/δ

2n
.

Given Proposition 4, we can prove the consistency of conditional expectation.

Proof of Lemma 1. From Proposition 4 and ĝ, g ∈ Hg , for the probability at least 1 − 2δ, we have
followings.

E
[
(Y − ĝ(A,X))2

]
≤ 1

n

n∑
i=1

(yi − ĝ(ai, xi))
2 + 8RR̂S(Hg) + 4R2

√
log 2/δ

2n

1

n

n∑
i=1

(yi − g(ai, xi))
2 ≤ E

[
(Y − g(A,X))2

]
+ 8RR̂S(Hg) + 4R2

√
log 2/δ

2n
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From the minimality of ĝ = argmin L̂X
1 , we have

E
[
(Y − ĝ(A,X))2

]
≤ E

[
(Y − g(A,X))2

]
+ 16RR̂S(Hg) + 8R2

√
log 2/δ

2n

⇔ E
[
(g(A,X)− ĝ(A,X))2

]
≤ 16RR̂S(Hg) + 8R2

√
log 2/δ

2n
.

Taking the square root of both sides completes the proof.

Empirical Rademacher Complexity of Hg We discuss the empirical Rademacher complexity of
Hg when we use feed-forward neural network for features ϕA,ϕX here. The discussion is based on
a “peeling” argument proposed in Neyshabur et al. (2015).

Proposition 5 ((Neyshabur et al., 2015), Theorem 1). Let hypothesis space of L layer neural net be
HNN that

HNN =

{
f : RD → R

∣∣∣∣∣ f(s) = W (L)σ
(
W (L−1)σ(. . . σ(W (1)s)

)
,

L∏
i=1

∥W (i)∥p,q ≤ γ

}
,

where σ is ReLU function and W (1) ∈ RD×H ,W (L) ∈ R1×H ,W (2), . . . ,W (L−1) ∈ RH×H are
weights. The norm ∥ · ∥p,q is matrix Lp,q-norm supx̸=0 ∥Wx∥q/∥x∥p. Then, for any L, q ≥ 1, any
1 ≤ p ≤ ∞, and any set S = {s1, . . . , sn}, the empirical Rademacher complexity is bounded as

R̂S(HNN) ≤

√
1

n

(
γ22H

[ 1
p∗ − 1

q ]+
)2(L−1)

(min{p∗, 4 log(2D)})max
i

∥si∥p∗

for p∗ = 1/(1− 1/p) and [x]+ = max{0, x}.

Given this, we can bound the empirical Rademacher complexity of Hg when each coordinate of
features is a truncated member of HNN.

Lemma 7. Let A,X ⊂ RD and define hypothesis set HNNFeat.(d) that

HNNFeat.(d) =
{
ϕ : RD → Rd

∣∣ϕ(s) = (σ̃(f1(s)), σ̃(f2(s)), . . . , σ̃(fd(s)))
⊤, f1, . . . , fd ∈ HNN

}
where σ̃ is a ramp function σ̃(x) = min(1,max(0, x)). Consider Hg that

Hg = {w⊤(ϕA(a)⊗ ϕX(x)) | w ∈ Rd1d2 ,ϕA(a) ∈ Rd1 ,ϕX(x) ∈ Rd2 ,

∥w∥1 ≤ R, ϕA ∈ HNNFeat.(d1), ϕX ∈ HNNFeat.(d2)}.
Given data set S = {(a1, x1), . . . (an, xn)}, we have

R̂S(Hg) ≤ 6R

√
1

n

(
γ22H

[ 1
p∗ − 1

q ]+
)2(L−1)

(min{p∗, 4 log(2D)})
(
max

i
∥ai∥p∗ +max

i
∥xi∥p∗

)
.

Note that we have
max
a∈A

∥ϕA(a)∥∞ ≤ 1,max
x∈X

∥ϕX(x)∥∞ ≤ 1

since we apply σ̃ in the features. The proof is given as follows.

Proof. Let us define the following hypothesis spaces.

H̃NN = {σ̃ ◦ f |f ∈ HNN},
H̃2

NN = {f̃1(a)f̃2(x)|f̃1, f̃2 ∈ H̃NN}.
Then, from the definition, we have

Hg ⊂


d1∑
i=1

d2∑
j=1

wijhij(a, x)

∣∣∣∣∣∣
d1∑
i=1

d2∑
j=1

|wij | ≤ R,∀i, j hij ∈ H̃2
NN

 .
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Since the maximum of a linear function of w over the constraint ∥w∥ ≤ R is achieved for the values
satisfying ∥w∥ = R, we have

R̂S(Hg) ≤ R̂S


d1∑
i=1

d2∑
j=1

wijhij(a, x)

∣∣∣∣∣∣
d1∑
i=1

d2∑
j=1

|wij | ≤ R,∀i, j hij ∈ H̃2
NN




= R̂S


d1∑
i=1

d2∑
j=1

wijhij(a, x)

∣∣∣∣∣∣
d1∑
i=1

d2∑
j=1

|wij | = R,∀i, j hij ∈ H̃2
NN




≤ RR̂S


d1∑
i=1

d2∑
j=1

wijhij(a, x)

∣∣∣∣∣∣
d1∑
i=1

d2∑
j=1

|wij | = 1,∀i, j hij ∈ H̃2
NN




Let H̃2
NN − H̃2

NN be the function space defined as

H̃2
NN − H̃2

NN =
{
h1(a, x)− h2(a, x)

∣∣∣ h1, h2 ∈ H̃2
NN

}
.

Since H̃2
NN contains the zero function, the final hypothesis space is the subset the convex hull of

H̃2
NN − H̃2

NN because
d1∑
i=1

d2∑
j=1

wijhij(a, x) =
∑

wi,j≥0

wij(hij(a, x)− 0) +
∑

wi,j<0

|wij |(0− hij(a, x)).

Therefore, we have
R̂S(Hg) ≤ RR̂S(H̃2

NN − H̃2
NN) ≤ 2RR̂S(H̃2

NN).

Now, we can bound R̂S(H̃2
NN) as

R̂S(H̃2
NN) = R̂S({f̃1(a)f̃2(x)|f̃1, f̃2 ∈ H̃NN})

= R̂S

({
1

2

(
(f̃1(a) + f̃2(x))

2 − (f̃1(a))
2 − (f̃2(x))

2
)∣∣∣∣f̃1, f̃2 ∈ H̃NN

})
=

1

2
R̂S

({
(f̃1(a) + f̃2(x))

2
∣∣∣f̃1, f̃2 ∈ H̃NN

})
+

1

2
R̂S

({
(f̃1(a))

2
∣∣∣f̃1 ∈ H̃NN

})
+

1

2
R̂S

({
(f̃2(x))

2
∣∣∣f̃2 ∈ H̃NN

})
≤ 2R̂S

({
f̃1(a) + f̃2(x)

∣∣∣f̃1, f̃2 ∈ H̃NN

})
+ R̂SA

(H̃NN) + R̂SX
(H̃NN)

= 3R̂SA
(H̃NN) + 3R̂SX

(H̃NN),

where SA = {ai} and SX = {xi}. Here, we used Talagrand’s contraction lemma (Mohri et al.,
2012, Lemma 5.11) in the inequality. Again, from Talagrand’s contraction lemma, we have

R̂SA
(H̃NN) ≤ R̂SA

(HNN), R̂SX
(H̃NN) ≤ R̂SX

(HNN),

since σ̃ is an 1-Lipchitz function.

Combining them, we have

R̂S(Hg) ≤ 6R(R̂SA
(HNN) + R̂SX

(HNN)).

This and Proposition 5 completes the proof.

Now, we derive the final theorem to show the consistency of the method.

Proof of Theorem 2. From the triangular inequality, we have

|θATE(a)− θ̂ATE(a)| ≤ |θ − E [ĝ(a,X)]|+
∣∣∣θ̂ATE(a)− E [ĝ(a,X)]

∣∣∣
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For the first term of r.h.s, we have
|θATE(a)− E [ĝ(a,X)]| = |E [g(a,X)− ĝ(a,X)]|

≤ E [|g(a,X)− ĝ(a,X)|]
≤ sup

a∈A,x∈X
|g(a, x)− ĝ(a, x)|

For the second term, we have∣∣∣∣θ̂ − ∫ E [ĝ(a,X)]

∣∣∣∣ =
∣∣∣∣∣ŵ⊤

(
ϕ̂A(a)⊗

1

n

n∑
i=1

ϕ̂X(xi)− ϕ̂A(a)⊗ E
[
ϕ̂X(X)

])∣∣∣∣∣
≤ ∥ŵ∥1

∥∥∥∥∥ϕ̂A(a)⊗
1

n

n∑
i=1

ϕ̂X(xi)− ϕ̂A(a)⊗ E
[
ϕ̂X(X)

]∥∥∥∥∥
∞

≤ ∥ŵ∥1
∥∥∥ϕ̂A(a)

∥∥∥
∞

∥∥∥∥∥ 1n
n∑

i=1

ϕ̂X(xi)− E
[
ϕ̂X(X)

]∥∥∥∥∥
∞

≤ R

∥∥∥∥∥ 1n
n∑

i=1

ϕ̂X(xi)− E
[
ϕ̂X(X)

]∥∥∥∥∥
∞

Therefore, we have

|θATE(a)− θ̂ATE(a)| ≤ sup
a,x

|g(a, x)− ĝ(a, x)|+R

∥∥∥∥∥ 1n
n∑

i=1

ϕ̂X(xi)− E
[
ϕ̂X(X)

]∥∥∥∥∥
∞

.

Using Lemmas 1 and 3 and Assumption 1, we have

sup
a,x

|g(a, x)− ĝ(a, x)| ≤ 1

c

(
16RR̂S(Hg) + 8R2

√
log 2/δ

2n

)1/2β

,∥∥∥∥∥E [ϕ̂X(X)
]
− 1

n

n∑
i=1

ϕ̂X(xi)

∥∥∥∥∥
∞

≤
√

2 log(2d2/δ)

n

with probability at least 1 − 4δ. Combining them and applying Lemma 7 completes the proof for
ATE bound. For ATT, we can derive the followings with the same discussion

|θATT(a; a
′)− θ̂ATT(a; a

′)| ≤ sup
a,x

|g(a, x)− ĝ(a, x)|+ sup
a′∈A

R
∥∥∥f̂ϕ̂X

(a′)− E
[
ϕ̂X(X)|A = a′

]∥∥∥
∞

.

Using Lemma 4 and the assumption made in Theorem 2, we have∥∥∥f̂ϕ̂X
(a′)− E

[
ϕ̂X(X)|A = a′

]∥∥∥ ≤ 1

c′

(
16R̂S(Hf ) + 8

√
log(2d2/δ)

2n

)1/2β′

.

If we use neural network hypothesis space Hf considered in Proposition 5, we can see that the ATT
bound holds.

B.4 LIMITATION OF SMOOTHNESS ASSUMPTION ON RIESZ REPRESENTER

In Chernozhukov et al. (2022b), we consider a functional m such that the causal param-
eter θ can be written as θ = E [m(g, (A,X))], where g is the conditional expectation
g(a, x) = E [Y |A = a,X = x]. Then, a Riesz Representer α, which satisfies E [m(g, (A,X))] =
E [α(A,X)g(A,X)], exists as long as

E
[
(m2(α, (A,X))

]
≤ M∥α∥2P (A,X),

for all α ∈ Hα and a smoothness parameter M . When we consider ATE θATE(a), the corresponding
functional m would be

m(α, (A,X)) = α(a,X).

Chernozhukov et al. (2021, Theorem 1) shows that the deviation of estimated the Riesz Representer
α̂ and the true one α0 scales as linear to the smoothness parameter M .

∥α̂− α0∥2P (A,X) ≤ O(Mδn + n−1/2),
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(a) General causal graph
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U

(b) Back-door adjustment

A

O

M Y

U

(c) Front-door adjustment

Figure 4: Causal graph with observable confounder. The bidirectional arrows mean that we allow
both directions or even a common ancestor variable.

where δn is the critical radius that scales

δn = O

(√
log n

n

)
.

when we consider fully connected neural networks. Now, we show that the smoothness parameter M
can have an exponential dependency on the dimension of the space, even for simple α. Consider A =
[−1, 1]d and some compact space X . We assume the uniform distribution for P (A,X). Consider
following α̃

α̃(a, x) = max

(
1−

d∑
i=1

2|a[i]|, 0

)
,

where a[i] denotes i-th element of a, and here we consider α̃ that does not depend on x. Say, we are
interested in estimating θATE(a) of a = 0 = [0, . . . , 0]⊤, for which

E
[
(m(α̃)(A,X))2

]
= E

[
(α̃(0, X))2

]
= 1.

Now consider B that

B =

{
a ∈ A

∣∣∣∣ ∀i ∈ [d],−1

2
≤ a[i] ≤

1

2

}
.

Then, since α̃(a, x) = 0 for all a /∈ B, we have

∥α̃∥2P (A,X) =

∫
A
|α̃(A,X)|2dP (A,X)

=

∫
B

|α̃(A,X)|2dP (A,X)

≤
∫
B

dP (A,X) = 1/2d.

We use the assumption that P (A,X) is the uniform distribution to have the last equality. Hence, if
α̃ ∈ Hα, the smoothness parameter M must have the exponential dependency

M ≥ 2d.

C OBSERVABLE CONFOUNDER

In this section, we consider the case where we have the additional observable confounder, the causal
graph of which is given in Figure 4.

Given the causal graph in Figure 4, ATE and ATT are defined as follows.
θATE(a) = EU,O [E [Y |U,O,A = a]] , θATE(a; a

′) = EU,O [E [Y |U,O,A = a]] .

Furthermore, we can consider another causal parameter called conditional average treatment effect
(CATE), which is a conditional average of the potential outcome given O = o;

θCATE(a; o) = E
[
Y (a)

∣∣∣O = o
]
.

Given exchangeability and no inference assumption, we have
θCATE(a; o) = EU |O=o [E [Y |U,O = o,A = a]] .
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These causal parameters can be recovered if the back-door or the front-door variable is provided as
follows.

Back-door adjustments: First, we present the Proposition stating these causal parameters can be
recovered if we are given the back-door variable X .

Proposition 6 (Pearl, 1995). Given the back-door adjustment X in Figure 4b, we have
θATE(a) = EX,O [g(a,O,X)] ,

θATT(a; a
′) = EX,O [g(a,O,X)|A = a′] ,

θCATE(a; o) = EX [g(a, o,X)|O = o]

where g(a, o, x) = E [Y |A = a,O = o,X = x].

Now, we present the deep adaptive feature embedding approach to this. We first learn conditional
expectation ĝ as ĝ(a, o, x) = ŵ⊤(ϕ̂A(a)⊗ ϕ̂O(o)⊗ ϕ̂X(x)), where

ŵ, ϕ̂A, ϕ̂O, ϕ̂X(x) = argmin
1

n

n∑
i=1

(yi −w⊤(ϕA(ai)⊗ ϕO(oi)⊗ ϕX(xi)))
2 (4)

given data (yi, ai, oi, xi). Here, w is the weight and ϕA,ϕO,ϕX are the feature maps. From
Proposition 6, we have

θATE(a) ≃ ŵ⊤
(
ϕ̂A(a)⊗ EX,O

[
ϕ̂O(O)⊗ ϕ̂X(X)

])
,

θATT(a; a
′) ≃ ŵ⊤

(
ϕ̂A(a)⊗ EX,O

[
ϕ̂O(O)⊗ ϕ̂X(X)

∣∣∣A = a′
])

,

θCATE(a; o) ≃ ŵ⊤
(
ϕ̂A(a)⊗ ϕ̂O(o)⊗ E

[
ϕ̂X(X)

∣∣∣O = o
])

Therefore, by estimating the feature embeddings, we have

θ̂ATE(a) = ŵ⊤

(
ϕ̂A(a)⊗

1

n

n∑
i=1

(
ϕ̂O(oi)⊗ ϕ̂X(xi)

))
,

θ̂ATT(a; a
′) = ŵ⊤

(
ϕ̂A(a)⊗ f̂ϕ̂O⊗ϕ̂X

(a′)
)
,

θ̂CATE(a; o) = ŵ⊤
(
ϕ̂A(a)⊗ ϕ̂O(o)⊗ f̂ϕ̂X

(o)
)

where f̂ϕ̂O⊗ϕ̂X
, f̂ϕ̂X

(o) are learned from

f̂ϕ̂O⊗ϕ̂X
= argmin

f

1

n

n∑
i=1

∥ϕ̂O(oi)⊗ ϕ̂X(xi)− f(ai)∥2

f̂ϕ̂X
= argmin

f

1

n

n∑
i=1

∥ϕ̂X(xi)− f(oi)∥2.

Front-door adjustment: Given the front-door variable M , these causal parameters can be identi-
fied as follows.

Proposition 7 (Pearl, 1995). Given the front-door variable M in Figure 4c, we have
θATE(a) = EA′

[
EO

[
EM |O,A=a [g(A

′, O,M)]
]]
,

θATT(a; a
′) = EO

[
EM |O,A=a [g(a

′, O,M)]
]
,

θCATE(a; o) = EA′
[
EM |O=o,A=a [g(A

′, o,M)]
]

where g(a, o,m) = E [Y |A = a,O = o,M = m] and A′ follows the identical distribution as A.

For front-door adjustment, we learn conditional expectation ĝ as ĝ(a, o, x) = ŵ⊤(ϕ̂A(a)⊗ϕ̂O(o)⊗
ϕ̂M (m)), where

ŵ, ϕ̂A, ϕ̂O, ϕ̂M (m) = argmin
1

n

n∑
i=1

(yi −w⊤(ϕA(ai)⊗ ϕO(oi)⊗ ϕM (mi)))
2.
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Then, from Proposition 7, we have

θATE(a) ≃ ŵ⊤
(
E
[
ϕ̂A(A)

]
⊗ EO

[
ϕ̂O(O)⊗ EM |O,A=a

[
ϕ̂M (M)

]])
,

θATT(a; a
′) ≃ ŵ⊤

(
ϕ̂A(a

′)⊗ EO

[
ϕ̂O(O)⊗ EM |O,A=a

[
ϕ̂M (M)

]])
,

θCATE(a; o) ≃ ŵ⊤
(
E
[
ϕ̂A(A)

]
⊗ ϕ̂O(o)⊗ EM |O=o,A=a

[
ϕ̂M (M)

])
.

The conditional expectation EM |O=o,A=a

[
ϕ̂M (M)

]
is estimated as EM |O=o,A=a

[
ϕ̂M (M)

]
=

f̂ϕ̂M
(o, a), where

f̂ϕ̂M
= argmin

f

1

n

n∑
i=1

∥ϕ̂M (mi)− f(oi, ai)∥2.

Then, by replacing the marginal expectation with the empirical average, we have

θ̂ATE(a) = ŵ⊤

( 1

n

n∑
i=1

ϕ̂A(ai)

)
⊗ 1

n

n∑
j=1

(
ϕ̂O(oj)⊗ f̂ϕ̂M

(oj , a)
) ,

θ̂ATT(a; a
′) = ŵ⊤

(
ϕ̂A(a

′)⊗ 1

n

n∑
i=1

(
ϕ̂O(oi)⊗ f̂ϕ̂M

(oi, a)
))

,

θ̂CATE(a; o) = ŵ⊤

((
1

n

n∑
i=1

ϕ̂A(ai)

)
⊗ ϕ̂O(o)⊗ f̂ϕ̂M

(o, a)

)
.

D EXPERIMENT DETAILS

Here, we describe the network architecture and hyper-parameters of all experiments. Unless other-
wise specified, we used Adam with learning rate = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8.
For RKHS Embedding, we used Gaussian kernel for continuous variable where the bandwidth is
determined by the median trick.

D.1 BINARY TREATMENT SCENARIO

In this scenario, all treatments are binary A ∈ {0, 1}. In RKHS Embedding and Neural Embedding,
we used the feature ϕA given as

ϕA(1) = [1, 0]⊤,ϕA(0) = [0, 1]⊤

in both IHDP setting and ACIC setting. This is equivalent to learn two models

E [Y |X = x,A = 0] = w⊤
0 ϕX(X),E [Y |X = x,A = 1] = w⊤

1 ϕX(X)

with shared nonlinear feature ϕX(X).

IHDP Dataset We used the 1000 data used in (Chernozhukov et al., 2022b), which is publicly
available at Github page of the paper. The network structure for back-door feature ϕX(X) is shown
in Table 2. Note that is much smaller network than Dragonnet or Riesznet, but increasing network
size did not affect the result much.

Table 2: Network structures of Neural Embedding for IHDP dataset. For the input layer, we provide
the input variable. For the fully-connected layers (FC), we provide the input and output dimensions.

Back-door feature ϕX(X)
Layer Configuration

1 Input(X)
2 FC(25, 200), ReLU
3 FC(200, 200), ReLU
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ACIC Dataset We used the 101 data used in (Shi et al., 2019), which satisfies overlap assumption.
(i.e. Not all data points has the extreme propensity score P (A = 1|X).) We noticed that some data
contains a outliers and we only consider the data points with the outcome Y is in the range of

Y ∈ [Q1(Y )− 5IQR, Q3(Y ) + 5IQR]

where Q1(Y ), Q3(Y ) are 25%, 75%-quantile value of outcome, respectively, and IQR = Q3(Y )−
Q1(Y ).

We run Dragonnet and RieszNet estimators with the same network architecture as IHDP dataset. The
network structure for back-door feature ϕX(X) is shown in Table 3. Note that the same structure is
used in Dragonnet and Riesznet to predict conditional expectation E [Y |X,A].

Table 3: Network structures of Neural Embedding for ACIC dataset. For the input layer, we provide
the input variable. For the fully-connected layers (FC), we provide the input and output dimensions.

Back-door feature ϕX(X)
Layer Configuration

1 Input(X)
2 FC(177, 200), ELU
3 FC(200, 200), ELU
4 FC(200, 200), ELU
5 FC(200, 100), ELU

D.2 HIGH-DIMENSIONAL TREATMENT SCENARIO

Here, we generate all dataset by ourselves from original dSprite dataset (Matthey et al., 2017).

Back-door ATE estimation The network features for the proposed method is summarized in Ta-
ble 4. The network structures for RieszNet is given in Table 5. Note that they share the similar
feature extractor for images.

Table 4: Network structures of the neural embedding method in dSprite back-door adjustment ex-
periment. For the input layer, we provide the input variable. For the fully-connected layers (FC), we
provide the input and output dimensions. SN denotes Spectral Normalization (Miyato et al., 2018).

Back-door feature ϕX(X)
Layer Configuration

1 Input(X)
2 FC(2, 36), ReLU
3 FC(36, 5), ReLU

Treatment Feature ϕA(A)
Layer Configuration

1 Input(A)
2 FC(4096, 1024), SN, ReLU
3 FC(1024, 512), SN, ReLU, BN
4 FC(512, 128), SN, ReLU
5 FC(128, 32), SN, BN, Tanh

Front-door ATT estimation Here, we used the same network architecture as in the back-door
adjustment summarized in Table 4.
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Table 5: Network structures of RieszNet in dSprite back-door adjustment experiment. For the fully-
connected layers (FC), we provide the input and output dimensions. SN denotes Spectral Normal-
ization (Miyato et al., 2018).

Common Feature ϕ(A,X)
Layer Configuration

1 Input(A, X)
2 FC(4098, 1024), SN, ReLU
3 FC(1024, 512), SN, ReLU, BN
4 FC(512, 128), SN, ReLU
5 FC(128, 32), SN, BN, Tanh

Regressor ĝ
Layer Configuration

1 Input(A, X)
2 Common Feature ϕ(A,X)
3 FC(32, 32), ReLU
4 FC(32, 32), ReLU
5 FC(32, 1)

Riesz representer learning α̂
Layer Configuration

1 Input(A, X)
2 Common Feature ϕ(A,X)
3 FC(32, 1)
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