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Abstract

The ranked list truncation task involves deter-001
mining a truncation point to retrieve the rel-002
evant items from a ranked list. Despite cur-003
rent advancements, truncation methods strug-004
gle with limited capacity, unstable training and005
inconsistency of selected threshold. To address006
these problems we introduce TMP Adapter, a007
novel approach that builds upon the improved008
adapter model and incorporates the Thresh-009
old Margin Penalty (TMP) as an additive loss010
function to calibrate ranking model relevance011
scores for ranked list truncation. We evalu-012
ate TMP Adapter’s performance on various re-013
trieval datasets and observe that TMP Adapter014
is a promising advancement in the calibration015
methods, which offers both theoretical and016
practical benefits for ranked list truncation.017

1 Introduction018

Determining the appropriate truncation point is a019

fundamental problem in information retrieval and020

recommendation systems. An excessively long021

ranked list can overwhelm users with redundant022

or less relevant information. Conversely, an overly023

short list risks omitting highly relevant items that024

could enhance user satisfaction. Thus, optimizing025

the cutoff point is essential to balance relevance, di-026

versity, and usability. The problem of determining027

the optimal cutoff point in a ranked list, also known028

as ranked list truncation or relevance filtering, has029

been approached using two primary methods: adap-030

tive thresholding and global thresholding.031

Adaptive thresholding focuses on predicting an032

optimal cutoff point for each individual list. BiCut033

(Lien et al., 2019) leverages a bidirectional LSTM034

to model sequential dependencies and predict trun-035

cation points. Choppy employs a Transformer ar-036

chitecture for the same task. AttnCut (Wu et al.,037

2021) further incorporates attention mechanisms038

and reward augmented maximum likelihood for039

direct optimization. LeCut (Ma et al., 2022) im-040

proves upon these by adding contextual features 041

from the retrieval task to better model document 042

semantics. In the realm of personalized recommen- 043

dations, PerK (Kweon et al., 2024) estimates the 044

expected user utility to determine the ideal list size. 045

More recently, GenRT (Xu et al., 2024) combines 046

reranking and truncation in a joint model using 047

sequence generation. 048

Global thresholding aims to calibrate relevance 049

scores, enabling the use of a universal threshold 050

across queries. This approach often involves trans- 051

forming raw retrieval scores into more interpretable 052

values. TCM (Zhang et al., 2024) introduces a 053

margin-based loss that facilitates a consistent dis- 054

tance threshold and, RCR (Bai et al., 2023), a 055

regression-compatible ranking approach, ensures 056

alignment between ranking and regression objec- 057

tives. JRC (Sheng et al., 2023) consolidates opti- 058

mization across all samples using a contextualized 059

hybrid model. The Cosine Adapter (Rossi et al., 060

2024) maps cosine similarity scores to interpretable 061

relevance scores and Surprise (Bahri et al., 2020) 062

employs statistical methods to adjust a ranked list 063

using. These methods contrast with adaptive thresh- 064

olding by seeking a single, universally applicable 065

cutoff. 066

Despite the promising progress, we discover that 067

existing methods suffer from three main issues: (i) 068

low capacity, especially for Large Language Mod- 069

els. (ii) unstable training, especially for low-data 070

training. (iii) threshold inconsistency especially 071

in case of distribution shift between the training 072

and test. We address these issues by proposing im- 073

proved Adapter architecture and training method 074

with Threshold Margin Penalty inspired by TCM. 075

2 Methodology 076

2.1 Threshold Margin Penalty 077

We propose an additive penalty function with adap- 078

tive margin for contrastive loss functions. The goal 079
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of this function is to minimize the number of pair080

scores s located in the truncation threshold area081

to improve threshold consistency and global pair082

separation of positive S+ and negative S− scores.083

Threshold Margin Penalty is defined in Equation 1084

TMP = wpos∗Ppos+wneg∗Pneg−wm∗Rm (1)085

Where Ppos and Pneg are penalties for positive086

and negative scores defined in equations 2 and 3.087

Ppos =

∑
s∈S+ max (0,m+ − s)∑
s∈S+

{
1; s ≤ m+

0; s > m+

(2)088

Pneg =

∑
s∈S− min (0, s−m−)∑
s∈S−

{
1; s > m−

0; s ≤ m−

(3)089

Rm - margin reward which encourages better090

separation given in equation 4.091

Rm = m+ −m− (4)092

Since the optimal truncation point could change093

during training, we add tunable parameters m+094

and m−, which are normalized using the sigmoid095

function that change positive and negative bound-096

aries. This allows us to tune optimal margin place-097

ment and size during training. We also include098

penalty weights hyperparameters wpos, wneg and099

wm empirically selected based on experimental re-100

sults remaining close to main loss to save better101

convergence. wpos and wneg are codependent and102

guide the distributions bias. wm determines mar-103

gin size dynamics and should be proportional to104

the sum of wpos, wneg, increasing this parameter105

enhances scores separation but may lead to training106

instability.107

2.2 TMP Adapter108

We recognize the potential of the Cosine Adapter109

model; however, we also identify several limita-110

tions, including low consistency of the truncation111

threshold, insufficient generalization ability, and112

unstable training. In this study, we build upon the113

concept of the Cosine Adapter and address these114

issues by proposing the TMP Adapter, depicted in115

Figure 1. The adjusted score s is computed using a116

modified function presented in equation 5.117

s = p1 + sP3
raw ∗ p22 (5)118

Figure 1: TMP Adapter architecture and training
pipeline for Bi-Encoder scores calibration.

where sraw is cosine similarity between query 119

vector q and candidate vector c. 120

To enhance threshold consistency, measured by 121

the deviation of the validation-set-optimized thresh- 122

old from the optimal test-set threshold, we intro- 123

duce the Threshold Margin Penalty. This method 124

expands the optimal threshold region without en- 125

coder model tuning, similar to several previously 126

mentioned methods. Additionally, we propose in- 127

creasing the model’s capacity and modifying its 128

architecture by incorporating residual connections 129

and GeLU activation functions to improve training 130

stability (see Appendix A). 131

3 Experiments 132

3.1 Datasets 133

In this paper, we utilize three key information 134

retrieval datasets from BeIR benchmark (Thakur 135

et al., 2021). FiQA is a domain-specific dataset 136

of financial questions and answers, designed for 137

retrieval models evaluation. NFCorpus is a dataset 138

of health-related documents with human-annotated 139

relevance judgments, applicable for IR tasks in 140

medicine. Robust04 is a widely used benchmark 141

from the TREC Robust Track 2004, based on news 142

articles with relevance assessments, designed to 143

test the robustness of retrieval models across do- 144

mains of varying difficulty. This setup provides 145

diverse retrieval challenges from domain-specific 146

to general information retrieval tasks. We selected 147

an amount of varying datasets to evaluate threshold 148

consistency and quality of ranked list truncation 149

(which requires both training stability and model 150

capacity) on different domains. Full datasets char- 151
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acteristics are available in Appendix B.152

3.2 Metrics153

In this paper we report Normalized Discounted154

Cumulative Gain at rank 10 (NDCG@10) as re-155

trieval quality metric, as it accounts for both the rel-156

evance and position of retrieved documents. While157

NDCG@10 is the standard evaluation metrics of158

the retrieval task in MTEB benchmark (Muen-159

nighoff et al., 2023) and particularly relevant for160

encoder tuning experiments, it is not the primary161

metric to assess the proposed method. The TMP162

Adapter is implemented as score calibrator rather163

than reranker, leading to ranking metrics remaining164

unchanged. To comprehensively evaluate ranked165

list truncation we consider several key metrics. The166

maximum F1 score (F1(M)) represents the max-167

imum F1 value for a given ranked search result168

list without re-ranking. We also report the ora-169

cle F1 score (F1(O)), obtained by optimizing the170

threshold on test subset. In contrast, the tuned F1171

score (F1(T )) is derived by adjusting the thresh-172

old on the dev subset. For better interpretation we173

report F1(T )
F1(M) that calculated as percentage of the174

maximum F1 score. To quantify the threshold con-175

sistency we compute the F1(T )
F1(O) percentage ratio.176

3.3 Baselines177

We employ multiple baseline methods to ensure178

a comprehensive and reliable evaluation. First of179

all, we consider the AttnCut approach 1 and Cosine180

Adapter 2. In addition we report two naive base-181

lines: Greedy(k) - truncation based on global rank182

threshold; Greedy(s) - truncation based on global183

scores threshold.184

To assess the effectiveness of ranked list trunca-185

tion methods under current conditions, we identify186

state-of-the-art retrieval models and compare them187

to the approaches introduced in AttnCut (BM25)188

and polynomial Cosine Adapter (SimLM) (Wang189

et al., 2023).190

To address the use of the proposed method on191

different sized models we incorporate the small192

retrieval model Spice3, which holds the highest193

ranking among small models having 33.4M param-194

eters in the retrieval task of the MTEB leaderboard195

(as of January 30, 2025).196

We also include NV-Embed-v2 (Lee et al., 2025)197

having 7B parameters, which is ranked first on198

1https://github.com/Woody5962/Ranked-List-Truncation
2https://github.com/juexinlin/dense_retrieval_relevance_filter
3https://huggingface.co/iamgroot42/spice

the MTEB retrieval leaderboard (as of January 31, 199

2025) to benchmark our results against state-of- 200

the-art Large Language Models. By incorporating 201

these diverse baselines, we aim to provide a robust 202

comparative analysis, highlighting the advantages 203

and limitations of the proposed method in various 204

retrieval scenarios and its compatibility both with 205

small and large models. We maintain the original 206

performance of baseline models without additional 207

tuning, as we do not re-rank the retrieved list. Pro- 208

posed method serves exclusively as a calibrator for 209

optimal threshold selection. All of the baselines 210

are presented in Table 1. To further comparison 211

of ranked list truncation methods we select two 212

models with the best F1(M) scores. 213

4 Results 214

4.1 Threshold Results 215

The relative results of the suggested TMP Adapter 216

(for training details see Appendix C) and other 217

truncation methods baselines are listed in Table 218

2. Absolute values are reported in Appendix D. 219

Threshold consistency results of the TMP Adapter 220

show an F1(T/O) increase in 4.25%pt over raw 221

scores (Greedy(s)) and 2.24%pt over the best base- 222

line model (Cosine Adapter). We attribute the use 223

of TMP the primary factor leading to this increase 224

in model’s consistency. 225

TMP Adapter shows stable improvements in 226

ranked list truncation metrics over all datasets in 227

contrast to the Cosine Adapter, which indicates 228

more stable training due to architecture’s modifica- 229

tions. 230

All of these factors combined lead to ranked list 231

truncation metrics improvement, allowing the TMP 232

Adapter to achieve F1(T/M) increase both in raw 233

scores (Greedy(s)) 9.08%pt, and an 5.75%pt im- 234

provement over the best baseline (Cosine Adapter), 235

which confirms the effectiveness of proposed score 236

calibration method. 237

4.2 Discussion 238

Experimental results indicate that the optimal 239

threshold is changing during the training process. 240

This dynamics can be observed visually analyzing 241

F1-score curves obtained at model’s validations at 242

different training epochs (Appendix E). Notably, 243

the peak F1-scores are achieved across wide range 244

of thresholds, varying from 0 to 1. Therefore, mar- 245

gin penalty with fixed boundaries will prevent this 246

behavior and reduce optimization efficiency due 247
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Model
FiQA NFCorpus Robust04

NDCG@10 F1(M) NDCG@10 F1(M) NDCG@10 F1(M)
NV-Embed-v2 0.652 0.643 0.449 0.381 0.405 0.469
Spice 0.63 0.623 0.544 0.478 0.407 0.345
MiniLM 0.188 0.212 0.231 0.2 0.178 0.143
BM25 0.253 0.391 0.342 0.344 0.343 0.228

Table 1: The evaluation of different ranking models on four datasets with ranking and truncation metrics.

Method
FiQA NFCorpus Robust04

F1(T/M) F1(T/O) F1(T/M) F1(T/O) F1(T/M) F1(T/O)
Spice

Greedy(s) 56.34 98.60 53.97 92.81 64.35 95.28
Greedy(k) 58.91 89.95 54.18 95.57 63.48 95.22
AttnCut 64.52 – 55.65 – 60.87 –
Cosine Adapter 59.23 99.73 60.25 97.30 56.81 93.33
TMP Adapter 64.04 99.75 65.27 99.36 66.67 97.87

NV-Embed-v2
Greedy(s) 52.41 89.63 58.53 96.96 68.44 96.69
Greedy(k) 69.21 100 56.17 100 68.23 97.86
AttnCut 67.19 – 55.91 – 68.66 –
Cosine Adapter 67.19 98.18 62.99 97.96 67.59 95.48
TMP Adapter 71.54 99.14 66.40 99.61 74.63 99.72

Table 2: The results of ranked list truncation on three datasets and two encoder model for baselines and our approach.
Metric F1(T/M) shows percentage ratio F1(T ) to F1(M) and reveal the calibration quality. Metric F1(T/O)
shows percentage ratio F1(T ) to F1(O) and reveal the threshold consistency. Dashes in the table indicate the
absence of oracle value for AttnCut method, making it impossible to compute threshold consistency.

to counteracting the main pairwise loss function.248

Consequently, the optimal threshold margin cannot249

be reliably determined using a fixed grid search250

approach but must be dynamic. These results are251

supported by heatmap shown in Figure 2.252

Figure 2: Performance of TMP Adapter with various
fixed margin center and margin size parameters com-
puted on FiQA dataset for NV-Embed-v2 model.

5 Conclusion 253

In this paper, we introduce Threshold Margin 254

Penalty Adapter, a novel approach designed to cali- 255

brate ranking model relevance scores for ranked list 256

truncation. Proposed TMP Adapter extends the im- 257

proved adapter model by integrating the Threshold 258

Margin Penalty as an additive loss function. This 259

innovation enhances the model’s ability to maintain 260

threshold consistency and improves the separation 261

between positive and negative pairs, which is criti- 262

cal for effective ranking list truncation. We evaluate 263

TMP Adapter’s performance on four datasets and 264

observe a consistent and stable improvement in the 265

F1-score, highlighting the model’s effectiveness for 266

score separation. Additionally, we observe a signif- 267

icant enhancement in threshold consistency, which 268

underscores the model’s in-domain robustness to 269

maintain reliable decision boundaries. These find- 270

ings show that TMP Adapter is a promising ad- 271

vancement in calibration methods, offering both 272

theoretical and practical benefits for ranked list 273

truncation. 274
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Limitations275

While the proposed method improves in-domain276

threshold consistency and training stability, it has277

limitations. First of all, it struggles with out-of-278

domain generalization, performing poorly outside279

its training domain. This restricts its applicability280

in diverse real world applications. Furthermore,281

requiring a sufficient number of training pairs for282

effective score calibration, similar to the Cosine283

Adapter, makes this approach challenging in train-284

ing with small amount of data, despite enhancing285

training stability. These limitations highlight the286

need for further research into domain adaptation,287

data-efficient calibration, and computational opti-288

mization to enhance its real-world applicability.289
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A Architecture Modification 354

To determine the optimal architecture with suffi- 355

cient capacity, we conduct an ablation study. The 356

results for various adapter architectures are pre- 357

sented in Table 3. Training values are reported 358

on the dataset split used for model training, while 359

test metrics evaluate the model’s performance on a 360

previously unseen dataset split. 361

#Layers
Residual
Connection

Activation
Function

F1(T)
Train Test

3 False ReLU 0.499 0.432
4 False ReLU 0.511 0.430
4 True ReLU 0.530 0.446
4 True GeLU 0.535 0.450
5 False ReLU 0.502 0.402
5 True ReLU 0.525 0.420
5 True GeLU 0.528 0.422

Table 3: Evaluation of various adapter architectures with
NV-Embed-v2 model modification on FiQA dataset.
The table includes number of additional fully-connected
layers, the use of residual connections, activation func-
tion between layers, train and test metrics.
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B Dataset Description362

We use question answering and information re-363

trieval datasets, commonly used to evaluate trun-364

cation methods and included both in BEIR and365

MTEB benchmarks. Their characteristics are366

shown in Table 4.367

Dataset FiQA NFCorpus Robust04
Domain Finance Medicine News
#Docs 57.6K 3.6K 528K
#Queries 6.6K 3.2K 250
#Positives 3 43 70
#Train Set 5.5K 2.6K 150
#Val Set 500 324 50
#Test Set 648 323 50
#Labels 2 4 3
Doc Length 136 221 605

Table 4: Overview of Datasets used in research includ-
ing their domains, sizes, query counts, label distribu-
tions, and document lengths in words. Used datasets
significantly vary in domains and scope, with Robust04
having the most number of relevant documents, while
FiQA having the most queries.

C TMP Adapter Training Setup368

We train the TMP Adapter without tuning the en-369

coder models, utilizing a modified Cosine Adapter370

pipeline and the proposed TMP Adapter model371

trained with the parameters specified in Table 5.372

D Absolute F1 Values373

In addition to the relative results of the TMP374

Adapter described in the paper, we report abso-375

lute values of tuned F1 and oracle F1 metrics for376

more comprehensive and complete description in377

Table 6.378

E Threshold Shifting379

To provide a clearer demonstration of the threshold380

shifting during training, that is observed for all381

adapter models, we report a curve of the validation382

F1 metric values, recorded every five epochs in383

Figure 3.384

Spice
Dataset FiQA NFCorpus Robust04
#Epochs 40 25 25

Batch Size 128 128 32
Optimizer AdamW AdamW AdamW
Adapter lr 0.001 0.002 0.0005
Margin lr 0.008 0.005 0.01
wpos 0.109 0.198 0.212
wneg 0.1 0.1 0.104
wm 0.25 0.19 0.25

NV-Embed-v2
#Epochs 50 25 20

Batch Size 128 128 32
Optimizer AdamW AdamW AdamW
Adapter lr 0.001 0.001 0.0005
Margin lr 0.01 0.005 0.01
wpos 0.102 0.202 0.209
wneg 0.1 0.093 0.106
wm 0.2 0.18 0.26

Table 5: TMP Adapter Training parameters for Spice
and NV-Embed-v2 models used in research.

Figure 3: Validation F1 curve Cosine Adapter on FiQA
dataset for NV-Embed-v2 model.
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Method
FiQA NFCorpus Robust04

F1(T) F1(O) F1(T) F1(O) F1(T) F1(O)
Spice

Greedy(s) 0.351 0.356 0.258 0.278 0.222 0.233
Greedy(k) 0.367 0.408 0.259 0.271 0.219 0.230
AttnCut 0.402 – 0.266 – 0.210 –
Cosine Adapter 0.369 0.370 0.288 0.296 0.196 0.210
TMP Adapter 0.399 0.400 0.312 0.314 0.230 0.235

NV-Embed-v2
Greedy(s) 0.337 0.376 0.223 0.230 0.321 0.332
Greedy(k) 0.445 0.445 0.214 0.214 0.320 0.327
AttnCut 0.432 – 0.213 – 0.322 –
Cosine Adapter 0.432 0.440 0.240 0.245 0.317 0.332
TMP Adapter 0.460 0.464 0.253 0.254 0.350 0.351

Table 6: The results of ranked list truncation on three datasets and two encoder model for baselines and our approach
in absolute values.
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