

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WITH GREAT POWER COMES GREAT ADAPTATION: MESSAGE TUNING OUTSHINES PROMPT TUNING FOR GRAPH FOUNDATION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph foundation models (GFMs), built upon the “Pre-training and Adaptation” paradigm, have emerged as a promising path toward artificial general intelligence on graphs. Despite the remarkable potential of large language models, most existing GFMs still adopt Graph Neural Networks as their backbone. For such GNN-based GFMs, prompt tuning has become the prevailing adaptation method for downstream tasks. However, while recent theoretical research has revealed why graph prompt tuning works, how to measure its adaptation capacity remains an open problem. In this paper, we propose **Prismatic Space Theory** (PS-Theory) to quantify the capacity of adaptation approaches and establish the upper bound for the adaptation capacity of prompt tuning. Inspired by prefix-tuning, we introduce **Message Tuning for GFM**s (MTG), a lightweight approach that injects a small set of learnable message prototypes into each layer of the GNN backbone to adaptively guide message fusion without updating the frozen pre-trained weights. Through our PS-Theory, we rigorously prove that MTG has greater adaptation capacity than prompt tuning. Extensive experiments demonstrate that MTG consistently outperforms prompt tuning baselines across diverse benchmarks, validating our theoretical findings. Our code is available at <https://anonymous.4open.science/r/MTG>.

1 INTRODUCTION

Graph foundation models (GFMs) (Liu et al., 2025; Wang et al., 2025b), built upon the “Pre-training and Adaptation” paradigm, are expected to benefit from the pre-training of broad graph data and can be adapted to a wide range of downstream graph tasks. Since they are designed to natively learn graph structures, a capability fundamentally different from that of sequence-based Large Language Models, GNN-based GFMs represent a promising direction by leveraging self-supervised pre-training to acquire transferable knowledge through their GNN backbone architectures (Wang et al., 2024; Chen et al., 2025), including Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017) and Graph Transformers (GTs) (Ying et al., 2021). For such pre-trained GFMs, fine-tuning (Hu et al., 2020b; Qiu et al., 2020; Rong et al., 2020) is the most intuitive and widely adopted method for downstream task adaptation. However, fine-tuning generally involves updating all model parameters, requiring a full model copy per task while demanding substantial computational resources and task-specific data for full customization. Furthermore, the pretext-downstream graph task gap poses a significant challenge for fine-tuning, potentially causing negative transfer (Wang et al., 2021), particularly in few-shot scenarios (Zhang et al., 2022).

Prompt tuning (Lester et al., 2021; Liu et al., 2022) as a popular finetune paradigm, has emerged as an efficient alternative to full-parameter fine-tuning by freezing the pre-trained model’s parameters and adapting downstream tasks through input data transformations. Prompt tuning on graphs, known as Graph Prompt Learning (Sun et al., 2023b), enhances GNN-based models’ performance and adaptability through input-space adaptations (e.g., inserting lightweight learnable tokens or subgraphs) to reformulate downstream tasks as pre-training tasks without modifying the pre-trained GNN backbone. Recent advances in graph prompt models (Fang et al., 2023; Sun et al., 2023a; Niu et al., 2024; Yu et al., 2025) **have shown promising results** in graph learning, highlighting their potential for broader graph intelligence applications spanning from molecular property prediction (Diao et al., 2023) to recommendation systems (Yang et al., 2023). Concurrently, several studies

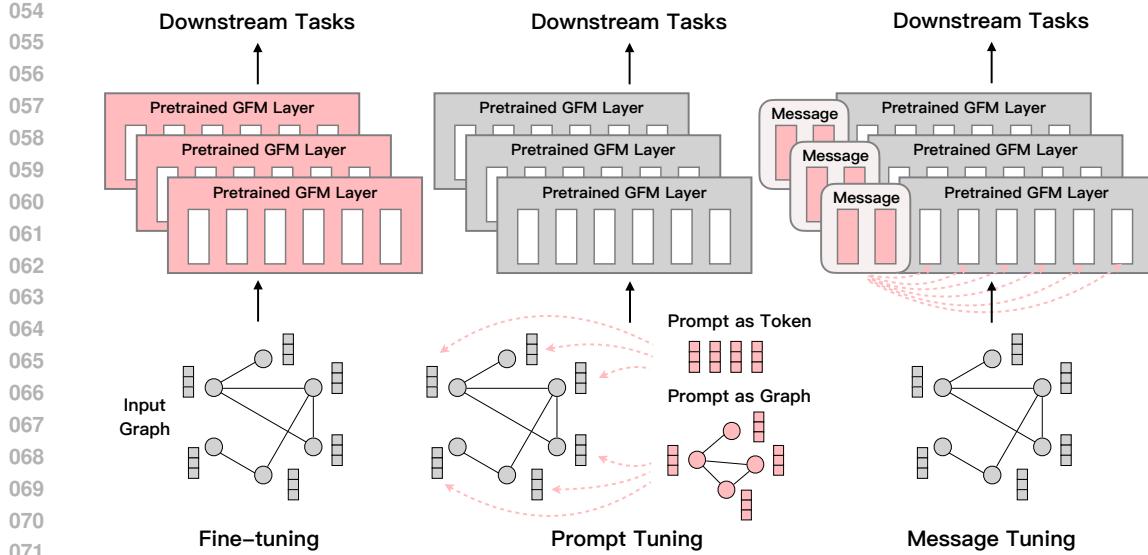


Figure 1: Fine-tuning (left) updates all GFM parameters (red GFM Layer boxes), while Prompt Tuning (middle) typically updates prompt tokens or the prompt graph (red prompt vectors) to transform the input graph, keeping GFM parameters frozen. We propose Message Tuning (right), which also freezes GFM parameters but optimizes the messages in each GFM Layer (red message blocks) to regulate message fusion. The red dashed lines indicate the inserting patterns of new parameters, which are also learnable.

(Fang et al., 2023; Wang et al., 2025a) have begun analyzing graph prompts from a data operation perspective, suggesting their effectiveness stems from simulating fundamental graph transformations such as node/edge addition/deletion, feature modification, and subgraph removal.

However, while recent theoretical research has revealed why graph prompt tuning works from a data operation perspective (Wang et al., 2025a), how to measure its adaptation capacity on a specific GFM remains an open problem. A more precise understanding of the capability bound of prompt tuning and the underlying reasons will facilitate the design of more powerful and efficient adaptation methods. To address this issue, we model each layer of GFMs as a piecewise linear refractive transformation and leverage ideas from geometric measure theory to quantify the “refractive” power of each layer, establishing fundamental bounds on the expressive power of prompt tuning methods and motivating the design of our novel message tuning paradigm.

Specifically, we propose **Prismatic Space Theory** (PS-Theory), providing a rigorous mathematical framework to quantify adaptation capacity and establish the upper bound for the adaptation capacity of prompt tuning. Prefix-tuning (Li & Liang, 2021), widely used in language models, is specifically designed for transformer architectures and generative tasks on sequential data, making it not directly applicable to graph-structured data. Inspired by this technique, we introduce **Message Tuning for GFMs** (MTG), a novel adaptation approach that injects learnable message prototypes into each layer and dynamically fuses them with the model’s native messages, which is compatible with GFMs using either MPNN or GT backbones, as illustrated in Figure 1. Through our PS-Theory, we rigorously prove that MTG has greater adaptation capacity than prompt tuning. Extensive and fair evaluations on the latest Graph Prompt Learning benchmark ProG (Zi et al., 2024) further validate MTG’s superiority across diverse downstream tasks. The contributions of this paper are summarized as follows:

- **Theoretical Foundation.** Different from the prior theories focusing on data operations, we propose PS-Theory, providing a novel and rigorous mathematical framework to quantify adaptation capacity and establish the upper bound for the adaptation capacity of prompt tuning.
- **Adaptation Method.** We introduce MTG, a novel lightweight adaptation approach that dynamically guides message fusion by injecting learnable message prototypes across all layers without updating pre-trained weights, significantly enhancing adaptation capacity. Through our PS-Theory, we rigorously prove that MTG has greater adaptation capacity than prompt tuning.
- **Extensive Experiments.** Through comprehensive evaluations across diverse few-shot downstream tasks, we demonstrate MTG’s consistent superiority over state-of-the-art prompt tuning baselines, validating our theoretical claims on its enhanced adaptation capacity.

108 **2 RELATED WORK**

110 The adaptation of GNN-based GFMs involves tailoring models or adjusting input data to align with
 111 specific downstream tasks or domains through techniques such as fine-tuning and prompt tuning.
 112 To the best of our knowledge, prefix-tuning (Li & Liang, 2021), despite its prevalence in language
 113 models, remains unexplored in GNN-based GFMs.

114 **Fine-tuning.** Specifically, fine-tuning can be further divided into full-parameter fine-tuning (FPFT)
 115 and parameter-efficient fine-tuning (PEFT). FPFT (Hu et al., 2020b; Qiu et al., 2020; Rong et al.,
 116 2020; Sun et al., 2024) entails training the entire pre-trained model on task-specific data, offering
 117 high customization at the cost of substantial computational resources. In contrast, PEFT methods
 118 optimize only a subset of parameters, balancing adaptation efficiency with performance. For instance,
 119 AdapterGNN (Li et al., 2024) modifies input graphs via parallel adapters around message passing,
 120 G-Adapter (Gui et al., 2024) integrates graph structure into transformer fine-tuning through graph
 121 message passing, and GraphLoRA (Yang et al., 2025) enhances efficiency by injecting a low-rank
 122 trainable GNN alongside the pre-trained model to address structural distribution gaps while mitigating
 123 catastrophic forgetting. In this paper, fine-tuning generally refers to FPFT unless otherwise specified.

124 **Prompt Tuning.** As a lightweight tuning method, prompt tuning typically freezes pre-trained model
 125 parameters while introducing additional learnable components in the input space. Following Liu
 126 et al. (2025), prompt tuning methods can be divided into two distinct groups: pre-prompt and post-
 127 prompt methods, depending on whether task-specific prompts operate before or after the backbone
 128 module. Pre-prompt methods either modify graph topology or node features before message passing
 129 to enhance task performance, or construct prompt graphs to boost adaptability. For instance, GPF
 130 (Fang et al., 2023) introduces an optimizable uniform feature vector for all nodes to adapt pre-trained
 131 GNNs across strategies, while All-in-one (Sun et al., 2023a) reformulates node-level and edge-level
 132 tasks to graph-level tasks and treats an additional subgraph as a prompt that merges with the node
 133 subgraph. Post-prompt methods apply task-specific prompts on representations after message passing
 134 for downstream adaptation. For instance, GPPT (Sun et al., 2022) transforms node classification into
 135 link prediction via class-specific token pairs, while GraphPrompt (Liu et al., 2023b) unifies tasks
 136 through subgraph similarity and learns task-specific prompt vectors to adapt the Readout operation,
 137 bridging link prediction and downstream tasks.

138 **3 PRISMATIC SPACE THEORY**

140 In this section, we introduce Prismatic Space Theory (PS-Theory), providing a novel perspective and
 141 rigorous mathematical framework to quantify the capacity of adaptation approaches and establish the
 142 upper bound for the adaptation capacity of prompt tuning. Due to space constraints, the proofs of all
 143 theorems and additional theoretical details are provided in Appendix B.

145 **3.1 A UNIFIED FORMULATION FOR GNN-BASED GFMS**

147 To facilitate theoretical analysis, we present a unified formal framework that generalizes both MPNNs
 148 and GTs architectures. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a graph with $N = |\mathcal{V}|$ nodes. The node feature matrix
 149 is denoted $\mathbf{X} \in \mathbb{R}^{N \times d_0}$ and the adjacency matrix is denoted $\mathbf{A} \in \{0, 1\}^{N \times N}$. The ℓ -th layer of a
 150 general GNN-based GFM is defined by the following formulation.

151 **Definition 1** (Unified GFM Layer). *For any layer $\ell \in \{1, \dots, L\}$, the node representation matrix
 152 $\mathbf{H}^{(\ell)} \in \mathbb{R}^{N \times d_\ell}$ is computed as:*

$$153 \mathbf{H}^{(\ell)} = \mathfrak{U}^{(\ell)} \left(\mathfrak{M}^{(\ell)} \left(\mathfrak{A}^{(\ell)} \left(\mathbf{A}, \mathbf{H}^{(\ell-1)}; \Theta_a^{(\ell)} \right), \mathbf{H}^{(\ell-1)}; \Theta_m^{(\ell)} \right), \mathbf{H}^{(\ell-1)}; \Theta_u^{(\ell)} \right), \quad (1)$$

154 where $\mathbf{H}^{(0)} = \mathbf{X}$, $\mathfrak{A}^{(\ell)}$, $\mathfrak{M}^{(\ell)}$, and $\mathfrak{U}^{(\ell)}$ denote the attention, message fusion, and update operators
 155 respectively: $\mathfrak{A}^{(\ell)}$ computes attention weights (encompassing both learnable dynamic attention
 156 and static structural attention), $\mathfrak{M}^{(\ell)}$ performs weighted aggregation of node messages using these
 157 attention scores, and $\mathfrak{U}^{(\ell)}$ combines previous node representations with the fused messages to produce
 158 the updated representation.

160 This formulation serves as a unified formalization of the core structure rather than encompassing all
 161 architecture details. The detailed correspondence between this formulation and classical backbone
 162 architectures is presented in Appendix B.2.

162 3.2 PROMPT TUNING FOR GRAPHS
163

164 Following Wang et al. (2025a), we provide a mathematical formalization of prompt tuning for graphs,
165 aiming to offer an intuitive perspective for theoretical analysis. Let f_{GFM} denote a pre-trained GNN-
166 based GFM with frozen parameters, and let g_θ denote a graph prompt function with parameters θ that
167 transforms the input graph \mathcal{G} into a prompted graph $g_\theta(\mathcal{G})$. Given a downstream dataset $\mathbb{G} = \{\mathcal{G}\}$,
168 the goal of prompt tuning is to optimize θ to maximize the likelihood of the optimal representation
169 for a graph \mathcal{G} from \mathbb{G} . This objective can be formulated as:

$$170 \max_{\theta} P_{f_{\text{GFM}}}(v_{\mathcal{G}} | g_\theta(\mathcal{G})) \quad (2)$$

172 The theory in Wang et al. (2025a) rests on the assumption that a GNN model acts as a surjective
173 mapping operator from the graph set \mathbb{G} to \mathbb{R}^F , where F is the dimensionality of the representation.
174 However, since real-world graph data is inherently bounded, the model’s output is unlikely to span
175 the entire \mathbb{R}^F space. Analyzing the properties of this actual output space will provide deeper insight
176 into the adaptation capacity of prompt tuning.

177 3.3 A GEOMETRIC MEASURE THEORETIC FORMULATION
178

179 **Prism Metaphor.** Prompt tuning typically operates by injecting a low-dimensional prompt into the
180 high-dimensional input space of a frozen GFM. To quantify its efficacy, we need to understand how
181 the GFM’s architecture transforms this input space. We posit that each layer of a GFM, particularly
182 those employing piecewise linear activations like ReLU (Nair & Hinton, 2010) or LeakyReLU
183 (Maas et al., 2013), acts not merely as a contraction but as a “prism”. The non-isometric, piecewise
184 linear action of a “prism” refracts the input space, collapsing some dimensions into oblivion, and
185 progressively folding the input manifold. We model the GFMs as a sequence of measurable maps that
186 transform the input space into a sequence of increasingly complex, lower-dimensional prismatic space.
187 We quantify the “refractive” power of each layer by leveraging ideas from geometric measure theory,
188 focusing on the singular values of the layer’s Jacobian and their effect on the intrinsic dimension and
189 measure of the data manifold.

190 We adopt the unified GFM layer from Definition 1 and first introduce the piecewise linear map, which
191 is a key abstraction for understanding the mechanisms of the model architecture.

192 **Definition 2** (Piecewise Linear Function for Matrix Maps). A function $F : \mathbb{R}^{N \times d_{in}} \rightarrow \mathbb{R}^{N \times d_{out}}$ is
193 called piecewise linear if there exists a finite collection of polyhedral regions $\{R_i\}_{i=1}^K$ in $\mathbb{R}^{N \times d_{in}}$
194 such that $\mathbb{R}^{N \times d_{in}} = \bigcup_{i=1}^K R_i$ and for each region R_i , the function F is affine, meaning there exists a
195 matrix $A_i \in \mathbb{R}^{(Nd_{out}) \times (Nd_{in})}$ and a vector $b_i \in \mathbb{R}^{Nd_{out}}$ such that:

$$196 \text{vec}(F(\mathbf{H})) = A_i \cdot \text{vec}(\mathbf{H}) + b_i \quad \text{for all } \mathbf{H} \in R_i. \quad (3)$$

197 Equivalently, in matrix form, $F(\mathbf{H}) = \text{unvec}(A_i \cdot \text{vec}(\mathbf{H}) + b_i)$, where unvec is the operation that
198 reshapes the vector into an $N \times d_{out}$ matrix. (See Appendix B.3 for details.)

200 **Proposition 1.** The attention, message fusion, and update operators $\mathfrak{A}^{(\ell)}, \mathfrak{M}^{(\ell)}, \mathfrak{U}^{(\ell)}$ are generally
201 continuous, piecewise linear functions and differentiable almost everywhere (a.e.).

202 **Proposition 2.** The layer map $F^{(\ell)} : \mathbb{H}^{(\ell-1)} (\subset \mathbb{R}^{N \times d_{\ell-1}}) \rightarrow \mathbb{H}^{(\ell)} (\subset \mathbb{R}^{N \times d_\ell})$ is a piecewise linear
203 function. For any point \mathbf{H} where $F^{(\ell)}$ is differentiable, its Jacobian $\mathbf{J}^{(\ell)}(\mathbf{H}) \in \mathbb{R}^{Nd_\ell \times Nd_{\ell-1}}$ exists.

205 The proofs of Propositions 1 and 2 are provided in Appendices B.4 and B.5, respectively. Having
206 abstracted the model architecture, we now turn to mathematically modeling the input data and output
207 space, with particular emphasis on capturing the bounded nature of the input data.

208 **Definition 3** (Input Manifold and Representation Space). The input space is modeled as a compact,
209 smooth input manifold $\mathcal{M}_0 \subset \mathcal{X} \subset \mathbb{R}^{N \times d_0}$, with intrinsic dimension $d_{int}(\mathcal{M}_0) = D_0$. \mathcal{X} denotes
210 the entire set of possible input data forms for the model. \mathcal{M}_0 represents a low-dimensional subset
211 of \mathcal{X} endowed with specific semantic and geometric structures (see Appendix B.6 for details). The
212 representation at layer ℓ is the image of the input manifold under the composite map $\Phi^{(\ell)} =$
213 $F^{(\ell)} \circ \dots \circ F^{(1)}$:

$$214 \mathcal{M}^{(\ell)} = \Phi^{(\ell)}(\mathcal{M}_0) \subset \mathbb{R}^{N \times d_\ell}. \quad (4)$$

215 **Definition 4** (Prismatic Space). A set $\mathcal{M} \subset \mathbb{R}^n$ is called prismatic space if there exists a smooth
manifold $\mathcal{N} \subset \mathbb{R}^m$ and a piecewise linear map $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$ such that $\mathcal{M} = f(\mathcal{N})$.

Real-world graph data can be viewed as points sampled from the input manifold. And the output representations of graph data lie in the prismatic space, defined as the image of the input manifold under the GFM’s mapping. Hence, such a geometric modeling approach is of practical significance.

Proposition 3. $\Phi^{(\ell)} = F^{(\ell)} \circ \dots \circ F^{(1)}$ is piecewise linear. Assume that $\Phi^{(\ell)}$ is injective on each polyhedral region, then $\mathcal{M}^{(\ell)} = \Phi^{(\ell)}(\mathcal{M}_0)$ is a prismatic space and may have singularities.

The proof of Proposition 3 is provided in Appendix B.7. As in many geometric theories, an intuitive strategy for analyzing complex geometric space is to begin with a local perspective, particularly since the formation process of prismatic space is already well understood. The core of the prismatic effect lies in the singular value decomposition (SVD) of the layer Jacobians.

Definition 5 (Spectral Prism of a Layer). For a point $\mathbf{H} \in \mathbb{H}^{(\ell-1)}$ where $F^{(\ell)}$ is differentiable, let $\mathbf{J}^{(\ell)}(\mathbf{H}) = \mathbf{U}^{(\ell)} \Sigma^{(\ell)}(\mathbf{V}^{(\ell)})^\top$ be its SVD (see Appendix B.8 for details). The diagonal matrix $\Sigma^{(\ell)} = \text{diag}(\sigma_1^{(\ell)}, \sigma_2^{(\ell)}, \dots, \sigma_{r_\ell}^{(\ell)}, 0, \dots, 0)$ contains the singular values, where r_ℓ is the rank.

Theorem 1 (Local Measure Contraction Factor). Let $\mathbb{S} \subset \mathbb{H}^{(\ell-1)}$ be a sufficiently small measurable set contained in an s -dimensional subspace \mathbb{V} on which $F^{(\ell)}$ is linear and injective, with constant Jacobian $\mathbf{J}^{(\ell)}$ of rank r_ℓ ($s \leq r_\ell$). Assume \mathbb{V} is the subspace spanned by the first s right singular vectors of $\mathbf{J}^{(\ell)}$, corresponding to the s largest singular values $\sigma_1^{(\ell)} \geq \sigma_2^{(\ell)} \geq \dots \geq \sigma_s^{(\ell)} > 0$. Then, for the s -dimensional Hausdorff measure \mathcal{H}^s :

$$\mathcal{H}^s(F^{(\ell)}(\mathbb{S})) = \left(\prod_{i=1}^s \sigma_i^{(\ell)} \right) \mathcal{H}^s(\mathbb{S}). \quad (5)$$

In particular, if $s = r_\ell$, the volume contraction factor is $\prod_{i=1}^{r_\ell} \sigma_i^{(\ell)}$.

Corollary 1 (Local ReLU Prism Effect). Consider the ReLU activation function used within $F^{(\ell)}$. At points where ReLU is differentiable, its Jacobian \mathbf{J}_{ReLU} is a diagonal matrix with diagonal entries either 0 or 1, and hence idempotent ($\mathbf{J}_{\text{ReLU}}^2 = \mathbf{J}_{\text{ReLU}}$). This implies that ReLU acts as a local projection, nullifying some dimensions (setting outputs to zero) and preserving others. The ReLU component contributes to the prismatic effect by introducing sparsity and reducing the effective rank of the Jacobian in local regions.

The proof of Theorem 1 is provided in Appendix B.9. Corollary 1 provides a detailed explanation of the ReLU activation function. Having characterized the local properties via the singular values of the layer Jacobians, we now need to synthesize the global and local perspectives. This requires an abstract mathematical technique: constructing a global partition from local pieces is a common approach, even foundational to calculus. By Proposition 3, the piecewise linearity of the GFM network implies that the input manifold \mathcal{M}_0 is partitioned into multiple linear regions.

Definition 6 (Linear Region Partition). For each layer $\ell \in 1, \dots, L$, let $\Omega^{(\ell)}$ be the set of polytopic regions in $\mathbb{H}^{(\ell-1)}$ on which the function $F^{(\ell)}$ is linear. The GFM network $\Phi = F^{(L)} \circ \dots \circ F^{(1)}$ defines a recursive partition of the input manifold \mathcal{M}_0 into cells $\{C_k\}$, where each cell C_k is a connected subset of \mathcal{M}_0 such that there exists a sequence of regions $R_1 \in \Omega^{(1)}, R_2 \in \Omega^{(2)}, \dots, R_L \in \Omega^{(L)}$ satisfying:

$$C_k \subseteq R_1, F^{(1)}(C_k) \subseteq R_2, F^{(2)}(F^{(1)}(C_k)) \subseteq R_3, \dots, F^{(L-1)} \circ \dots \circ F^{(1)}(C_k) \subseteq R_L, \quad (6)$$

and on each cell C_k , the full network map Φ is linear. The total number of $\{C_k\}$ is related to the specific architecture and parameters of the GFM network.

Theorem 2 (Prismatic Folding and Intrinsic Dimension). The global map $\Phi : \mathcal{M}_0 \rightarrow \mathcal{M}^{(L)}$ is piecewise linear. The intrinsic dimension of the final representation space is bounded by the maximum over linear regions of the minimum rank achieved across layers:

$$d_{\text{int}}(\mathcal{M}^{(L)}) \leq \max_k \min_\ell \text{rank}(\mathbf{J}^{(\ell)}|_{\Phi^{(\ell-1)}(C_k)}). \quad (7)$$

Furthermore, the map Φ is piecewise constant on its rank. The final output $\mathcal{M}^{(L)}$ is a prismatic space embedded in $\mathbb{R}^{N \times d_L}$, likely with a much lower intrinsic dimension than D_0 .

The proof of Theorem 2 in Appendix B.11 provides a method for analyzing the upper bound of the intrinsic dimension of the output prismatic space. This bound is analytical, derived from the

partition of the input manifold induced by the GFM network as defined in Definition 6, making it difficult to compute numerically. Building on the local measure computation derived in Theorem 1, we formulate the definition of a global measure on the prismatic space in the following theorem.

Theorem 3 (Measure of the Final Prismatic Space). *Assume the piecewise linear map $\Phi = F^{(L)} \circ \dots \circ F^{(1)}$ is injective on the partition C_k of the input manifold \mathcal{M}_0 , where each C_k is a cell in the linear region partition. Then, the d_{int} -dimensional Hausdorff measure of the final prismatic space $\mathcal{M}^{(L)} = \Phi(\mathcal{M}_0)$ is given by:*

$$\mathcal{H}^{d_{int}}(\mathcal{M}^{(L)}) = \sum_k \mathcal{H}^{d_{int}}(\Phi(C_k)) = \sum_k \left(\prod_{\ell=1}^L \prod_{i=1}^{d_{int}} \sigma_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{int}}(C_k), \quad (8)$$

where for each layer ℓ and cell C_k , $\sigma_{i,k}^{(\ell)}$ for $i = 1, \dots, d_{int}$ are the d_{int} largest singular values of the Jacobian $\mathbf{J}^{(\ell)}$ of $F^{(\ell)}$ restricted to the tangent space of $\Phi^{(\ell-1)}(C_k)$ (which is d_{int} -dimensional). If Φ is not injective, the formula provides an upper bound.

The proof of Theorem 3 is provided in Appendix B.12. This theorem precisely quantifies the prismatic effect: the total “volume” of the final representation is the sum of the volumes of all fragments of the input manifold, each shrunk by the product of the singular values of the Jacobians along its path through the network. At this point, we have established a mathematical framework (PS-Theory) for analyzing the output prismatic space of GFM. However, corresponding theoretical results on adaptation capacity still require integration with specific adaptation methods, such as prompt tuning.

3.4 ADAPTATION CAPACITY OF PROMPT TUNING

Without loss of generality, and in alignment with Wang et al. (2025a), our theoretical analysis in this subsection focuses on pre-prompt methods. As demonstrated by Lemma 1 in Wang et al. (2025a), prompt tuning methods, such as GPF and All-in-One, are equivalent to a transformation of the node feature matrix \mathbf{X} . This transformation can be simplified to the form $\mathbf{X}_\omega = \tilde{\mathbf{X}} + \mathbf{c}\mathbf{p}^\top$, where $\mathbf{c} \geq 0$ can be referred to as the coefficient vector and $\tilde{\mathbf{X}}$ can be either \mathbf{X} or the natural extension of \mathbf{X} : $[\mathbf{X} \ 0]$. Therefore, modeling prompt tuning as a perturbation on the input manifold is a natural and direct approach within the PS-Theory framework.

Definition 7 (Prompt Perturbation Manifold). *Assume the original input manifold \mathcal{M}_0 is perturbed by a prompt \mathbf{P} , forming a compact smooth manifold $\mathcal{M}_0(\mathbf{P})$, e.g., $\mathcal{M}_0(\mathbf{P}) = \{\mathbf{X} + \mathbf{P} \mid \mathbf{X} \in \mathcal{M}_0\}$. The prompt space \mathcal{P} defines a manifold family: $\{\mathcal{M}_0(\mathbf{P}) \mid \mathbf{P} \in \mathcal{P}\}$. (See Appendix B.13 for details.)*

Theorem 4 (The Prompt Efficacy Bound). *The adaptation capacity of a prompt \mathbf{P} to influence model output is bounded by the measure and diameter of $\mathcal{M}^{(L)}(\mathbf{P})$:*

$$(\text{Measure Bound}) \quad \mathcal{H}^{d_{int}}(\mathcal{M}^{(L)}(\mathbf{P})) \leq \left(\sup_k \prod_{\ell=1}^L \prod_{i=1}^{d_{int}} \sigma_{i,k}^{(\ell)} \right) \cdot \mathcal{H}^{d_{int}}(\mathcal{M}_0(\mathbf{P})), \quad (9)$$

$$(\text{Diameter Bound}) \quad \text{diam}(\mathcal{M}^{(L)}(\mathbf{P})) \leq \left(\prod_{\ell=1}^L \sup_k \|\mathbf{J}_k^{(\ell)}\|_{op} \right) \cdot \text{diam}(\mathcal{M}_0(\mathbf{P})), \quad (10)$$

where $\|\cdot\|_{op}$ is the spectral norm (the largest singular value), $\sigma_{i,k}^{(\ell)}$ are the singular values of the Jacobian of the ℓ -th layer in the k -th linear region, and d_{int} is the intrinsic dimension of $\mathcal{M}^{(L)}(\mathbf{P})$.

The proof of Theorem 4 is provided in Appendix B.15. This theorem reveals that prompt tuning is fundamentally constrained by the frozen network’s architecture. The prompt’s influence is compressed by the product of layer-wise Jacobian singular values, leading to irreversible information loss. Since the prismatic, piecewise linear structure of the pre-trained model is immutable, the prompt can only shift the input within this fixed, contracting geometric framework (details are in Appendix B.16).

The establishment of Prismatic Space Theory revolves around prompt tuning, yet it offers a more fundamental geometric perspective on how graph foundation models process input manifolds. The theory is constructed layer by layer, making it not limited to adaptation methods that operate solely at the input data level, but also applicable to the analysis of other types of adaptation approaches.

324 **4 MESSAGE TUNING FOR GFMs**
 325

326 In this section, we introduce Message Tuning for GFMs (MTG), a novel lightweight adaptation
 327 approach that dynamically guides message fusion across all layers (Figure 1). Through our PS-Theory
 328 in Section 3, we rigorously prove that MTG has greater adaptation capacity than prompt tuning.
 329

330 **4.1 CORE MECHANISM**
 331

332 The concept of MTG shares a similar inspiration with prefix-tuning (Li & Liang, 2021), which
 333 is widely adopted in large language models. However, prefix-tuning is specifically designed for
 334 transformer architectures and generative tasks on sequential data, making it not directly applicable
 335 to graph-structured data. In this work, we introduce a general message tuning framework tailored
 336 for graph foundation models with diverse backbone architectures. The core mechanism of MTG
 337 is to inject a small set of learnable message prototypes into each layer, which then undergo a
 338 dynamic fusion with the native messages computed by the model, while the original parameters
 339 $\Theta^{(\ell)} = \{\Theta_a^{(\ell)}, \Theta_m^{(\ell)}, \Theta_u^{(\ell)}\}$ in Eq.(1) are kept frozen.
 340

341 **Learnable Message Prototypes.** Formally, for each layer ℓ , we introduce a small set of m learnable
 342 prototype vectors, denoted as $\mathbf{M}^{(\ell)} = [\mathbf{m}_1^{(\ell)}, \mathbf{m}_2^{(\ell)}, \dots, \mathbf{m}_m^{(\ell)}]^\top \in \mathbb{R}^{m \times d_{\ell-1}}$. Then the GFM layer
 343 after injecting message prototypes can be expressed as:

$$\mathbf{H}^{(\ell)} = \mathfrak{U}^{(\ell)} \left(\mathfrak{M}^{(\ell)} \left(\mathfrak{A}^{(\ell)} \left(\mathbf{A}, \mathbf{H}_{\textcolor{red}{M}}^{(\ell-1)}; \Theta_a^{(\ell)} \right), \mathbf{H}_{\textcolor{red}{M}}^{(\ell-1)}; \Theta_m^{(\ell)} \right), \mathbf{H}_{\textcolor{red}{M}}^{(\ell-1)}; \Theta_u^{(\ell)} \right), \quad (11)$$

$$\mathbf{H}_{\textcolor{red}{M}}^{(\ell-1)} = \mathfrak{F}^{(\ell)}(\mathbf{H}^{(\ell-1)}, \mathbf{M}^{(\ell)}; \Theta_f^{(\ell)}), \quad (12)$$

344 where $\mathfrak{F}^{(\ell)}$ denotes dynamic message fusion operator, $\mathbf{M}^{(\ell)}$ and $\Theta_f^{(\ell)}$ are the learnable parameters.
 345 This is equivalent to replacing $\mathbf{H}^{(\ell-1)}$ in Eq.(1) with $\mathbf{H}_{\textcolor{red}{M}}^{(\ell-1)}$ defined in Eq.(12), resulting in Eq.(11).
 346

347 **Dynamic Message Fusion.** While both are message fusion operators, $\mathfrak{F}^{(\ell)}$ differs from $\mathfrak{M}^{(\ell)}$ in that
 348 it dynamically fuses learnable message prototypes with the input message representations at each
 349 layer, instead of fusing messages between nodes. We simply employ a linear projection followed by
 350 a row-wise Softmax operation to compute the attention for fusing $\mathbf{H}^{(\ell-1)}$ with $\mathbf{M}^{(\ell)}$. Thus, $\mathfrak{F}^{(\ell)}$ can
 351 be expressed as:

$$\mathfrak{F}^{(\ell)}(\mathbf{H}^{(\ell-1)}, \mathbf{M}^{(\ell)}; \Theta_f^{(\ell)}) = \mathbf{H}^{(\ell-1)} + \text{Softmax}(\mathbf{H}^{(\ell-1)} \mathbf{W}_p^{(\ell)}) \cdot \mathbf{M}^{(\ell)} \quad (13)$$

352 where $\Theta_f^{(\ell)} = \mathbf{W}_p^{(\ell)} \in \mathbb{R}^{d_{\ell-1} \times m}$ is the projection matrix. Alternatively, one may consider replacing
 353 linear projections with MLPs or employing dot-product attention, though this may introduce higher
 354 computational complexity.
 355

360 **4.2 THEORETICAL ANALYSIS**
 361

362 Consider a pre-trained GFM Φ with L layers as defined in Definition 1, and let $\mathcal{M}_0 \subset \mathbb{R}^{N \times d_0}$ be the
 363 compact smooth input manifold with intrinsic dimension D_0 . Let \mathcal{P} be the set of possible prompts
 364 for prompt tuning, and for any prompt $\mathbf{P} \in \mathcal{P}$, let $\mathcal{M}_0(\mathbf{P})$ be the perturbed input manifold. The final
 365 representation space under prompt tuning is $\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P}) = \Phi(\mathcal{M}_0(\mathbf{P}))$.
 366

367 **Theorem 5** (Message Tuning Has Greater Adaptation Capacity). *For message tuning, we inject
 368 learnable message prototypes $\mathbf{M}^{(\ell)} \in \mathbb{R}^{m \times d_{\ell-1}}$ and fusion parameters $\Theta_f^{(\ell)}$ at each layer ℓ , resulting
 369 in a modified network Φ_{MTG} . Let $\mathcal{M}_{\text{MTG}}^{(L)}$ be the final representation space under message tuning with
 370 optimally chosen parameters. Then, the following inequalities hold:*

$$(\text{Intrinsic Dimension Comparison}) \quad d_{\text{int}}(\mathcal{M}_{\text{MTG}}^{(L)}) \geq d_{\text{int}}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})) \quad \text{for all } \mathbf{P} \in \mathcal{P}, \quad (14)$$

$$(\text{Measure Comparison}) \quad \mathcal{H}^{d_{\text{int}}}(\mathcal{M}_{\text{MTG}}^{(L)}) \geq \mathcal{H}^{d_{\text{int}}}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})) \quad \text{for all } \mathbf{P} \in \mathcal{P}, \quad (15)$$

$$(\text{Diameter Comparison}) \quad \text{diam}(\mathcal{M}_{\text{MTG}}^{(L)}) \geq \text{diam}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})) \quad \text{for all } \mathbf{P} \in \mathcal{P}. \quad (16)$$

371 Moreover, there exists a message tuning configuration such that the inequalities are strict.
 372

373 In the semantic context of the geometric properties of the prismatic space output by the GFM,
 374 this theorem reveals that MTG has greater adaptation capacity than prompt tuning. The proof of
 375 Theorem 5 and further theoretical analysis are provided in Appendix C.

378

5 EXPERIMENTS

380 In this section, we conduct extensive experiments to evaluate our proposed MTG on the Graph Prompt
381 Learning benchmark ProG (Zi et al., 2024) by answering the following five research questions:
382383 **Q1:** How does MTG perform compared to prompt tuning baselines? (Section 5.2)
384385 **Q2:** How do different pre-training strategies affect MTG’s adaptation capability? (Section 5.3)
386387 **Q3:** Can MTG effectively mitigate negative transfer during adaptation? (Section 5.4)
388389 **Q4:** How does MTG perform on different backbone models? (Appendix F.2)
390391 **Q5:** What is MTG’s computational efficiency compared to prompt tuning methods? (Appendix F.3)
392393

5.1 EXPERIMENT SETTING

394 **Datasets.** To investigate the adaptability of MTG across diverse graphs, we conduct experiments
395 across 15 datasets from the Graph Prompt Learning benchmark ProG (Zi et al., 2024). We evaluate our
396 method over 7 node classification benchmarks spanning homophilic graphs (Cora, Citeseer, PubMed)
397 (Sen et al., 2008), heterophilic graphs (Texas, Actor, Wisconsin) (Pei et al., 2020), and large-scale
398 graphs (ogbn-arxiv) (Hu et al., 2020a). For graph-level tasks, we employ 8 graph classification
399 datasets across diverse domains, including biological datasets (D&D, ENZYMEs, PROTEINS)
400 (Dobson & Doig, 2003; Borgwardt et al., 2005; Wang et al., 2022), small molecule datasets (BZR,
401 COX2, MUTAG) (Kriege & Mutzel, 2012; Rossi & Ahmed, 2015), and social networks (COLLAB,
402 IMDB-B) (Yanardag & Vishwanathan, 2015). Table 6 summarizes the statistics of all datasets and
403 more dataset details are provided in Appendix D.2.
404405 **Backbones.** Since the latest studies (Luo et al., 2024; 2025) have once again validated the powerful
406 capabilities of GCN (Kipf & Welling, 2017) as the most classic and widely used graph neural network,
407 we choose GCN as the baseline to compare MTG with prompt tuning. We also investigate other
408 models commonly used as backbones for GFMs, such as GraphSAGE (Hamilton et al., 2017), GAT
409 (Veličković et al., 2018), GIN (Xu et al., 2019), and Graph Transformer (Ying et al., 2021), and the
410 results can be found in Appendix F.2.
411412 **Pre-training Strategies.** Following ProG (Zi et al., 2024), we adopt six representative pre-training
413 strategies across three levels: DGI (Veličković et al., 2019) maximizes node-graph mutual information
414 while GraphMAE (Hou et al., 2022) reconstructs masked features at the node level; EdgePreGPPT
415 (Sun et al., 2022) computes link probabilities and EdgePreGprompt (Liu et al., 2023b) learns triplet-
416 based similarities for edge-level tasks; GraphCL (You et al., 2020) enforces augmentation consistency
417 and SimGRACE (Xia et al., 2022) performs parameter perturbations at the graph level.
418419 **Prompt Tuning Baselines.** We first adopt supervised learning as the baseline for evaluating positive
420 transfer, where negative transfer is identified when adaptation methods fail to surpass supervised
421 performance. Following ProG (Zi et al., 2024), we compare MTG to fine-tuning and the following
422 prevalent prompt tuning methods: GPPT (Sun et al., 2022), Gprompt (Liu et al., 2023b), All-in-one
423 (Sun et al., 2023a), GPF and GPF-plus (Fang et al., 2023). Baseline results combine those from ProG
424 with our own reproductions, and details are provided in Appendix E.
425426 **Implementation.** For node tasks, we use 90% of the data to the test set, while for graph tasks, we use
427 an 80% test split. To ensure robustness, we repeat sampling five times to construct k-shot tasks and
428 report average and standard deviation over these five results. Evaluation metrics include Accuracy
429 (primary metric in Section 5), Macro F1 Score, and AUROC. Hyperparameters are optimized via
430 random search. A comprehensive description of the experimental setup is provided in Appendix D.
431432

5.2 UPPER BOUND PERFORMANCE OF MESSAGE TUNING

433 One-shot node/graph classification is one of the most challenging downstream adaptation tasks for
434 graph foundation models, as it requires learning the characteristics of an entire class using only one
435 sample. In Table 1 and Table 2, we present the best results achieved by various adaptation methods
436 across 15 datasets, which represent the top adaptation performance from pre-trained models with
437 different strategies. This offers an intuitive reflection of the upper bound performance of each type of
438 adaptation method. The results in the tables demonstrate that our adaptation method MTG achieves a
439 higher performance upper bound across all 15 datasets compared to state-of-the-art prompt tuning
440 methods, which aligns with our theoretical insights. Despite being trained on only a small number
441

432 Table 1: Performance comparison of adaptation methods on 1-shot node classification (accuracy \pm std %, 5 runs).
 433 The **first**, **second** and **third** best results are shaded in red, with descending color saturation.

Method	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbn-arxiv
Supervised	26.56 \pm 5.55	21.78 \pm 7.32	39.37 \pm 16.34	41.60 \pm 3.10	37.97 \pm 5.80	20.57 \pm 4.47	10.99 \pm 3.19
Fine-tuning	52.61 \pm 1.73	35.05 \pm 4.37	46.74 \pm 14.89	40.69 \pm 4.13	46.88 \pm 4.69	20.74 \pm 4.12	16.21 \pm 3.82
GPPT	43.15 \pm 9.44	37.26 \pm 6.17	48.31 \pm 17.72	30.40 \pm 6.81	31.81 \pm 15.33	22.58 \pm 1.97	14.65 \pm 3.07
Gprompt	56.66 \pm 11.22	53.21 \pm 10.94	39.74 \pm 15.35	77.07 \pm 5.93	33.25 \pm 40.11	25.26 \pm 1.10	75.72 \pm 4.95
All-in-one	52.39 \pm 10.17	40.41 \pm 2.80	45.17 \pm 6.45	66.29 \pm 19.11	65.49 \pm 7.06	24.61 \pm 2.80	13.16 \pm 5.98
GPF	38.57 \pm 5.41	31.16 \pm 8.05	49.99 \pm 8.86	78.35 \pm 4.07	73.54 \pm 18.50	28.70 \pm 3.35	65.11 \pm 5.70
GPF-plus	55.77 \pm 10.30	59.67 \pm 11.87	46.64 \pm 18.97	82.11 \pm 13.95	76.10 \pm 20.35	29.32 \pm 8.56	71.98 \pm 12.23
MTG (Ours)	58.54 \pm 7.89	62.31 \pm 18.90	50.70 \pm 11.68	83.32 \pm 12.46	79.13 \pm 17.18	29.44 \pm 7.31	75.97 \pm 4.29

445 Table 2: Performance comparison of adaptation methods on 1-shot graph classification.

Method	IMDB-B	COLLAB	PROTEINS	MUTAG	ENZYMES	COX2	BZR	D&D
Supervised	57.30 \pm 0.98	47.23 \pm 0.61	56.36 \pm 7.97	65.20 \pm 6.70	20.58 \pm 2.00	27.08 \pm 1.95	25.80 \pm 6.53	55.33 \pm 6.22
Fine-tuning	57.75 \pm 1.22	48.10 \pm 0.23	63.44 \pm 3.64	65.47 \pm 5.89	22.21 \pm 2.79	76.19 \pm 5.41	34.69 \pm 8.50	57.15 \pm 4.32
GPPT	50.15 \pm 0.75	47.18 \pm 5.93	60.92 \pm 2.47	60.40 \pm 15.43	21.29 \pm 3.79	78.23 \pm 1.38	59.32 \pm 11.22	57.69 \pm 6.89
Gprompt	54.75 \pm 12.43	48.25 \pm 13.64	59.17 \pm 11.26	73.60 \pm 4.76	22.29 \pm 3.50	54.64 \pm 9.94	55.43 \pm 13.69	57.81 \pm 2.68
All-in-one	60.07 \pm 4.81	51.66 \pm 0.26	66.49 \pm 6.26	75.20 \pm 6.33	23.96 \pm 1.45	76.14 \pm 5.51	64.38 \pm 9.32	59.72 \pm 1.52
GPF	59.65 \pm 5.06	47.42 \pm 11.22	63.91 \pm 3.26	68.40 \pm 5.09	22.00 \pm 1.25	65.79 \pm 17.72	71.67 \pm 14.71	59.36 \pm 1.18
GPF-plus	57.93 \pm 1.62	47.24 \pm 0.29	62.92 \pm 2.78	65.20 \pm 6.04	22.92 \pm 1.64	33.78 \pm 1.52	71.17 \pm 14.92	57.62 \pm 2.42
MTG (Ours)	62.25 \pm 3.72	52.25 \pm 0.56	66.98 \pm 2.17	75.80 \pm 5.49	26.08 \pm 4.31	78.27 \pm 2.01	74.81 \pm 13.96	60.68 \pm 2.42

456 of parameters, MTG still exhibits a substantial advantage over supervised learning and fine-tuning
 457 approaches, which underscores its high parameter efficiency. Among node-level tasks, GPF-plus
 458 is the prompt tuning method that performs closest to MTG, while on graph-level tasks, All-in-one
 459 ranks as the second most effective method after MTG. Additional experimental details are provided
 460 in Appendix F, including results for few-shot node/graph classification tasks under **3-shot and 5-shot**
 461 **settings** (Appendix F.1), a comparative analysis of **computational efficiency** between MTG and
 462 prompt tuning methods (Appendix F.3), along with a **sensitivity analysis** (Appendix F.4).

463 5.3 ROBUSTNESS PERFORMANCE OF MTG ACROSS PRE-TRAINING STRATEGIES

465 In addition to validating the upper bound performance of MTG, we further analyze whether MTG
 466 exhibits strong robustness across different pre-training strategies through more detailed experimental
 467 results. In Section 5.2, we have verified that GPF-plus and All-in-one are the best-performing prompt
 468 tuning methods for 1-shot node classification and 1-shot graph classification tasks, respectively.
 469 Therefore, we selected these two methods along with Fine-tuning for a more detailed comparison
 470 with MTG. In our experiments, we employ three pre-training strategies at the node, edge, and graph
 471 levels to obtain pre-trained models, which have varying impacts on different datasets. As shown in
 472 Tables 3 and 4, Fine-tuning experiences performance collapse on the ogbn-arxiv dataset under the DGI
 473 and EdgePreGprompt pre-training strategies, with the accuracy dropping as low as 4.65%. Similarly,
 474 GPF-plus exhibits performance degradation on the Cora dataset under the DGI and SimGRACE
 475 pre-training strategies, achieving an accuracy as low as 17.29%. All-in-one also shows relatively
 476 low performance on the IMDB-B dataset under the GraphMAE and EdgePreGprompt pre-training
 477 strategies. These results indicate that their adaptability varies significantly across different pre-training
 478 strategies. In contrast, MTG demonstrates relatively more stable performance across all datasets and
 479 all pre-training strategies, highlighting broader compatibility and better robustness when combined
 480 with various types of pre-training strategies.

481 5.4 MITIGATION OF NEGATIVE TRANSFER

483 Compared to visual images and natural language, fine-tuning pre-trained models on graph data for
 484 downstream tasks is more prone to negative transfer. Therefore, the ability to effectively mitigate
 485 negative transfer serves as an important criterion for evaluating the quality of an adaptation method.
 As shown in Tables 3 and 4, prompt tuning methods such as GPF-plus and All-in-one have already

486 Table 3: Performance comparison of Fine-tuning, GPF-plus, and MTG on 1-shot node classification. \uparrow/\downarrow :
487 positive/negative transfer vs. supervised learning baseline; **NTR** (Negative Transfer Rate): fraction of datasets
488 with \downarrow per daptation method.

Pre-training	Adaptation	NTR	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbn-arxiv
DGI	Supervised	0%	26.56 \pm 5.55 (-)	21.78 \pm 7.32 (-)	39.37 \pm 16.34 (-)	41.60 \pm 3.10 (-)	37.97 \pm 5.80 (-)	20.57 \pm 4.47 (-)	10.99 \pm 3.19 (-)
	Fine-tuning	57%	33.15 \pm 7.84 (↑)	21.64\pm3.92 (↓)	42.01 \pm 12.54 (↑)	37.49\pm7.56 (↓)	45.31 \pm 5.01 (↑)	19.76\pm3.53 (↓)	7.21\pm2.91 (↓)
	GPF-plus	29%	17.29\pm6.18 (↓)	26.60 \pm 13.24 (↑)	34.02\pm11.94 (↓)	74.68 \pm 11.81 (↑)	71.44 \pm 18.66 (↑)	22.42 \pm 9.66 (↑)	16.83 \pm 10.02 (↑)
GraphMAE	MTG	0%	49.48 \pm 4.82 (↑)	62.31 \pm 18.90 (↑)	46.18 \pm 7.32 (↑)	67.72 \pm 10.19 (↑)	62.96 \pm 16.80 (↑)	25.48 \pm 7.33 (↑)	25.06 \pm 10.57 (↑)
	Fine-tuning	57%	32.93 \pm 3.17 (↑)	21.26\pm3.57 (↓)	42.99 \pm 14.25 (↑)	36.80\pm7.17 (↓)	37.81\pm8.62 (↓)	19.86\pm2.70 (↓)	12.35 \pm 3.60 (↑)
	GPF-plus	0%	54.26 \pm 7.48 (↑)	59.67 \pm 11.87 (↑)	46.64 \pm 18.57 (↑)	82.11 \pm 13.95 (↑)	70.95 \pm 18.63 (↑)	26.58 \pm 7.84 (↑)	49.81 \pm 2.62 (↑)
EdgePre-GPPT	MTG	0%	46.27 \pm 6.66 (↑)	49.21 \pm 12.95 (↑)	46.98 \pm 10.02 (↑)	83.32 \pm 12.46 (↑)	71.59 \pm 18.67 (↑)	29.44 \pm 7.31 (↑)	36.44 \pm 9.59 (↑)
	Fine-tuning	43%	38.12 \pm 5.29 (↑)	18.09\pm5.39 (↓)	46.74 \pm 14.09 (↑)	35.31\pm9.31 (↓)	47.66 \pm 2.37 (↑)	19.17\pm2.53 (↓)	16.21 \pm 3.82 (↑)
	GPF-plus	14%	28.49\pm18.73 (↓)	28.04 \pm 14.31 (↑)	46.51 \pm 15.84 (↑)	72.66 \pm 12.05 (↑)	70.67 \pm 17.59 (↑)	29.32 \pm 8.56 (↑)	71.98 \pm 12.23 (↑)
EdgePre-Gprompt	MTG	0%	46.68 \pm 2.66 (↑)	33.22 \pm 12.52 (↑)	44.85 \pm 9.75 (↑)	73.80 \pm 9.56 (↑)	71.11 \pm 17.13 (↑)	20.96 \pm 2.93 (↑)	75.97 \pm 4.29 (↑)
	Fine-tuning	14%	35.57 \pm 5.83 (↑)	22.28 \pm 3.80 (↑)	41.50 \pm 7.54 (↑)	40.69\pm4.13 (↓)	40.62 \pm 7.95 (↑)	20.74 \pm 4.16 (↑)	14.83 \pm 2.38 (↑)
	GPF-plus	0%	55.77 \pm 10.30 (↑)	49.43 \pm 8.21 (↑)	42.79 \pm 18.18 (↑)	78.76 \pm 13.63 (↑)	68.75 \pm 16.51 (↑)	22.68 \pm 3.64 (↑)	57.44 \pm 6.95 (↑)
GraphCL	MTG	0%	46.29 \pm 3.84 (↑)	45.30 \pm 16.04 (↑)	50.70 \pm 11.68 (↑)	72.75 \pm 11.21 (↑)	79.13 \pm 17.18 (↑)	21.34 \pm 1.78 (↑)	21.08 \pm 2.34 (↑)
	Fine-tuning	43%	52.61 \pm 1.73 (↑)	27.02 \pm 4.31 (↑)	42.49 \pm 11.29 (↑)	33.94\pm7.74 (↓)	40.31 \pm 13.68 (↑)	20.19\pm1.98 (↓)	4.65\pm1.19 (↓)
	GPF-plus	29%	34.18 \pm 17.71 (↑)	28.86 \pm 22.88 (↑)	37.02 \pm 11.29 (↑)	52.35 \pm 19.69 (↑)	75.40 \pm 19.10 (↑)	22.82 \pm 4.99 (↑)	32.11 \pm 4.86 (↑)
SimGRACE	MTG	0%	58.54 \pm 7.89 (↑)	50.96 \pm 16.40 (↑)	40.00 \pm 7.80 (↑)	48.41 \pm 16.10 (↑)	69.71 \pm 16.42 (↑)	24.77 \pm 8.45 (↑)	38.96 \pm 6.82 (↑)
	Fine-tuning	57%	40.40 \pm 4.66 (↑)	35.05 \pm 4.37 (↑)	37.59\pm8.17 (↓)	37.37\pm3.68 (↓)	46.88 \pm 4.64 (↑)	19.78\pm1.89 (↓)	8.13\pm3.26 (↓)
	GPF-plus	29%	21.33\pm14.86 (↓)	24.61 \pm 21.21 (↑)	35.90\pm9.06 (↓)	73.49 \pm 14.17 (↑)	76.10 \pm 20.35 (↑)	20.51 \pm 4.24 (↑)	46.71 \pm 3.17 (↑)
	MTG	0%	45.93 \pm 7.67 (↑)	57.60 \pm 9.01 (↑)	43.29 \pm 10.80 (↑)	72.98 \pm 9.75 (↑)	73.17 \pm 16.68 (↑)	22.03 \pm 3.59 (↑)	37.90 \pm 5.83 (↑)

Table 4: Performance comparison of Fine-tuning, All-in-one, and MTG on 1-shot graph classification.

Pre-training	Adaptation	NTR	IMDB-B	COLLAB	PROTEINS	MUTAG	ENZYMES	COX2	BZR	D&D
DGI	Supervised	0%	57.30 \pm 0.98 (-)	47.23 \pm 0.61 (-)	56.36 \pm 7.97 (-)	65.20 \pm 6.70 (-)	20.58 \pm 2.00 (-)	27.08 \pm 11.94 (-)	25.80 \pm 6.53 (-)	55.33 \pm 6.22 (-)
	Fine-tuning	38%	57.32 \pm 0.90 (↑)	42.22\pm0.73 (↓)	64.65 \pm 2.10 (↑)	64.13\pm7.90 (↓)	17.83\pm1.88 (↓)	29.44 \pm 9.68 (↑)	26.48 \pm 7.61 (↑)	57.15 \pm 4.32 (↑)
	All-in-one	13%	60.07 \pm 4.81 (↑)	39.56\pm5.00 (↓)	62.58 \pm 7.07 (↑)	73.87 \pm 6.13 (↑)	23.96 \pm 1.45 (↑)	50.72 \pm 9.93 (↑)	64.38 \pm 9.32 (↑)	55.97 \pm 6.52 (↑)
GraphMAE	MTG	13%	59.15 \pm 5.44 (↑)	43.46\pm6.83 (↓)	62.78 \pm 2.36 (↑)	65.60 \pm 7.29 (↑)	24.71 \pm 1.88 (↑)	51.74 \pm 13.90 (↑)	74.81 \pm 13.96 (↑)	56.39 \pm 3.27 (↑)
	Fine-tuning	0%	57.70 \pm 1.13 (↑)	48.10 \pm 0.23 (↑)	63.57 \pm 3.57 (↑)	65.20 \pm 5.00 (-)	22.21 \pm 2.79 (↑)	28.47 \pm 14.72 (↑)	25.80 \pm 6.53 (-)	57.54 \pm 4.41 (↑)
	All-in-one	25%	52.62\pm3.04 (↓)	40.82\pm14.63 (↓)	66.49 \pm 6.26 (↑)	69.67 \pm 9.13 (↑)	23.21 \pm 1.72 (↑)	56.68 \pm 7.38 (↑)	58.64 \pm 19.59 (↑)	58.77 \pm 1.05 (↑)
EdgePre-GPPT	MTG	0%	58.10 \pm 5.72 (↑)	48.24 \pm 9.56 (↑)	59.62 \pm 6.41 (↑)	66.93 \pm 7.03 (↑)	22.71 \pm 2.58 (↑)	58.93 \pm 12.05 (↑)	54.07 \pm 18.34 (↑)	58.01 \pm 5.85 (↑)
	Fine-tuning	63%	57.20\pm0.85 (↓)	47.14\pm0.55 (↓)	58.27 \pm 10.66 (↑)	44.27\pm4.73 (↓)	19.79\pm2.17 (↓)	27.83 \pm 13.44 (↑)	72.10 \pm 14.30 (↑)	52.82\pm0.38 (↓)
	All-in-one	13%	59.12 \pm 0.77 (↑)	42.74\pm4.65 (↓)	65.71 \pm 5.49 (↑)	75.20 \pm 6.33 (↑)	20.92 \pm 2.04 (↑)	60.27 \pm 16.97 (↑)	59.69 \pm 9.90 (↑)	56.24 \pm 2.46 (↑)
EdgePre-Gprompt	MTG	13%	62.25 \pm 3.72 (↑)	45.15\pm6.00 (↓)	62.71 \pm 2.30 (↑)	67.20 \pm 6.36 (↑)	26.08 \pm 3.31 (↑)	60.16 \pm 10.63 (↑)	62.28 \pm 10.13 (↑)	56.37 \pm 8.33 (↑)
	Fine-tuning	38%	57.35 \pm 0.92 (↑)	47.20\pm0.53 (↓)	61.84 \pm 2.59 (↑)	62.67\pm2.67 (↓)	19.75\pm2.33 (↓)	27.13 \pm 12.05 (↑)	29.44 \pm 11.20 (↑)	56.16 \pm 5.10 (↑)
	All-in-one	25%	53.78\pm2.82 (↓)	42.87\pm6.19 (↓)	61.82 \pm 7.53 (↑)	68.27 \pm 3.88 (↑)	21.88 \pm 0.56 (↑)	49.06 \pm 5.53 (↑)	32.65 \pm 10.08 (↑)	57.60 \pm 4.37 (↑)
GraphCL	MTG	0%	59.45 \pm 5.45 (↑)	47.72 \pm 8.45 (↑)	65.66 \pm 1.56 (↑)	75.80 \pm 5.49 (↑)	22.29 \pm 1.94 (↑)	57.75\pm10.76 (↑)	49.94 \pm 9.08 (↑)	60.68 \pm 2.42 (↑)
	Fine-tuning	25%	57.75 \pm 1.02 (↑)	39.62\pm0.63 (↓)	63.44 \pm 3.64 (↑)	45.07\pm8.38 (↓)	23.96 \pm 1.99 (↑)	53.14 \pm 21.32 (↑)	29.07 \pm 7.00 (↑)	60.62 \pm 1.56 (↑)
	All-in-one	13%	58.75 \pm 0.80 (↑)	51.66 \pm 6.60 (↑)	66.00 \pm 8.79 (↑)	66.00 \pm 8.79 (↑)	19.46\pm2.85 (↓)	52.55 \pm 13.51 (↑)	42.65 \pm 14.43 (↑)	59.72 \pm 1.52 (↑)
SimGRACE	MTG	0%	57.65 \pm 7.05 (↑)	47.81 \pm 3.73 (↑)	63.70 \pm 2.87 (↑)	66.20 \pm 7.52 (↑)	20.96 \pm 1.97 (↑)	50.36 \pm 12.97 (↑)	51.05 \pm 15.50 (↑)	55.46 \pm 4.77 (↑)
	Fine-tuning	38%	57.33 \pm 0.96 (↑)	46.89\pm0.42 (↓)	60.07 \pm 3.21 (↑)	65.47 \pm 5.89 (↑)	19.71\pm1.76 (↓)	76.19 \pm 5.41 (↑)	28.48 \pm 6.49 (↑)	53.23\pm9.71 (↓)
	All-in-one	0%	58.83 \pm 0.85 (↑)	47.60 \pm 3.90 (↑)	66.20 \pm 7.52 (↑)	66.67 \pm 5.73 (↑)	22.50 \pm 1.56 (↑)	76.14 \pm 5.51 (↑)	59.01 \pm 12.34 (↑)	58.26 \pm 1.18 (↑)

527 relatively alleviated negative transfer compared to fine-tuning, while our proposed MTG demonstrates
528 a more significant advantage in mitigating negative transfer. Under all pre-training strategies across
529 the two downstream tasks, MTG achieves a lower negative transfer rate than GPF-plus and All-in-one,
530 and is markedly superior to fine-tuning. It is particularly noteworthy that MTG completely eliminates
531 negative transfer in the 1-shot node classification task, highlighting its exceptional capability in
532 mitigating such issues. A theoretical analysis of **negative transfer** is presented in Appendix C.2.

6 CONCLUSION

536 In this paper, we propose Prismatic Space Theory to quantify the capacity of adaptation approaches
537 and establish the upper bound for the adaptation capacity of graph prompt tuning. Building on these
538 insights, we introduce Message Tuning for GFM (MTG), a lightweight adaptation method that
539 dynamically guides message fusion across GNN layers while keeping pre-trained weights frozen.
Theoretical and empirical results demonstrate MTG's consistent superiority over prompt tuning.

540
541
ETHICS STATEMENT542
543
544
545
We acknowledge the ICLR Code of Ethics and confirm that our work adheres to its principles. Our
research prioritizes societal benefit, avoids harm, and respects privacy and intellectual property. All
data used in this study comply with ethical guidelines and relevant licenses.546
547
REPRODUCIBILITY STATEMENT548
549
550
To ensure the reproducibility of our work, we have made substantial efforts to provide comprehensive
details and resources across our main paper, appendix, and supplementary materials.551
552
553
554
Code and Resources. We have developed a reproducible codebase MTG based on the ProG
library (Zi et al., 2024), extended to support our message tuning. Our code is available at <https://anonymous.4open.science/r/MTG>. Anonymous, downloadable source code also includes scripts for
pre-training, adaptation, and evaluation on all datasets used in our experiments.555
556
557
Data Processing. A detailed description of all datasets used in the experiments and dataset prepro-
cessing steps, including feature extraction, graph normalization, and train/validation/test splits for
few-shot settings (1/3/5-shot), is provided in Appendix D.558
559
560
Computational Resources. Hardware specifications and software environments are described in
Appendix D.1 to facilitate replication of computational experiments.561
562
Theoretical Proofs. All theoretical claims, including the Prismatic Space Theory and its application
to the analysis of prompt tuning and message tuning, are rigorously proven in Appendix B and C.563
564
We believe these efforts collectively ensure the reproducibility of our work and encourage the
community to build upon our findings.566
567
REFERENCES568
569
Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. *International Conference on Learning Representations*, 2018.570
571
Kosio Beshkov. A relative homology theory of representation in neural networks. *arXiv preprint*
arXiv:2502.01360, 2025.573
574
Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex J. Smola,
and Hans-Peter Kriegel. Protein function prediction via graph kernels. *Bioinformatics*, 2005.575
576
Haibo Chen, Xin Wang, Zeyang Zhang, Haoyang Li, Ling Feng, and Wenwu Zhu. Autogfm:
Automated graph foundation model with adaptive architecture customization. In *International*
Conference on Machine Learning, 2025.579
580
Cameron Diao, Kaixiong Zhou, Zirui Liu, Xiao Huang, and Xia Hu. Molcpt: Molecule continuous
prompt tuning to generalize molecular representation learning. *arXiv preprint arXiv:2212.10614*,
2023.582
583
Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes without
alignments. *Journal of Molecular Biology*, 2003.585
586
Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt tuning
for graph neural networks. *Advances in Neural Information Processing Systems*, 2023.587
588
Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In
International Conference on Learning Representations, 2019.589
590
Yaoying Fu. Toric geometry of relu neural networks. *arXiv preprint arXiv:2509.05894*, 2025.591
592
Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In *International Conference on Machine Learning*, 2017.593
Werner Greub. Linear algebra. In *Graduate Texts in Mathematics*. Springer, 1975.

594 Anchun Gui, Jinqiang Ye, and Han Xiao. G-adapter: Towards structure-aware parameter-efficient
 595 transfer learning for graph transformer networks. In *Thirty-Eighth AAAI Conference on Artificial*
 596 *Intelligence*, 2024.

597

598 Paul R. Halmos. Measure theory. In *Graduate Texts in Mathematics*. Springer, 1950.

599

600 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 601 *Advances in Neural Information Processing Systems*, 2017.

602

603 Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
 604 Graphmae: Self-supervised masked graph autoencoders. In *Proceedings of the 28th ACM SIGKDD*
 605 *International Conference on Knowledge Discovery and Data Mining*, 2022.

606

607 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 608 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in*
 609 *Neural Information Processing Systems*, 33:22118–22133, 2020a.

610

611 Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
 612 pre-training of graph neural networks. In *Proceedings of the 26th ACM SIGKDD International*
 613 *Conference on Knowledge Discovery and Data Mining*, 2020b.

614

615 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 616 In *International Conference on Learning Representations*, 2017.

617

618 Steven Krantz and Harold Parks. *Geometric Integration Theory*. Birkhäuser Boston, MA, 2008.

619

620 Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In *International*
 621 *Conference on Machine Learning*, 2012.

622

623 Serge Lang. Real and functional analysis. In *Graduate Texts in Mathematics*. Springer, 1993.

624

625 John M. Lee. Introduction to topological manifolds. In *Graduate Texts in Mathematics*. Springer,
 626 2011.

627

628 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 629 tuning. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language*
 630 *Processing*, 2021.

631

632 Shengrui Li, Xuetong Han, and Jing Bai. Adapterggn: Parameter-efficient fine-tuning improves
 633 generalization in gnns. In *Thirty-Eighth AAAI Conference on Artificial Intelligence*, 2024.

634

635 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
 636 *Proceedings of the 59th Annual Meeting of the Association of Computational Linguistics*, 2021.

637

638 Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang,
 639 Lichao Sun, Philip S. Yu, and Chuan Shi. Graph foundation models: Concepts, opportunities and
 640 challenges. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.

641

642 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
 643 P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
 644 In *Proceedings of the 60th Annual Meeting of the Association of Computational Linguistics*, 2022.

645

646 Yajing Liu, Christina M Cole, Chris Peterson, and Michael Kirby. Relu neural networks, polyhedral
 647 decompositions, and persistent homolog. In *International Conference on Machine Learning*,
 648 2023a.

649

650 Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
 651 downstream tasks for graph neural networks. In *The ACM Web Conference*, 2023b.

652

653 Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic gnns are strong baselines: Reassessing gnns for
 654 node classification. *Advances in Neural Information Processing Systems*, 2024.

655

656 Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Can classic gnns be strong baselines for graph-level tasks?
 657 simple architectures meet excellence. In *International Conference on Machine Learning*, 2025.

648 Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural network acoustic
 649 models. In *International Conference on Machine Learning*, 2013.

650

651 André F. T. Martins and Ramón Fernandez Astudillo. From softmax to sparsemax: A sparse model of
 652 attention and multi-label classification. In *International Conference on Machine Learning*, 2016.

653

654 Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In
 655 *International Conference on Machine Learning*, 2010.

656

657 Chaoxi Niu, Guansong Pang, Ling Chen, and Bing Liu. Replay-and-forget-free graph class-
 658 incremental learning: A task profiling and prompting approach. *Advances in Neural Information
 Processing Systems*, 2024.

659

660 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 661 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
 662 Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
 663 Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
 664 library. In *Advances in Neural Information Processing Systems*, 2019.

665

666 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 667 graph convolutional networks. *International Conference on Learning Representations*, 2020.

668

669 Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
 670 and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In *Proceedings
 of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*,
 2020.

671

672 Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
 673 Self-supervised graph transformer on large-scale molecular data. *Advances in Neural Information
 674 Processing Systems*, 2020.

675

676 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics
 677 and visualization. In *AAAI Conference on Artificial Intelligence*, 2015.

678

679 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina EliassiRad.
 680 Collective classification in network data. *AI magazine*, pp. 29(3), 2008.

681

682 Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
 683 prompt tuning to generalize graph neural networks. In *Proceedings of the 28th ACM SIGKDD
 International Conference on Knowledge Discovery and Data Mining*, 2022.

684

685 Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting for
 686 graph neural networks. In *Proceedings of the 29th ACM SIGKDD International Conference on
 Knowledge Discovery and Data Mining*, 2023a.

687

688 Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng, Yun Xiong, and Jia Li. Graph prompt learning:
 689 A comprehensive survey and beyond. In *IEEE Transactions on Knowledge and Data Engineering*,
 2023b.

690

691 Yifei Sun, Qi Zhu, Yang Yang, Chunping Wang, Tianyu Fan, Jiajun Zhu, and Lei Chen. Fine-tuning
 692 graph neural networks by preserving graph generative patterns. In *Thirty-Eighth AAAI Conference
 693 on Artificial Intelligence*, 2024.

694

695 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 696 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 2018.

697

698 Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
 699 Hjelm. Deep graph infomax. In *International Conference on Learning Representations*, 2019.

700

701 Liyuan Wang, Mingtian Zhang, Zhongfan Jia, Qian Li, Chenglong Bao, Kaisheng Ma, Jun Zhu, and
 702 Yi Zhong. Afec: Active forgetting of negative transfer in continual learning. *Advances in Neural
 703 Information Processing Systems*, 2021.

702 Qunzhong Wang, Xiangguo Sun, and Hong Cheng. Does graph prompt work? a data operation
 703 perspective with theoretical analysis. In *International Conference on Machine Learning*, 2025a.
 704

705 Song Wang, Yushun Dong, Xiao Huang, Chen Chen, and Jundong Li. Faith: Few-shot graph classifi-
 706 cation with hierarchical task graphs. In *International Joint Conference on Artificial Intelligence*,
 707 2022.

708 Zehong Wang, Zheyuan Zhang, Nitesh V Chawla, Chuxu Zhang, and Yanfang Ye. Gft: Graph
 709 foundation model with transferable tree vocabulary. *Advances in Neural Information Processing
 710 Systems*, 2024.

711 Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
 712 Zhengqing Yuan, Wei Song, Yijun Ma, Qingkai Zeng, Xiusi Chen, Jianan Zhao, Jundong Li, Meng
 713 Jiang, Pietro Lio, Nitesh Chawla, Chuxu Zhang, and Yanfang Ye. Graph foundation models: A
 714 comprehensive survey. *arXiv preprint arXiv:2505.15116*, 2025b.

715

716 Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. Simgrace: A simple framework for
 717 graph contrastive learning without data augmentation. In *The ACM Web Conference*, 2022.

718 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 719 networks? In *International Conference on Learning Representations*, 2019.

720

721 Pinar Yanardag and Svn V N Vishwanathan. Deep graph kernels. In *Proceedings of the 21th ACM
 722 SIGKDD International Conference on Knowledge Discovery and Data Mining*, 2015.

723

724 Haoran Yang, Xiangyu Zhao, Yicong Li, Hongxu Chen, and Guandong Xu. An empirical study
 725 towards prompt-tuning for graph contrastive pre-training in recommendations. In *Advances in
 726 Neural Information Processing Systems*, 2023.

727

728 Zhe-Rui Yang, Jindong Han, Chang-Dong Wang, and Hao Liu. Graphlora: Structure-aware contrastive
 729 low-rank adaptation for cross-graph transfer learning. In *Proceedings of the 31th ACM SIGKDD
 730 International Conference on Knowledge Discovery and Data Mining*, 2025.

731

732 Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with
 733 graph embeddings. In *International Conference on Machine Learning*, 2016.

734

735 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
 736 Tie-Yan Liu. Do transformers really perform badly for graph representation? *Advances in Neural
 737 Information Processing Systems*, 2021.

738

739 Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
 740 contrastive learning with augmentations. *Advances in Neural Information Processing Systems*,
 741 2020.

742

743 Xingtong Yu, Jie Zhang, Yuan Fang, and Renhe Jiang. Non-homophilic graph pre-training and prompt
 744 learning. In *Proceedings of the 31th ACM SIGKDD International Conference on Knowledge
 745 Discovery and Data Mining*, 2025.

746

747 Chuxu Zhang, Kaize Ding, Jundong Li, Xiangliang Zhang, Yanfang Ye, Nitesh V. Chawla, and
 748 Huan Liu. Few-shot learning on graphs. In *Proceedings of the 26th ACM SIGKDD International
 749 Conference on Knowledge Discovery and Data Mining*, 2022.

750

751 Xiao Zhang and Dongrui Wu. Empirical studies on the properties of linear regions in deep neural
 752 networks. *International Conference on Learning Representations*, 2020.

753

754 Chenyi Zi, Haihong Zhao, Xiangguo Sun, Yiqing Lin, Hong Cheng, and Jia Li. Prog: A graph prompt
 755 learning benchmark. *Advances in Neural Information Processing Systems*, 2024.

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this work, we use large language models (LLMs) to assist with proofreading, grammatical correction, and language polishing. The LLM serves solely as a tool to enhance the clarity and readability of our writing. We meticulously review and edit all AI-generated content, and we accept full responsibility for the final version of the manuscript.

B EXTRA MATERIALS FOR PRISMATIC SPACE THEORY

Reading Guideline: Appendix B is organized in strict accordance with the order in which definitions, theorems, and corollaries appear in the main text, serving as a detailed supplement. This includes supplementary explanations of definitions, lemmas required for proving theorems, interpretations of theorems, and more. We recommend that readers first review the related work, such as other related theoretical works and relevant mathematical textbooks, to establish a theoretical foundation before proceeding through the main text in sequence with the aid of Appendix B.

Notation: The notation used in this paper has been aligned as closely as possible with the standardized notation recommended by the ICLR conference (https://github.com/goodfeli/dlbook_notation/). A summary of the primary notation used is provided in the table below.

Table 5: Primary Notation.

Notation	Description
\mathcal{G}	A graph
\mathcal{V}	The set of nodes
\mathcal{E}	The set of edges
N	Number of nodes
ℓ	Number of layers
\mathbb{R}	The set of real numbers
$\{0, 1\}$	The set containing 0 and 1
$\mathbf{X}, \mathbf{A}, \mathbf{H}^{(\ell)}$	The matrices
$\mathfrak{A}, \mathfrak{M}, \mathfrak{U}$	The operators
Θ	The parameters
$\mathbb{V}, \mathbb{S}, \mathbb{H}^{(\ell)}$	The sets
$F^{(\ell)} : \mathbb{H}^{(\ell-1)} \rightarrow \mathbb{H}^{(\ell)}$	The map $F^{(\ell)}$ with domain $\mathbb{H}^{(\ell-1)}$ and range $\mathbb{H}^{(\ell)}$
\mathcal{X}, \mathcal{M}	The manifold or space
$\Phi^{(\ell)} = F^{(\ell)} \circ \dots \circ F^{(1)}$	The composition of maps
d_{int}	The intrinsic dimension
$\mathbf{J}^{(\ell)}(\mathbf{H})$	The Jacobian matrix
$\sigma_i^{(\ell)}$	The singular values
\mathcal{H}^s	The s -dimensional Hausdorff measure
$\{C_k\}$	The set of cells
R_1, \dots, R_L	The regions
$\Omega^{(\ell)}$	The set of polytopic regions

B.1 RELATED WORK ON PRISMATIC SPACE THEORY

We introduce, for the first time, the Prismatic Space Theory to provide a unified analysis of adaptation methods for graph foundation models. In constructing this theoretical framework, we adopt the perspective of piecewise linear maps, an approach that is not entirely new, as several outstanding theoretical studies have employed similar ideas to analyze ReLU neural networks (Arora et al., 2018; Zhang & Wu, 2020; Liu et al., 2023a; Fu, 2025; Beshkov, 2025).

Previously, only Wang et al. (2025a) conducted theoretical research on prompt tuning for GFMs, explaining why prompt tuning works from the perspective of data operations, primarily using

810 mathematical tools from linear algebra, convex optimization, and probability. In contrast, our
 811 Prismatic Space Theory offers a more profound and fundamental geometric perspective to quantify
 812 the upper bound of prompt tuning’s capability. Some mathematical concepts not explicitly defined or
 813 elaborated in this paper can be found in Halmos (1950); Greub (1975); Lang (1993); Krantz & Parks
 814 (2008); Lee (2011).

816 B.2 DETAILS OF DEFINITION 1

818 The unified GFM layer formulation provided in Definition 1 offers a general framework that encapsulates
 819 a wide range of popular GNN architectures. The three core operators $\mathfrak{A}^{(\ell)}$ (attention), $\mathfrak{M}^{(\ell)}$
 820 (message fusion), and $\mathfrak{U}^{(\ell)}$ (update) can be instantiated in different ways to recover specific models.
 821 Below, we delineate how several classic models are special cases of this unified formulation.

822 **GCN (Graph Convolutional Network) (Kipf & Welling, 2017)** employs a fixed, non-learnable
 823 attention mechanism based on the normalized adjacency matrix and a simple update function.

824 Attention Operator $\mathfrak{A}^{(\ell)}$ computes a static, structural attention weight for each edge (i, j) based on
 825 the normalized adjacency matrix:

$$827 \mathfrak{A}^{(\ell)} \left(\mathbf{A}, \mathbf{H}^{(\ell-1)}; \Theta_a^{(\ell)} \right) = \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}}, \quad (17)$$

829 where $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}_N$ is the adjacency matrix with self-loops and $\tilde{\mathbf{D}}$ is the corresponding degree
 830 matrix.

831 Message Fusion Operator $\mathfrak{M}^{(\ell)}$ performs a weighted sum of the neighbors’ features using the
 832 normalized adjacency matrix:

$$834 \mathfrak{M}^{(\ell)} \left(\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}}, \mathbf{H}^{(\ell-1)}; \Theta_m^{(\ell)} \right) = \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{H}^{(\ell-1)} \mathbf{W}^{(\ell)}, \quad (18)$$

836 where $\mathbf{W}^{(\ell)} \in \mathbb{R}^{d_{\ell-1} \times d_\ell}$ is a learnable weight matrix ($\Theta_m^{(\ell)} = \mathbf{W}^{(\ell)}$).

838 Update Operator $\mathfrak{U}^{(\ell)}$ applies a non-linear activation function σ (e.g., ReLU) to the aggregated
 839 messages:

$$840 \mathfrak{U}^{(\ell)} \left(\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{H}^{(\ell-1)} \mathbf{W}^{(\ell)}, \mathbf{H}^{(\ell-1)}; \Theta_u^{(\ell)} \right) = \sigma \left(\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{H}^{(\ell-1)} \mathbf{W}^{(\ell)} \right), \quad (19)$$

842 where the previous representation $\mathbf{H}^{(\ell-1)}$ is not explicitly used in the update, making the update a
 843 direct transformation of the messages ($\Theta_u^{(\ell)} = \emptyset$).

845 The resulting layer formulation is:

$$847 \mathbf{H}^{(\ell)} = \sigma \left(\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{H}^{(\ell-1)} \mathbf{W}^{(\ell)} \right). \quad (20)$$

849 **GraphSAGE (Hamilton et al., 2017)** employs a uniform (or degree-based) attention weight over the
 850 sampled neighborhood, a configurable message aggregation function (e.g., mean, pool, LSTM), and
 851 an update function that concatenates the node’s previous representation with the aggregated message.

852 Attention Operator $\mathfrak{A}^{(\ell)}$ often uses a static, uniform attention weight $\frac{1}{|\mathcal{N}(i)|}$ for each sampled neighbor
 853 of node i , or a learned weight based on node degree in some variants. It can be represented as a
 854 matrix $\mathbf{S}^{(\ell)}$:

$$856 \mathfrak{A}^{(\ell)} \left(\mathbf{A}, \mathbf{H}^{(\ell-1)}; \Theta_a^{(\ell)} \right) = \mathbf{S}^{(\ell)}, \quad \mathbf{S}_{ij}^{(\ell)} = \begin{cases} \frac{1}{|\mathcal{N}(i)|} & \text{if } j \in \mathcal{N}(i) \\ 0 & \text{otherwise} \end{cases} \quad (21)$$

859 where $\mathcal{N}(i)$ denotes the sampled neighbors of node i .

861 Message Fusion Operator $\mathfrak{M}^{(\ell)}$ aggregates messages from the sampled neighborhood using the
 862 specified aggregator $\text{AGGREGATE}^{(\ell)}$ (e.g., mean, pool, LSTM). For the mean aggregator:

$$863 \mathfrak{M}^{(\ell)} \left(\mathbf{S}^{(\ell)}, \mathbf{H}^{(\ell-1)}; \Theta_m^{(\ell)} \right) = \mathbf{S}^{(\ell)} \mathbf{H}^{(\ell-1)}, \quad (22)$$

864 where parameters $\Theta_m^{(\ell)}$ depend on the choice of aggregator.
 865

866 Update Operator $\mathfrak{U}^{(\ell)}$ concatenates the node's previous representation $\mathbf{H}^{(\ell-1)}$ with the aggregated
 867 neighborhood message, applies a linear transformation $\mathbf{W}^{(\ell)}$, and a non-linear activation function σ :

$$868 \quad 869 \quad \mathfrak{U}^{(\ell)} \left(\mathbf{S}^{(\ell)} \mathbf{H}^{(\ell-1)}, \mathbf{H}^{(\ell-1)}; \Theta_u^{(\ell)} \right) = \sigma \left(\mathbf{W}^{(\ell)} \cdot \text{CONCAT}(\mathbf{H}^{(\ell-1)}, \mathbf{S}^{(\ell)} \mathbf{H}^{(\ell-1)}) \right), \quad (23)$$

870 where $\Theta_u^{(\ell)} = \mathbf{W}^{(\ell)}$.
 871

872 The resulting layer formulation for the mean aggregator is:
 873

$$874 \quad \mathbf{H}^{(\ell)} = \sigma \left(\mathbf{W}^{(\ell)} \cdot \text{CONCAT}(\mathbf{H}^{(\ell-1)}, \mathbf{S}^{(\ell)} \mathbf{H}^{(\ell-1)}) \right). \quad (24)$$

876 **GAT (Graph Attention Network)** (Veličković et al., 2018) introduces a learnable self-attention
 877 mechanism to compute dynamic attention weights between nodes.
 878

879 Attention Operator $\mathfrak{A}^{(\ell)}$ computes pairwise attention coefficients α_{ij} for nodes i and j using a
 880 learnable function (a shared attentional mechanism a):
 881

$$882 \quad e_{ij}^{(\ell)} = a(\mathbf{W}^{(\ell)} \mathbf{h}_i^{(\ell-1)}, \mathbf{W}^{(\ell)} \mathbf{h}_j^{(\ell-1)}) = \text{LeakyReLU} \left(\tilde{\mathbf{a}}^{(\ell)T} [\mathbf{W}^{(\ell)} \mathbf{h}_i^{(\ell-1)} \| \mathbf{W}^{(\ell)} \mathbf{h}_j^{(\ell-1)}] \right), \quad (25)$$

$$883 \quad 884 \quad \alpha_{ij}^{(\ell)} = \text{Softmax}(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}(i)} \exp(e_{ik})}, \quad (26)$$

$$885 \quad 886 \quad \mathfrak{A}^{(\ell)} \left(\mathbf{A}, \mathbf{H}^{(\ell-1)}; \Theta_a^{(\ell)} \right) = \mathbf{A}_a^{(\ell)}, \quad \mathbf{A}_a^{(\ell)}_{ij} = \begin{cases} \alpha_{ij}^{(\ell)} & \text{if } j \in \mathcal{N}(i) \\ 0 & \text{otherwise} \end{cases} \quad (27)$$

887 where $\mathbf{h}_i^{(\ell-1)}$ represents the vector of node i at the $\ell - 1$ -th layer, T represents transposition, $\|$ is the
 888 concatenation operation, and the attention mechanism a is a single-layer feedforward neural network
 889 parametrized by a weight vector $\tilde{\mathbf{a}}^{(\ell)}$ ($\Theta_a^{(\ell)} = \{\tilde{\mathbf{a}}^{(\ell)}, \mathbf{W}^{(\ell)}\}$).
 890

891 Message Fusion Operator $\mathfrak{M}^{(\ell)}$ performs a weighted sum of the transformed neighbor features based
 892 on the computed attention weights:
 893

$$894 \quad \mathfrak{M}^{(\ell)} \left(\mathbf{A}_a^{(\ell)}, \mathbf{H}^{(\ell-1)}; \Theta_m^{(\ell)} \right) = \mathbf{A}_a^{(\ell)} \cdot (\mathbf{H}^{(\ell-1)} \mathbf{W}^{(\ell)}), \quad (28)$$

895 where $\mathbf{W}^{(\ell)}$ is a shared linear transformation applied to every node and is also used by the Attention
 896 Operator ($\Theta_m^{(\ell)} = \mathbf{W}^{(\ell)}$). The operations of the Attention Operator and the Message Fusion Operator
 897 are partially overlapping.
 898

899 Update Operator $\mathfrak{U}^{(\ell)}$ combines the aggregated representations from multiple attention heads, typically
 900 through concatenation (for intermediate layers) or averaging (for the output layer), followed by
 901 application of a non-linear activation function σ to produce the new node representations:
 902

$$903 \quad 904 \quad \mathfrak{U}^{(\ell)} \left(\{\mathbf{A}_a^{(\ell)k} \cdot (\mathbf{H}^{(\ell-1)} \mathbf{W}^{(\ell)k})\}_{k=1}^K, \mathbf{H}^{(\ell-1)}; \Theta_u^{(\ell)} \right) = \left\| \sigma \left(\mathbf{A}_a^{(\ell)k} \cdot (\mathbf{H}^{(\ell-1)} \mathbf{W}^{(\ell)k}) \right) \right\|_{k=1}^K, \quad (29)$$

905 where $\|$ represents concatenation, K represents the number of attention heads and no parameters are
 906 used in this operator ($\Theta_u^{(\ell)} = \emptyset$).
 907

908 The resulting layer formulation is:
 909

$$910 \quad 911 \quad \mathbf{H}^{(\ell)} = \left\| \sigma \left(\mathbf{A}_a^{(\ell)k} \cdot (\mathbf{H}^{(\ell-1)} \mathbf{W}^{(\ell)k}) \right) \right\|_{k=1}^K. \quad (30)$$

912 **GIN (Graph Isomorphism Network)** (Xu et al., 2019) uses a fixed, uniform attention weight for
 913 neighbors and a powerful update function based on an MLP to achieve expressiveness equivalent to
 914 the Weisfeiler-Lehman graph isomorphism test.
 915

Attention Operator $\mathfrak{A}^{(\ell)}$ employs a static attention weight of 1 for all neighbors and a weight of $(1 + \epsilon^{(\ell)})$ for the central node itself:

$$\mathfrak{A}^{(\ell)} \left(\mathbf{A}, \mathbf{H}^{(\ell-1)}; \Theta_a^{(\ell)} \right) = \tilde{\mathbf{A}}_\epsilon = \mathbf{A} + (1 + \epsilon^{(\ell)}) \mathbf{I} = \tilde{\mathbf{A}}_\epsilon, \quad (31)$$

where $\Theta_a^{(\ell)} = \epsilon^{(\ell)}$ is a potentially learnable parameter.

Message Fusion Operator $\mathfrak{M}^{(\ell)}$ sums the neighbor messages and the scaled central node's message:

$$\mathfrak{M}^{(\ell)} \left(\tilde{\mathbf{A}}_\epsilon, \mathbf{H}^{(\ell-1)}; \Theta_m^{(\ell)} \right) = \tilde{\mathbf{A}}_\epsilon \mathbf{H}^{(\ell-1)}, \quad (32)$$

where no parameters are used ($\Theta_m^{(\ell)} = \emptyset$).

Update Operator $\mathfrak{U}^{(\ell)}$ applies a multi-layer perceptron (MLP^(ℓ)) to the fused message:

$$\mathfrak{U}^{(\ell)} \left(\tilde{\mathbf{A}}_\epsilon \mathbf{H}^{(\ell-1)}, \mathbf{H}^{(\ell-1)}; \Theta_u^{(\ell)} \right) = \text{MLP}^{(\ell)} \left(\tilde{\mathbf{A}}_\epsilon \mathbf{H}^{(\ell-1)} \right), \quad (33)$$

where $\Theta_u^{(\ell)}$ are the parameters of the MLP.

The resulting layer formulation is:

$$\mathbf{H}^{(\ell)} = \text{MLP}^{(\ell)} \left(\left(\mathbf{A} + (1 + \epsilon^{(\ell)}) \mathbf{I} \right) \mathbf{H}^{(\ell-1)} \right). \quad (34)$$

GT (Graph Transformer) (Ying et al., 2021) enhances the standard transformer architecture to incorporate structural information of graphs, often by augmenting the self-attention mechanism with structural biases.

Attention Operator $\mathfrak{A}^{(\ell)}$ computes the query, key matrices $\mathbf{Q}^{(\ell)}, \mathbf{K}^{(\ell)} \in \mathbb{R}^{d_{\ell-1} \times d_\ell}$ via linear projections, with the core attention weight $\hat{\mathbf{A}}^{(\ell)}$ formulated as a sum of standard semantic attention and a structural attention component $\mathbf{B}^{(\ell)}$ (e.g., from positional encodings, edge features, connectivity patterns or node degrees).

$$\mathbf{Q}^{(\ell)} = \mathbf{H}^{(\ell-1)} \mathbf{W}_Q^{(\ell)}, \quad \mathbf{K}^{(\ell)} = \mathbf{H}^{(\ell-1)} \mathbf{W}_K^{(\ell)}, \quad (35)$$

$$\hat{\mathbf{A}}^{(\ell)} = \text{Softmax} \left(\frac{\mathbf{Q}^{(\ell)} (\mathbf{K}^{(\ell)})^T}{\sqrt{d_\ell}} + \mathbf{B}^{(\ell)} \right), \quad (36)$$

$$\mathfrak{A}^{(\ell)} \left(\mathbf{A}, \mathbf{H}^{(\ell-1)}; \Theta_a^{(\ell)} \right) = \hat{\mathbf{A}}^{(\ell)}, \quad (37)$$

where $\Theta_a^{(\ell)}$ including the projection weights for $\mathbf{Q}^{(\ell)}, \mathbf{K}^{(\ell)}$ and parameters for computing $\mathbf{B}^{(\ell)}$.

Message Fusion Operator $\mathfrak{M}^{(\ell)}$ computes the value matrice $\mathbf{V}^{(\ell)} \in \mathbb{R}^{d_{\ell-1} \times d_\ell}$ via linear projection $\mathbf{W}_V^{(\ell)}$ and performs the weighted aggregation of the value vectors using the computed attention matrix $\hat{\mathbf{A}}^{(\ell)}$:

$$\mathfrak{M}^{(\ell)} \left(\hat{\mathbf{A}}^{(\ell)}, \mathbf{H}^{(\ell-1)}; \Theta_m^{(\ell)} \right) = \hat{\mathbf{A}}^{(\ell)} \mathbf{V}^{(\ell)} = \hat{\mathbf{A}}^{(\ell)} \cdot (\mathbf{H}^{(\ell-1)} \mathbf{W}_V^{(\ell)}), \quad (38)$$

where $\Theta_m^{(\ell)} = \mathbf{W}_V^{(\ell)}$.

Update Operator $\mathfrak{U}^{(\ell)}$ applies a residual connection, layer normalization (LN), a position-wise feed-forward network (FFN), another residual connection, and layer normalization.

$$\tilde{\mathbf{H}}^{(\ell)} = \text{LN} \left(\mathbf{H}^{(\ell-1)} + \hat{\mathbf{A}}^{(\ell)} \cdot (\mathbf{H}^{(\ell-1)} \mathbf{W}_V^{(\ell)}) \right), \quad (39)$$

$$\text{FFN}^{(l)}(\tilde{\mathbf{H}}^{(\ell)}) = \sigma \left(\tilde{\mathbf{H}}^{(\ell)} \mathbf{W}_1^{(l)} + \mathbf{b}_1^{(l)} \right) \mathbf{W}_2^{(l)} + \mathbf{b}_2^{(l)} \quad (40)$$

$$\mathfrak{U}^{(\ell)} \left(\hat{\mathbf{A}}^{(\ell)} \mathbf{V}^{(\ell)}, \mathbf{H}^{(\ell-1)}; \Theta_u^{(\ell)} \right) = \text{LN} \left(\tilde{\mathbf{H}}^{(\ell)} + \text{FFN}^{(l)}(\tilde{\mathbf{H}}^{(\ell)}) \right), \quad (41)$$

where $\Theta_u^{(\ell)}$ are the parameters of the FFN^(ℓ). Multi-head self-attention (MHA) can also correspond to the Update Operator.

972 The resulting layer formulation is:
 973

$$974 \quad \mathbf{H}^{(\ell)} = \text{LN} \left(\text{LN} \left(\mathbf{H}^{(\ell-1)} + \hat{\mathbf{A}}^{(\ell)} \mathbf{V}^{(\ell)} \right) + \text{FFN}^{(\ell)} \left(\text{LN} \left(\mathbf{H}^{(\ell-1)} + \hat{\mathbf{A}}^{(\ell)} \mathbf{V}^{(\ell)} \right) \right) \right). \quad (42)$$

976 This analysis demonstrates that the proposed unified GFM layer provides a powerful and expressive
 977 framework that generalizes a broad spectrum of prevalent GNN architectures. The specific choices of
 978 the operators $\mathfrak{A}^{(\ell)}$, $\mathfrak{M}^{(\ell)}$, and $\mathfrak{U}^{(\ell)}$ determine the particular inductive biases and capabilities of the
 979 resulting model.

980 **B.3 DETAILS OF DEFINITION 2**

983 **Definition 8** (Polyhedral Region). *In the context of Euclidean spaces, a polyhedral region (or
 984 polyhedron) is a subset of \mathbb{R}^n defined by a finite set of linear inequalities. Formally, a set $R \subseteq \mathbb{R}^n$ is
 985 a polyhedral region if there exist matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vectors $\mathbf{b} \in \mathbb{R}^m$ such that:*

$$986 \quad R = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b} \}, \quad (43)$$

987 where the inequality is applied component-wise.

988 **Remark 1.** A polyhedral region may be described as the intersection of finitely many closed half-
 989 spaces and/or hyperplanes, making it a convex polytope (possibly unbounded). In many analytical
 990 contexts, polyhedral regions are assumed to be non-empty and may be required to have a non-empty
 991 interior to avoid degenerate cases.

992 **Definition 9** (Polyhedral Region in Matrix Space). A set $R \subseteq \mathbb{R}^{N \times d}$ is a polyhedral region if there
 993 exists a matrix $\mathbf{A} \in \mathbb{R}^{m \times Nd}$ and a vector $\mathbf{b} \in \mathbb{R}^m$ such that:

$$994 \quad R = \{ \mathbf{H} \in \mathbb{R}^{N \times d} \mid \mathbf{A} \cdot \text{vec}(\mathbf{H}) \leq \mathbf{b} \}, \quad (44)$$

996 where $\text{vec}(\mathbf{H}) \in \mathbb{R}^{Nd}$ denotes the vectorization of the matrix \mathbf{H} (i.e., the column vector obtained by
 997 stacking the columns of \mathbf{H}). The inequality \leq is applied component-wise.

998 **Remark 2.** Since the spaces $\mathbb{R}^{\alpha \times \beta}$ and $\mathbb{R}^{\alpha \beta}$ are isomorphic as vector spaces via the vectorization
 999 operation $\text{vec} : \mathbb{R}^{\alpha \times \beta} \rightarrow \mathbb{R}^{\alpha \beta}$ (which stacks the columns of a matrix into a vector) and its inverse
 1000 $\text{unvec} : \mathbb{R}^{\alpha \beta} \rightarrow \mathbb{R}^{\alpha \times \beta}$, many theorems and proofs in this paper do not strictly distinguish between
 1001 the matrix form and the vectorized form. This isomorphism allows us to apply concepts from
 1002 Euclidean geometry and measure theory directly to matrix-valued functions by considering their
 1003 vectorized counterparts, without loss of generality. Consequently, in the following analysis, we may
 1004 interchangeably use matrix or vector representations as convenient, ensuring that all results hold
 1005 equivalently in both forms.

1006 **Definition 10** (Piecewise Linear Function). A function $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is called piecewise linear if
 1007 there exists a finite set of polyhedral regions $\{R_i\}_{i=1}^K$ such that $\mathbb{R}^n = \bigcup_{i=1}^K R_i$ and f is affine on
 1008 each R_i , i.e., $f(\mathbf{x}) = \mathbf{A}_i \mathbf{x} + \mathbf{b}_i$ for all $\mathbf{x} \in R_i$, where $\mathbf{A}_i \in \mathbb{R}^{m \times n}$ and $\mathbf{b}_i \in \mathbb{R}^m$.

1009 **Definition 11** (Jacobian of a Matrix Map). For a function $F : \mathbb{R}^{N \times d_{in}} \rightarrow \mathbb{R}^{N \times d_{out}}$ that is differentiable
 1010 at a point \mathbf{H} , the Jacobian of F at \mathbf{H} is defined as the Jacobian matrix of the vectorized function.
 1011 Specifically, let $f : \mathbb{R}^{Nd_{in}} \rightarrow \mathbb{R}^{Nd_{out}}$ be given by $f(\mathbf{h}) = \text{vec}(F(\text{unvec}(\mathbf{h})))$. Then, the Jacobian
 1012 matrix $\mathbf{J}_F(\mathbf{H}) \in \mathbb{R}^{Nd_{out} \times Nd_{in}}$ is:

$$1013 \quad \mathbf{J}_F(\mathbf{H}) = \frac{\partial f}{\partial \mathbf{h}} \Big|_{\mathbf{h}=\text{vec}(\mathbf{H})}. \quad (45)$$

1016 This matrix contains all first-order partial derivatives of the vectorized output with respect to the
 1017 vectorized input.

1018 **Lemma 1** (Composition of Piecewise Linear Functions). If $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ and $g : \mathbb{R}^m \rightarrow \mathbb{R}^p$ are
 1019 piecewise linear functions, then the composition $g \circ f : \mathbb{R}^n \rightarrow \mathbb{R}^p$ is also piecewise linear.

1020 **Proof.** Since f is piecewise linear, there exists a partition of \mathbb{R}^n into polyhedral regions R_i such that
 1021 f is affine on each R_i . Similarly, g is piecewise linear with polyhedral regions S_j in \mathbb{R}^m where g is
 1022 affine. For each i and j , consider the set $R_i \cap f^{-1}(S_j)$. Since f is affine on R_i , $f(R_i)$ is a polyhedral
 1023 set, and $f^{-1}(S_j) \cap R_i$ is polyhedral (as the intersection of polyhedral sets). On $R_i \cap f^{-1}(S_j)$, $g \circ f$
 1024 is affine because f is affine and g is affine on S_j . The collection of all such sets $R_i \cap f^{-1}(S_j)$ covers
 1025 \mathbb{R}^n , and there are finitely many such sets. Thus, $g \circ f$ is piecewise linear. \square

1026
1027

B.4 PROOF OF PROPOSITION 1

1028
1029
1030
1031
1032
1033
1034
1035
1036

Proof. Based on the derivations in Appendix B.1, we observe that most operators primarily involve matrix multiplication or can be approximated by matrix multiplications. Some operators further apply a piecewise linear activation function (e.g., ReLU or LeakyReLU) or an MLP based on ReLU after the matrix multiplication. As a result, these operators are generally piecewise linear functions. Their piecewise linearity stems directly from the piecewise linear activation functions used. Since the activation functions are continuous, the continuity of these operators is obvious. Piecewise linear functions are differentiable a.e. because they are differentiable in the interior of each polyhedral region (where they are affine) and non-differentiable only on the boundaries, which have Lebesgue measure zero. \square

1037
1038
1039
1040
1041
1042

Remark 3. Linear functions are considered a special case of piecewise linear functions. If operator $\mathfrak{A}^{(\ell)}$ computes scaled dot-product attention, it somewhat exceeds the scope of our theoretical framework. Alternatively, approximating the computation of dynamic attention using piecewise linear mappings may, from a mathematical limit perspective, exhibit certain compatibility with the theoretical framework presented in this paper. This constitutes a promising direction for future research aimed at extending the current theory.

1043
1044

B.5 PROOF OF PROPOSITION 2

1045
1046
1047
1048
1049
1050
1051
1052

Proof. The layer map $F^{(\ell)}$ is defined by the composition of the operators $\mathfrak{A}^{(\ell)}, \mathfrak{M}^{(\ell)}, \mathfrak{U}^{(\ell)}$, as given in Definition 1. This can be viewed as a function $F^{(\ell)}$ that maps $\mathbf{H}^{(\ell-1)}$ to $\mathbf{H}^{(\ell)}$. Since each operator is piecewise linear, and by Lemma 1, the composition of piecewise linear functions is itself piecewise linear. Therefore, $F^{(\ell)}$ is a piecewise linear function. More formally, let $f_1 = \mathfrak{A}^{(\ell)}$, $f_2 = \mathfrak{M}^{(\ell)}$, and $f_3 = \mathfrak{U}^{(\ell)}$. Then $F^{(\ell)} = f_3 \circ (f_2 \circ (f_1, \text{id}), \text{id})$, where id denotes the identity function (which is linear and thus piecewise linear). The composition involves piecewise linear functions and Cartesian products (which preserve piecewise linearity), so $F^{(\ell)}$ is piecewise linear.

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062

By Definition 2, there exists a finite set of polyhedral regions $\{R_i\}_{i=1}^K$ such that $\mathbb{R}^{N \times d_{\ell-1}} = \bigcup_{i=1}^K R_i$ and $F^{(\ell)}$ is affine on each R_i , i.e., $F^{(\ell)}(\mathbf{H}) = \text{unvec}(\mathbf{A}_i \cdot \text{vec}(\mathbf{H}) + \mathbf{b}_i)$ for all $\mathbf{H} \in R_i$, where $\mathbf{A}_i \in \mathbb{R}^{Nd_{\ell} \times Nd_{\ell-1}}$ and $\mathbf{b}_i \in \mathbb{R}^{Nd_{\ell}}$. An affine function is differentiable everywhere in the interior of its region. The polyhedral regions R_i are closed and have boundaries that are sets of measure zero (since they are defined by finite sets of linear inequalities). Therefore, $F^{(\ell)}$ is differentiable almost everywhere (a.e.)—specifically, in the interior of each region R_i . At any point \mathbf{H} where $F^{(\ell)}$ is differentiable (i.e., in the interior of some R_i), the derivative is given by the constant matrix \mathbf{A}_i . The Jacobian matrix $\mathbf{J}^{(\ell)}(\mathbf{H})$ is precisely this matrix \mathbf{A}_i , which exists and has dimensions $\mathbb{R}^{Nd_{\ell} \times Nd_{\ell-1}}$ (since the input space has dimension $Nd_{\ell-1}$ and the output space has dimension Nd_{ℓ}). Hence, for any point \mathbf{H} where $F^{(\ell)}$ is differentiable, the Jacobian $\mathbf{J}^{(\ell)}(\mathbf{H})$ exists. \square

1063
1064

B.6 DETAILS OF DEFINITION 3

1065
1066
1067

Definition 12 (Compact Smooth Manifold). A set $\mathcal{M} \subset \mathbb{R}^n$ is called a compact smooth manifold of dimension D_0 if it satisfies the following two conditions:

1068
1069
1070
1071

1. (Smooth Structure) For every point $p \in \mathcal{M}$, there exists an open neighborhood $U \subset \mathbb{R}^n$ containing p and a smooth (C^∞) mapping $F : U \rightarrow \mathbb{R}^{n-D_0}$ such that: $U \cap \mathcal{M} = F^{-1}(0) = \{x \in U \mid F(x) = 0\}$ and the Jacobian matrix $DF(x) \in \mathbb{R}^{(n-D_0) \times n}$ has full rank ($n - D_0$) for all $x \in U \cap \mathcal{M}$.

1072
1073
1074

2. (Compactness) \mathcal{M} is compact in the subspace topology induced from \mathbb{R}^n , which by the Heine-Borel theorem is equivalent to being closed and bounded in \mathbb{R}^n .

1075
1076
1077
1078

Definition 13 (Intrinsic Dimension). The intrinsic dimension $D_0 = d_{\text{int}}(\mathcal{M}_0)$ of a manifold \mathcal{M}_0 is the minimum number of parameters needed to locally parameterize the manifold. Formally, it is the dimension of the tangent space $T_p \mathcal{M}_0$ at any point $p \in \mathcal{M}_0$, which is constant for smooth connected manifolds.

1079

Remark 4. For a more basic definition of manifold, please refer to introductory mathematics textbook (Lee, 2011). In our subsequent discussion of prismatic space, we generalize the concept of intrinsic

1080
 1081 *dimension. Since prismatic space lacks the well-behaved mathematical properties of smooth manifold,*
 1082 *we define the intrinsic dimension as the maximum of the dimensions at all locally smooth points of*
 1083 *the space.*

1084 B.7 PROOF OF PROPOSITION 3

1085
 1086 *Proof.* We proceed by leveraging the definitions provided and establishing the piecewise linearity of
 1087 the composite map $\Phi^{(\ell)}$, then analyzing its image on the input manifold \mathcal{M}_0 .

1088
 1089 By Proposition 2, each layer map $F^{(\ell)} : \mathbb{H}^{(\ell-1)} \rightarrow \mathbb{H}^{(\ell)}$ is a piecewise linear function. This
 1090 follows from the assumptions that the operators $\mathfrak{A}^{(\ell)}$, $\mathfrak{M}^{(\ell)}$, and $\mathfrak{U}^{(\ell)}$ are piecewise linear and almost
 1091 everywhere differentiable, and that $\mathfrak{U}^{(\ell)}$ uses piecewise linear activations. Since the composition of
 1092 piecewise linear functions is piecewise linear (Lemma 1), the composite map $\Phi^{(\ell)} = F^{(\ell)} \circ \dots \circ F^{(1)}$
 1093 is also piecewise linear. Formally, there exists a finite set of polyhedral regions $\{R_i\}_{i=1}^K$ covering the
 1094 domain of $\Phi^{(\ell)}$ such that for each i , the restriction of $\Phi^{(\ell)}$ to R_i is affine:

$$1095 \quad 1096 \quad \Phi^{(\ell)}(\mathbf{H}) = \text{unvec}(\mathbf{A}_i \cdot \text{vec}(\mathbf{H}) + \mathbf{b}_i) \quad \text{for all } \mathbf{H} \in R_i, \quad (46)$$

1097 where $\mathbf{A}_i \in \mathbb{R}^{Nd_\ell \times Nd_0}$ and $\mathbf{b}_i \in \mathbb{R}^{Nd_\ell}$ are constants specific to region R_i .

1098
 1099 The input manifold $\mathcal{M}_0 \subset \mathbb{R}^{N \times d_0}$ is compact and smooth by Definition 3. Consider the intersection
 1100 of \mathcal{M}_0 with the polyhedral regions R_i :

$$1101 \quad 1102 \quad \mathcal{M}_0^{(i)} = \mathcal{M}_0 \cap R_i. \quad (47)$$

1103 Since \mathcal{M}_0 is a smooth manifold and each R_i is polyhedral, the sets $\mathcal{M}_0^{(i)}$ are submanifolds with
 1104 boundaries (possibly with corners). The collection $\{\mathcal{M}_0^{(i)}\}_{i=1}^K$ forms a finite cover of \mathcal{M}_0 .

1105
 1106 On each $\mathcal{M}_0^{(i)}$, the map $\Phi^{(\ell)}$ is affine. Therefore, the image $\Phi^{(\ell)}(\mathcal{M}_0^{(i)})$ is an affine transformation
 1107 of $\mathcal{M}_0^{(i)}$:

$$1108 \quad 1109 \quad \Phi^{(\ell)}(\mathcal{M}_0^{(i)}) = \{\text{unvec}(\mathbf{A}_i \cdot \text{vec}(\mathbf{H}) + \mathbf{b}_i) \mid \mathbf{H} \in \mathcal{M}_0^{(i)}\}. \quad (48)$$

1110
 1111 Assuming that $\Phi^{(\ell)}$ is injective on each R_i , it is also injective on each $\mathcal{M}_0^{(i)}$. Since affine maps
 1112 preserve linear structures and injectivity ensures that the map is an embedding on each piece,
 1113 $\Phi^{(\ell)}(\mathcal{M}_0^{(i)})$ is itself a submanifold with boundary (possibly with corners) in $\mathbb{R}^{N \times d_\ell}$.

1114 The full representation space is the union of these images:

$$1116 \quad 1117 \quad \mathcal{M}^{(\ell)} = \bigcup_{i=1}^K \Phi^{(\ell)}(\mathcal{M}_0^{(i)}). \quad (49)$$

1118 Such a union is termed a prismatic space.

1119 Singularities occur at the boundaries between the regions. Specifically:

- 1120 • The boundaries between different $\mathcal{M}_0^{(i)}$ correspond to points where $\Phi^{(\ell)}$ transitions from one
 1121 affine piece to another.
- 1122 • At these boundaries, the Jacobian of $\Phi^{(\ell)}$ may be discontinuous or undefined, leading to
 1123 non-smooth points in $\mathcal{M}^{(\ell)}$.
- 1124 • Since \mathcal{M}_0 is compact and smooth, it generically intersects multiple regions R_i , making such
 1125 singularities typical. For example, if \mathcal{M}_0 is transversal to the boundaries of R_i , the intersections
 1126 will be lower-dimensional manifolds where the image under $\Phi^{(\ell)}$ may not be smooth.

1127
 1128 Thus, $\mathcal{M}^{(\ell)}$ is a prismatic space and may have singularities along the boundaries of the pieces
 1129 $\Phi^{(\ell)}(\mathcal{M}_0^{(i)})$. □

1134 **Remark 5.** The prismatic space we define constitutes a geometric structure more complex than a
 1135 conventional topological manifold. While its interior may largely exhibit the properties of a smooth
 1136 manifold, its boundary can contain intricate corners or even singularities. As a result, it is highly
 1137 unlikely that the prismatic space satisfies the standard definitions of a topological manifold. It should
 1138 be emphasized that constructing a rigorous topological definition of this geometric structure is highly
 1139 challenging. Therefore, within the framework of this paper, we adopt a simplified definition grounded
 1140 in piecewise linear map.

1141

B.8 DETAILS OF DEFINITION 5

1142

1143 **Remark 6.** The prismatic effect of different singular values on space:

1144

- 1145 • A singular value $\sigma_i^{(\ell)} \approx 1$ represents an unrefracted dimension, typically corresponding to
 1146 node features preserved through linear identity paths or attention mechanisms that remain active.
- 1147 • A singular value $0 < \sigma_i^{(\ell)} < 1$ represents a contracted dimension, potentially arising from
 1148 the scaling of weight matrices ($\|\mathbf{W}^{(\ell)}\| < 1$) and the gradient attenuation of activation functions
 1149 like ReLU/LeakyReLU in their unsaturated regimes.
- 1150 • A singular value $\sigma_i^{(\ell)} = 0$ represents a nullified dimension, resulting directly from the sparsity
 1151 induced by ReLU activations which reduces the rank of the layer's Jacobian.
- 1152 • A singular value $\sigma_i^{(\ell)} > 1$ represents an expanded dimension, potentially arising from feature
 1153 amplification in weight matrices ($\|\mathbf{W}^{(\ell)}\| > 1$) or certain graph convolution operations.

1154

B.9 PROOF OF THEOREM 1

1155

1156 *Proof.* Since $F^{(\ell)}$ is linear on \mathbb{S} , there exists a matrix $\mathbf{A}^{(\ell)} \in \mathbb{R}^{Nd_\ell \times Nd_{\ell-1}}$ and a vector $\mathbf{b}^{(\ell)}$ such
 1157 that for all $\mathbf{X} \in \mathbb{S}$:

$$1158 \quad F^{(\ell)}(\mathbf{X}) = \text{unvec}(\mathbf{A}^{(\ell)} \cdot \text{vec}(\mathbf{X}) + \mathbf{b}^{(\ell)}). \quad (50)$$

1159

1160 The Jacobian $\mathbf{J}^{(\ell)}$ is constant and equal to $\mathbf{A}^{(\ell)}$. By assumption, $\mathbf{A}^{(\ell)}$ has rank r_ℓ , and its singular
 1161 value decomposition is:

$$1162 \quad \mathbf{A}^{(\ell)} = \mathbf{U}^{(\ell)} \mathbf{\Sigma}^{(\ell)} \mathbf{V}^{(\ell)\top}, \quad (51)$$

1163

1164 where $\mathbf{U}^{(\ell)}$ and $\mathbf{V}^{(\ell)}$ are orthogonal matrices, and $\mathbf{\Sigma}^{(\ell)} = \text{diag}(\sigma_1^{(\ell)}, \dots, \sigma_{r_\ell}^{(\ell)}, 0, \dots, 0)$ with $\sigma_1^{(\ell)} \geq$
 1165 $\sigma_2^{(\ell)} \geq \dots \geq \sigma_{r_\ell}^{(\ell)} > 0$.

1166

1167 Let $\mathbf{V}_s^{(\ell)}$ be the first s columns of $\mathbf{V}^{(\ell)}$, spanning the subspace $\mathbb{V}^{(\ell)}$. The restriction of $\mathbf{A}^{(\ell)}$ to $\mathbb{V}^{(\ell)}$
 1168 is the linear map $L^{(\ell)} : \mathbb{V}^{(\ell)} \rightarrow \mathbb{R}^M$ defined by $L^{(\ell)}(\mathbf{x}) = \mathbf{A}^{(\ell)}\mathbf{x}$.

1169

1170 Since $\mathbf{A}^{(\ell)}$ is injective on $\mathbb{V}^{(\ell)}$ (as $\mathbb{V}^{(\ell)}$ is spanned by right singular vectors corresponding to positive
 1171 singular values), $L^{(\ell)}$ is injective. The image $L^{(\ell)}(\mathbb{V}^{(\ell)})$ is an s -dimensional subspace of \mathbb{R}^M ,
 1172 spanned by the first s columns of $\mathbf{U}^{(\ell)}$.

1173

1174 Let $\{\mathbf{v}_1^{(\ell)}, \dots, \mathbf{v}_s^{(\ell)}\}$ be an orthonormal basis for $\mathbb{V}^{(\ell)}$ (e.g., the columns of $\mathbf{V}_s^{(\ell)}$). Then
 1175 $\{L^{(\ell)}(\mathbf{v}_1^{(\ell)}), \dots, L^{(\ell)}(\mathbf{v}_s^{(\ell)})\}$ is a basis for $L^{(\ell)}(\mathbb{V}^{(\ell)})$, and:

1176

$$1177 \quad L^{(\ell)}(\mathbf{v}_i^{(\ell)}) = \sigma_i^{(\ell)} \mathbf{u}_i^{(\ell)}, \quad (52)$$

1178

1179 where $\mathbf{u}_i^{(\ell)}$ is the i -th column of $\mathbf{U}^{(\ell)}$. Thus, $\{\mathbf{u}_1^{(\ell)}, \dots, \mathbf{u}_s^{(\ell)}\}$ is an orthonormal basis for $L^{(\ell)}(\mathbb{V}^{(\ell)})$.

1180

1181 The s -dimensional Hausdorff measure \mathcal{H}^s is equivalent to the s -dimensional Lebesgue measure
 1182 on s -dimensional subspaces. Consider the linear map $L^{(\ell)} : \mathbb{V}^{(\ell)} \rightarrow L^{(\ell)}(\mathbb{V}^{(\ell)})$. Since $\mathbb{V}^{(\ell)}$ and
 1183 $L^{(\ell)}(\mathbb{V}^{(\ell)})$ are s -dimensional Euclidean spaces, we can compute the change in measure using the
 1184 determinant of $L^{(\ell)}$ (in orthonormal coordinates).

1185

1186 Let $\mathbf{x} \in \mathbb{V}^{(\ell)}$ have coordinates $\mathbf{x} = \sum_{i=1}^s x_i \mathbf{v}_i^{(\ell)}$. Then:

1187

$$1188 \quad L^{(\ell)}(\mathbf{x}) = \sum_{i=1}^s x_i L^{(\ell)}(\mathbf{v}_i) = \sum_{i=1}^s x_i \sigma_i^{(\ell)} \mathbf{u}_i^{(\ell)}. \quad (53)$$

1188 Thus, the matrix representation of $L^{(\ell)}$ with respect to the bases $\mathbf{v}_i^{(\ell)}$ and $\mathbf{u}_i^{(\ell)}$ is the diagonal matrix
 1189 $\text{diag}(\sigma_1^{(\ell)}, \dots, \sigma_s^{(\ell)})$.
 1190

1191 The absolute determinant of this matrix is $\prod_{i=1}^s \sigma_i^{(\ell)}$. Therefore, for any measurable set $\mathbb{S} \subset \mathbb{V}^{(\ell)}$:
 1192

$$1193 \mathcal{H}^s(L^{(\ell)}(\mathbb{S})) = \left(\prod_{i=1}^s \sigma_i^{(\ell)} \right) \mathcal{H}^s(\mathbb{S}). \quad (54)$$

1195 Since $F^{(\ell)}(\mathbf{X}) = L^{(\ell)}(\mathbf{X}) + \mathbf{b}^{(\ell)}$ and translation preserves Hausdorff measure, we have:
 1196

$$1197 \mathcal{H}^s(F^{(\ell)}(\mathbb{S})) = \mathcal{H}^s(L^{(\ell)}(\mathbb{S}) + \mathbf{b}^{(\ell)}) = \mathcal{H}^s(L^{(\ell)}(\mathbb{S})) = \left(\prod_{i=1}^s \sigma_i^{(\ell)} \right) \mathcal{H}^s(\mathbb{S}). \quad (55)$$

1200 When $s = r_\ell$, $\mathbb{V}^{(\ell)}$ is the entire row space of $A^{(\ell)}$, and the product is over all positive singular values.
 1201 This gives the volume contraction factor for the full rank part of the map. \square
 1202

1203 **Remark 7.** *We will not elaborate on mathematical concepts such as Hausdorff measure and Lebesgue
 1204 measure in this article. For details, please refer to mathematics textbook (Krantz & Parks, 2008).*
 1205

1206 B.10 SIMPLE LINEAR ALGEBRA

1208 **Lemma 2** (The Rank Inequality for Composition of Linear Maps). *Let $A : \mathbb{V} \rightarrow \mathbb{W}$ and $B : \mathbb{W} \rightarrow \mathbb{U}$
 1209 be linear maps between vector spaces. The composition $B \circ A : \mathbb{V} \rightarrow \mathbb{U}$ is also a linear map. The
 1210 rank of a linear map is defined as the dimension of its image:*

$$1211 \text{rank}(A) = \dim(\text{im}(A)), \quad \text{rank}(B) = \dim(\text{im}(B)), \quad \text{rank}(B \circ A) = \dim(\text{im}(B \circ A)). \quad (56)$$

1212 Then:

$$1213 \text{rank}(B \circ A) \leq \min(\text{rank}(A), \text{rank}(B)). \quad (57)$$

1215 *Proof.* Prove the first inequality: $\text{rank}(B \circ A) \leq \text{rank}(A)$.

1216 Observe that for any $\mathbf{v} \in \mathbb{V}$,

$$1217 (B \circ A)(\mathbf{v}) = B(A(\mathbf{v})), \quad (58)$$

1219 so the image of $B \circ A$ is:

$$1220 \text{im}(B \circ A) = \{B(A(\mathbf{v})) : \mathbf{v} \in \mathbb{V}\} = B(\{A(\mathbf{v}) : \mathbf{v} \in \mathbb{V}\}) = B(\text{im}(A)). \quad (59)$$

1221 Thus, $\text{im}(B \circ A) = B(\text{im}(A))$. Since $\text{im}(A) \subseteq \mathbb{W}$, we can restrict B to $\text{im}(A)$, obtaining a linear
 1222 map:

$$1223 B|_{\text{im}(A)} : \text{im}(A) \rightarrow \mathbb{U}. \quad (60)$$

1224 The image of this restricted map is exactly $B(\text{im}(A)) = \text{im}(B \circ A)$. By the Rank-Nullity Theorem
 1225 (or simply by the fact that the image of a linear map cannot exceed the dimension of its domain), we
 1226 have:

$$1227 \dim(B(\text{im}(A))) \leq \dim(\text{im}(A)). \quad (61)$$

1228 Therefore,

$$1229 \text{rank}(B \circ A) = \dim(\text{im}(B \circ A)) \leq \dim(\text{im}(A)) = \text{rank}(A). \quad (62)$$

1230 Prove the second inequality: $\text{rank}(B \circ A) \leq \text{rank}(B)$.

1231 We now show that $\text{im}(B \circ A) \subseteq \text{im}(B)$. Let $\mathbf{u} \in \text{im}(B \circ A)$. Then there exists $\mathbf{v} \in \mathbb{V}$ such that:

$$1233 \mathbf{u} = (B \circ A)(\mathbf{v}) = B(A(\mathbf{v})). \quad (63)$$

1234 Since $A(\mathbf{v}) \in \mathbb{W}$, it follows that $\mathbf{u} = B(\mathbf{w})$ for some $\mathbf{w} \in \mathbb{W}$, so $\mathbf{u} \in \text{im}(B)$. Hence,

$$1235 \text{im}(B \circ A) \subseteq \text{im}(B), \quad (64)$$

1236 and therefore:

$$1238 \dim(\text{im}(B \circ A)) \leq \dim(\text{im}(B)) \Rightarrow \text{rank}(B \circ A) \leq \text{rank}(B). \quad (65)$$

1239 Combining both inequalities (62) and (65), we conclude:

$$1240 \text{rank}(B \circ A) \leq \min(\text{rank}(A), \text{rank}(B)). \quad (66)$$

1241 \square

1242 B.11 PROOF OF THEOREM 2
1243

1244 *Proof.* From Proposition 2, each layer map $F^{(\ell)}$ is piecewise linear and differentiable almost everywhere.
1245 By Proposition 3, the composite map $\Phi = F^{(L)} \circ \dots \circ F^{(1)}$ is also piecewise linear and $\mathcal{M}^{(L)}$
1246 is a prismatic space. On each linear region C_k (as defined in Definition 6), Φ is linear, so its rank is
1247 constant on C_k . Thus, Φ is piecewise constant on its rank.

1248 Let $\{C_k\}$ be the linear region partition of \mathcal{M}_0 from Definition 6. For each C_k , the map $\Phi|_{C_k}$ is
1249 linear. Let $T_k = \Phi|_{C_k}$ denote this linear map. The image $\Phi(C_k)$ is contained in a linear subspace of
1250 dimension $\text{rank}(T_k)$.

1251 The local dimension of $\mathcal{M}^{(L)}$ at any point in $\Phi(C_k)$ is at most $\text{rank}(T_k)$. Since $\mathcal{M}^{(L)} = \bigcup_k \Phi(C_k)$,
1252 the intrinsic dimension $d_{\text{int}}(\mathcal{M}^{(L)})$ is the supremum of the local dimensions over all points in $\mathcal{M}^{(L)}$.
1253 Thus,

$$1254 \quad d_{\text{int}}(\mathcal{M}^{(L)}) \leq \max_k \text{rank}(T_k). \quad (67)$$

1255 Now, we bound $\text{rank}(T_k)$. Since $T_k = F^{(L)} \circ \dots \circ F^{(1)}|_{C_k}$, and each $F^{(\ell)}$ is linear on the relevant
1256 region, we have:

$$1257 \quad \text{rank}(T_k) \leq \min_{\ell} \text{rank}\left(F^{(\ell)}|_{\Phi^{(\ell-1)}(C_k)}\right). \quad (68)$$

1258 This follows from Lemma 2: for linear maps A and B , $\text{rank}(B \circ A) \leq \min(\text{rank}(A), \text{rank}(B))$. By
1259 induction, this holds for the composition of L linear maps.

1260 For each layer ℓ , $\text{rank}\left(F^{(\ell)}|_{\Phi^{(\ell-1)}(C_k)}\right) = \text{rank}\left(\mathbf{J}^{(\ell)}|_{\Phi^{(\ell-1)}(C_k)}\right)$ because the Jacobian is constant
1261 on the region where $F^{(\ell)}$ is linear (from Definition 6).

1262 Let $r_{\ell,k} = \text{rank}\left(\mathbf{J}^{(\ell)}|_{\Phi^{(\ell-1)}(C_k)}\right)$. Then,

$$1263 \quad \text{rank}(T_k) \leq \min_{\ell} r_{\ell,k}. \quad (69)$$

1264 Therefore,

$$1265 \quad d_{\text{int}}(\mathcal{M}^{(L)}) \leq \max_k \text{rank}(T_k) \leq \max_k \min_{\ell} r_{\ell,k}. \quad (70)$$

1266 Due to the contraction effect of the layers (especially with ReLUs, which project dimensions to zero),
1267 the ranks $r_{\ell,k}$ are often much smaller than the input dimension D_0 . Thus, $\max_k \min_{\ell} r_{\ell,k}$ is typically
1268 less than D_0 , implying that $\mathcal{M}^{(L)}$ has a lower intrinsic dimension than D_0 . \square

1269 B.12 PROOF OF THEOREM 3
1270

1271 *Proof.* By Proposition 2, each layer map $F^{(\ell)}$ is piecewise linear and differentiable almost everywhere.
1272 By Proposition 3, the composite map $\Phi = F^{(L)} \circ \dots \circ F^{(1)}$ is piecewise linear. By Definition 6, the
1273 input manifold \mathcal{M}_0 is partitioned into cells C_k such that on each C_k , Φ is linear.

1274 We assume Φ is injective on C_k . This implies that for each C_k , Φ restricted to C_k is a linear injection,
1275 so $d_{\text{int}}(\Phi(C_k)) = d_{\text{int}}(C_k) = d_{\text{int}}$, where $d_{\text{int}} = D_0$ is the intrinsic dimension of \mathcal{M}_0 (Definition 3).
1276 Since Φ is injective, each layer $F^{(\ell)}$ must be injective on $\Phi^{(\ell-1)}(C_k)$ for all ℓ and k . Otherwise, the
1277 composition would not be injective. Thus, for each ℓ and k , the Jacobian $\mathbf{J}^{(\ell)}$ of $F^{(\ell)}$ restricted to the
1278 tangent space of $\Phi^{(\ell-1)}(C_k)$ has rank at least d_{int} . Since the tangent space is d_{int} -dimensional, $\mathbf{J}^{(\ell)}$
1279 has exactly d_{int} positive singular values $\sigma_{1,k}^{(\ell)} \geq \sigma_{2,k}^{(\ell)} \geq \dots \geq \sigma_{d_{\text{int}},k}^{(\ell)} > 0$ on the region corresponding
1280 to C_k .

1281 Consider a fixed cell C_k . Since Φ is linear on C_k , we can write $\Phi(\mathbf{X}) = \text{unvec}(\mathbf{J}_k \cdot \text{vec}(\mathbf{X}) + \mathbf{b}_k)$
1282 for $\mathbf{X} \in C_k$, where \mathbf{J}_k is the Jacobian of Φ on C_k (constant). However, to understand the layer-wise
1283 measure change, we use the composition structure.

1284 For the first layer $F^{(1)}$, since it is linear on C_k , it maps C_k to $F^{(1)}(C_k)$. By Theorem 1, the
1285 d_{int} -dimensional Hausdorff measure changes as:

$$1286 \quad \mathcal{H}^{d_{\text{int}}}(F^{(1)}(C_k)) = \left(\prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(1)} \right) \mathcal{H}^{d_{\text{int}}}(C_k), \quad (71)$$

1296 where $\sigma_{i,k}^{(1)}$ are the singular values of $\mathbf{J}^{(1)}$ restricted to the tangent space of C_k (which is d_{int} -
1297 dimensional).

1298 For the second layer $F^{(2)}$, it is linear on $F^{(1)}(C_k)$ (which is d_{int} -dimensional). It maps $F^{(1)}(C_k)$ to
1300 $F^{(2)}(F^{(1)}(C_k))$. Again, by Theorem 1:

$$1301 \quad \mathcal{H}^{d_{\text{int}}}(F^{(2)}(F^{(1)}(C_k))) = \left(\prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(2)} \right) \mathcal{H}^{d_{\text{int}}}(F^{(1)}(C_k)) = \left(\prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(2)} \right) \left(\prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(1)} \right) \mathcal{H}^{d_{\text{int}}}(C_k), \quad (72)$$

1305 where $\sigma_{i,k}^{(2)}$ are the singular values of $\mathbf{J}^{(2)}$ restricted to the tangent space of $F^{(1)}(C_k)$.

1306 Proceeding inductively for all L layers, we get:

$$1308 \quad \mathcal{H}^{d_{\text{int}}}(\Phi(C_k)) = \left(\prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(C_k). \quad (73)$$

1311 This is because each layer's measure change factor is multiplicative, and the composition preserves
1312 the d_{int} -dimensional measure up to the product of the singular values.

1314 Since the cells C_k form a partition of \mathcal{M}_0 (Definition 6), and Φ is injective on C_k , the images $\Phi(C_k)$
1315 are disjoint and cover $\mathcal{M}^{(L)}$ (up to sets of measure zero, due to piecewise linearity). Therefore, by
1316 the additivity of the Hausdorff measure:

$$1318 \quad \mathcal{H}^{d_{\text{int}}}(\mathcal{M}^{(L)}) = \sum_k \mathcal{H}^{d_{\text{int}}}(\Phi(C_k)) = \sum_k \left(\prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(C_k). \quad (74)$$

1321 This establishes the desired formula.

1322 If Φ is not injective, then the images $\Phi(C_k)$ may overlap. Since the Hausdorff measure is subadditive,
1323 we have:

$$1325 \quad \mathcal{H}^{d_{\text{int}}}(\mathcal{M}^{(L)}) \leq \sum_k \mathcal{H}^{d_{\text{int}}}(\Phi(C_k)) = \sum_k \left(\prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(C_k). \quad (75)$$

1327 Thus, the formula provides an upper bound. \square

1329 B.13 DETAILS OF DEFINITION 7

1331 **Remark 8.** This definition formalizes the notion of how a prompt \mathbf{P} modifies the input data manifold
1332 in the context of prompt tuning. The original input manifold \mathcal{M}_0 , which represents the natural
1333 data distribution (e.g., graph node features), is typically assumed to be a compact smooth manifold
1334 embedded in $\mathbb{R}^{N \times d_0}$. The prompt \mathbf{P} is a low-dimensional perturbation applied to every point in
1335 \mathcal{M}_0 , resulting in a new manifold $\mathcal{M}_0(\mathbf{P})$. The operation $\mathcal{M}_0(\mathbf{P}) = \{\mathbf{X} + \mathbf{P} \mid \mathbf{X} \in \mathcal{M}_0\}$ is a
1336 translation of the entire manifold by \mathbf{P} , which preserves the topological and geometric properties
1337 of \mathcal{M}_0 , such as compactness and smoothness, since translation is a diffeomorphism. The prompt
1338 space \mathcal{P} is the set of all possible prompts, often constrained to be low-dimensional (e.g., a subspace
1339 of $\mathbb{R}^{N \times d_0}$), and each prompt $\mathbf{P} \in \mathcal{P}$ defines a distinct perturbed manifold. This family of manifolds
1340 $\{\mathcal{M}_0(\mathbf{P}) \mid \mathbf{P} \in \mathcal{P}\}$ encapsulates the variability introduced by prompt tuning, and the goal is to
1341 understand how the graph foundation model (GFM) transforms these manifolds through its layers.

1342 B.14 LIPSCHITZ CONTINUOUS AND JACOBIAN

1344 **Lemma 3** (Continuity of the Layer Map $F^{(\ell)}$). Assume the operators $\mathfrak{A}^{(\ell)}$, $\mathfrak{M}^{(\ell)}$, and $\mathfrak{U}^{(\ell)}$ defining
1345 the GFM layer in Definition 1 are continuous. Then, the layer map $F^{(\ell)}$ is continuous.

1347 *Proof.* Similar to the proof of Proposition 2, let $f_1 = \mathfrak{A}^{(\ell)}$, $f_2 = \mathfrak{M}^{(\ell)}$, and $f_3 = \mathfrak{U}^{(\ell)}$. Then
1348 $F^{(\ell)} = f_3 \circ (f_2 \circ (f_1, \text{id}), \text{id})$, where id denotes the identity function. Since the composition of
1349 continuous functions is continuous, the overall layer map $F^{(\ell)}$ is continuous. \square

1350
 1351 **Lemma 4** (Lipschitz Continuity of the GFM Map Φ). *Let $\mathcal{M}_0(\mathbf{P}) \subset \mathbb{R}^{N \times d_0}$ be the compact prompt-
 1352 perturbed input manifold as defined in Definition 7. The composite map $\Phi = F^{(L)} \circ F^{(L-1)} \circ \dots \circ F^{(1)}$,
 1353 where each $F^{(\ell)}$ is a piecewise linear layer map (Proposition 2), is Lipschitz continuous on $\mathcal{M}_0(\mathbf{P})$.
 1354 That is, there exists a constant $L_\Phi < \infty$ such that for all $\mathbf{X}, \mathbf{Y} \in \mathcal{M}_0(\mathbf{P})$,*

$$1355 \quad \|\Phi(\mathbf{X}) - \Phi(\mathbf{Y})\| \leq L_\Phi \|\mathbf{X} - \mathbf{Y}\|. \quad (76)$$

1356 Moreover, the Lipschitz constant L_Φ satisfies:

$$1358 \quad 1359 \quad 1360 \quad L_\Phi \leq \prod_{\ell=1}^L L_\ell, \quad (77)$$

1361 where L_ℓ is the Lipschitz constant of the ℓ -th layer $F^{(\ell)}$ on the appropriate domain.

1364 *Proof.* Prove the piecewise linear layers are Lipschitz continuous.

1365 Each layer map $F^{(\ell)} : \mathbb{R}^{N \times d_{\ell-1}} \rightarrow \mathbb{R}^{N \times d_\ell}$ is piecewise linear and continuous by Proposition 2
 1366 and Lemma 3. Since $\mathcal{M}_0(\mathbf{P})$ is compact and each $F^{(\ell)}$ is continuous, the image $F^{(\ell)}(\mathcal{M}_0(\mathbf{P}))$ is
 1367 also compact. The piecewise linearity implies that there exists a finite partition of the domain into
 1368 polyhedral regions $R_k^{(\ell)}$ such that $F^{(\ell)}$ is linear on each region $R_k^{(\ell)}$. On each such region, for any
 1369 $\mathbf{H}, \mathbf{H}' \in R_k^{(\ell)}$, we have

$$1371 \quad 1372 \quad \|F^{(\ell)}(\mathbf{H}) - F^{(\ell)}(\mathbf{H}')\| = \|\mathbf{A}_k^{(\ell)}(\mathbf{H} - \mathbf{H}')\| \leq \|\mathbf{A}_k^{(\ell)}\|_{\text{op}} \|\mathbf{H} - \mathbf{H}'\|, \quad (78)$$

1373 where $\mathbf{A}_k^{(\ell)}$ is the matrix representing the linear map on $R_k^{(\ell)}$ and $|\cdot|_{\text{op}}$ denotes the operator norm
 1374 (spectral norm). Define the local Lipschitz constant for $F^{(\ell)}$ on region $R_k^{(\ell)}$ as $L_k^{(\ell)} = \|\mathbf{A}_k^{(\ell)}\|_{\text{op}}$. Since
 1375 the number of regions intersecting the compact set $\mathcal{M}_0(\mathbf{P})$ is finite, the global Lipschitz constant for
 1376 $F^{(\ell)}$ on $\mathcal{M}_0(\mathbf{P})$ is finite and given by

$$1378 \quad 1379 \quad L_\ell = \max_k L_k^{(\ell)} < \infty. \quad (79)$$

1380 Thus, for any $\mathbf{H}, \mathbf{H}' \in \mathcal{M}_0(\mathbf{P})$,

$$1382 \quad 1383 \quad \|F^{(\ell)}(\mathbf{H}) - F^{(\ell)}(\mathbf{H}')\| \leq L_\ell \|\mathbf{H} - \mathbf{H}'\|. \quad (80)$$

1384 Prove the composite map Φ is Lipschitz continuous.

1385 The composite map $\Phi = F^{(L)} \circ F^{(L-1)} \circ \dots \circ F^{(1)}$ is a composition of Lipschitz continuous maps.
 1386 For any $\mathbf{X}, \mathbf{Y} \in \mathcal{M}_0(\mathbf{P})$, let $\mathbf{H}^{(\ell)} = F^{(\ell)} \circ \dots \circ F^{(1)}(\mathbf{X})$ and $\mathbf{K}^{(\ell)} = F^{(\ell)} \circ \dots \circ F^{(1)}(\mathbf{Y})$ denote
 1387 the intermediate representations. Then,

$$1389 \quad \|\mathbf{H}^{(1)} - \mathbf{K}^{(1)}\| = \|F^{(1)}(\mathbf{X}) - F^{(1)}(\mathbf{Y})\| \leq L_1 \|\mathbf{X} - \mathbf{Y}\|, \\ 1390 \quad \|\mathbf{H}^{(2)} - \mathbf{K}^{(2)}\| = \|F^{(2)}(\mathbf{H}^{(1)}) - F^{(2)}(\mathbf{K}^{(1)})\| \leq L_2 \|\mathbf{H}^{(1)} - \mathbf{K}^{(1)}\| \leq L_2 L_1 \|\mathbf{X} - \mathbf{Y}\|, \\ 1391 \quad \vdots \\ 1393 \quad \|\mathbf{H}^{(L)} - \mathbf{K}^{(L)}\| = \|\Phi(\mathbf{X}) - \Phi(\mathbf{Y})\| \leq L_L \|\mathbf{H}^{(L-1)} - \mathbf{K}^{(L-1)}\| \leq \left(\prod_{\ell=1}^L L_\ell \right) \|\mathbf{X} - \mathbf{Y}\|. \quad (81)$$

1397 Therefore, Φ is Lipschitz continuous with constant $L_\Phi = \prod_{\ell=1}^L L_\ell$.

1398 This completes the proof. \square

1400 **Lemma 5** (Existence of the Jacobian $\mathbf{J}_\Phi(\mathbf{X})$). *In the context of the unified GFM framework, we
 1401 aim to prove that the Jacobian of the composite map $\Phi = F^{(L)} \circ F^{(L-1)} \circ \dots \circ F^{(1)}$ exists almost
 1402 everywhere (a.e.) on the input manifold $\mathcal{M}_0(\mathbf{P})$, and that at points where it exists, it is given by the
 1403 product of the layer Jacobians.*

1404 *Proof.* By Proposition 2, each layer map $F^{(\ell)} : \mathbb{R}^{N \times d_{\ell-1}} \rightarrow \mathbb{R}^{N \times d_\ell}$ is piecewise linear. This
 1405 means that the domain of $F^{(\ell)}$ can be partitioned into a finite number of polyhedral regions $R_k^{(\ell)}$
 1406 such that $F^{(\ell)}$ is linear on each region. Since linear functions are differentiable everywhere, $F^{(\ell)}$
 1407 is differentiable on the interior of each region. The boundaries between regions have Lebesgue
 1408 measure zero in $\mathbb{R}^{N \times d_{\ell-1}}$ (as they are subsets of lower-dimensional affine spaces). Therefore, $F^{(\ell)}$
 1409 is differentiable almost everywhere in its domain. Let D_ℓ denote the set of points where $F^{(\ell)}$ is
 1410 differentiable; then D_ℓ has full measure (i.e., its complement has measure zero).

1411 The composite map Φ is defined as $\Phi = F^{(L)} \circ F^{(L-1)} \circ \dots \circ F^{(1)}$. Consider the sets where each
 1412 $F^{(\ell)}$ is differentiable. Since each $F^{(\ell)}$ is differentiable a.e., the set of points where all $F^{(\ell)}$ are
 1413 differentiable along the composition path is also of full measure. More formally, define:

- 1416 • $E_1 = D_1$ (the set where $F^{(1)}$ is differentiable).
- 1417 • For $\ell = 2$ to L , define $E_\ell = \{\mathbf{X} \in E_{\ell-1} : F^{(\ell)}\}$ is differentiable at $\Phi^{(\ell-1)}(\mathbf{X})$, where
 1418 $\Phi^{(\ell-1)} = F^{(\ell-1)} \circ \dots \circ F^{(1)}$.

1421 Since $F^{(\ell)}$ is differentiable a.e., and $\Phi^{(\ell-1)}$ is continuous and piecewise linear (hence Lipschitz),
 1422 it preserves sets of measure zero. Thus, by induction, each E_ℓ has full measure. Therefore, the set
 1423 $E = E_L$ where all $F^{(\ell)}$ are differentiable at the appropriate points has full measure in $\mathcal{M}_0(\mathbf{P})$. For
 1424 any $\mathbf{X} \in E$, the composite map Φ is differentiable at \mathbf{X} by the chain rule.

1425 At a point $\mathbf{X} \in E$, the chain rule applies. Let $\mathbf{H}^{(0)} = \mathbf{X}$, and for $\ell = 1$ to L , define $\mathbf{H}^{(\ell)} =$
 1426 $F^{(\ell)}(\mathbf{H}^{(\ell-1)})$. Then, the Jacobian of Φ at \mathbf{X} is given by:

$$1428 \quad \mathbf{J}_\Phi(\mathbf{X}) = \mathbf{J}^{(L)}(\mathbf{H}^{(L-1)}) \cdot \mathbf{J}^{(L-1)}(\mathbf{H}^{(L-2)}) \cdots \mathbf{J}^{(1)}(\mathbf{X}), \quad (82)$$

1430 where $\mathbf{J}^{(\ell)}(\mathbf{H}^{(\ell-1)})$ is the Jacobian of $F^{(\ell)}$ at $\mathbf{H}^{(\ell-1)}$. This product is well-defined because each
 1431 Jacobian exists at the respective points.

1432 Since $\mathcal{M}_0(\mathbf{P})$ is a compact smooth manifold embedded in $\mathbb{R}^{N \times d_0}$, it has a Lipschitz parameterization.
 1433 The above argument holds for almost every point in $\mathcal{M}_0(\mathbf{P})$ with respect to the Lebesgue measure
 1434 on the parameter space. Thus, $\mathbf{J}_\Phi(\mathbf{X})$ exists for almost every $\mathbf{X} \in \mathcal{M}_0(\mathbf{P})$. \square

1436 B.15 PROOF OF THEOREM 4

1438 *Proof.* Assume the input manifold $\mathcal{M}_0(\mathbf{P})$ is compact and smooth with intrinsic dimension d_{int} . By
 1439 Definition 6, the piecewise linear map $\Phi = F^{(L)} \circ \dots \circ F^{(1)}$ partitions $\mathcal{M}_0(\mathbf{P})$ into a countable
 1440 collection of cells $\{C'_k\}$, where each C'_k is a connected subset of $\mathcal{M}_0(\mathbf{P})$ such that Φ is linear on C'_k .
 1441 This partition exists because Φ is piecewise linear (Theorem 2).

1442 Proof of the Measure Bound.

1444 For each cell C'_k , since Φ is linear on C'_k , the Jacobian \mathbf{J}_Φ is constant on C'_k . By Theorem 3, the
 1445 Hausdorff measure of the image $\Phi(C'_k)$ is given by:

$$1447 \quad \mathcal{H}^{d_{\text{int}}}(\Phi(C'_k)) = \left(\prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(C'_k), \quad (83)$$

1450 where $\sigma_{i,k}^{(\ell)}$ are the first d_{int} singular values of the Jacobian of the ℓ -th layer evaluated in the linear
 1451 region corresponding to C'_k . Note that the product $\prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)}$ is taken over the largest d_{int} singular
 1452 values, as the tangent space has dimension d_{int} .

1454 The total measure of $\mathcal{M}^{(L)}(\mathbf{P})$ is the sum over all cells:

$$1456 \quad \mathcal{H}^{d_{\text{int}}}(\mathcal{M}^{(L)}(\mathbf{P})) \leq \sum_k \mathcal{H}^{d_{\text{int}}}(\Phi(C'_k)) = \sum_k \left(\prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(C'_k). \quad (84)$$

1458 Since $\prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \leq \sup_{k'} \prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k'}^{(\ell)}$ for all k , we have:
 1459

$$1460 \mathcal{H}^{d_{\text{int}}}(\mathcal{M}^{(L)}(\mathbf{P})) \leq \left(\sup_{k'} \prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k'}^{(\ell)} \right) \sum_k \mathcal{H}^{d_{\text{int}}}(C'_k) = \left(\sup_{k'} \prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k'}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(\mathcal{M}_0(\mathbf{P})). \quad (85)$$

1463 This proves the measure bound.
 1464

1465 **Proof of the Diameter Bound.**

1466 Let $\text{diam}(\mathcal{M})$ denote the diameter of a set \mathcal{M} , defined as:
 1467

$$1468 \text{diam}(\mathcal{M}) = \sup_{x,y \in \mathcal{M}} \|x - y\|. \quad (86)$$

1469 By Theorem 2 and Lemma 4, the map Φ is piecewise linear and Lipschitz continuous on $\mathcal{M}_0(\mathbf{P})$.
 1470 The global Lipschitz constant L_Φ satisfies:
 1471

$$1472 \|\Phi(\mathbf{X}) - \Phi(\mathbf{Y})\| \leq L_\Phi \|\mathbf{X} - \mathbf{Y}\| \quad \forall \mathbf{X}, \mathbf{Y} \in \mathcal{M}_0(\mathbf{P}). \quad (87)$$

1473 The Lipschitz constant L_Φ can be bounded by the operator norms of the Jacobians of Φ . For any
 1474 point $\mathbf{X} \in \mathcal{M}_0(\mathbf{P})$, the Jacobian $\mathbf{J}_\Phi(\mathbf{X})$ exists almost everywhere (by Definition 5) and is given by
 1475 the product of the layer Jacobians:
 1476

$$1477 \mathbf{J}_\Phi(\mathbf{X}) = \mathbf{J}^{(L)}(F^{(L-1)}(\mathbf{X})) \cdots \mathbf{J}^{(1)}(\mathbf{X}). \quad (88)$$

1478 The operator norm of $\mathbf{J}_\Phi(\mathbf{X})$ satisfies:
 1479

$$1480 |\mathbf{J}_\Phi(\mathbf{X})|_{\text{op}} \leq |\mathbf{J}^{(L)}(F^{(L-1)}(\mathbf{X}))|_{\text{op}} \cdots |\mathbf{J}^{(1)}(\mathbf{X})|_{\text{op}}. \quad (89)$$

1481 Each layer Jacobian $|\mathbf{J}^{(\ell)}(\mathbf{X}_\ell)|_{\text{op}}$ (where $\mathbf{X}_\ell = F^{(\ell-1)}(\mathbf{X})$) is constant on linear regions. Let
 1482 $|\mathbf{J}_k^{(\ell)}|_{\text{op}}$ be the operator norm of the Jacobian of the ℓ -th layer in the k -th linear region. Then:
 1483

$$1484 1485 |\mathbf{J}^{(\ell)}(\mathbf{X}_\ell)|_{\text{op}} \leq \sup_k |\mathbf{J}_k^{(\ell)}|_{\text{op}} \quad \forall \mathbf{X}_\ell. \quad (90)$$

1486 Therefore,
 1487

$$1488 1489 |\mathbf{J}_\Phi(\mathbf{X})|_{\text{op}} \leq \prod_{\ell=1}^L \sup_k |\mathbf{J}_k^{(\ell)}|_{\text{op}} \quad \forall \mathbf{X}. \quad (91)$$

1490 The global Lipschitz constant L_Φ is the supremum of $|\mathbf{J}_\Phi(\mathbf{X})|_{\text{op}}$ over $\mathbf{X} \in \mathcal{M}_0(\mathbf{P})$:
 1491

$$1492 1493 1494 L_\Phi = \sup_{\mathbf{X} \in \mathcal{M}_0(\mathbf{P})} |\mathbf{J}_\Phi(\mathbf{X})|_{\text{op}} \leq \prod_{\ell=1}^L \sup_k |\mathbf{J}_k^{(\ell)}|_{\text{op}}. \quad (92)$$

1495 Now, for any $\mathbf{X}, \mathbf{Y} \in \mathcal{M}_0(\mathbf{P})$,
 1496

$$1497 1498 1499 \|\Phi(\mathbf{X}) - \Phi(\mathbf{Y})\| \leq L_\Phi \|\mathbf{X} - \mathbf{Y}\| \leq \left(\prod_{\ell=1}^L \sup_k |\mathbf{J}_k^{(\ell)}|_{\text{op}} \right) \|\mathbf{X} - \mathbf{Y}\|. \quad (93)$$

1500 Taking the supremum over $\mathbf{X}, \mathbf{Y} \in \mathcal{M}_0(\mathbf{P})$, we get:
 1501

$$1502 1503 1504 \text{diam}(\mathcal{M}^{(L)}(\mathbf{P})) \leq \left(\prod_{\ell=1}^L \sup_k |\mathbf{J}_k^{(\ell)}|_{\text{op}} \right) \cdot \text{diam}(\mathcal{M}_0(\mathbf{P})). \quad (94)$$

1505 This proves the diameter bound. \square
 1506

1507 **B.16 THEORETICAL LIMITATIONS OF PROMPT TUNING**

1508 The Prompt Efficacy Bound (Theorem 4) reveals fundamental theoretical limitations of prompt tuning
 1509 in GFMs. Specifically, the measure and diameter bounds imply that the influence of a prompt \mathbf{P} is
 1510 constrained by the compositional prismatic effect of the frozen GFM layers.
 1511

1512 **Information Loss through Spectral Contraction.**

1512 The measure bound shows that the effective “volume” of the prompt-perturbed space $\mathcal{M}^{(L)}(\mathbf{P})$ is
 1513 scaled by the product of singular values across layers and linear regions. Since deep GFMs often
 1514 exhibit spectral decay (with many singular values $\sigma_i^{(\ell)} \ll 1$), the prompt-induced perturbations are
 1515 compressed exponentially with depth. This irreversible contraction implies that fine-grained semantic
 1516 nuances introduced by the prompt may be lost or distorted before reaching the output layer.
 1517

1518 **Intrinsic Dimensionality Collapse.**

1519 As shown in Theorem 2, the intrinsic dimension $d_{\text{int}}(\mathcal{M}^{(L)})$ of the final representation is bounded
 1520 by the minimal rank achieved locally across layers. Prompt tuning operates on the input manifold
 1521 $\mathcal{M}_0(\mathbf{P})$, but the frozen network’s piecewise linear transformations inherently project the prompt into
 1522 a lower-dimensional subspace. Thus, even if the prompt is high-dimensional, its effective influence is
 1523 limited by the bottleneck rank of the Jacobians, reducing its capacity to encode complex instructions.
 1524

1525 **Sensitivity to Input Geometry.**

1526 The diameter bound depends on the operator norms of the layer Jacobians. If the network exhibits
 1527 gradient explosion (large $\sup_k |\mathbf{J}_k^{(\ell)}|_{\text{op}}$) or vanishing (small singular values), the prompt’s effect may
 1528 be either amplified erratically or suppressed. This sensitivity makes prompt tuning highly dependent
 1529 on the pre-trained model’s architecture and parameterization, limiting its robustness.
 1530

1531 **Non-Adaptive Prismatic Structure.**

1532 Since the network is frozen, the prompt cannot alter the prismatic folding process (e.g., the partition
 1533 into linear regions or the Jacobian spectra). The prompt is merely a shift in the input space, and its
 1534 efficacy depends on how the fixed geometric transformation Φ distorts this shift. In contrast, full
 1535 fine-tuning adapts Φ itself to preserve task-relevant information, which prompt tuning cannot achieve.
 1536

1537 **Trade-off Between Prompt Size and Expressivity.**

1538 While increasing the prompt dimension $\dim(\mathcal{P})$ might seem beneficial, the measure bound shows
 1539 that the effective output scale is constrained by the product of Jacobian singular values. Thus, simply
 1540 enlarging the prompt may not improve efficacy if the network’s contraction forces are too strong.
 1541 This suggests a fundamental trade-off between prompt complexity and the network’s capacity to
 1542 preserve prompt-induced variations.
 1543

1544 In summary, prompt tuning is inherently limited by the frozen GFM’s spectral properties and
 1545 geometric structure. While it can induce some distributional shifts, its ability to convey nuanced
 1546 instructions is bounded by the network’s pre-existing prismatic contraction and rank collapse. These
 1547 limitations motivate the need for architectural interventions (e.g., adding adapters) or alternative
 1548 tuning strategies that can mitigate the loss of prompt information through deeper layers.
 1549

1550 **C THEORETICAL ANALYSIS OF MESSAGE TUNING**

1551 **C.1 PROOF OF THEOREM 5**

1552 *Proof.* We prove the theorem using the geometric measure theoretic framework of Prismatic Space
 1553 Theory. The key idea is that message tuning, by injecting learnable parameters at each layer, can
 1554 compensate for the measure contraction and intrinsic dimension reduction caused by the prismatic
 1555 effect of the frozen GFM layers, and can additionally expand the diameter of the output space.
 1556

1557 **Intrinsic Dimension Comparison.**

1558 In Prismatic Space Theory, the intrinsic dimension $d_{\text{int}}(\mathcal{M}_{\text{MTG}}^{(L)})$ refers to the topological dimension
 1559 or Hausdorff dimension of the final representation space $\mathcal{M}_{\text{MTG}}^{(L)}$, which is the inherent dimensionality
 1560 of the space itself, not the dimension of the embedding space. This intrinsic dimension is defined by
 1561 the geometric properties of space, but we can use the rank of the Jacobian matrix of the mapping to
 1562 provide an upper bound.
 1563

1564 Specifically, for the mapping $\Phi_{\text{MTG}} : \mathcal{M}_0 \rightarrow \mathcal{M}_{\text{MTG}}^{(L)}$ (where Φ_{MTG} is the composite layer mapping
 1565 after message tuning), we have:

$$1566 d_{\text{int}}(\mathcal{M}_{\text{MTG}}^{(L)}) \leq \sup_{\mathbf{X} \in \mathcal{M}_0} \text{rank}(\mathbf{J}_{\Phi_{\text{MTG}}}(\mathbf{X})), \quad (95)$$

1566 where $\mathbf{J}_{\Phi_{\text{MTG}}}(\mathbf{X})$ is the Jacobian matrix of the mapping Φ_{MTG} at point \mathbf{X} . This means that the
 1567 intrinsic dimension of the space cannot exceed the maximum rank of the Jacobian matrix across all
 1568 input points.

1569 From Theorem 2, for prompt tuning, the intrinsic dimension of the final space is bounded by:
 1570

$$d_{\text{int}}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})) \leq \max_k \min_{\ell} \text{rank}(\mathbf{J}^{(\ell)}|_{\Phi^{(\ell-1)}(C_k)}), \quad (96)$$

1573 where $\mathbf{J}^{(\ell)}$ is the Jacobian of the ℓ -th layer of the frozen GFM, and C_k are the linear regions of the
 1574 input manifold.

1575 For message tuning, the layer map is modified to include the fusion operation $\mathfrak{F}^{(\ell)}$. Specifically, at
 1576 each layer ℓ , the input representation $\mathbf{H}^{(\ell-1)}$ is transformed to $\mathbf{H}_M^{(\ell-1)} = \mathfrak{F}^{(\ell)}(\mathbf{H}^{(\ell-1)}, \mathbf{M}^{(\ell)}; \Theta_f^{(\ell)})$
 1577 before applying the standard layer map $F^{(\ell)}$. Thus, the effective layer map becomes $\Psi^{(\ell)} = F^{(\ell)} \circ \mathfrak{F}^{(\ell)}$.
 1578

1579 The Jacobian of $\Psi^{(\ell)}$ at a point where it is differentiable is given by the chain rule:
 1580

$$\mathbf{J}_{\Psi}^{(\ell)} = \mathbf{J}_F^{(\ell)} \cdot \mathbf{J}_{\mathfrak{F}}^{(\ell)}, \quad (97)$$

1581 where $\mathbf{J}_F^{(\ell)}$ is the Jacobian of $F^{(\ell)}$ and $\mathbf{J}_{\mathfrak{F}}^{(\ell)}$ is the Jacobian of $\mathfrak{F}^{(\ell)}$.
 1582

1583 The core issue is that $\mathfrak{F}^{(\ell)}$ is not linear, but we can show that with learnable parameters, its Jacobian
 1584 can be made full-rank, ensuring the desired rank inequality.
 1585

1586 Recall that for message tuning, the fusion operation is defined as:
 1587

$$\mathfrak{F}^{(\ell)}(\mathbf{H}^{(\ell-1)}, \mathbf{M}^{(\ell)}; \Theta_f^{(\ell)}) = \mathbf{H}^{(\ell-1)} + \text{Softmax}(\mathbf{H}^{(\ell-1)} \mathbf{W}_p^{(\ell)}) \cdot \mathbf{M}^{(\ell)}, \quad (98)$$

1588 where $\mathbf{H}^{(\ell-1)} \in \mathbb{R}^{N \times d_{\ell-1}}$, $\mathbf{W}_p^{(\ell)} \in \mathbb{R}^{d_{\ell-1} \times m}$, and $\mathbf{M}^{(\ell)} \in \mathbb{R}^{m \times d_{\ell-1}}$.
 1589

1590 The Jacobian of $\mathfrak{F}^{(\ell)}$ with respect to $\mathbf{H}^{(\ell-1)}$ is a block-diagonal matrix composed of N blocks,
 1591 each of size $d_{\ell-1} \times d_{\ell-1}$. For each node i , the block corresponds to the derivative of the i -th
 1592 row of $\mathfrak{F}^{(\ell)}$ with respect to the i -th row of $\mathbf{H}^{(\ell-1)}$. Specifically, let \mathbf{h}_i be the i -th row of $\mathbf{H}^{(\ell-1)}$,
 1593 and let $\mathbf{a}_i = \mathbf{h}_i \mathbf{W}_p^{(\ell)}$. Then the Softmax output is $\alpha_i = \text{Softmax}(\mathbf{a}_i)$, and the i -th row of $\mathfrak{F}^{(\ell)}$ is
 1594 $\mathbf{h}_i + \alpha_i \mathbf{M}^{(\ell)}$.
 1595

1596 The Jacobian for node i is:
 1597

$$\mathbf{B}_i = \mathbf{I} + \mathbf{M}^{(\ell)\top} \mathbf{J}_{\text{softmax}}(\mathbf{a}_i) \mathbf{W}_p^{(\ell)\top}, \quad (99)$$

1598 where \mathbf{I} is the identity matrix, and $\mathbf{J}_{\text{softmax}}(\mathbf{a}_i) \in \mathbb{R}^{m \times m}$ is the Jacobian of Softmax at \mathbf{a}_i , which has
 1599 rank $m - 1$.
 1600

1601 Since $\mathbf{J}_{\text{softmax}}(\mathbf{a}_i)$ is bounded, we can choose $\mathbf{M}^{(\ell)}$ and $\mathbf{W}_p^{(\ell)}$ such that the spectral norm of
 1602 $\mathbf{M}^{(\ell)\top} \mathbf{J}_{\text{softmax}}(\mathbf{a}_i) \mathbf{W}_p^{(\ell)\top}$ is less than 1 for all i . This ensures that \mathbf{B}_i is invertible and thus full-rank
 1603 for all i . Therefore, the full Jacobian $\mathbf{J}_{\mathfrak{F}}^{(\ell)}$ has rank $N d_{\ell-1}$.
 1604

1605 Now, for the composite map $\Psi^{(\ell)} = F^{(\ell)} \circ \mathfrak{F}^{(\ell)}$, the Jacobian is:
 1606

$$\mathbf{J}_{\Psi}^{(\ell)} = \mathbf{J}_F^{(\ell)} \cdot \mathbf{J}_{\mathfrak{F}}^{(\ell)}. \quad (100)$$

1607 Since $\mathbf{J}_{\mathfrak{F}}^{(\ell)}$ has full rank $N d_{\ell-1}$, and $\mathbf{J}_F^{(\ell)}$ has rank r , we have Sylvester's rank inequality:
 1608

$$\text{rank}(\mathbf{J}_{\Psi}^{(\ell)}) \geq \text{rank}(\mathbf{J}_F^{(\ell)}) + \text{rank}(\mathbf{J}_{\mathfrak{F}}^{(\ell)}) - N d_{\ell-1} = \text{rank}(\mathbf{J}_F^{(\ell)}) + N d_{\ell-1} - N d_{\ell-1} = \text{rank}(\mathbf{J}_F^{(\ell)}). \quad (101)$$

1609 Thus, the rank of $\mathbf{J}_{\Psi}^{(\ell)}$ is at least the rank of $\mathbf{J}_F^{(\ell)}$.
 1610

$$\text{rank}(\mathbf{J}_{\Psi}^{(\ell)}) \geq \text{rank}(\mathbf{J}_F^{(\ell)}). \quad (102)$$

1611 Moreover, by optimizing the fusion parameters, we can ensure that $\text{rank}(\mathbf{J}_{\Psi}^{(\ell)}) \geq \text{rank}(\mathbf{J}_F^{(\ell)})$ for all ℓ .
 1612 Since $\Psi^{(\ell)}$ does not introduce additional linear region partitions, meaning it does not generate more
 1613

boundaries, corners, or singular points, the inequality holds pointwise. For any k , there always exists a point \mathbf{X}_k such that:

$$\min_{\ell} \text{rank}(\mathbf{J}_{\Psi}^{(\ell)}|_{\mathbf{X}_k}) \geq \min_{\ell} \text{rank}(\mathbf{J}_F^{(\ell)}|_{\Phi^{(\ell-1)}(C_k)}). \quad (103)$$

This implies that the upper bound on the intrinsic dimension for message tuning is at least as large as that for prompt tuning:

$$\max_k \min_{\ell} \text{rank}(\mathbf{J}_{\Psi}^{(\ell)}|_{\mathbf{X}_k}) \geq \max_k \min_{\ell} \text{rank}(\mathbf{J}_F^{(\ell)}|_{\Phi^{(\ell-1)}(C_k)}). \quad (104)$$

Although $\mathbf{J}_{\mathfrak{F}}^{(\ell)}$ is full-rank and thus $\text{rank}(\mathbf{J}_{\Psi}^{(\ell)}) = \text{rank}(\mathbf{J}_F^{(\ell)})$ at any point where both are defined, the key to strict inequality lies in the distribution of points across linear regions of the frozen layers. The message fusion operation $\mathfrak{F}^{(\ell)}$ can map inputs to different linear regions of $F^{(\ell)}$ where the rank of $\mathbf{J}_F^{(\ell)}$ is higher.

Suppose that for some layer ℓ , the frozen Jacobian $\mathbf{J}_F^{(\ell)}$ has varying rank across its linear regions. Specifically, there exist linear regions R_{low} and R_{high} such that:

$$\text{rank}(\mathbf{J}_F^{(\ell)}|_{R_{\text{low}}}) < \text{rank}(\mathbf{J}_F^{(\ell)}|_{R_{\text{high}}}). \quad (105)$$

In prompt tuning, the input to $F^{(\ell)}$ may fall primarily into R_{low} due to the shift caused by the prompt, resulting in a lower minimum rank. However, in message tuning, the learnable parameters $\Theta_f^{(\ell)}$ and $\mathbf{M}^{(\ell)}$ can be optimized to steer the input to $F^{(\ell)}$ into R_{high} , thereby increasing the rank at that layer.

Assume that $\Phi^{(\ell-1)}(C_k)$ does not lie in a linear region that maximizes $\text{rank}(\mathbf{J}_F^{(\ell)})$. This assumption is realistic because $\Phi^{(\ell-1)}$ is pre-trained and lacks the ability to adjust its output range. Formally, by optimizing the fusion parameters, we can ensure that for each layer ℓ , the input $\mathfrak{F}^{(\ell)}(\mathbf{H}^{(\ell-1)})$ lies in a region where $\text{rank}(\mathbf{J}_F^{(\ell)})$ is maximized. Consequently, for any k , there always exists a point \mathbf{Y}_k such that:

$$\min_{\ell} \text{rank}(\mathbf{J}_F^{(\ell)}|_{\mathbf{Y}_k \in \mathfrak{F}^{(\ell)}(\mathbf{H}^{(\ell-1)})}) > \min_{\ell} \text{rank}(\mathbf{J}_F^{(\ell)}|_{\Phi^{(\ell-1)}(C_k)}). \quad (106)$$

This implies that the upper bound for message tuning is strictly greater:

$$\max_k \min_{\ell} \text{rank}(\mathbf{J}_{\Psi}^{(\ell)}|_{\mathbf{Y}_k}) > \max_k \min_{\ell} \text{rank}(\mathbf{J}^{(\ell)}|_{\Phi^{(\ell-1)}(C_k)}). \quad (107)$$

Therefore, the actual intrinsic dimension satisfies:

$$d_{\text{int}}(\mathcal{M}_{\text{MTG}}^{(L)}) > d_{\text{int}}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})). \quad (108)$$

This strict inequality holds when the fusion parameters are optimized to avoid low-rank linear regions of the frozen layers, which is achievable through gradient-based training that maximizes the rank of the Jacobians during adaptation.

Thus, message tuning provides strictly greater adaptation capacity in terms of intrinsic dimension compared to prompt tuning.

$$d_{\text{int}}(\mathcal{M}_{\text{MTG}}^{(L)}) \geq d_{\text{int}}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})) \quad (109)$$

and the inequality is strict for some configuration.

Hausdorff Measure Comparison.

Recall that the pre-trained GFM Φ is composed of L layers, each defined as in Definition 1. For prompt tuning, the input manifold is perturbed by a prompt \mathbf{P} , resulting in $\mathcal{M}_0(\mathbf{P})$. The final space is $\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P}) = \Phi(\mathcal{M}_0(\mathbf{P}))$.

For message tuning, we introduce learnable message prototypes $\mathbf{M}^{(\ell)} \in \mathbb{R}^{m \times d_{\ell-1}}$ and fusion parameters $\Theta_f^{(\ell)}$ at each layer ℓ , modifying the layer map to:

$$\mathbf{H}^{(\ell)} = \mathfrak{U}^{(\ell)} \left(\mathfrak{M}^{(\ell)} \left(\mathfrak{A}^{(\ell)} \left(\mathbf{A}, \mathbf{H}_M^{(\ell-1)}; \Theta_a^{(\ell)} \right), \mathbf{H}_M^{(\ell-1)}; \Theta_m^{(\ell)} \right), \mathbf{H}_M^{(\ell-1)}; \Theta_u^{(\ell)} \right), \quad (110)$$

1674 where

1675

$$1676 \mathbf{H}_M^{(\ell-1)} = \mathfrak{F}^{(\ell)}(\mathbf{H}^{(\ell-1)}, \mathbf{M}^{(\ell)}; \Theta_f^{(\ell)}) = \mathbf{H}^{(\ell-1)} + \text{Softmax}(\mathbf{H}^{(\ell-1)} \mathbf{W}_p^{(\ell)}) \cdot \mathbf{M}^{(\ell)}. \quad (111)$$

1677

1678 The modified network is denoted Φ_{MTG} , and the final space is $\mathcal{M}_{\text{MTG}}^{(L)} = \Phi_{\text{MTG}}(\mathcal{M}_0)$.

1679 The introduction of the Softmax function in the fusion operation $\mathfrak{F}^{(\ell)}$ indeed breaks the strict
1680 piecewise linearity of the layer map, since Softmax is a smooth, nonlinear function. However, we can
1681 address this issue through analyzing the network as a piecewise-linear map with smooth activations,
1682 leveraging the fact that the Softmax can be effectively constant on large regions of the input space.
1683

1684 More generally, we can partition the input space into regions where the Softmax is approximately
1685 linear. For instance, if we use a linearized Softmax (e.g., by taking a first-order Taylor expansion
1686 around a point), we obtain a piecewise linear approximation. The error of this approximation can be
1687 made arbitrarily small by refining the partition.

1688 Given the above, we may treat Φ_{MTG} as a piecewise linear map for the purpose of geometric analysis.
1689 Specifically, we define:

1690

$$1691 \mathfrak{F}^{(\ell)}(\mathbf{H}^{(\ell-1)}, \mathbf{M}^{(\ell)}; \mathbf{W}_p^{(\ell)}) \approx \mathbf{H}^{(\ell-1)} + \text{Linear}(\mathbf{H}^{(\ell-1)} \mathbf{W}_p^{(\ell)}) \mathbf{M}^{(\ell)}, \quad (112)$$

1692

1693 where $\text{Linear}(\mathbf{H}^{(\ell-1)} \mathbf{W}_p^{(\ell)})$ is a piecewise linear function (e.g., sparsemax (Martins & Astudillo,
1694 2016) or a linearized Softmax). Then, the modified layer map is piecewise linear, and the entire
1695 network Φ_{MTG} is piecewise linear.

1696 Under this approximation, by Theorem 3, the Hausdorff measures are:

1697

$$1698 \mathcal{H}^{d_{\text{int}}}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})) = \sum_k \left(\prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(C_k), \quad (113)$$

1699

1700

$$1701 \mathcal{H}^{d_{\text{int}}}(\mathcal{M}_{\text{MTG}}^{(L)}) = \sum_k \left(\prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \tilde{\sigma}_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(\tilde{C}_k), \quad (114)$$

1702

1703 where $\sigma_{i,k}^{(\ell)}$ and $\tilde{\sigma}_{i,k}^{(\ell)}$ are the singular values of the Jacobians of the original and modified layers,
1704 respectively, and C_k and \tilde{C}_k are the linear regions of the input manifold under the original and
1705 modified networks.

1706 Message tuning introduces learnable parameters $\mathbf{M}^{(\ell)}$ and $\mathbf{W}_p^{(\ell)}$ at each layer. Crucially, message
1707 tuning can simulate prompt tuning by appropriately setting these parameters. However, it also has
1708 additional degrees of freedom that allow it to reduce measure contraction.
1709

1710 For any layer ℓ and linear region k , message tuning can achieve:

1711

$$1712 \prod_{i=1}^{d_{\text{int}}} \tilde{\sigma}_{i,k}^{(\ell)} \geq \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)}. \quad (115)$$

1713

1714 This is because the product of singular values can be increased by adjusting the parameters to reduce
1715 contraction. Let us consider a specific example to illustrate this possibility, assuming that all mappings
1716 are constructed under the same partition.

1717 Consider the modified layer map in message tuning:

1718

$$1719 \Psi^{(\ell)} = F^{(\ell)} \circ \mathfrak{F}^{(\ell)}, \quad (116)$$

1720

1721 where $F^{(\ell)}$ is the original layer map and $\mathfrak{F}^{(\ell)}$ is the fusion operation. In a linear region C_k , both maps
1722 are linear and injective on the tangent space of the input manifold, which has dimension d_{int} .

1723 By Theorem 1, for a measurable set S in the tangent space, the d_{int} -dimensional Hausdorff measure
1724 transforms as:

1725

$$1726 \mathcal{H}^{d_{\text{int}}}(\mathfrak{F}^{(\ell)}(S)) = \left(\prod_{i=1}^{d_{\text{int}}} \tau_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(S), \quad (117)$$

1727

1728 where $\tau_{1,k}^{(\ell)}, \dots, \tau_{d_{\text{int}},k}^{(\ell)}$ are the largest d_{int} singular values of the Jacobian of $\mathfrak{F}^{(\ell)}$ restricted to the
 1729 tangent space. Similarly,
 1730

$$1731 \mathcal{H}^{d_{\text{int}}}(F^{(\ell)}(\mathfrak{F}^{(\ell)}(S))) = \left(\prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(\mathfrak{F}^{(\ell)}(S)) = \left(\prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \right) \left(\prod_{i=1}^{d_{\text{int}}} \tau_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(S). \quad (118)$$

1734 Thus, for the composite map $\tilde{F}^{(\ell)}$, the product of singular values is:
 1735

$$1736 \prod_{i=1}^{d_{\text{int}}} \tilde{\sigma}_{i,k}^{(\ell)} = \left(\prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \right) \left(\prod_{i=1}^{d_{\text{int}}} \tau_{i,k}^{(\ell)} \right). \quad (119)$$

1739 Consider the fusion operation $\mathfrak{F}^{(\ell)}$. Its Jacobian with respect to $\mathbf{H}^{(\ell-1)}$ is:
 1740

$$1741 \mathbf{J}_{\mathfrak{F}}^{(\ell)} = \mathbf{I} + \frac{\partial}{\partial \mathbf{H}^{(\ell-1)}} \left(\text{Softmax}(\mathbf{H}^{(\ell-1)} \mathbf{W}_p^{(\ell)}) \cdot \mathbf{M}^{(\ell)} \right). \quad (120)$$

1744 By training $\mathbf{W}_p^{(\ell)}$ and $\mathbf{M}^{(\ell)}$, we can influence the singular values of $\mathbf{J}_{\mathfrak{F}}^{(\ell)}$. For example:
 1745

- 1746 • If $\mathbf{W}_p^{(\ell)} = \mathbf{O}$ and $\mathbf{M}^{(\ell)} = \mathbf{O}$, then $\mathfrak{F}^{(\ell)}(\mathbf{H}^{(\ell-1)}) = \mathbf{H}^{(\ell-1)}$, so $\mathbf{J}_{\mathfrak{F}}^{(\ell)} = \mathbf{I}$, and the singular
 1747 values are 1.
- 1748 • If $\mathbf{W}_p^{(\ell)}$ and $\mathbf{M}^{(\ell)}$ are trained such that the second term is positive definite, then the singular
 1749 values can be greater than 1.

1751 Thus, by parameter choice, we can ensure:
 1752

$$1753 \prod_{i=1}^{d_{\text{int}}} \tau_{i,k}^{(\ell)} \geq 1. \quad (121)$$

1756 From the above, we have:
 1757

$$1758 \prod_{i=1}^{d_{\text{int}}} \tilde{\sigma}_{i,k}^{(\ell)} = \left(\prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \right) \left(\prod_{i=1}^{d_{\text{int}}} \tau_{i,k}^{(\ell)} \right) \geq \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)}, \quad (122)$$

1761 This proves that message tuning can achieve the desired inequality for any layer ℓ and linear region k .
 1762 Moreover, if $\prod_{i=1}^{d_{\text{int}}} \tau_{i,k}^{(\ell)} > 1$, the inequality is strict.
 1763

1764 The input manifold \mathcal{M}_0 is fixed. Prompt tuning shifts it to $\mathcal{M}_0(\mathbf{P})$, but the fusion operation $\mathfrak{F}^{(1)}$ in
 1765 the first layer also possesses the capability to adjust the input manifold, we may reasonably assume
 1766 that $\mathcal{H}^{d_{\text{int}}}(\mathcal{M}_0(\mathbf{P})) = \mathcal{H}^{d_{\text{int}}}(\mathcal{M}_0)$.

1767 The linear regions C_k and \tilde{C}_k are partitions of $\mathcal{M}_0(\mathbf{P})$ and \mathcal{M}_0 induced by the piecewise linear
 1768 maps Φ and Φ_{MTG} , respectively. Message tuning modifies the network architecture, which may refine
 1769 the linear regions. However, the total measure of the input manifold is conserved:
 1770

$$1771 \sum_k \mathcal{H}^{d_{\text{int}}}(C_k) = \mathcal{H}^{d_{\text{int}}}(\mathcal{M}_0(\mathbf{P})) = \mathcal{H}^{d_{\text{int}}}(\mathcal{M}_0) = \sum_k \mathcal{H}^{d_{\text{int}}}(\tilde{C}_k). \quad (123)$$

1773 While individual regions may change, the overall sum remains unchanged. Therefore, for the purpose
 1774 of comparing the sums, we have:
 1775

$$1776 \sum_k \mathcal{H}^{d_{\text{int}}}(\tilde{C}_k) = \sum_k \mathcal{H}^{d_{\text{int}}}(C_k). \quad (124)$$

1778 From the above, for any prompt \mathbf{P} , message tuning can choose parameters such that for each layer ℓ
 1779 and region k :

$$1780 \prod_{i=1}^{d_{\text{int}}} \tilde{\sigma}_{i,k}^{(\ell)} \geq \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)}. \quad (125)$$

1782 Moreover, since the input measures are equal, we have:
 1783

$$1784 \mathcal{H}^{d_{\text{int}}}(\mathcal{M}_{\text{MTG}}^{(L)}) = \sum_k \left(\prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \tilde{\sigma}_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(\tilde{C}_k) \geq \sum_k \left(\prod_{\ell=1}^L \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)} \right) \mathcal{H}^{d_{\text{int}}}(C_k) = \mathcal{H}^{d_{\text{int}}}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})).$$

1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

The inequality holds term-wise due to the non-decrease in singular value products and the conservation of input measure.

There exists a message tuning configuration where the inequality is strict. For example, if we train $\mathbf{W}_p^{(\ell)}$ and $\mathbf{M}^{(\ell)}$ such that for some layer ℓ and region k , $\prod_{i=1}^{d_{\text{int}}} \tilde{\sigma}_{i,k}^{(\ell)} > \prod_{i=1}^{d_{\text{int}}} \sigma_{i,k}^{(\ell)}$, and since the input measure is positive, the overall measure increases strictly.

Thus, we conclude that:

$$\mathcal{H}^{d_{\text{int}}}(\mathcal{M}_{\text{MTG}}^{(L)}) \geq \mathcal{H}^{d_{\text{int}}}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})) \quad \text{for all } \mathbf{P} \in \mathcal{P}, \quad (127)$$

and the inequality is strict for some configuration.

Diameter Comparison.

The diameter of a set \mathcal{M} is:

$$\text{diam}(\mathcal{M}) = \sup_{x,y \in \mathcal{M}} \|x - y\|. \quad (128)$$

For any prompt \mathbf{P} , message tuning can simulate prompt tuning by setting:

- $\mathfrak{F}^{(1)}(\mathbf{H}^{(0)}, \mathbf{M}^{(1)}; \mathbf{W}_p^{(1)}) \xrightarrow{\sim} \mathcal{M}_0(\mathbf{P})$,
- $\mathfrak{F}^{(\ell)}(\mathbf{H}^{(\ell-1)}, \mathbf{M}^{(\ell)}; \mathbf{W}_p^{(\ell)}) = \mathbf{H}^{(\ell-1)}$ for $\ell \geq 2$.

This reduces message tuning to prompt tuning, giving:

$$\mathcal{M}_{\text{MTG}}^{(L)} = \mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P}), \quad (129)$$

and hence:

$$\text{diam}(\mathcal{M}_{\text{MTG}}^{(L)}) = \text{diam}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})). \quad (130)$$

Thus, the inequality holds with equality for this configuration.

We now show that message tuning can achieve a strictly larger diameter by leveraging its additional parameters to expand the output space.

Message tuning can expand the distance between representations layer-wise. Consider the fusion operation:

$$\mathfrak{F}^{(\ell)}(\mathbf{H}^{(\ell-1)}) = \mathbf{H}^{(\ell-1)} + \text{Softmax}(\mathbf{H}^{(\ell-1)} \mathbf{W}_p^{(\ell)}) \cdot \mathbf{M}^{(\ell)}. \quad (131)$$

By choosing $\mathbf{W}_p^{(\ell)}$ and $\mathbf{M}^{(\ell)}$ appropriately, we can make $\mathfrak{F}^{(\ell)}$ an expanding map. For example:

- Set $\mathbf{W}_p^{(\ell)}$ to have orthonormal columns.
- Set $\mathbf{M}^{(\ell)} = c \cdot \mathbf{W}_p^{(\ell)}$ for some $c > 0$.

Then, the Jacobian of $\mathfrak{F}^{(\ell)}$ satisfies:

$$\mathbf{J}_{\mathfrak{F}}^{(\ell)}(\mathbf{H}) = \mathbf{I} + c \cdot \mathbf{W}_p^{(\ell)} \cdot \mathbf{J}_{\text{softmax}}(\mathbf{H} \mathbf{W}_p^{(\ell)}) \cdot \mathbf{W}_p^{(\ell)\top}, \quad (132)$$

which has eigenvalues ≥ 1 (since $\mathbf{J}_{\text{softmax}}$ is positive semidefinite). By choosing c large, we can make $\mathfrak{F}^{(\ell)}$ arbitrarily expansive and Φ_{MTG} results from the superposition of such expansion effects.

Thus, for the pair $\mathbf{X}, \mathbf{Y} \in \mathcal{M}_0(\mathbf{P})$ achieving the diameter of $\Phi(\mathcal{M}_0)$, message tuning can ensure:

$$\text{diam}(\mathcal{M}_{\text{MTG}}^{(L)}) \geq \|\Phi_{\text{MTG}}(\mathbf{X}) - \Phi_{\text{MTG}}(\mathbf{Y})\| > \|\Phi(\mathbf{X}) - \Phi(\mathbf{Y})\| = \text{diam}(\Phi(\mathcal{M}_0(\mathbf{P}))). \quad (133)$$

Thus, we have:

$$\text{diam}(\mathcal{M}_{\text{MTG}}^{(L)}) > \text{diam}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})) \quad \text{for all } \mathbf{P} \in \mathcal{P}. \quad (134)$$

1836 For any prompt \mathbf{P} , message tuning can simulate prompt tuning, so:
 1837

$$1838 \quad \text{diam}(\mathcal{M}_{\text{MTG}}^{(L)}) \geq \text{diam}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})). \quad (135)$$

1839 Moreover, by choosing parameters to expand inter-point distances, message tuning can achieve:
 1840

$$1841 \quad \text{diam}(\mathcal{M}_{\text{MTG}}^{(L)}) > \text{diam}(\mathcal{M}_{\text{PT}}^{(L)}(\mathbf{P})) \quad \text{for all } \mathbf{P} \in \mathcal{P}. \quad (136)$$

1842 This completes the proof. \square
 1843

1845 C.2 ANALYSIS OF NEGATIVE TRANSFER

1846
 1847 **Definition 14** (Negative Transfer from a Manifold Perspective). *Let $\mathcal{M}_0^s \subset \mathbb{R}^{N \times d_0}$ and $\mathcal{M}_0^t \subset \mathbb{R}^{N \times d_0}$ be the compact smooth input manifolds of the source and target domains, respectively, with intrinsic dimensions D_s and D_t . Let $\Phi = F^{(L)} \circ \dots \circ F^{(1)}$ be the map of the GFM, and let $\mathcal{M}_s^{(L)} = \Phi(\mathcal{M}_0^s)$ and $\mathcal{M}_t^{(L)} = \Phi(\mathcal{M}_0^t)$ be the representation spaces. Negative transfer is said to occur if the map Φ causes a geometric misalignment or structural distortion between the transformed spaces, such that:*

- 1853 • *Information Loss: The intrinsic dimension or geometric measure (e.g., volume) of $\Phi(\mathcal{M}_0^t)$ is significantly reduced compared to $\Phi(\mathcal{M}_0^s)$.*
- 1854 • *Poor Alignment: The transformed spaces $\Phi(\mathcal{M}_0^s)$ and $\Phi(\mathcal{M}_0^t)$ are poorly aligned, as quantified by a large Hausdorff distance or a small intersection measure.*

1855
 1856 **Remark 9.** *Fine-tuning severely exacerbates negative transfer in graph data because it aggressively warps the target space’s geometry to fit the source domain’s feature space. This often collapses the intrinsic structure of the target graph, leading to catastrophic information loss and misalignment.*
 1857 *Prompt tuning alleviates negative transfer by gently realigning the target space within the frozen source feature space, preserving its intrinsic geometry and measure to prevent catastrophic distortion or collapse.*

1858
 1859 **Corollary 2** (Message Tuning Mitigates Negative Transfer). *Negative transfer often arises when the model’s capacity is insufficient to capture the target domain’s distribution, leading to interference from source domain features. The higher intrinsic dimension $d_{\text{int}}(\mathcal{M}_{\text{MTG}}^{(L)})$ indicates that MTG can learn more diverse features, reducing reliance on source-specific patterns. The greater Hausdorff measure $\mathcal{H}^{d_{\text{int}}}(\mathcal{M}_{\text{MTG}}^{(L)})$ implies a larger “volume” of the space, accommodating a wider range of target domain variations. The increased diameter $\text{diam}(\mathcal{M}_{\text{MTG}}^{(L)})$ signifies that the representations span a broader range, enhancing model flexibility. In contrast, prompt tuning only perturbs the input manifold \mathcal{M}_0 via prompts, which constrains adaptation to superficial layers and may insufficiently adjust internal representations, thus more likely to lead to negative transfer.*

1860
 1861 By further refining and extending Prismatic Space Theory, a theoretical characterization of negative transfer in GFMs can be established. We identify this as a direction for future research.

1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

1890 **D DATASETS AND EXPERIMENTAL DETAILS**
18911892 **D.1 CONFIGURATION**
18931894 The experiments are conducted on a Linux server equipped with an Intel(R) Xeon(R) Gold 6240
1895 CPU @ 2.60GHz, 256GB RAM and 2 NVIDIA A100-SXM4-40GB GPUs. Our implementation is
1896 based on PyTorch (Paszke et al., 2019) version 2.2.1, PyG (Fey & Lenssen, 2019) version 2.6.1 with
1897 CUDA version 12.1 and Python 3.12.7.1898 **D.2 DETAILS OF DATASETS**
18991900 **Homophilic Graphs.** Cora and Citeseer datasets (Sen et al., 2008) represent computer science
1901 publications, with nodes encoded as bag-of-words features and labeled by research topics. Pubmed
1902 (Yang et al., 2016) contains diabetes-related articles from PubMed database, with nodes represented
1903 by TF/IDF-weighted word vectors and classified by diabetes type. ogbn-arxiv (Hu et al., 2020a) is a
1904 large-scale citation network of CS arXiv papers, where nodes represent papers with 128-dimensional
1905 title+abstract embeddings, and directed edges denote citations.1906 **Heterophilic Graphs.** Texas and Wisconsin (Pei et al., 2020) datasets are WebKB subgraphs
1907 comprising university web pages, where nodes represent pages with bag-of-words features and edges
1908 indicate hyperlinks. Pages are classified into five categories: student, project, course, staff, and faculty.
1909 Actor dataset (Pei et al., 2020) forms a co-occurrence network with actors as nodes and Wikipedia
1910 page co-appearances as edges.1911 **Biological Graphs.** D&D dataset (Dobson & Doig, 2003) contains 1,178 protein graphs where
1912 nodes represent amino acids connected by edges, classified as enzymes/non-enzymes. ENYMES
1913 (Borgwardt et al., 2005) comprises 600 enzyme structures from BRENDA, categorized into 6 EC
1914 classes. PROTEINS (Wang et al., 2022) represents tertiary protein structures with nodes as secondary
1915 structure elements and edges indicating sequence/3D proximity, yielding binary graph classification.1916 **Small Molecule Graphs.** BZR dataset (Rossi & Ahmed, 2015) contains 405 benzodiazepine
1917 receptor ligand graphs with binary classification. COX2 (Rossi & Ahmed, 2015) comprises 467
1918 cyclooxygenase-2 inhibitor molecular graphs, where nodes represent atoms and edges encode bond
1919 types (single/double/triple/aromatic), also yielding binary classification. MUTAG (Kriege & Mutzel,
1920 2012) includes 188 mutagenic aromatic compounds classified into 7 categories.1921 **Social Network Graphs.** COLLAB (Yanardag & Vishwanathan, 2015) represents scientific collaboration
1922 networks, where nodes denote researchers, edges indicate co-authorships, and graphs are
1923 classified by research fields. IMDB-B (Yanardag & Vishwanathan, 2015) captures actor collaboration
1924 networks, with nodes representing performers, edges signifying co-appearances in films, and binary
1925 graph labels distinguishing Action versus Romance genres.

1926 Table 6: Statistics of all datasets.

1929 Dataset	Task	# Graphs	# Nodes	# Edges	# Features	# Classes	Graph Type
1930 Cora	Node	1	2,708	5,429	1,433	7	Homophilic
1931 CiteSeer	Node	1	3,327	9,104	3,703	6	Homophilic
1932 Pubmed	Node	1	19,717	88,648	500	3	Homophilic
1933 Texas	Node	1	183	325	1703	5	Heterophilic
1934 Actor	Node	1	7600	30019	932	5	Heterophilic
1935 Wisconsin	Node	1	251	515	1703	5	Heterophilic
1936 ogbn-arxiv	Node	1	169,343	1,166,243	128	40	Large-scale
1937 D&D	Graph	1,178	284.1	715.7	89	2	Proteins
1938 ENYMES	Graph	600	32.6	62.1	3	6	Proteins
1939 PROTEINS	Graph	1,113	39.1	72.8	3	2	Proteins
1940 BZR	Graph	405	35.8	38.4	3	2	Small Molecule
1941 COX2	Graph	467	41.2	43.5	3	2	Small Molecule
1942 MUTAG	Graph	188	17.9	19.8	7	2	Small Molecule
1943 COLLAB	Graph	5000	74.5	2457.8	0	3	Social Network
IMDB-B	Graph	1000	19.8	96.53	0	2	Social Network

1944

D.3 DATA SPLIT.

1945

1946 We adopt the same dataset processing methodology as ProG (Zi et al., 2024) to ensure consistency and
 1947 comparability with prior work. For the node classification task, we adopt a 90% test set allocation to
 1948 rigorously evaluate model performance. In contrast, for the graph classification task, we employ an 80
 1949 % test set split to maintain a balance between evaluation rigor and training data availability. To ensure
 1950 statistical robustness and mitigate potential sampling bias, we repeat the random sampling procedure
 1951 five times to construct distinct k-shot learning tasks for both task types. The final performance metrics
 1952 are reported as the mean and standard deviation across these five independent trials, providing a
 1953 comprehensive assessment of model stability and generalization capability.

1954

D.4 EVALUATION METRICS

1955

1956 In node and graph classification tasks, AUROC (Area Under the Receiver Operating Characteristic
 1957 Curve) and F1-score serve as two critical evaluation metrics. AUROC quantifies a model’s class
 1958 discrimination capability, where 1 represents perfect classification and 0.5 indicates random guessing.
 1959 The F1-score, which harmonizes precision (correctness of positive predictions) and recall (coverage
 1960 of actual positives), ranges from 0 to 1, with higher values indicating better performance. This
 1961 metric is particularly valuable for imbalanced datasets. For multi-class scenarios, we employ a
 1962 macro-averaging approach, where each class is iteratively treated as positive while aggregating results.
 1963 Both metrics are computed via a one-vs-rest strategy for class-wise evaluation.

1964

D.5 HYPERPARAMETER CONFIGURATION

1965

1966 In most experiments, the model architecture consists of 2 layers with a hidden dimension of 128. We
 1967 develop a systematic random search strategy to identify optimal hyperparameters for each adaptation
 1968 method across all datasets, extending beyond default configurations. Considering the substantial
 1969 heterogeneity in hyperparameter requirements among different adaptation approaches, we concen-
 1970 trate on tuning three key hyperparameters through random search: (1) learning rate, sampled from
 1971 $\{0.001, 0.005, 0.01, 0.05, 0.1\}$; (2) weight decay, selected from $\{0, 0.00001, 0.0001, 0.001, 0.01\}$;
 1972 and (3) batch size, uniformly sampled from $\{32, 64, 128\}$ in each experimental trial. This com-
 1973 prehensive search strategy ensures robust parameter optimization while maintaining methodological
 1974 consistency across diverse experimental conditions.

1975

D.6 IMPLEMENTATION DETAILS

1976

1977 To ensure experimental fairness and demonstrate the compatibility of our approach, we implement
 1978 MTG based on the ProG library (Zi et al., 2024). We have made some modifications to the ProG
 1979 library to adapt it to MTG, but these changes do not affect the original prompt tuning method at all.

1980

E DETAILS OF BASELINES

1981

E.1 BACKBONES OF GRAPH FOUNDATION MODELS

1982

1983 **GCN (Graph Convolutional Network) (Kipf & Welling, 2017)** employs convolutional operations
 1984 to aggregate and transform feature information from a node’s immediate neighborhood. This lo-
 1985 calized message-passing mechanism allows the network to iteratively refine node representations
 1986 by incorporating structural and attribute information from adjacent nodes, effectively capturing the
 1987 graph’s topological properties.

1988

1989 **GraphSAGE (Hamilton et al., 2017)** is an inductive learning framework that computes node
 1990 embeddings through a localized feature aggregation process. Instead of relying on fixed graph
 1991 convolutions, it operates by sampling neighboring nodes and hierarchically aggregating their features
 1992 using learnable functions. This approach enables the model to generalize to unseen graph structures
 1993 while capturing both node attributes and local topological patterns.

1994

1995 **GAT (Graph Attention Network) (Veličković et al., 2018)** introduces an attention mechanism
 1996 into graph neural networks, dynamically computing attention weights between connected nodes
 1997 during feature aggregation. By learning to assign differential importance to neighboring nodes, GAT

1998 can focus on more relevant connections while suppressing noisy or less informative edges. This
 1999 adaptive weighting scheme enhances model expressiveness and interpretability compared to standard
 2000 aggregation approaches.

2001 **GIN (Graph Isomorphism Network)** (Xu et al., 2019) is a theoretically motivated GNN architecture
 2002 designed to maximize discriminative power in graph representation learning. By employing injective
 2003 multiset aggregation functions and MLP-based transformations, GIN achieves provable expressive-
 2004 ness equivalent to the Weisfeiler-Lehman graph isomorphism test. This framework demonstrates
 2005 superior capability in distinguishing graph structures while maintaining efficient computation through
 2006 neighborhood aggregation.

2007 **GT (Graph Transformer)** (Ying et al., 2021) adapts the Transformer architecture to graph-structured
 2008 data by incorporating structural biases into the self-attention mechanism. Through masked attention
 2009 patterns that respect graph connectivity, the model efficiently captures both local and global depen-
 2010 dencies while maintaining the parallelizability of standard Transformers. This approach enables the
 2011 simultaneous modeling of node features and graph topology through position-aware attention com-
 2012 putations. The architecture demonstrates particular effectiveness in scenarios requiring long-range
 2013 dependency modeling across graph structures.

E.2 PRE-TRAINING STRATEGIES

2018 **DGI**(Veličković et al., 2019) is a self-supervised learning framework that employs mutual informa-
 2019 tion maximization for graph representation learning. The method optimizes the mutual information
 2020 between patch-level node representations and global graph summaries through a contrastive objective.
 2021 By leveraging negative sampling and discriminator functions, DGI learns informative node embed-
 2022 dings that preserve both local structural patterns and global graph characteristics. This approach
 2023 demonstrates particular effectiveness in scenarios with limited labeled data, enabling effective transfer
 2024 learning across graph-based tasks.

2025 **GraphMAE**(Hou et al., 2022) adopts a self-supervised pretraining approach based on feature
 2026 reconstruction of masked nodes. The framework randomly masks portions of node features and
 2027 learns to recover them through an encoder-decoder architecture, forcing the model to develop robust
 2028 structural understanding from contextual patterns. This denoising objective promotes the learning of
 2029 generalized graph representations that capture both local neighborhood characteristics and global
 2030 topological properties. The method demonstrates particular effectiveness in scenarios requiring
 2031 transferable graph representations across different downstream tasks.

2032 **EdgePreGPPT**(Sun et al., 2022) introduces a novel graph pre-training paradigm that fundamentally
 2033 reconfigures structural knowledge acquisition in graph neural networks. The framework employs
 2034 masked edge prediction as its foundational pretext task, where the model learns to reconstruct ran-
 2035 domly obscured connections through an edge prediction module. This pre-training phase focuses on
 2036 optimizing pairwise node similarity computations, enabling the model to develop robust represen-
 2037 tations of graph topology and connectivity patterns. The methodology’s effectiveness stems from
 2038 its direct optimization of structural relationships between nodes, training the network to evaluate
 2039 connection probabilities through learned embedding similarities.

2040 **EdgePreGprompt**(Liu et al., 2023b) establishes a novel paradigm for learning transferable structural
 2041 representations from label-free graph data. At its core, the framework employs link prediction as
 2042 its self-supervised pretext task, leveraging the abundant connectivity patterns naturally available
 2043 in graph structures without requiring additional annotation. The methodology operates by first
 2044 constructing contextual subgraphs for nodes, which capture not only node-specific features but also
 2045 rich topological information from their local neighborhoods. Specifically, the framework optimizes
 2046 a contrastive objective that maximizes the similarity between linked node pairs while minimizing
 2047 similarity for non-linked pairs, thereby encoding fundamental graph connectivity patterns into the
 2048 learned representations.

2049 **GraphCL**(You et al., 2020) introduces a graph contrastive learning framework that learns transfer-
 2050 able graph representations through self-supervised pre-training by maximizing agreement between
 2051 different augmented views of the same graph. The method employs four key augmentation strate-
 2052 gies—node dropping, edge perturbation, attribute masking, and subgraph sampling—each encoding
 2053 domain-specific priors about structural invariance. These augmentations generate correlated views

2052 that are processed through a shared GNN encoder, projected via an MLP head, and optimized using
 2053 an NT-Xent loss function to enhance similarity between positive pairs while contrasting negative
 2054 samples. The framework theoretically maximizes mutual information between augmented views,
 2055 unifying various contrastive learning approaches for graphs.

2056 **SimGRACE**(Xia et al., 2022) presents a novel graph contrastive learning framework that eliminates
 2057 the need for manual data augmentation by instead leveraging encoder perturbations to generate
 2058 contrasting views. The core methodology involves feeding the original graph through both a standard
 2059 GNN encoder and its perturbed version, where the perturbation is achieved by adding Gaussian
 2060 noise to the encoder weights, thereby producing correlated representations without altering input data
 2061 semantics. These dual representations are then projected through a shared MLP head and optimized
 2062 using the NT-Xent loss to maximize agreement between positive pairs while contrasting with negative
 2063 samples from the same batch.

2064

2065

2066

E.3 PROMPT TUNING BASELINES

2067

2068

2069

GPPT (Sun et al., 2022) introduces an innovative graph prompting function that bridges the gap
 2070 between pre-training and downstream tasks by reformulating node classification as an edge prediction
 2071 problem through token pair construction. The framework converts standalone nodes into structured
 2072 token pairs composed of two components: a task token that represents candidate labels through train-
 2073 able continuous vectors and a structure token that encodes neighborhood information by aggregating
 2074 adjacent nodes with attention-based weighting. The approach fundamentally rethinks graph transfer
 2075 learning by aligning task formulations rather than forcing downstream adaptation to mismatched
 2076 pre-training objectives.

2077

2078

2079

2080

2081

2082

2083

Gprompt (Liu et al., 2023b) introduces a unified prompting framework that bridges graph pre-
 2084 training and downstream tasks through a subgraph similarity template. The core innovation involves
 2085 learnable task-specific prompt vectors that dynamically reweight node features during subgraph
 2086 aggregation operations such as READOUT, allowing downstream tasks including node classification
 2087 and graph classification to selectively extract relevant knowledge from frozen pre-trained GNNs. The
 2088 prompt vectors act as lightweight task adapters, preserving the pre-trained model’s parameters while
 2089 tailoring subgraph representations through dimension-wise feature importance scoring, demonstrating
 2090 superior parameter efficiency and few-shot performance across diverse graph tasks.

2091

2092

2093

All-in-one (Sun et al., 2023a) introduces a unified multi-task prompting framework for graph
 2094 neural networks that effectively connects various downstream tasks at node, edge, and graph levels
 2095 with graph pre-training through several key innovations. First, it employs task reformulation by
 2096 transforming node and edge tasks into graph-level tasks through induced subgraph construction.
 2097 Second, it incorporates a learnable prompt graph featuring tunable tokens, dynamic token structures,
 2098 and adaptive insertion patterns to align downstream tasks with pre-training objectives. Third, it
 2099 utilizes meta-learning optimization to generalize prompts across different tasks. The framework
 maintains frozen pre-trained GNNs while only tuning lightweight prompt parameters, enabling
 efficient knowledge transfer with task-specific adaptability.

2100

2101

2102

2103

2104

2105

GPF (Fang et al., 2023) introduces a unified approach to prompt tuning by focusing on feature space
 adaptation within graph neural networks. It employs a shared learnable vector that is added to all node
 features in the input graph, creating a consistent modification across the entire structure. This design
 allows the pre-trained model to maintain its frozen parameters while adapting to downstream tasks
 through subtle yet effective feature adjustments. The approach demonstrates theoretical equivalence
 to any form of prompting function, making it universally applicable across diverse pre-training
 strategies without requiring task-specific templates.

2106

2107

2108

2109

GPF-plus (Fang et al., 2023) enhances flexibility by assigning distinct learnable vectors to individual
 nodes through an attention-based mechanism. Rather than using a single global prompt, it generates
 node-specific prompts by combining a set of basis vectors with weights derived from each node’s
 features. This architecture captures finer-grained adaptations while maintaining parameter efficiency
 through basis sharing. The method automatically adjusts to graphs of varying scales and complexities,
 offering improved expressiveness over GPF while preserving its universal applicability and theoretical
 guarantees for effective knowledge transfer.

2106 F MORE INFORMATION ON EXPERIMENTS

2108 F.1 DETAILS OF THE EXPERIMENTAL RESULTS ON 1/3/5-SHOT NODE/GRAH CLASSIFICATION

2110 While one-shot node/graph classification presents the most challenging scenario for evaluating
 2111 adaptation methods, few-shot node/graph classification remains a critical task for assessing the
 2112 robustness and generalization capability of these methods. Therefore, we have extended our evaluation
 2113 to include 3-shot and 5-shot node/graph classification tasks across various adaptation approaches. The
 2114 optimal performance of various adaptation methods, alongside supervised learning baseline, under
 2115 3-shot and 5-shot settings, is summarized in Tables 9-12. Consistent with the earlier experimental
 2116 findings presented in Subsection 5.2, these results demonstrate that MTG substantially enhances
 2117 the performance of multiple pre-trained GFMs across 1/3/5-shot scenarios, thereby significantly
 2118 improving the transferability of pre-trained knowledge within the “Pre-training and Adaptation”
 2119 paradigm. Notably, MTG consistently exhibits superior compatibility with diverse pre-training
 2120 strategies on both node-level and graph-level tasks. In contrast, among prompt tuning methods,
 2121 while All-in-one demonstrates competitive performance on graph-level tasks, it suffers from severe
 2122 performance degradation on certain node-level datasets, such as ogbn-arxiv.

2123 Furthermore, a comprehensive evaluation of all adaptation methods under 1/3/5-shot settings, as
 2124 measured by three key metrics including Accuracy, F1 score and AUROC, is provided in Tables 14-31.
 2125 Through these more detailed experimental results, we observe that GPF-plus, as a simple and general
 2126 prompt tuning approach, demonstrates strong overall performance across both downstream tasks
 2127 under the 1/3/5-shot settings, making it the second-best adaptation method after MTG. It is worth
 2128 noting that GPF-plus can be regarded, to some extent, as a special case of MTG in which learnable
 2129 parameters are injected solely into the first pre-trained GFM layer, effectively equivalent to operating
 2130 directly on the input graph data. The baseline results in this experimental section also combine those
 2131 from ProG (Zi et al., 2024) with our own reproductions.

2132 F.2 PERFORMANCE WITH MORE BACKBONES FOR GFMS

2133 For GNN-based GFMs, both prompt tuning and message tuning are universal adaptation methods
 2134 that are not limited to specific model architectures. Therefore, in this subsection, we evaluate the
 2135 performance of various adaptation methods on five of the most classic, popular, and widely used
 2136 GFM backbone models. Tables 32 and 33 present the performance of different adaptation methods
 2137 based on various backbone models on the representative datasets Wisconsin and PROTEINS. These
 2138 results once again confirm that prompt tuning and message tuning outperform fine-tuning, while our
 2139 proposed MTG demonstrates even more significant advantages. For more complex GFMs, such as
 2140 models that integrate LLMs with GNNs, MTG can also be naturally adapted to the GNN module or
 2141 the module responsible for fusing features obtained from LLMs and GNNs. The core idea of MTG is
 2142 to perform layer-wise parameter injection for message fusion regulation, which is not constrained by
 2143 any specific model architecture. We believe this represents a promising direction for future research.

2144 Most experiments in this paper employ a relatively basic 2-layer backbone model, which may not fully
 2145 demonstrate the performance advantages of MTG. To further investigate the impact of model depth
 2146 on adaptation methods, we continue to use the GCN backbone model and representative datasets
 2147 Cora and BZR to evaluate the performance of various adaptation methods when applied to models
 2148 with 4, 8, 12, and 16 layers in downstream tasks. The results in Table 13 confirm that MTG still
 2149 maintains significant advantages even with deeper model architectures.

2150 F.3 COMPUTATIONAL EFFICIENCY OF MTG

2151 As a general adaptation method, MTG inherently possesses the advantage of parameter efficiency. It
 2152 does not impose significant computational burden on the original model and requires substantially
 2153 fewer parameters than fine-tuning to achieve effective adaptation on downstream tasks. In this
 2154 subsection, we take the GCN backbone model as an example and first provide a theoretical analysis
 2155 of the time complexity and trainable parameter complexity of both fine-tuning and MTG.

2156 **Fine-tuning.** The time complexity per layer of a GCN with L layers, where each layer transforms
 2157 input features of dimension $d_{\ell-1}$ to output dimension d_ℓ , comprises two main components: the
 2158 feature transformation via matrix multiplication between the weight matrix $W^{(\ell)} \in \mathbb{R}^{d_{\ell-1} \times d_\ell}$ and

the node feature matrix $\mathbf{H}^{(\ell-1)} \in \mathbb{R}^{|\mathcal{V}| \times d_{\ell-1}}$, with complexity $O(|\mathcal{V}|d_{\ell-1}d_\ell)$, and the neighborhood aggregation through sparse matrix multiplication between the normalized adjacency matrix $\tilde{\mathbf{A}} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ and the transformed features, requiring $O(|\mathcal{E}|d_\ell)$ operations, where $|\mathcal{E}|$ denotes the number of edges. Assuming all hidden dimensions are equal d , the total time complexity becomes $O(L(|\mathcal{V}|d^2 + |\mathcal{E}|d))$. The space complexity for trainable parameters is dominated by the weight matrices, yielding $O(Ld^2)$.

Message Tuning. MTG introduces three additional components per layer: message vectors $\mathbf{M}^{(\ell)} \in \mathbb{R}^{m \times d_{\ell-1}}$ containing m learnable message prototypes, a projection matrix $\mathbf{W}_p^{(\ell)} \in \mathbb{R}^{d_{\ell-1} \times m}$ to compute attention scores, and an attention mechanism $\alpha = \text{Softmax}(\mathbf{H}^{(\ell-1)}\mathbf{W}_p^{(\ell)}) \in \mathbb{R}^{|\mathcal{V}| \times m}$, with the corresponding computational overhead consisting of the projection operation $\mathbf{H}^{(\ell-1)}\mathbf{W}_p^{(\ell)}$ requiring $O(|\mathcal{V}|d_{\ell-1}m)$ operations, the attention computation including softmax and matrix multiplication $\alpha\mathbf{M}^{(\ell)}$ requiring $O(|\mathcal{V}|m^2)$ operations, and message integration via element-wise addition with original features requiring $O(|\mathcal{V}|d_{\ell-1})$ operations. Thus, the total time complexity becomes $O(L(|\mathcal{V}|d^2 + |\mathcal{E}|d + |\mathcal{V}|dm + |\mathcal{V}|m^2))$. Since $m \ll d$ typically holds, MTG does not introduce significant inference time overhead to the original GCN, and their time complexities remain essentially within the same order of magnitude. The trainable parameter complexity comes from $\mathbf{M}^{(\ell)}$ and $\mathbf{P}^{(\ell)}$ matrices, contributing $O(L(dm + md)) = O(Ldm)$ parameters, which is lower than fine-tuning the entire GCN model.

The above analysis offers a theoretical perspective on model inference time and trainable parameters; however, it should be noted that such theoretical estimates may differ from practical performance. Due to variations in their practical implementations, various prompt tuning methods are not amenable to straightforward computational complexity analysis. Therefore, we further conduct a comparative analysis of the actual training time per epoch and GPU memory consumption between prompt tuning methods and MTG on the large-scale dataset ogbn-arxiv, which has the largest number of nodes, and the COLLAB dataset, which contains the most graphs. The pre-training strategy uses DGI and experimental results are presented in Table 7. Due to its distinct data loading mechanism, GPPT exhibits significantly different GPU memory usage compared to other methods. Excluding GPPT, MTG demonstrates advantages in both training speed and memory consumption. It should be emphasized that MTG exhibits superior training efficiency compared to All-in-one.

F.4 SENSITIVITY ANALYSIS

Message tuning injects m learnable message vectors at each layer of the model, making m a hyperparameter of MTG. We further conduct a sensitivity analysis on this hyperparameter m using the GCN backbone model and representative datasets Cora and BZR, evaluating the performance of MTG when $m = 3, 5, 10, 20, 30$. The optimal results described in Subsection 5.2 are presented in Table 8. These results demonstrate that MTG exhibits a certain degree of robustness to this hyperparameter, as no performance collapse occurs even with very small or large values of m . In our experiments, m is typically set to 10; nevertheless, careful selection of m remains necessary to fully exploit the potential of MTG across different datasets.

Table 7: Computational efficiency comparison of prompt tuning and message tuning.

Methods	ogbn-arxiv (1-shot)		COLLAB (1-shot)	
	Time (s)	Memory (MB)	Time (s)	Memory (MB)
GPPT	0.6032	3499	0.0204	32357
Gprompt	0.0326	10987	0.0081	3517
All-in-one	0.0559	11023	0.0147	3767
GPF	0.0067	10963	0.0045	3515
GPF-plus	0.0074	10983	0.0057	3517
MTG (Ours)	0.0053	10963	0.0036	3515

Table 8: Performance sensitivity to the number of message prototypes m in MTG.

Dataset	$m = 3$	$m = 5$	$m = 10$	$m = 20$	$m = 30$
Cora (1-shot)	51.28 ± 7.29	54.06 ± 4.49	58.54 ± 7.89	56.73 ± 5.51	56.21 ± 7.02
BZR (1-shot)	73.15 ± 15.26	77.84 ± 2.22	74.81 ± 13.96	77.53 ± 2.39	72.78 ± 17.86

2214

2215 Table 9: Performance comparison of adaptation methods on 3-shot node classification (accuracy \pm std %, 5 runs).
2216 The **first**, **second** and **third** best results are shaded in red, with descending color saturation.

Method	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbn-arxiv
Supervised	37.79 \pm 9.16	35.18 \pm 6.86	57.33 \pm 4.64	41.03 \pm 6.40	40.78 \pm 12.55	18.62 \pm 3.46	19.03 \pm 5.08
Fine-tuning	51.97 \pm 2.84	45.08 \pm 2.09	65.40 \pm 3.00	42.40 \pm 7.77	43.13 \pm 13.79	22.11 \pm 1.97	27.34 \pm 6.61
GPPT	43.84 \pm 6.11	42.34 \pm 8.31	67.43 \pm 2.96	34.29 \pm 4.71	38.90 \pm 8.86	21.65 \pm 3.39	22.46 \pm 4.05
Gprompt	63.78 \pm 5.77	60.00 \pm 6.18	66.68 \pm 3.53	92.52 \pm 5.38	39.00 \pm 47.08	29.67 \pm 2.53	73.92 \pm 2.75
All-in-one	48.09 \pm 4.83	48.09 \pm 8.18	65.79 \pm 5.79	89.62 \pm 4.38	88.69 \pm 1.08	24.23 \pm 1.39	31.15 \pm 2.25
GPF	34.84 \pm 19.83	25.92 \pm 12.30	71.20 \pm 2.82	93.85 \pm 3.71	95.47 \pm 2.75	37.44 \pm 3.43	59.67 \pm 12.69
GPF-plus	56.38 \pm 5.37	72.48 \pm 5.63	70.85 \pm 4.03	98.15 \pm 0.73	97.66 \pm 0.41	43.59 \pm 4.52	64.63 \pm 10.05
MTG (Ours)	66.11 \pm 6.37	73.81 \pm 8.56	71.38 \pm 3.21	98.58 \pm 0.93	98.17 \pm 1.40	37.62 \pm 4.72	76.01 \pm 5.39

2227

2228 Table 10: Performance comparison of adaptation methods on 3-shot graph classification.

Method	IMDB-B	COLLAB	PROTEINS	MUTAG	ENZYMES	COX2	BZR	D&D
Supervised	53.33 \pm 6.61	50.77 \pm 2.44	61.33 \pm 2.89	59.47 \pm 8.34	15.96 \pm 1.64	65.15 \pm 18.61	52.35 \pm 8.12	59.77 \pm 1.10
Fine-tuning	66.10 \pm 0.70	56.10 \pm 3.46	62.72 \pm 2.39	59.87 \pm 8.78	22.71 \pm 0.86	69.97 \pm 13.89	52.22 \pm 10.64	59.70 \pm 0.98
GPPT	59.48 \pm 5.42	50.88 \pm 6.31	64.74 \pm 1.99	64.13 \pm 18.31	19.12 \pm 2.43	71.90 \pm 14.28	70.93 \pm 16.35	59.00 \pm 6.34
Gprompt	64.35 \pm 1.21	54.95 \pm 9.47	64.94 \pm 2.92	66.53 \pm 14.84	22.08 \pm 3.57	51.53 \pm 13.08	54.63 \pm 2.95	55.99 \pm 7.53
All-in-one	65.67 \pm 0.58	57.12 \pm 1.99	69.84 \pm 6.02	80.00 \pm 5.67	23.96 \pm 0.62	66.06 \pm 18.23	61.98 \pm 11.32	58.96 \pm 5.93
GPF	65.97 \pm 0.69	53.87 \pm 3.44	63.35 \pm 2.45	74.27 \pm 1.55	23.87 \pm 3.45	65.31 \pm 19.45	74.38 \pm 11.62	59.07 \pm 0.65
GPF-plus	64.38 \pm 2.30	56.50 \pm 3.71	63.55 \pm 1.85	75.20 \pm 3.64	24.46 \pm 2.27	65.25 \pm 18.07	71.67 \pm 14.87	59.51 \pm 0.62
MTG (Ours)	66.95 \pm 0.59	57.49 \pm 2.52	70.49 \pm 0.68	78.13 \pm 6.36	29.71 \pm 2.06	73.86 \pm 9.74	74.65 \pm 12.14	60.85 \pm 6.39

2238

2239 Table 11: Performance comparison of adaptation methods on 5-shot node classification.

Method	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbn-arxiv
Supervised	50.25 \pm 8.37	41.22 \pm 6.30	67.88 \pm 2.18	39.43 \pm 5.86	43.91 \pm 6.47	21.92 \pm 1.86	22.38 \pm 3.05
Fine-tuning	62.66 \pm 3.55	39.54 \pm 3.54	70.91 \pm 4.87	42.97 \pm 8.99	47.19 \pm 7.37	22.92 \pm 1.22	28.84 \pm 3.11
GPPT	51.98 \pm 3.43	45.77 \pm 7.41	66.97 \pm 3.70	37.00 \pm 3.19	48.82 \pm 5.15	21.58 \pm 0.84	28.90 \pm 1.64
Gprompt	69.03 \pm 3.61	66.13 \pm 1.64	67.87 \pm 2.08	78.22 \pm 37.33	39.32 \pm 47.08	34.67 \pm 1.28	85.40 \pm 0.79
All-in-one	30.36 \pm 13.48	27.93 \pm 10.59	46.16 \pm 15.83	87.16 \pm 3.02	73.28 \pm 9.91	21.49 \pm 3.02	13.01 \pm 6.29
GPF	35.43 \pm 1.02	25.12 \pm 3.01	68.96 \pm 3.99	98.26 \pm 1.19	98.42 \pm 0.36	44.07 \pm 3.94	71.83 \pm 9.37
GPF-plus	66.22 \pm 6.20	75.73 \pm 2.19	69.59 \pm 4.33	99.01 \pm 1.43	99.12 \pm 0.95	44.58 \pm 5.95	66.88 \pm 6.14
MTG (Ours)	71.81 \pm 3.59	76.34 \pm 6.18	70.84 \pm 3.28	99.12 \pm 0.95	98.76 \pm 2.36	45.09 \pm 3.26	85.94 \pm 1.93

2250

2251 Table 12: Performance comparison of adaptation methods on 5-shot graph classification.

Method	IMDB-B	COLLAB	PROTEINS	MUTAG	ENZYMES	COX2	BZR	D&D
Supervised	62.60 \pm 4.01	55.23 \pm 4.26	62.90 \pm 5.03	73.47 \pm 3.92	25.67 \pm 0.48	64.99 \pm 10.42	51.48 \pm 2.29	63.59 \pm 2.86
Fine-tuning	65.40 \pm 3.33	60.72 \pm 2.09	63.33 \pm 4.13	75.33 \pm 1.89	7.46 \pm 1.29	73.19 \pm 9.53	72.96 \pm 11.98	64.71 \pm 3.22
GPPT	66.37 \pm 3.59	54.05 \pm 4.58	58.27 \pm 4.63	70.53 \pm 3.90	22.17 \pm 2.34	67.88 \pm 17.34	69.63 \pm 14.96	60.02 \pm 3.24
Gprompt	66.70 \pm 3.87	60.76 \pm 5.08	62.94 \pm 1.38	73.07 \pm 2.13	21.46 \pm 2.27	53.35 \pm 7.75	59.38 \pm 14.43	58.28 \pm 2.18
All-in-one	63.62 \pm 2.30	57.86 \pm 5.88	71.37 \pm 4.89	80.93 \pm 1.96	26.71 \pm 2.17	62.95 \pm 8.57	62.78 \pm 10.18	63.44 \pm 1.35
GPF	67.80 \pm 5.58	59.65 \pm 6.25	63.37 \pm 4.37	74.00 \pm 3.65	27.00 \pm 0.78	66.27 \pm 14.57	61.05 \pm 11.51	61.06 \pm 2.63
GPF-plus	68.13 \pm 3.31	60.68 \pm 4.67	63.51 \pm 2.89	73.87 \pm 3.51	26.87 \pm 1.89	72.87 \pm 10.17	71.54 \pm 14.81	64.80 \pm 3.45
MTG (Ours)	69.15 \pm 4.09	63.11 \pm 1.88	70.10 \pm 1.12	81.60 \pm 4.53	35.08 \pm 3.28	71.84 \pm 2.75	76.37 \pm 8.11	66.07 \pm 2.39

2260

2261 Table 13: Performance comparison of adaptation methods on deep backbone models.

Method	Cora (1-shot)			BZR (1-shot)				
	$L = 4$	$L = 8$	$L = 12$	$L = 16$	$L = 4$	$L = 8$	$L = 12$	$L = 16$
Fine-tuning	38.88 \pm 6.74	36.84 \pm 4.10	33.78 \pm 6.05	30.70 \pm 4.18	70.06 \pm 18.37	56.17 \pm 28.60	67.41 \pm 23.52	71.11 \pm 15.81
GPPT	30.68 \pm 5.78	33.82 \pm 1.99	33.89 \pm 8.06	24.32 \pm 4.60	68.95 \pm 8.69	77.90 \pm 23.15	67.59 \pm 12.99	69.20 \pm 14.51
Gprompt	38.53 \pm 5.57	43.55 \pm 4.87	41.42 \pm 8.95	33.74 \pm 4.10	67.04 \pm 12.70	71.67 \pm 7.01	76.60 \pm 7.37	72.65 \pm 7.40
All-in-one	29.42 \pm 4.09	29.68 \pm 6.53	26.02 \pm 4.38	30.93 \pm 4.38	61.23 \pm 7.94	62.53 \pm 10.26	69.32 \pm 9.94	77.04 \pm 2.93
GPF	33.84 \pm 9.28	36.82 \pm 13.61	28.12 \pm 2.39	30.68 \pm 3.43	75.74 \pm 7.02	73.95 \pm 10.60	72.59 \pm 8.94	78.83 \pm 0.75
GPF-plus	43.67 \pm 9.52	41.34 \pm 6.52	39.23 \pm 7.88	36.08 \pm 5.54	73.70 \pm 3.14	76.79 \pm 1.08	75.86 \pm 6.77	71.73 \pm 9.99
MTG (Ours)	47.80 \pm 7.07	45.10 \pm 7.90	43.36 \pm 6.54	37.00 \pm 5.66	77.04 \pm 9.93	79.26 \pm 0.45	79.26 \pm 0.45	79.26 \pm 0.45

2268

Table 14: Accuracy (%) on 1-shot node classification.

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

Adaptation	Pre-training	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbn-arxiv
Supervised	-	26.56 \pm 5.55	21.78 \pm 7.32	39.37 \pm 16.34	41.60 \pm 3.10	37.97 \pm 5.80	20.57 \pm 4.47	10.99 \pm 3.19
Fine-tuning	DGI	33.15 \pm 7.84	21.64 \pm 3.92	42.01 \pm 12.54	37.49 \pm 5.13	45.31 \pm 5.01	19.76 \pm 3.53	7.21 \pm 2.91
	GraphMAE	32.93 \pm 3.17	21.20 \pm 3.57	42.99 \pm 14.23	36.80 \pm 7.17	37.81 \pm 8.62	19.86 \pm 2.70	12.35 \pm 3.60
	EdgePreGPPT	38.12 \pm 5.29	18.09 \pm 5.39	46.74 \pm 14.09	35.31 \pm 9.31	47.66 \pm 2.37	19.17 \pm 2.53	16.21 \pm 3.82
	EdgePreGprompt	35.57 \pm 5.83	22.28 \pm 3.80	41.50 \pm 7.54	40.69 \pm 4.13	40.62 \pm 7.95	20.74 \pm 4.12	14.83 \pm 2.38
	GraphCL	52.61 \pm 1.73	27.02 \pm 4.31	42.49 \pm 11.29	33.94 \pm 7.74	40.31 \pm 13.68	20.19 \pm 1.98	4.65 \pm 1.19
	SimGRACE	40.40 \pm 4.66	35.05 \pm 4.37	37.59 \pm 8.17	37.37 \pm 3.68	46.88 \pm 4.64	19.78 \pm 1.89	8.13 \pm 3.26
GPPTPrompt	DGI	30.47 \pm 3.53	37.26 \pm 6.17	35.62 \pm 7.74	29.94 \pm 10.40	29.29 \pm 14.57	21.76 \pm 2.00	3.80 \pm 6.19
	GraphMAE	27.39 \pm 10.26	21.54 \pm 4.00	48.31 \pm 17.72	29.83 \pm 9.34	25.04 \pm 10.38	22.58 \pm 1.97	4.35 \pm 0.01
	EdgePreGPPT	30.37 \pm 4.30	21.06 \pm 4.37	39.64 \pm 7.64	23.89 \pm 5.40	30.39 \pm 8.96	19.85 \pm 0.76	14.65 \pm 3.07
	EdgePreGprompt	25.52 \pm 4.42	21.85 \pm 4.30	46.20 \pm 10.76	30.40 \pm 6.81	22.68 \pm 12.82	21.52 \pm 1.13	2.05 \pm 1.43
	GraphCL	43.15 \pm 4.44	26.73 \pm 4.12	38.34 \pm 11.59	25.03 \pm 5.37	31.81 \pm 15.33	22.51 \pm 1.73	7.15 \pm 4.12
	SimGRACE	27.86 \pm 2.79	25.06 \pm 4.90	36.70 \pm 9.26	29.83 \pm 6.44	25.67 \pm 8.01	20.97 \pm 2.30	5.50 \pm 5.10
Gprompt	DGI	36.46 \pm 5.39	36.25 \pm 10.26	33.65 \pm 5.29	67.71 \pm 9.92	31.00 \pm 37.32	23.85 \pm 5.52	48.47 \pm 5.87
	GraphMAE	50.58 \pm 7.34	42.84 \pm 8.00	39.74 \pm 15.35	67.62 \pm 18.06	23.31 \pm 29.49	22.34 \pm 3.57	66.66 \pm 5.04
	EdgePreGPPT	46.96 \pm 6.22	40.15 \pm 7.04	35.46 \pm 14.12	67.37 \pm 12.32	30.52 \pm 36.73	23.50 \pm 4.16	75.72 \pm 4.95
	EdgePreGprompt	48.11 \pm 8.89	48.07 \pm 5.62	53.54 \pm 16.66	74.38 \pm 13.15	33.25 \pm 40.11	19.89 \pm 1.38	70.55 \pm 7.66
	GraphCL	56.66 \pm 11.22	45.81 \pm 7.04	39.37 \pm 14.95	77.07 \pm 5.93	29.55 \pm 35.56	25.26 \pm 1.10	51.20 \pm 6.40
	SimGRACE	46.34 \pm 7.75	53.21 \pm 10.94	35.58 \pm 9.03	65.38 \pm 13.70	30.20 \pm 36.49	24.49 \pm 4.38	52.76 \pm 5.30
All-in-one	DGI	47.52 \pm 2.50	39.37 \pm 3.12	38.74 \pm 2.15	60.62 \pm 13.12	57.38 \pm 12.82	21.03 \pm 1.96	1.93 \pm 1.48
	GraphMAE	23.09 \pm 4.92	18.08 \pm 5.23	33.19 \pm 11.98	57.54 \pm 10.66	52.82 \pm 11.47	23.31 \pm 2.01	4.19 \pm 0.64
	EdgePreGPPT	49.63 \pm 6.26	35.06 \pm 2.37	40.73 \pm 11.32	66.29 \pm 19.11	58.62 \pm 5.54	21.49 \pm 1.27	5.62 \pm 3.95
	EdgePreGprompt	37.39 \pm 3.31	28.85 \pm 4.32	35.53 \pm 9.07	59.18 \pm 12.30	39.71 \pm 25.31	20.49 \pm 3.90	13.01 \pm 6.29
	GraphCL	52.39 \pm 10.17	37.37 \pm 4.15	45.17 \pm 6.93	39.14 \pm 11.17	65.49 \pm 7.06	24.61 \pm 2.80	6.70 \pm 6.01
	SimGRACE	35.99 \pm 2.76	40.41 \pm 2.80	30.23 \pm 7.03	55.56 \pm 14.70	59.22 \pm 20.17	21.03 \pm 2.23	5.72 \pm 1.61
GPF	DGI	27.83 \pm 18.89	16.50 \pm 4.57	38.33 \pm 8.13	62.69 \pm 13.96	60.54 \pm 13.13	28.17 \pm 4.81	19.36 \pm 6.20
	GraphMAE	38.57 \pm 5.41	25.61 \pm 3.27	48.52 \pm 13.23	76.84 \pm 10.50	69.51 \pm 18.75	28.37 \pm 5.82	43.28 \pm 10.60
	EdgePreGPPT	15.29 \pm 8.41	12.33 \pm 5.33	43.78 \pm 14.02	78.35 \pm 4.07	68.05 \pm 17.34	25.66 \pm 3.33	65.11 \pm 5.70
	EdgePreGprompt	26.60 \pm 13.92	31.16 \pm 8.05	48.98 \pm 11.57	75.20 \pm 13.22	69.48 \pm 17.07	25.27 \pm 6.65	41.87 \pm 11.49
	GraphCL	23.16 \pm 5.11	16.77 \pm 4.39	49.99 \pm 8.86	51.60 \pm 20.06	73.54 \pm 18.50	20.68 \pm 6.70	27.73 \pm 5.12
	SimGRACE	32.01 \pm 11.21	19.43 \pm 2.10	37.27 \pm 0.09	60.81 \pm 26.52	69.97 \pm 16.76	28.70 \pm 3.35	25.12 \pm 4.50
GPF-plus	DGI	17.29 \pm 1.18	26.60 \pm 13.24	34.02 \pm 11.94	74.68 \pm 11.81	71.44 \pm 18.66	22.42 \pm 0.66	16.83 \pm 10.02
	GraphMAE	54.26 \pm 7.48	59.67 \pm 11.87	46.64 \pm 18.57	82.11 \pm 13.95	70.95 \pm 18.63	26.58 \pm 7.84	49.81 \pm 2.62
	EdgePreGPPT	28.49 \pm 18.73	28.04 \pm 3.83	46.51 \pm 15.84	72.66 \pm 12.05	70.67 \pm 17.59	29.32 \pm 5.61	71.98 \pm 12.23
	EdgePreGprompt	55.77 \pm 10.38	49.43 \pm 8.21	42.79 \pm 18.18	78.76 \pm 13.63	68.75 \pm 16.51	22.68 \pm 6.64	57.44 \pm 6.95
	GraphCL	34.18 \pm 17.71	28.86 \pm 22.88	37.02 \pm 11.29	52.35 \pm 19.69	75.40 \pm 19.10	22.82 \pm 4.99	32.11 \pm 4.86
	SimGRACE	21.33 \pm 14.86	24.61 \pm 21.21	35.90 \pm 9.06	73.49 \pm 14.17	76.10 \pm 20.35	20.51 \pm 4.24	46.71 \pm 3.17
MTG (Ours)	DGI	49.48 \pm 4.82	62.31 \pm 18.90	46.18 \pm 7.32	67.72 \pm 10.19	62.96 \pm 16.80	25.48 \pm 7.31	25.06 \pm 10.57
	GraphMAE	46.27 \pm 6.66	49.21 \pm 12.95	46.98 \pm 10.02	83.32 \pm 12.46	71.59 \pm 18.67	29.44 \pm 7.31	36.44 \pm 9.59
	EdgePreGPPT	46.68 \pm 6.66	33.22 \pm 12.52	44.85 \pm 9.75	73.80 \pm 9.56	71.11 \pm 17.13	20.96 \pm 2.93	75.97 \pm 4.29
	EdgePreGprompt	46.29 \pm 3.84	45.30 \pm 16.04	50.70 \pm 11.68	72.75 \pm 11.21	79.13 \pm 17.18	21.34 \pm 1.78	21.08 \pm 2.34
	GraphCL	58.54 \pm 7.89	50.96 \pm 16.40	40.00 \pm 7.80	48.41 \pm 16.10	69.71 \pm 16.42	24.77 \pm 4.45	38.96 \pm 6.82
	SimGRACE	45.93 \pm 7.67	57.60 \pm 9.01	43.29 \pm 10.80	72.98 \pm 9.75	71.26 \pm 17.71	22.03 \pm 3.59	37.90 \pm 5.83
Gprompt	DGI	30.20 \pm 4.21	33.58 \pm 9.40	31.89 \pm 5.43	55.65 \pm 4.81	23.68 \pm 28.78	20.12 \pm 3.96	42.90 \pm 1.91
	GraphMAE	45.91 \pm 6.10	40.94 \pm 10.71	39.46 \pm 15.97	60.14 \pm 10.10	19.27 \pm 23.52	20.06 \pm 4.69	57.88 \pm 3.32
	EdgePreGPPT	44.15 \pm 5.57	37.31 \pm 6.26	29.87 \pm 12.41	61.52 \pm 5.78	24.14 \pm 29.42	20.14 \pm 3.34	69.86 \pm 1.92
	EdgePreGprompt	46.28 \pm 8.46	42.82 \pm 6.05	33.57 \pm 16.07	64.46 \pm 10.07	25.86 \pm 31.46	18.67 \pm 1.74	69.89 \pm 5.15
	GraphCL	49.86 \pm 10.36	40.41 \pm 9.12	38.04 \pm 13.45	61.79 \pm 6.38	21.15 \pm 25.84	22.00 \pm 1.74	45.32 \pm 3.89
	SimGRACE	38.55 \pm 6.02	49.65 \pm 11.42	31.13 \pm 9.15	42.60 \pm 7.58	29.20 \pm 35.62	21.39 \pm 3.95	46.73 \pm 4.62
All-in-one	DGI	34.76 \pm 3.89	26.67 \pm 4.46	22.68 \pm 5.29	46.19 \pm 6.62	31.14 \pm 20.37	14.37 \pm 2.36	0.24 \pm 0.21
	GraphMAE	10.82 \pm 4.45	7.04 \pm 2.29	25.46 \pm 9.17	52.55 \pm 4.88	37.08 \pm 9.37	12.68 \pm 2.63	0.19 \pm 0.26
	EdgePreGPPT	44.16 \pm 4.02	26.79 \pm 3.27	36.27 \pm 12.89	57.44 \pm 6.08	26.50 \pm 10.81	14.72 \pm 2.29	0.98 \pm 0.47
	EdgePreGprompt	24.93 \pm 4.99	14.58 \pm 5.03	30.99 \pm 7.62	51.42 \pm 6.35	28.81 \pm 17.76	11.85 \pm 1.48	0.56 \pm 0.27
	GraphCL	46.58 \pm 8.42	29.35 \pm 3.66	38.05 \pm 6.24	34.06 \pm 7.00	43.37 \pm 16.01	16.05	

Table 16: AUROC on 1-shot node classification.

Adaptation	Pre-training	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbm-arxiv
Supervised	-	76.71 \pm 1.76	63.02 \pm 4.09	62.01 \pm 18.06	61.53 \pm 4.96	62.86 \pm 10.22	51.16 \pm 1.01	72.48 \pm 1.34
Fine-tuning	DGI	79.33 \pm 2.82	65.16 \pm 4.85	63.47 \pm 13.36	59.72 \pm 2.84	65.16 \pm 9.96	50.13 \pm 0.96	64.22 \pm 2.71
	GraphMAE	78.93 \pm 0.67	63.92 \pm 3.46	66.78 \pm 16.67	60.83 \pm 5.18	61.79 \pm 9.63	51.01 \pm 0.55	72.86 \pm 1.61
	EdgePreGPPT	78.44 \pm 1.58	60.74 \pm 3.98	63.49 \pm 15.75	58.91 \pm 3.16	65.05 \pm 9.01	50.79 \pm 0.65	77.26 \pm 2.75
	EdgePreGprompt	80.12 \pm 2.93	65.05 \pm 4.65	60.89 \pm 13.56	61.08 \pm 5.22	62.77 \pm 10.98	51.47 \pm 1.28	75.81 \pm 2.26
	GraphCL	86.34 \pm 1.24	68.32 \pm 1.24	57.56 \pm 15.85	43.79 \pm 4.25	63.09 \pm 10.20	51.19 \pm 0.63	63.36 \pm 1.49
	SimGRACE	76.63 \pm 1.67	71.91 \pm 2.47	58.10 \pm 9.18	57.76 \pm 2.12	65.06 \pm 9.74	50.81 \pm 0.68	56.33 \pm 0.77
GPPTPrompt	DGI	63.97 \pm 5.40	71.52 \pm 5.15	51.57 \pm 5.86	59.89 \pm 2.95	57.22 \pm 9.90	50.71 \pm 0.86	50.07 \pm 0.08
	GraphMAE	78.20 \pm 3.89	61.64 \pm 4.31	64.12 \pm 15.44	55.48 \pm 6.44	53.95 \pm 3.70	51.71 \pm 1.74	59.28 \pm 2.39
	EdgePreGPPT	65.75 \pm 4.04	54.28 \pm 5.62	55.12 \pm 11.88	54.59 \pm 4.65	50.55 \pm 3.83	49.94 \pm 0.54	74.38 \pm 1.59
	EdgePreGprompt	62.60 \pm 2.50	54.23 \pm 6.14	61.41 \pm 11.42	57.58 \pm 2.23	53.16 \pm 6.75	50.32 \pm 0.28	63.71 \pm 2.13
	GraphCL	72.09 \pm 7.61	59.06 \pm 3.51	55.95 \pm 13.50	54.51 \pm 4.05	56.59 \pm 7.31	51.76 \pm 0.95	54.45 \pm 1.08
	SimGRACE	64.83 \pm 2.80	59.61 \pm 4.19	51.84 \pm 12.98	56.88 \pm 4.39	53.42 \pm 6.67	50.48 \pm 0.77	50.72 \pm 0.43
Gprompt	DGI	70.70 \pm 2.26	70.93 \pm 4.80	52.96 \pm 2.53	74.12 \pm 8.50	57.93 \pm 10.19	52.82 \pm 3.88	90.60 \pm 1.08
	GraphMAE	80.67 \pm 4.24	70.72 \pm 5.34	60.66 \pm 19.63	89.64 \pm 5.51	59.57 \pm 11.81	52.87 \pm 4.78	94.04 \pm 1.32
	EdgePreGPPT	84.03 \pm 2.26	67.95 \pm 2.69	44.60 \pm 13.08	88.97 \pm 5.38	60.65 \pm 12.95	53.55 \pm 3.61	96.40 \pm 0.74
	EdgePreGprompt	81.90 \pm 4.04	74.85 \pm 2.68	58.34 \pm 22.51	91.99 \pm 5.59	62.03 \pm 14.44	50.16 \pm 1.75	94.39 \pm 1.12
	GraphCL	83.03 \pm 4.16	78.35 \pm 5.28	58.24 \pm 13.76	87.80 \pm 5.54	58.33 \pm 10.63	54.45 \pm 2.93	92.72 \pm 0.72
	SimGRACE	76.99 \pm 3.17	84.09 \pm 2.88	51.91 \pm 12.26	87.53 \pm 2.42	61.60 \pm 14.00	53.63 \pm 4.60	91.93 \pm 1.25
All-in-one	DGI	75.29 \pm 1.07	71.50 \pm 1.46	55.69 \pm 1.38	74.35 \pm 4.22	64.75 \pm 3.31	51.05 \pm 0.98	55.21 \pm 1.45
	GraphMAE	73.99 \pm 6.63	49.98 \pm 3.07	53.18 \pm 13.11	49.16 \pm 4.96	62.90 \pm 3.67	50.96 \pm 1.97	50.21 \pm 1.01
	EdgePreGPPT	83.26 \pm 1.22	69.82 \pm 1.32	73.63 \pm 3.06	86.56 \pm 6.53	75.38 \pm 10.13	49.99 \pm 0.28	54.22 \pm 5.18
	EdgePreGprompt	73.84 \pm 3.01	62.35 \pm 6.11	61.26 \pm 7.66	86.03 \pm 3.16	67.99 \pm 6.33	51.48 \pm 2.87	75.81 \pm 2.83
	GraphCL	84.34 \pm 3.32	72.36 \pm 2.82	68.22 \pm 3.38	63.00 \pm 6.09	69.39 \pm 2.56	47.63 \pm 2.10	55.77 \pm 4.78
	SimGRACE	72.30 \pm 1.28	69.88 \pm 0.83	52.94 \pm 2.50	76.60 \pm 6.08	70.92 \pm 7.19	48.18 \pm 0.97	65.43 \pm 1.59
GPF	DGI	65.74 \pm 10.40	50.00 \pm 0.00	51.90 \pm 7.57	77.18 \pm 4.67	67.01 \pm 10.82	58.84 \pm 3.16	64.47 \pm 2.93
	GraphMAE	73.69 \pm 2.75	66.16 \pm 0.22	73.35 \pm 8.02	96.98 \pm 0.89	81.43 \pm 10.22	55.43 \pm 3.58	80.52 \pm 0.81
	EdgePreGPPT	62.03 \pm 0.87	57.99 \pm 6.03	68.25 \pm 7.09	95.97 \pm 1.75	78.79 \pm 9.70	55.90 \pm 6.20	92.37 \pm 0.30
	EdgePreGprompt	70.83 \pm 8.42	71.94 \pm 3.31	71.40 \pm 8.27	90.33 \pm 4.63	71.85 \pm 9.72	56.13 \pm 4.33	83.64 \pm 2.82
	GraphCL	74.17 \pm 5.66	61.21 \pm 7.77	70.39 \pm 4.76	65.12 \pm 13.92	84.28 \pm 8.08	54.42 \pm 3.73	78.19 \pm 1.35
	SimGRACE	69.60 \pm 10.54	62.47 \pm 3.70	50.73 \pm 3.64	84.37 \pm 12.04	79.69 \pm 14.05	60.48 \pm 2.78	61.04 \pm 5.33
GPF-plus	DGI	58.07 \pm 8.25	55.15 \pm 11.69	55.70 \pm 11.04	85.93 \pm 6.24	79.28 \pm 11.50	57.02 \pm 8.99	60.73 \pm 3.11
	GraphMAE	86.94 \pm 4.26	87.43 \pm 3.46	66.74 \pm 18.62	97.98 \pm 1.67	82.16 \pm 10.00	63.32 \pm 6.43	80.32 \pm 3.00
	EdgePreGPPT	68.27 \pm 10.69	59.85 \pm 17.18	71.27 \pm 10.40	92.67 \pm 2.31	84.16 \pm 10.73	61.72 \pm 5.16	93.52 \pm 1.09
	EdgePreGprompt	86.33 \pm 4.94	88.60 \pm 5.18	63.12 \pm 18.73	96.27 \pm 1.06	77.71 \pm 2.31	61.97 \pm 5.10	84.36 \pm 0.87
	GraphCL	80.06 \pm 6.24	61.58 \pm 14.77	55.63 \pm 15.68	75.26 \pm 13.27	78.78 \pm 1.50	58.86 \pm 3.80	70.39 \pm 3.22
	SimGRACE	64.39 \pm 11.25	64.11 \pm 10.53	54.79 \pm 10.68	85.74 \pm 6.67	85.07 \pm 9.21	55.75 \pm 4.51	69.09 \pm 2.34
MTG (Ours)	DGI	82.30 \pm 2.14	80.39 \pm 9.20	62.64 \pm 7.04	85.68 \pm 4.00	73.62 \pm 15.07	54.59 \pm 5.10	74.20 \pm 0.84
	GraphMAE	81.64 \pm 4.86	71.84 \pm 7.49	62.95 \pm 11.20	98.24 \pm 1.37	82.90 \pm 11.67	61.70 \pm 4.93	80.62 \pm 2.62
	EdgePreGPPT	81.32 \pm 3.49	65.29 \pm 11.10	63.16 \pm 10.25	93.74 \pm 4.29	79.15 \pm 6.07	50.47 \pm 2.34	97.04 \pm 0.59
	EdgePreGprompt	80.68 \pm 3.31	73.35 \pm 11.93	69.20 \pm 13.88	90.19 \pm 5.78	85.59 \pm 9.47	51.89 \pm 2.08	76.91 \pm 3.05
	GraphCL	89.02 \pm 2.73	78.61 \pm 10.46	54.43 \pm 11.25	75.82 \pm 4.79	76.98 \pm 9.39	55.56 \pm 7.35	77.30 \pm 2.70
	SimGRACE	78.41 \pm 3.42	80.86 \pm 8.79	57.61 \pm 6.59	91.06 \pm 1.60	82.24 \pm 11.74	53.99 \pm 2.42	63.13 \pm 3.17

Table 17: Accuracy (%) on 3-shot node classification.

Adaptation	Pre-training	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbm-arxiv
Supervised	-	37.79 \pm 9.16	35.18 \pm 6.86	57.33 \pm 4.64	41.03 \pm 6.40	40.78 \pm 12.55	18.62 \pm 3.46	19.03 \pm 5.08
Fine-tuning	DGI	45.84 \pm 3.29	34.91 \pm 10.07	63.00 \pm 6.83	39.43 \pm 6.93	43.13 \pm 13.79	20.27 \pm 1.70	21.85 \pm 5.37
	GraphMAE	45.15 \pm 4.77	28.59 \pm 6.41	65.40 \pm 3.00	41.49 \pm 5.19	40.94 \pm 13.91	19.03 \pm 3.17	19.63 \pm 7.64
	EdgePreGPPT	51.97 \pm 2.84	33.19 \pm 1.79	64.38 \pm 3.59	42.40 \pm 7.78	34.69 \pm 12.07	20.83 \pm 2.24	20.51 \pm 4.02
	EdgePreGprompt	40.33 \pm 6.62	33.39 \pm 5.51	63.49 \pm 3.17	41.37 \pm 7.28	34.53 \pm 10.09	19.29 \pm 1.95	27.34 \pm 6.61
	GraphCL	49.39 \pm 9.15	38.40 \pm 3.06	62.79 \pm 3.21	41.26 \pm 6.26	40.31 \pm 13.36	21.06 \pm 1.27	17.37 \pm 7.34
	SimGRACE	43.61 \pm 5.41	45.08 \pm 2.09	62.66 \pm 3.21	40.11 \pm 8.04	40.94 \pm 13.73	22.11 \pm 1.97	16.00 \pm 2.05
GPPTPrompt	DGI	37.46 \pm 6.27	42.34 \pm 8.31	44.36 \pm 3.67	34.29 \pm 4.71	37.80 \pm 8.98	21.42 \pm 3.13	14.34 \pm 14.10
	GraphMAE	30.93 \pm 3.64	20.76 \pm 2.64	67.43 \pm 2.96	33.60 \pm 2.30	37.64 \pm 5.88	21.65 \pm 3.39	17.24 \pm 13.25
	EdgePreGPPT	35.05 \pm 2.95	24.26 \pm 2.55	58.66 \pm 5.98	29.37 \pm 6.22	38.90 \pm 7.56	20.35 \pm 0.43	22.46 \pm 4.05
	EdgePreGprompt	27.94 \pm 5.07	23.21 \pm 1.95	64.98 \pm 3.35	33.49 \pm 5.49	36.06 \pm 12.01	19.85 \pm 3.31	18.73 \pm 4.77
	GraphCL	43.84 \pm 6.11	27.09 \pm 4.57	51.30 \pm 6.35	23.89 \pm 3.55	38.90 \pm 8.86	20.60 \pm 1.10	13.04 \pm 6.44
	SimGRACE	29.66 \pm 5.49	29.63 \pm 1.87	43.95 \pm 3.55	31.66 \pm 6.21	34.65 \pm 6.97	21.08 \pm 1.16	14.13 \pm 13.89
Gprompt	DGI	37.42 \pm 7.07	41.19 \pm 5.30	38.69 \pm 1.54	74.71 \pm 10.15	18.25 \pm 1.61	26.64 \pm 4.45	50.87 \pm 3.51
	GraphMAE	63.78 \pm 5.77	57.15 \pm 3.90	62.47 \pm 4.29	86.48 \pm 4.78	36.99 \pm 44.62	29.21 \pm 3.27	73.92 \pm 2.75
	EdgePreGPPT	51.29 \pm 7.07	34.79 \pm 4.07	53.63 \pm 6.62	89.10 \pm 4.09	37.49 \pm 45.24	26.44 \pm 3.36	64.52 \pm 1.76
	EdgePreGprompt	53.37 \pm 6.30	56.19 \pm 2.95	66.68 \pm 3.33	92.52 \pm 5.38	38.66 \pm 46.67	21.78 \pm 1.85	68.77 \pm 3.72
	GraphCL	56.61 \pm 8.02	56.28 \pm 5.89	50.33 \pm 5.18	85.83 \pm 4.53	36.16 \pm 43.63	29.67 \pm 2.53	58.48 \pm 7.86
	SimGRACE	45.22 \pm 5.69	60.00 \pm 1.88	43.58 \pm 5.73	82.84 \pm 1.52	39.00 \pm 47.08	25.07 \pm 1.10	57.42 \pm 4.67
All-in-one	DGI	33.						

Table 18: F1-score on 3-shot node classification.

Adaptation	Pre-training	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbn-arxiv
Supervised	-	37.64 \pm 6.32	28.68 \pm 8.09	53.04 \pm 6.01	34.90 \pm 5.93	29.16 \pm 7.77	13.69 \pm 2.87	15.21 \pm 2.66
Fine-tuning	DGI	41.76 \pm 1.48	27.23 \pm 9.82	61.18 \pm 10.18	35.01 \pm 5.55	31.12 \pm 8.67	16.05 \pm 0.75	16.45 \pm 1.97
	GraphMAE	45.70 \pm 6.35	20.60 \pm 5.72	64.33 \pm 3.42	34.08 \pm 4.00	28.29 \pm 8.05	16.30 \pm 2.37	14.26 \pm 4.46
	EdgePreGPPT	49.76 \pm 2.52	28.14 \pm 6.04	63.62 \pm 4.81	35.03 \pm 5.65	25.55 \pm 6.58	17.79 \pm 1.62	16.68 \pm 2.65
	EdgePredGprompt	41.69 \pm 5.58	23.81 \pm 4.86	62.48 \pm 4.02	35.42 \pm 6.02	26.05 \pm 6.95	12.98 \pm 2.02	19.33 \pm 2.46
	GraphCL	47.79 \pm 9.36	34.47 \pm 3.44	63.10 \pm 2.93	22.42 \pm 6.61	29.45 \pm 8.86	19.91 \pm 1.08	7.46 \pm 3.10
	SimGRACE	41.71 \pm 4.09	42.01 \pm 1.56	63.14 \pm 3.43	34.28 \pm 5.18	29.55 \pm 7.96	17.92 \pm 1.61	11.68 \pm 1.37
GPPTPrompt	DGI	33.94 \pm 7.56	36.13 \pm 8.65	44.13 \pm 3.80	30.91 \pm 2.41	34.81 \pm 7.09	19.30 \pm 2.98	3.50 \pm 2.51
	GraphMAE	25.31 \pm 6.18	6.91 \pm 2.98	67.61 \pm 2.62	29.51 \pm 3.00	33.87 \pm 3.38	18.03 \pm 1.97	6.06 \pm 5.21
	EdgePreGPPT	32.77 \pm 2.66	19.54 \pm 1.23	58.07 \pm 0.41	27.20 \pm 3.72	33.65 \pm 5.16	19.32 \pm 0.53	17.24 \pm 1.62
	EdgePreGprompt	20.10 \pm 4.38	20.60 \pm 1.98	62.73 \pm 4.96	29.19 \pm 4.29	30.98 \pm 7.36	18.99 \pm 0.70	15.47 \pm 2.95
	GraphCL	41.25 \pm 4.50	25.71 \pm 4.25	50.27 \pm 0.65	15.65 \pm 4.50	34.61 \pm 6.65	19.81 \pm 1.02	5.96 \pm 3.82
	SimGRACE	27.19 \pm 4.01	27.09 \pm 2.43	42.79 \pm 3.17	26.79 \pm 4.55	32.38 \pm 5.73	19.02 \pm 0.50	4.01 \pm 2.59
Gprompt	DGI	32.92 \pm 6.82	37.71 \pm 5.52	37.90 \pm 1.53	60.12 \pm 10.43	23.89 \pm 29.00	26.39 \pm 4.24	46.53 \pm 2.46
	GraphMAE	59.30 \pm 7.36	53.60 \pm 3.06	61.33 \pm 4.81	79.06 \pm 11.48	30.56 \pm 37.45	29.02 \pm 2.53	65.63 \pm 1.42
	EdgePreGPPT	46.21 \pm 6.52	29.81 \pm 3.69	48.94 \pm 10.06	80.60 \pm 7.17	32.74 \pm 40.02	24.73 \pm 3.32	58.82 \pm 1.46
	EdgePreGprompt	52.43 \pm 6.41	53.88 \pm 3.50	65.02 \pm 2.80	91.03 \pm 5.30	29.77 \pm 36.20	20.40 \pm 1.65	57.08 \pm 1.62
	GraphCL	51.54 \pm 8.49	52.46 \pm 5.08	49.16 \pm 5.73	65.08 \pm 11.12	30.89 \pm 37.90	28.21 \pm 2.34	50.55 \pm 3.75
	SimGRACE	40.83 \pm 3.88	56.25 \pm 7.01	42.59 \pm 5.51	76.68 \pm 3.03	37.94 \pm 46.21	25.41 \pm 1.35	52.22 \pm 1.38
All-in-one	DGI	22.05 \pm 4.15	25.31 \pm 3.49	42.82 \pm 4.66	63.22 \pm 7.20	37.71 \pm 11.00	11.04 \pm 2.36	15.79 \pm 0.87
	GraphMAE	8.10 \pm 4.43	7.30 \pm 2.81	62.24 \pm 5.80	51.62 \pm 2.06	58.91 \pm 14.27	11.52 \pm 0.97	9.72 \pm 3.20
	EdgePreGPPT	41.54 \pm 1.81	27.24 \pm 3.58	56.20 \pm 5.02	80.48 \pm 6.98	82.89 \pm 2.60	9.51 \pm 3.89	9.61 \pm 4.38
	EdgePreGprompt	20.33 \pm 9.09	12.09 \pm 3.36	63.18 \pm 7.52	79.59 \pm 6.58	68.71 \pm 14.50	7.89 \pm 2.38	9.96 \pm 1.24
	GraphCL	14.85 \pm 18.09	33.38 \pm 6.65	50.52 \pm 3.48	61.79 \pm 11.38	69.09 \pm 6.96	16.40 \pm 1.47	14.33 \pm 0.41
	SimGRACE	12.71 \pm 11.42	40.22 \pm 8.61	44.79 \pm 2.93	64.88 \pm 3.45	79.46 \pm 5.10	13.70 \pm 2.29	10.07 \pm 1.80
GPF	DGI	12.93 \pm 16.42	12.92 \pm 13.22	32.76 \pm 17.33	57.67 \pm 6.47	54.60 \pm 7.43	15.68 \pm 0.94	12.83 \pm 1.39
	GraphMAE	19.59 \pm 5.22	14.48 \pm 5.04	70.15 \pm 2.68	87.58 \pm 7.51	86.43 \pm 11.19	31.56 \pm 8.62	14.17 \pm 3.86
	EdgePreGPPT	9.90 \pm 0.04	7.40 \pm 3.59	63.04 \pm 3.09	87.06 \pm 6.98	81.91 \pm 9.67	22.38 \pm 7.66	45.75 \pm 5.33
	EdgePreGprompt	21.59 \pm 5.95	11.79 \pm 3.50	62.02 \pm 21.60	86.44 \pm 7.15	86.41 \pm 10.56	22.04 \pm 11.41	19.34 \pm 3.58
	GraphCL	18.90 \pm 20.40	8.10 \pm 4.95	47.10 \pm 8.36	44.52 \pm 22.48	81.72 \pm 11.88	14.24 \pm 8.36	21.89 \pm 6.08
	SimGRACE	13.21 \pm 14.54	10.26 \pm 8.85	25.30 \pm 21.15	66.51 \pm 11.13	86.16 \pm 10.16	15.37 \pm 7.26	13.97 \pm 3.27
GPF-plus	DGI	10.87 \pm 13.23	14.35 \pm 19.57	43.25 \pm 20.47	75.32 \pm 18.48	61.47 \pm 21.05	14.70 \pm 3.64	14.05 \pm 3.80
	GraphMAE	55.76 \pm 3.81	70.45 \pm 6.54	69.78 \pm 3.58	94.11 \pm 2.69	81.45 \pm 10.47	45.02 \pm 4.47	20.13 \pm 2.80
	EdgePreGPPT	20.90 \pm 24.90	15.30 \pm 23.70	65.43 \pm 1.28	92.59 \pm 4.18	86.57 \pm 9.96	32.74 \pm 6.14	52.12 \pm 8.51
	EdgePreGprompt	52.13 \pm 7.14	68.79 \pm 9.94	67.98 \pm 3.69	94.33 \pm 1.77	85.78 \pm 10.07	30.59 \pm 7.43	44.07 \pm 7.58
	GraphCL	21.84 \pm 23.15	18.50 \pm 28.28	59.42 \pm 13.43	66.49 \pm 14.43	83.37 \pm 9.14	30.93 \pm 6.62	23.49 \pm 1.47
	SimGRACE	20.11 \pm 22.26	18.43 \pm 24.95	27.58 \pm 21.15	61.07 \pm 14.66	84.64 \pm 10.24	30.11 \pm 7.73	15.20 \pm 0.24
MTG (Ours)	DGI	46.54 \pm 12.69	72.30 \pm 4.71	59.76 \pm 7.94	67.09 \pm 8.14	58.29 \pm 7.26	30.76 \pm 0.61	17.44 \pm 1.45
	GraphMAE	49.48 \pm 5.32	49.16 \pm 7.50	64.33 \pm 9.10	94.48 \pm 4.09	86.91 \pm 10.55	34.46 \pm 6.88	14.52 \pm 1.48
	EdgePreGPPT	48.25 \pm 7.70	27.87 \pm 15.20	62.60 \pm 12.00	92.21 \pm 5.04	83.99 \pm 10.75	32.95 \pm 4.15	63.84 \pm 5.11
	EdgePreGprompt	50.76 \pm 7.86	52.42 \pm 7.90	67.80 \pm 4.99	93.83 \pm 4.43	87.36 \pm 8.55	29.64 \pm 1.63	16.90 \pm 2.39
	GraphCL	65.93 \pm 6.51	52.05 \pm 5.93	54.72 \pm 7.26	44.48 \pm 11.68	85.01 \pm 10.01	29.25 \pm 5.15	31.70 \pm 3.22
	SimGRACE	37.18 \pm 6.46	61.59 \pm 10.38	49.48 \pm 9.46	60.86 \pm 11.75	86.13 \pm 10.46	24.62 \pm 2.91	16.98 \pm 6.64

Table 19: AUROC on 3-shot node classification.

Adaptation	Pre-training	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbn-arxiv
Supervised	-	86.20 \pm 2.47	76.31 \pm 3.45	80.24 \pm 2.82	66.44 \pm 6.12	59.85 \pm 12.05	51.48 \pm 0.74	59.17 \pm 1.26
Fine-tuning	DGI	84.23 \pm 2.75	74.32 \pm 4.21	82.28 \pm 5.43	67.49 \pm 3.80	55.28 \pm 10.97	51.93 \pm 1.20	61.28 \pm 1.40
	GraphMAE	86.80 \pm 2.35	75.07 \pm 2.48	84.70 \pm 1.28	66.58 \pm 6.51	58.48 \pm 11.37	51.78 \pm 1.01	59.12 \pm 1.66
	EdgePreGPPT	85.62 \pm 1.41	72.39 \pm 3.60	83.03 \pm 2.89	66.70 \pm 4.04	54.49 \pm 12.28	52.25 \pm 0.89	60.55 \pm 1.73
	EdgePredGprompt	85.85 \pm 0.79	76.73 \pm 2.67	83.40 \pm 2.74	67.27 \pm 4.41	58.43 \pm 10.76	51.24 \pm 0.96	61.30 \pm 1.07
	GraphCL	87.71 \pm 1.59	75.10 \pm 2.66	81.83 \pm 2.15	61.56 \pm 7.86	57.10 \pm 12.53	52.03 \pm 1.09	54.66 \pm 2.69
	SimGRACE	80.39 \pm 2.84	76.94 \pm 1.30	79.56 \pm 3.24	67.34 \pm 5.82	59.02 \pm 11.26	51.60 \pm 0.77	56.28 \pm 1.14
GPPTPrompt	DGI	70.88 \pm 2.54	73.97 \pm 4.56	61.07 \pm 2.93	66.77 \pm 2.66	63.59 \pm 7.91	51.34 \pm 1.54	50.34 \pm 0.68
	GraphMAE	80.91 \pm 2.38	69.11 \pm 3.46	83.10 \pm 1.03	67.33 \pm 6.31	60.95 \pm 3.13	51.22 \pm 1.38	51.84 \pm 3.86
	EdgePreGPPT	68.71 \pm 2.02	59.01 \pm 2.73	74.22 \pm 4.90	57.60 \pm 1.78	58.20 \pm 4.72	50.23 \pm 0.31	58.95 \pm 4.29
	EdgePreGprompt	68.29 \pm 3.52	58.07 \pm 2.40	81.15 \pm 4.81	61.93 \pm 5.66	61.91 \pm 2.85	50.27 \pm 0.63	56.16 \pm 2.47
	GraphCL	75.26 \pm 3.86	60.58 \pm 4.04	71.43 \pm 2.47	53.79 \pm 2.21	61.73 \pm 5.50	50.96 \pm 0.66	50.69 \pm 1.68
	SimGRACE	66.90 \pm 4.18	65.72 \pm 2.09	66.87 \pm 2.38	66.87 \pm 2.38	50.53 \pm 0.57	50.07 \pm 0.24	
Gprompt	DGI	62.24 \pm 2.99	75.87 \pm 3.70	55.46 \pm 1.89	87.72 \pm 5.97	60.44 \pm 13.45	55.78 \pm 3.19	92.08 \pm 0.52
	GraphMAE	80.27 \pm 5.61	74.38 \pm 3.36	84.37 \pm 1.75	96.34 \pm 2.81	60.67 \pm 13.69	58.52 \pm 2.66	93.17 \pm 0.44
	EdgePreGPPT	81.41 \pm 4.50	65.99 \pm 4.06	72.84 \pm 0.48	98.59 \pm 1.16	61.51 \pm 14.67	56.86 \pm 2.69	94.31 \pm 0.11
	EdgePreGprompt	83.15 \pm 3.91	82.01 \pm 1.78	84.45 \pm 1.80	99.32 \pm 0.66	62.34 \pm 15.53	51.33 \pm 2.32	95.60 \pm 0.06
	GraphCL	83.25 \pm 3.22	83.20 \pm 0.97	71.35 \pm 3.39	91.20 \pm 4.59	61.92 \pm 15.06	59.78 \pm 3.41	94.76 \pm 0.71
	SimGRACE	79.02 \pm 2.55	78.11 \pm 1.17	64.76 \pm 2.62	84.99 \pm 2.40	92.99 \pm 1.95	51.64 \pm 2.25	94.71 \pm 0.39
All-in-one	DGI	71.15 \pm 3.33	65.99 \pm 9.00					

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

Table 20: Accuracy (%) on 5-shot node classification

Adaptation	Pre-training	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbn-arxiv
Supervised	-	50.25 \pm 8.37	41.22 \pm 6.30	67.88 \pm 2.18	39.43 \pm 5.86	43.91 \pm 6.47	21.92 \pm 1.86	22.38 \pm 3.05
Fine-tuning	DGI	48.79 \pm 8.51	35.91 \pm 4.94	61.44 \pm 7.93	40.00 \pm 6.31	47.19 \pm 7.37	21.48 \pm 1.71	12.48 \pm 6.15
	GraphMAE	54.09 \pm 4.21	32.75 \pm 6.35	70.04 \pm 4.57	40.69 \pm 6.73	43.44 \pm 8.48	22.92 \pm 1.22	24.08 \pm 1.45
	EdgePreGPPT	54.34 \pm 3.78	38.97 \pm 7.35	70.91 \pm 4.87	40.69 \pm 6.77	44.53 \pm 11.05	21.46 \pm 1.00	28.84 \pm 3.11
	EdgePredGprompt	49.04 \pm 8.99	32.08 \pm 8.24	70.44 \pm 5.04	41.03 \pm 6.58	45.78 \pm 8.07	22.46 \pm 1.99	25.94 \pm 2.63
	GraphCL	62.66 \pm 3.55	39.54 \pm 3.54	66.84 \pm 5.76	42.97 \pm 8.99	46.41 \pm 5.47	21.99 \pm 1.61	13.42 \pm 3.73
	SimGRACE	45.13 \pm 7.81	38.90 \pm 6.03	62.65 \pm 6.29	41.49 \pm 5.77	46.09 \pm 8.71	22.77 \pm 1.56	9.45 \pm 1.62
GPPTPrompt	DGI	43.68 \pm 7.12	45.77 \pm 7.41	47.39 \pm 10.22	36.29 \pm 3.97	48.82 \pm 5.15	20.91 \pm 1.36	8.85 \pm 6.21
	GraphMAE	31.50 \pm 11.89	19.93 \pm 6.60	66.97 \pm 3.70	37.00 \pm 3.19	42.68 \pm 6.91	22.10 \pm 0.86	8.90 \pm 6.25
	EdgePreGPPT	32.94 \pm 2.82	26.93 \pm 1.56	63.45 \pm 3.63	34.00 \pm 5.69	36.85 \pm 3.24	20.42 \pm 0.81	28.90 \pm 1.64
	EdgePreGprompt	30.55 \pm 4.59	28.46 \pm 4.25	63.33 \pm 4.14	32.57 \pm 3.31	39.21 \pm 6.09	20.07 \pm 0.45	4.01 \pm 0.63
	GraphCL	51.98 \pm 3.43	26.68 \pm 2.95	57.59 \pm 2.89	30.43 \pm 8.83	45.20 \pm 2.20	21.25 \pm 0.78	14.15 \pm 5.26
	SimGRACE	34.93 \pm 2.55	29.51 \pm 2.60	42.87 \pm 1.57	33.00 \pm 5.27	41.42 \pm 6.80	21.58 \pm 0.84	9.11 \pm 3.50
Gprompt	DGI	27.81 \pm 10.28	52.84 \pm 2.36	37.83 \pm 5.71	79.95 \pm 4.01	62.50 \pm 12.39	19.83 \pm 3.14	2.65 \pm 0.09
	GraphMAE	66.82 \pm 3.98	60.07 \pm 2.25	66.66 \pm 2.25	74.89 \pm 35.83	36.73 \pm 43.95	30.71 \pm 2.12	76.98 \pm 3.88
	EdgePreGPPT	53.15 \pm 2.85	36.15 \pm 5.00	62.18 \pm 4.88	78.22 \pm 37.33	37.59 \pm 45.03	28.76 \pm 3.95	85.40 \pm 0.79
	EdgePreGprompt	62.63 \pm 3.26	65.34 \pm 4.60	67.87 \pm 2.08	78.01 \pm 37.38	38.45 \pm 46.03	21.86 \pm 2.13	81.85 \pm 3.16
	GraphCL	69.03 \pm 3.61	61.27 \pm 5.37	57.21 \pm 2.78	65.72 \pm 31.30	36.38 \pm 43.47	34.67 \pm 1.28	57.52 \pm 4.19
	SimGRACE	51.27 \pm 6.05	66.13 \pm 1.64	44.78 \pm 6.52	68.34 \pm 32.42	39.32 \pm 47.09	30.06 \pm 3.36	57.36 \pm 3.68
All-in-one	DGI	30.45 \pm 0.19	21.82 \pm 4.73	43.60 \pm 5.24	79.95 \pm 4.01	62.50 \pm 12.39	19.83 \pm 3.14	2.65 \pm 0.09
	GraphMAE	25.02 \pm 7.58	19.38 \pm 4.38	46.16 \pm 15.83	82.43 \pm 2.84	66.47 \pm 17.32	15.03 \pm 3.13	0.24 \pm 0.00
	EdgePreGPPT	30.36 \pm 13.48	25.83 \pm 9.32	37.61 \pm 20.58	88.55 \pm 3.52	47.98 \pm 7.78	21.49 \pm 3.02	1.59 \pm 1.30
	EdgePreGprompt	21.59 \pm 7.30	18.75 \pm 1.86	39.36 \pm 11.45	87.16 \pm 3.02	46.32 \pm 29.89	21.23 \pm 5.64	13.01 \pm 6.29
	GraphCL	25.63 \pm 17.68	27.93 \pm 10.59	42.86 \pm 7.21	84.75 \pm 8.86	73.28 \pm 9.91	20.83 \pm 8.04	6.70 \pm 0.01
	SimGRACE	15.20 \pm 9.51	25.19 \pm 12.95	21.59 \pm 2.56	78.90 \pm 2.26	64.63 \pm 25.59	21.26 \pm 2.24	4.80 \pm 1.17
GPF	DGI	29.57 \pm 20.89	24.55 \pm 12.61	52.43 \pm 6.94	83.21 \pm 5.19	89.30 \pm 1.58	35.40 \pm 8.78	20.72 \pm 0.26
	GraphMAE	35.43 \pm 10.00	25.12 \pm 3.01	68.96 \pm 3.99	96.30 \pm 5.12	92.44 \pm 3.04	44.07 \pm 3.94	45.20 \pm 2.03
	EdgePreGPPT	15.39 \pm 18.19	18.11 \pm 2.78	58.67 \pm 3.21	98.20 \pm 1.19	89.47 \pm 1.91	30.99 \pm 1.68	71.83 \pm 9.37
	EdgePreGprompt	31.58 \pm 18.16	24.55 \pm 8.28	66.25 \pm 5.53	96.30 \pm 5.12	90.18 \pm 1.57	31.92 \pm 5.75	28.60 \pm 3.11
	GraphCL	28.60 \pm 11.19	17.69 \pm 1.35	52.47 \pm 6.73	69.15 \pm 21.44	98.42 \pm 0.36	29.13 \pm 2.63	23.90 \pm 0.12
	SimGRACE	18.94 \pm 12.60	22.45 \pm 3.45	40.35 \pm 1.71	92.29 \pm 3.36	91.73 \pm 3.84	30.28 \pm 2.64	33.77 \pm 8.48
GPF-plus	DGI	27.23 \pm 14.61	26.31 \pm 11.48	47.02 \pm 14.51	83.86 \pm 17.24	96.18 \pm 4.12	36.03 \pm 7.49	16.86 \pm 3.30
	GraphMAE	63.28 \pm 4.69	75.73 \pm 2.19	69.59 \pm 4.33	99.01 \pm 1.43	99.12 \pm 0.95	44.58 \pm 5.95	47.79 \pm 1.09
	EdgePreGPPT	22.44 \pm 23.88	13.63 \pm 3.62	66.43 \pm 3.28	98.52 \pm 2.07	96.18 \pm 4.12	37.15 \pm 8.48	66.88 \pm 6.14
	EdgePreGprompt	66.22 \pm 26.20	64.49 \pm 14.12	68.10 \pm 4.56	98.64 \pm 2.14	97.74 \pm 4.47	41.98 \pm 4.70	51.25 \pm 1.31
	GraphCL	47.71 \pm 22.44	29.16 \pm 16.66	64.53 \pm 4.15	70.98 \pm 19.27	99.12 \pm 0.95	36.99 \pm 6.59	25.74 \pm 1.70
	SimGRACE	27.99 \pm 21.51	28.37 \pm 22.54	50.25 \pm 10.04	89.57 \pm 4.22	95.83 \pm 3.85	38.23 \pm 2.34	44.70 \pm 2.69
MTG (Ours)	DGI	53.47 \pm 11.79	76.34 \pm 6.18	61.52 \pm 4.74	82.69 \pm 8.67	89.77 \pm 3.04	35.42 \pm 3.92	13.38 \pm 7.85
	GraphMAE	57.16 \pm 8.68	61.37 \pm 7.73	65.71 \pm 3.94	99.23 \pm 0.62	93.61 \pm 5.01	45.09 \pm 3.28	42.98 \pm 10.64
	EdgePreGPPT	56.96 \pm 6.84	44.49 \pm 7.80	63.34 \pm 6.29	98.48 \pm 4.70	97.17 \pm 6.08	35.36 \pm 1.85	85.94 \pm 1.93
	EdgePreGprompt	53.61 \pm 7.57	61.26 \pm 9.76	70.84 \pm 3.28	97.51 \pm 3.88	98.76 \pm 2.36	35.06 \pm 2.02	38.04 \pm 2.24
	GraphCL	71.81 \pm 3.59	66.59 \pm 8.39	58.18 \pm 3.34	72.02 \pm 6.21	94.65 \pm 4.67	33.94 \pm 3.77	50.04 \pm 7.84
	SimGRACE	48.98 \pm 6.01	68.33 \pm 5.69	52.74 \pm 1.25	87.24 \pm 5.85	94.81 \pm 5.06	32.76 \pm 0.93	38.67 \pm 3.86

Table 21: F1-score on 5-shot node classification.

Adaptation	Pre-training	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbn-arxiv
Supervised	-	51.42 \pm 8.70	34.20 \pm 6.12	67.45 \pm 2.25	34.31 \pm 4.41	35.02 \pm 8.10	16.89 \pm 1.20	14.76 \pm 1.13
Fine-tuning	DGI	47.53 \pm 9.44	28.71 \pm 2.76	59.33 \pm 10.23	34.71 \pm 5.28	38.80 \pm 7.04	16.49 \pm 1.42	4.78 \pm 2.53
	GraphMAE	55.17 \pm 5.27	29.67 \pm 6.94	69.58 \pm 4.63	34.69 \pm 5.63	34.57 \pm 9.23	16.92 \pm 1.76	12.97 \pm 0.32
	EdgePreGPPT	55.50 \pm 3.62	31.31 \pm 8.86	70.31 \pm 4.65	34.86 \pm 4.83	36.63 \pm 7.69	19.42 \pm 1.02	20.19 \pm 1.27
	EdgePredGprompt	49.18 \pm 8.50	27.04 \pm 6.83	69.46 \pm 4.79	34.90 \pm 5.77	36.38 \pm 7.04	18.28 \pm 1.91	18.51 \pm 1.18
	GraphCL	61.32 \pm 3.43	35.95 \pm 3.18	66.16 \pm 5.43	26.66 \pm 5.78	33.81 \pm 3.28	20.44 \pm 1.45	6.96 \pm 1.07
	SimGRACE	45.33 \pm 4.88	34.74 \pm 7.40	62.66 \pm 4.86	35.86 \pm 4.86	36.86 \pm 7.72	20.63 \pm 1.13	4.74 \pm 0.48
GPPTPrompt	DGI	24.79 \pm 7.28	39.86 \pm 7.94	44.67 \pm 12.25	32.76 \pm 3.66	39.86 \pm 4.07	19.28 \pm 0.85	0.39 \pm 0.27
	GraphMAE	24.55 \pm 7.97	7.49 \pm 4.08	66.55 \pm 3.62	33.86 \pm 3.88	36.66 \pm 2.42	19.92 \pm	

2484

2485

2486

Table 22: AUROC on 5-shot node classification.

Adaptation	Pre-training	Cora	Citeseer	Pubmed	Wisconsin	Texas	Actor	ogbn-arxiv
Supervised	-	88.39 \pm 2.56	78.16 \pm 2.95	84.93 \pm 2.77	65.96 \pm 5.03	66.32 \pm 8.89	51.44 \pm 0.62	78.83 \pm 1.37
Fine-tuning	DGI	84.60 \pm 5.40	74.29 \pm 3.78	81.26 \pm 3.74	67.40 \pm 4.97	66.62 \pm 8.12	51.78 \pm 0.48	62.86 \pm 4.35
	GraphMAE	90.30 \pm 1.62	77.04 \pm 3.75	86.09 \pm 2.54	65.32 \pm 5.26	63.95 \pm 9.63	51.73 \pm 0.46	75.65 \pm 0.78
	EdgePreGPPT	86.88 \pm 1.90	75.17 \pm 2.72	86.23 \pm 2.32	67.71 \pm 3.54	69.36 \pm 8.52	51.34 \pm 0.65	83.86 \pm 1.25
	EdgePredGprompt	87.41 \pm 2.15	73.79 \pm 5.07	85.60 \pm 3.26	66.04 \pm 5.12	66.70 \pm 8.92	52.40 \pm 0.91	82.34 \pm 1.45
	GraphCL	90.49 \pm 1.49	76.54 \pm 1.56	83.07 \pm 3.73	57.71 \pm 8.14	65.57 \pm 7.78	52.68 \pm 0.69	66.70 \pm 0.95
GPPTPrompt	SimGRACE	85.45 \pm 2.29	76.95 \pm 2.79	80.86 \pm 3.17	67.73 \pm 4.47	66.11 \pm 7.69	52.52 \pm 0.92	60.36 \pm 0.72
	DGI	76.38 \pm 6.02	76.59 \pm 3.18	63.76 \pm 10.00	69.27 \pm 1.49	66.52 \pm 3.33	51.27 \pm 1.04	50.09 \pm 0.25
	GraphMAE	84.77 \pm 3.18	69.69 \pm 1.62	82.56 \pm 1.84	66.53 \pm 4.44	63.43 \pm 2.99	50.92 \pm 0.44	63.55 \pm 2.93
	EdgePreGPPT	69.44 \pm 2.15	60.14 \pm 1.47	77.28 \pm 3.58	62.04 \pm 3.27	61.22 \pm 2.13	50.85 \pm 0.37	85.67 \pm 0.67
	EdgePreGprompt	69.60 \pm 0.83	62.44 \pm 2.17	81.98 \pm 4.11	63.83 \pm 2.92	65.86 \pm 2.34	50.32 \pm 0.54	71.01 \pm 5.38
Gprompt	GraphCL	82.06 \pm 2.24	61.54 \pm 2.42	76.26 \pm 1.36	55.23 \pm 2.54	62.83 \pm 4.62	50.87 \pm 0.69	58.53 \pm 1.53
	SimGRACE	70.54 \pm 2.07	64.49 \pm 1.54	60.67 \pm 1.80	66.38 \pm 0.42	62.69 \pm 1.92	51.00 \pm 0.54	51.46 \pm 0.26
	DGI	70.76 \pm 4.67	80.01 \pm 2.22	54.50 \pm 2.51	84.53 \pm 17.37	65.41 \pm 9.24	54.02 \pm 2.61	92.66 \pm 0.73
	GraphMAE	72.59 \pm 7.56	76.04 \pm 5.23	82.88 \pm 2.18	89.40 \pm 19.62	66.34 \pm 10.38	56.23 \pm 2.46	96.45 \pm 0.14
	EdgePreGPPT	85.57 \pm 0.39	68.97 \pm 4.56	76.57 \pm 1.08	89.57 \pm 19.71	66.48 \pm 10.55	58.85 \pm 2.98	98.40 \pm 0.08
All-in-one	EdgePreGprompt	88.49 \pm 0.88	84.82 \pm 2.89	83.58 \pm 1.29	89.71 \pm 19.78	66.52 \pm 10.61	52.51 \pm 2.39	97.79 \pm 0.15
	GraphCL	88.70 \pm 2.05	81.00 \pm 6.61	74.92 \pm 2.53	83.64 \pm 16.83	66.33 \pm 10.37	63.03 \pm 3.07	94.54 \pm 0.37
	SimGRACE	78.28 \pm 3.96	89.06 \pm 0.86	59.22 \pm 5.76	86.22 \pm 18.17	66.68 \pm 10.79	58.88 \pm 3.13	95.27 \pm 0.28
	DGI	42.65 \pm 0.41	57.45 \pm 7.01	57.38 \pm 8.87	85.53 \pm 2.92	68.87 \pm 6.32	51.24 \pm 2.32	54.76 \pm 0.75
	GraphMAE	80.75 \pm 0.64	57.95 \pm 1.98	81.32 \pm 2.25	83.91 \pm 5.14	72.30 \pm 3.24	53.43 \pm 0.71	53.46 \pm 2.41
GPF	EdgePreGPPT	62.42 \pm 11.37	62.25 \pm 7.23	63.45 \pm 13.43	95.30 \pm 4.46	78.68 \pm 10.06	51.90 \pm 0.91	54.22 \pm 1.57
	EdgePreGprompt	77.24 \pm 3.51	64.14 \pm 1.01	75.97 \pm 3.33	91.72 \pm 1.62	80.10 \pm 10.86	50.40 \pm 3.16	75.81 \pm 2.83
	GraphCL	65.99 \pm 10.83	65.27 \pm 11.57	69.70 \pm 4.24	88.87 \pm 4.34	76.09 \pm 6.05	54.21 \pm 2.38	55.77 \pm 4.78
	SimGRACE	59.53 \pm 3.53	64.55 \pm 7.97	47.71 \pm 3.86	86.55 \pm 2.81	83.01 \pm 10.84	52.44 \pm 1.68	53.56 \pm 7.86
	DGI	62.20 \pm 15.24	62.32 \pm 17.75	67.14 \pm 11.86	89.86 \pm 2.85	78.39 \pm 1.66	65.97 \pm 7.26	74.59 \pm 0.97
GPF-plus	GraphMAE	80.34 \pm 2.03	67.33 \pm 3.16	86.64 \pm 2.02	97.72 \pm 3.33	89.25 \pm 8.10	73.06 \pm 2.24	74.39 \pm 0.76
	EdgePreGPPT	49.95 \pm 0.10	52.76 \pm 6.92	74.91 \pm 5.59	99.98 \pm 0.03	83.65 \pm 7.64	59.31 \pm 5.01	90.96 \pm 1.32
	EdgePreGprompt	73.56 \pm 4.58	76.82 \pm 4.28	85.50 \pm 1.95	97.15 \pm 4.98	86.81 \pm 8.42	60.43 \pm 6.30	75.36 \pm 2.61
	GraphCL	79.04 \pm 4.41	64.25 \pm 7.12	70.90 \pm 6.31	73.84 \pm 18.96	83.62 \pm 4.75	57.39 \pm 3.99	75.19 \pm 0.54
	SimGRACE	60.98 \pm 9.22	64.93 \pm 3.80	58.21 \pm 3.99	90.38 \pm 1.52	90.43 \pm 8.89	61.68 \pm 2.02	60.89 \pm 3.56
MTG (Ours)	DGI	60.30 \pm 14.39	54.40 \pm 11.09	73.47 \pm 9.02	95.86 \pm 3.95	89.08 \pm 8.43	68.06 \pm 2.70	67.37 \pm 3.03
	GraphMAE	89.99 \pm 1.39	92.09 \pm 1.11	85.69 \pm 3.12	99.93 \pm 0.14	87.29 \pm 7.92	73.10 \pm 2.68	81.99 \pm 0.56
	EdgePreGPPT	65.26 \pm 14.38	55.10 \pm 2.95	82.94 \pm 2.55	99.96 \pm 0.05	86.89 \pm 8.72	70.17 \pm 4.50	93.73 \pm 1.05
	EdgePreGprompt	91.09 \pm 1.03	82.22 \pm 12.12	83.84 \pm 3.91	99.96 \pm 0.05	83.88 \pm 7.87	72.25 \pm 1.48	81.54 \pm 1.05
	GraphCL	84.11 \pm 7.92	61.55 \pm 15.26	81.38 \pm 3.75	91.95 \pm 6.63	86.24 \pm 7.72	69.74 \pm 1.87	77.42 \pm 2.14
	SimGRACE	66.55 \pm 14.49	63.11 \pm 14.51	65.07 \pm 10.97	88.17 \pm 7.54	89.58 \pm 9.03	68.81 \pm 1.60	69.60 \pm 2.37

2512

Table 23: Accuracy (%) on 1-shot graph classification.

Adaptation	Pre-training	IMDB-B	COLLAB	PROTEINS	MUTAG	ENZYMES	COX2	BZR	D&D
Supervised	-	57.30 \pm 0.98	47.23 \pm 0.61	56.36 \pm 7.97	65.20 \pm 6.70	20.58 \pm 2.00	27.08 \pm 11.94	25.80 \pm 6.53	55.33 \pm 6.22
Fine-tuning	DGI	57.32 \pm 0.90	42.22 \pm 0.73	60.00 \pm 4.48	64.13 \pm 7.90	17.83 \pm 1.88	29.44 \pm 6.68	26.48 \pm 7.61	57.15 \pm 3.32
	GraphMAE	57.70 \pm 1.13	48.10 \pm 0.23	62.40 \pm 1.03	65.20 \pm 5.00	22.21 \pm 2.79	28.47 \pm 14.72	25.80 \pm 6.53	53.59 \pm 0.93
	EdgePreGPPT	57.20 \pm 0.85	47.14 \pm 0.56	58.27 \pm 10.66	64.27 \pm 4.73	19.79 \pm 2.17	27.85 \pm 13.44	34.69 \pm 8.50	52.82 \pm 0.38
	EdgePreGprompt	57.35 \pm 0.99	47.20 \pm 0.54	61.84 \pm 2.59	62.67 \pm 2.67	19.75 \pm 2.33	27.13 \pm 12.05	29.44 \pm 11.20	56.16 \pm 0.10
	GraphCL	57.75 \pm 1.02	39.62 \pm 0.65	63.44 \pm 3.64	65.07 \pm 8.38	21.21 \pm 0.87	53.14 \pm 21.32	29.07 \pm 7.00	55.50 \pm 0.83
GPPTPrompt	SimGRACE	57.33 \pm 0.96	46.89 \pm 0.42	60.07 \pm 3.21	65.47 \pm 5.49	19.71 \pm 1.76	76.19 \pm 5.41	28.46 \pm 6.49	53.23 \pm 0.71
	DGI	49.07 \pm 10.36	39.34 \pm 9.11	60.81 \pm 1.55	51.33 \pm 15.87	20.29 \pm 1.40	78.23 \pm 1.38	44.07 \pm 22.42	53.65 \pm 10.00
	GraphMAE	50.15 \pm 0.75	29.46 \pm 13.65	60.72 \pm 1.70	44.80 \pm 15.52	20.37 \pm 1.96	68.63 \pm 20.51	55.99 \pm 19.28	57.69 \pm 0.89
	EdgePreGPPT	49.38 \pm 10.29	36.47 \pm 7.88	60.92 \pm 2.47	42.80 \pm 12.98	20.87 \pm 2.42	73.99 \pm 19.79	49.81 \pm 20.17	53.69 \pm 0.88
	EdgePreGprompt	50.15 \pm 0.75	40.22 \pm 9.56	57.03 \pm 4.55	37.87 \pm 10.43	20.88 \pm 2.42	72.28 \pm 13.22	50.06 \pm 18.97	55.33 \pm 0.51
Gprompt	GraphCL	45.70 \pm 8.20	47.18 \pm 5.93	59.24 \pm 1.01	60.40 \pm 14.43	21.29 \pm 3.79	68.36 \pm 21.05	59.32 \pm 11.22	56.26 \pm 0.20
	SimGRACE	46.03 \pm 10.29	41.11 \pm 8.47	55.42 \pm 8.81	52.67 \pm 17.12	20.83 \pm 3.47	62.31 \pm 19.42	59.20 \pm 15.06	55.88 \pm 7.81
	DGI	50.47 \pm 10.10	47.29 \pm 7.78	56.61 \pm 7.93	63.33 \pm 14.36	20.50 \pm 1.79	45.52 \pm 16.98	55.43 \pm 13.69	56.18 \pm 0.13
	GraphMAE	54.75 \pm 12.43	36.39 \pm 12.56	57.66 \pm 12.56	68.80 \pm 4.76	19.54 \pm 1.99	43.91 \pm 6.64	47.16 \pm 7.72	55.22 \pm 4.40
	EdgePreGPPT	51.18 \pm 11.11	46.70 \pm 5.74	59.17 \pm 11.26	52.13 \pm 5.80	19.71 \pm 4.46	50.08 \pm 8.00	45.06 \pm 15.93	51.04 \pm 4.82
All-in-one	EdgePreGprompt	51.57 \pm 11.87	40.53 \pm 12.02	55.55 \pm 8.17	73.60 \pm 4.76	19.67 \pm 3.08	54.64 \pm 9.94	51.36 \pm 15.55	57.20 \pm 5.54
	GraphCL	50.50 \pm 10.42	45.54 \pm 9.05	55.51 \pm 10.73	60.00 \pm 13.79	19.83 \pm 2.19	44.40 \pm 5.74	46.42 \pm 20.67	52.65 \pm 0.17
	SimGRACE	50.40 \pm 10.54	48.25 \pm 13.64	57.53 \pm 11.05	64.67 \pm 7.92	22.29 \pm 2.50	47.02 \pm 5.59	52.90 \pm 11.76	57.81 \pm 6.68
	DGI	60.07 \pm 4.81	39.56 \pm 5.00	62.58 \pm 7.07	73.87 \pm 6.13	23.96 \pm 1.45	50.72 \pm 9.93	64.38 \pm 32	55.97 \pm 0.52
	GraphMAE	52.62 \pm 0.94	40.82 \pm 14.63	66.49 \pm 6.26	69.67 \pm 9.13	23.21 \pm 1.72	56.68 \pm 7.38	58.64 \pm 19.59	58.77 \pm 1.05
GPF	EdgePreGPPT	59.12 \pm 0.77	42.74 \pm 4.65	65.71 $\pm</math$					

2538
2539

Table 24: F1-score on 1-shot graph classification.

Adaptation	Pre-training	IMDB-B	COLLAB	PROTEINS	MUTAG	ENZYMES	COX2	BZR	D&D
Supervised	-	54.62 \pm 1.12	41.10 \pm 0.39	46.69 \pm 10.82	63.47 \pm 6.36	15.25 \pm 3.96	22.78 \pm 10.69	23.71 \pm 8.23	44.74 \pm 4.23
Fine-tuning	DGI	54.60 \pm 1.00	38.53 \pm 0.34	54.82 \pm 3.34	61.97 \pm 7.76	10.76 \pm 4.28	27.09 \pm 11.48	24.34 \pm 9.21	46.15 \pm 5.41
	GraphMAE	55.20 \pm 1.24	41.71 \pm 0.17	52.05 \pm 7.26	63.41 \pm 4.44	19.17 \pm 3.42	23.63 \pm 12.40	23.71 \pm 8.23	46.25 \pm 7.84
	EdgePreGPPT	54.39 \pm 0.95	41.10 \pm 0.37	55.82 \pm 10.61	60.94 \pm 3.46	12.89 \pm 3.54	23.08 \pm 11.30	33.12 \pm 7.45	36.31 \pm 5.78
	EdgePreGprompt	54.62 \pm 1.07	41.14 \pm 0.41	59.73 \pm 1.34	59.05 \pm 1.33	13.72 \pm 4.13	22.91 \pm 10.95	27.09 \pm 12.51	45.49 \pm 4.58
	GraphCL	55.24 \pm 1.07	36.27 \pm 0.63	56.25 \pm 7.55	63.37 \pm 8.64	16.78 \pm 1.91	39.11 \pm 4.29	27.67 \pm 8.70	48.68 \pm 6.42
GPPTPrompt	SimGRACE	54.69 \pm 1.09	40.92 \pm 0.37	52.67 \pm 7.14	63.70 \pm 5.32	14.15 \pm 2.49	45.06 \pm 1.93	27.05 \pm 8.20	37.84 \pm 7.14
	DGI	41.17 \pm 12.71	27.05 \pm 13.23	46.05 \pm 10.61	41.76 \pm 15.84	17.26 \pm 2.39	44.68 \pm 1.17	33.93 \pm 14.06	43.61 \pm 5.55
	GraphMAE	33.40 \pm 0.33	44.61 \pm 5.30	46.64 \pm 11.32	39.44 \pm 18.49	17.61 \pm 2.22	40.48 \pm 7.24	44.38 \pm 9.91	50.34 \pm 5.80
	EdgePreGPPT	44.16 \pm 6.70	21.35 \pm 9.96	47.07 \pm 11.95	38.03 \pm 16.75	17.02 \pm 2.90	43.67 \pm 0.88	40.73 \pm 6.69	51.50 \pm 6.54
	EdgePreGprompt	33.40 \pm 0.33	18.92 \pm 3.19	43.34 \pm 8.00	31.42 \pm 13.60	19.87 \pm 2.99	43.73 \pm 0.75	41.78 \pm 10.08	45.12 \pm 7.86
Gprompt	GraphCL	39.08 \pm 10.25	42.87 \pm 7.70	41.15 \pm 7.80	53.15 \pm 16.82	19.62 \pm 3.92	40.11 \pm 7.97	45.58 \pm 3.38	50.02 \pm 8.57
	SimGRACE	43.18 \pm 8.95	33.88 \pm 13.05	40.87 \pm 7.11	46.54 \pm 18.13	18.87 \pm 3.37	41.86 \pm 9.35	49.40 \pm 8.41	46.82 \pm 6.89
	DGI	48.68 \pm 9.78	42.80 \pm 9.19	55.95 \pm 7.78	61.15 \pm 13.98	18.68 \pm 2.94	38.30 \pm 12.89	44.61 \pm 5.71	49.81 \pm 1.61
	GraphMAE	52.10 \pm 13.61	17.64 \pm 2.56	55.24 \pm 12.01	64.58 \pm 3.26	18.36 \pm 2.20	42.68 \pm 5.98	43.38 \pm 3.73	50.47 \pm 3.41
	EdgePreGPPT	49.35 \pm 10.58	43.20 \pm 8.14	58.30 \pm 10.88	50.70 \pm 6.00	18.20 \pm 5.07	44.54 \pm 3.28	39.06 \pm 9.23	50.78 \pm 5.00
All-in-one	EdgePreGprompt	50.43 \pm 11.93	36.62 \pm 12.55	54.29 \pm 7.32	71.38 \pm 3.64	17.17 \pm 4.25	46.26 \pm 5.14	43.73 \pm 9.27	48.18 \pm 4.55
	GraphCL	48.91 \pm 10.12	47.78 \pm 10.09	53.99 \pm 9.93	53.39 \pm 13.46	18.26 \pm 2.77	42.26 \pm 4.15	38.58 \pm 11.82	50.82 \pm 8.14
	SimGRACE	48.78 \pm 10.20	43.35 \pm 10.75	55.51 \pm 10.10	60.58 \pm 6.08	19.52 \pm 3.36	44.68 \pm 4.01	44.81 \pm 6.73	52.80 \pm 3.60
	DGI	56.82 \pm 6.07	35.40 \pm 5.66	66.44 \pm 6.94	67.26 \pm 7.79	14.48 \pm 3.58	44.46 \pm 4.45	45.86 \pm 6.67	48.28 \pm 7.29
	GraphMAE	45.83 \pm 5.38	18.76 \pm 4.47	64.27 \pm 4.78	69.07 \pm 9.55	19.66 \pm 3.11	49.40 \pm 3.96	40.11 \pm 6.22	56.70 \pm 1.89
GPF	EdgePreGPPT	57.29 \pm 0.74	37.07 \pm 5.56	64.68 \pm 5.35	70.35 \pm 6.20	12.95 \pm 3.18	49.62 \pm 10.42	49.67 \pm 6.66	55.10 \pm 1.49
	EdgePreGprompt	48.44 \pm 4.51	34.64 \pm 5.55	60.04 \pm 8.57	63.74 \pm 6.21	12.50 \pm 3.12	45.57 \pm 5.70	30.69 \pm 11.20	48.13 \pm 4.31
	GraphCL	56.83 \pm 0.76	47.78 \pm 10.10	62.99 \pm 7.19	60.07 \pm 12.25	12.01 \pm 5.16	46.65 \pm 6.50	39.12 \pm 10.09	43.55 \pm 8.21
	SimGRACE	56.88 \pm 0.80	41.64 \pm 3.13	53.18 \pm 7.57	59.95 \pm 11.21	12.23 \pm 2.42	45.03 \pm 1.86	46.98 \pm 5.91	39.55 \pm 5.05
	DGI	50.50 \pm 7.88	34.56 \pm 6.02	49.27 \pm 10.07	62.02 \pm 6.87	15.08 \pm 1.44	23.42 \pm 11.99	44.77 \pm 3.37	39.53 \pm 5.01
GPF-plus	GraphMAE	42.98 \pm 8.29	17.19 \pm 8.44	52.62 \pm 9.40	59.14 \pm 10.41	13.10 \pm 3.28	37.75 \pm 10.47	41.84 \pm 7.65	48.52 \pm 7.11
	EdgePreGPPT	55.67 \pm 0.84	34.09 \pm 5.32	57.01 \pm 5.79	58.18 \pm 3.05	16.57 \pm 1.61	22.68 \pm 10.50	21.77 \pm 9.16	34.22 \pm 10.09
	EdgePreGprompt	56.22 \pm 6.17	38.14 \pm 4.44	56.91 \pm 6.21	63.90 \pm 4.05	17.34 \pm 2.45	43.08 \pm 4.88	39.86 \pm 11.54	47.44 \pm 4.83
	GraphCL	55.23 \pm 0.77	38.04 \pm 4.46	56.08 \pm 7.40	57.99 \pm 6.96	15.97 \pm 3.75	35.89 \pm 9.97	48.83 \pm 5.30	40.86 \pm 4.89
	SimGRACE	56.19 \pm 0.68	37.69 \pm 2.41	55.50 \pm 9.14	58.38 \pm 2.44	14.39 \pm 3.45	31.82 \pm 12.08	26.02 \pm 7.56	39.13 \pm 4.20
MTG (Ours)	DGI	53.13 \pm 10.49	37.59 \pm 1.42	54.74 \pm 7.01	61.19 \pm 6.31	13.03 \pm 1.21	22.69 \pm 10.52	46.57 \pm 4.62	33.21 \pm 4.87
	GraphMAE	48.23 \pm 10.59	18.94 \pm 3.14	52.85 \pm 6.59	61.01 \pm 8.89	18.39 \pm 2.76	30.90 \pm 11.56	44.87 \pm 9.19	46.24 \pm 4.86
	EdgePreGPPT	50.88 \pm 7.65	37.29 \pm 2.27	57.58 \pm 7.28	62.03 \pm 9.92	17.40 \pm 2.32	24.17 \pm 10.38	28.06 \pm 9.23	40.06 \pm 6.06
	EdgePreGprompt	50.07 \pm 6.94	37.43 \pm 1.84	54.79 \pm 2.74	63.20 \pm 5.31	14.44 \pm 1.44	24.60 \pm 14.35	42.77 \pm 1.25	45.59 \pm 4.64
	GraphCL	54.24 \pm 1.69	38.53 \pm 0.20	57.54 \pm 6.94	62.31 \pm 7.93	13.66 \pm 2.70	22.64 \pm 10.42	48.71 \pm 5.51	39.37 \pm 4.68
	SimGRACE	55.55 \pm 2.03	41.24 \pm 3.01	54.80 \pm 6.88	59.38 \pm 6.64	14.74 \pm 2.94	24.79 \pm 9.43	27.05 \pm 8.20	39.51 \pm 4.96

Table 25: AUROC on 1-shot graph classification.

Adaptation	Pre-training	IMDB-B	COLLAB	PROTEINS	MUTAG	ENZYMES	COX2	BZR	D&D
Supervised	-	67.05 \pm 1.01	54.23 \pm 0.34	57.88 \pm 1.72	71.68 \pm 1.25	53.49 \pm 1.11	48.39 \pm 1.89	51.13 \pm 1.38	49.60 \pm 2.94
Fine-tuning	DGI	67.06 \pm 1.00	74.13 \pm 1.27	56.87 \pm 2.74	71.45 \pm 1.55	51.76 \pm 2.18	52.35 \pm 7.49	53.79 \pm 1.12	49.32 \pm 3.05
	GraphMAE	66.91 \pm 1.18	55.16 \pm 0.20	59.87 \pm 0.78	69.81 \pm 1.39	53.43 \pm 0.98	49.46 \pm 1.08	51.01 \pm 0.87	50.60 \pm 4.90
	EdgePreGPPT	67.50 \pm 1.06	54.41 \pm 0.31	58.29 \pm 3.43	72.42 \pm 1.64	53.62 \pm 1.61	46.88 \pm 1.16	48.35 \pm 3.28	52.27 \pm 1.89
	EdgePreGprompt	66.92 \pm 0.96	54.36 \pm 0.30	58.24 \pm 1.27	71.58 \pm 1.75	53.30 \pm 1.75	49.62 \pm 0.75	55.48 \pm 2.09	49.97 \pm 3.16
	GraphCL	67.11 \pm 1.09	68.95 \pm 1.48	59.65 \pm 1.80	71.07 \pm 1.87	54.35 \pm 0.92	51.84 \pm 2.24	53.34 \pm 2.75	53.14 \pm 5.70
GPPTPrompt	SimGRACE	66.95 \pm 0.99	53.79 \pm 0.47	59.80 \pm 1.06	71.49 \pm 1.82	54.20 \pm 1.36	49.38 \pm 1.24	54.01 \pm 0.84	49.20 \pm 0.84
	DGI	48.58 \pm 10.92	58.79 \pm 4.61	71.14 \pm 3.00	51.11 \pm 31.50	53.09 \pm 1.46	53.40 \pm 0.84	48.98 \pm 7.81	53.82 \pm 11.83
	GraphMAE	50.27 \pm 0.74	51.39 \pm 4.26	70.25 \pm 3.45	36.15 \pm 27.67	52.89 \pm 1.24	53.91 \pm 1.86	54.53 \pm 11.66	58.36 \pm 8.51
	EdgePreGPPT	48.81 \pm 11.41	56.39 \pm 0.58	70.36 \pm 3.79	33.54 \pm 24.51	52.98 \pm 1.23	50.31 \pm 5.34	51.48 \pm 6.83	54.80 \pm 8.30
	EdgePreGprompt	50.27 \pm 0.74	54.48 \pm 1.95	65.03 \pm 0.25	24.49 \pm 23.32	53.83 \pm 2.13	51.51 \pm 2.95	53.38 \pm 0.22	56.26 \pm 10.88
Gprompt	GraphCL	53.58 \pm 19.20	73.09 \pm 0.29	57.72 \pm 7.86	79.17 \pm 2.18	55.53 \pm 3.27	48.74 \pm 2.54	50.81 \pm 7.50	54.96 \pm 5.21
	SimGRACE	53.54 \pm 18.02	66.59 \pm 11.21	57.80 \pm 12.67	71.02 \pm 3.35	53.06 \pm 3.09	54.08 \pm 4.37	47.73 \pm 6.12	52.92 \pm 6.67
	DGI	53.74 \pm 19.12	73.04 \pm 8.22	60.36 \pm 9.11	69.64 \pm 13.88	55.68 \pm 2.50	49.63 \pm 0.56	49.08 \pm 3.10	52.16 \pm 4.08
	GraphMAE	51.48 \pm 9.49	44.86 \pm 14	55.63 \pm 7.44	70.27 \pm 1.19	55.28 \pm 3.35	56.97 \pm 3.76	51.24 \pm 5.39	52.47 \pm 6.09
	EdgePreGPPT	55.21 \pm 1.22	60.31 \pm 0.20	73.73 \pm 0.30	77.05 \pm 0.84	55.13 \pm 0.59	57.02 \pm 10.92	51.33 \pm 1.13	56.93 \pm 4.42
All-in-one	EdgePreGprompt	68.48 \pm 1.11	51.35 \pm 0.20	73.73 \pm 0.30	77.05 \pm 0.84	55.13 \pm 0.59	57.02 \pm 10.92	51.33 \pm 1.13	56.93 \pm 4.42
	GraphCL	65.20 \pm 1.06	63.82 \pm 0.26	77.70 \pm 0.74	76.57 \pm 1.58	53.58 \pm 1.38			

2592
2593

Table 26: Accuracy (%) on 3-shot graph classification.

Adaptation	Pre-training	IMDB-B	COLLAB	PROTEINS	MUTAG	ENZYMEs	COX2	BZR	D&D
Supervised	-	53.33 \pm 6.61	50.77 \pm 2.44	61.33 \pm 2.89	59.47 \pm 8.34	15.96 \pm 1.64	65.15 \pm 18.61	52.35 \pm 8.12	59.77 \pm 1.10
Fine-tuning	DGI	53.33 \pm 6.61	56.10 \pm 3.46	61.33 \pm 2.75	59.87 \pm 8.78	21.71 \pm 0.81	51.96 \pm 13.00	52.22 \pm 10.64	59.70 \pm 0.98
	GraphMAE	53.33 \pm 6.61	49.11 \pm 16.81	61.19 \pm 1.57	44.00 \pm 13.56	15.04 \pm 1.86	60.11 \pm 18.73	38.52 \pm 17.15	57.90 \pm 2.69
	EdgePreGPPT	63.43 \pm 2.65	47.40 \pm 15.87	62.72 \pm 2.39	43.47 \pm 13.44	21.96 \pm 2.45	49.81 \pm 9.44	43.70 \pm 17.89	58.94 \pm 0.66
	EdgePreGprompt	53.33 \pm 6.61	54.67 \pm 1.34	60.67 \pm 2.32	59.20 \pm 7.05	17.58 \pm 1.45	35.82 \pm 14.38	29.07 \pm 9.83	59.45 \pm 9.10
	GraphCL	62.22 \pm 1.38	52.27 \pm 2.61	62.07 \pm 2.39	54.80 \pm 5.97	22.00 \pm 1.71	31.90 \pm 8.27	51.23 \pm 11.67	55.54 \pm 6.26
GPPTPrompt	SimGRACE	66.10 \pm 0.70	55.38 \pm 3.58	60.09 \pm 0.63	54.00 \pm 7.03	22.71 \pm 0.86	69.97 \pm 13.89	36.67 \pm 1.80	58.17 \pm 2.79
	DGI	50.33 \pm 0.92	38.40 \pm 8.13	60.36 \pm 8.99	64.13 \pm 18.31	17.67 \pm 2.05	56.84 \pm 28.02	69.57 \pm 19.07	56.11 \pm 7.51
	GraphMAE	50.23 \pm 0.95	36.37 \pm 7.89	56.94 \pm 6.67	47.87 \pm 17.55	17.63 \pm 1.97	69.38 \pm 19.31	65.19 \pm 17.99	56.50 \pm 8.48
	EdgePreGPPT	59.48 \pm 5.42	38.45 \pm 9.13	64.74 \pm 1.99	52.00 \pm 16.93	19.12 \pm 2.43	69.87 \pm 18.34	70.93 \pm 16.35	52.14 \pm 6.23
	EdgePreGprompt	51.85 \pm 2.10	36.11 \pm 7.73	60.76 \pm 1.52	62.00 \pm 18.69	18.71 \pm 5.10	52.17 \pm 15.58	67.47 \pm 10.95	57.94 \pm 7.47
Gprompt	GraphCL	50.43 \pm 11.80	50.88 \pm 0.31	60.31 \pm 0.57	48.93 \pm 18.86	17.25 \pm 1.19	71.90 \pm 14.28	53.33 \pm 16.88	56.28 \pm 7.21
	SimGRACE	50.12 \pm 12.86	41.87 \pm 8.73	55.93 \pm 6.16	57.87 \pm 20.52	15.62 \pm 2.32	58.28 \pm 20.18	48.64 \pm 11.03	59.00 \pm 6.34
	DGI	58.95 \pm 9.88	55.27 \pm 8.66	62.43 \pm 4.09	54.93 \pm 17.15	20.50 \pm 2.36	50.29 \pm 7.71	49.69 \pm 6.79	53.84 \pm 5.72
	GraphMAE	59.17 \pm 10.00	36.11 \pm 8.61	61.98 \pm 4.45	64.40 \pm 16.46	21.42 \pm 2.71	44.83 \pm 9.16	48.15 \pm 8.09	52.89 \pm 5.27
	EdgePreGPPT	64.35 \pm 1.21	53.20 \pm 7.90	64.94 \pm 2.92	53.60 \pm 14.41	18.50 \pm 3.69	45.47 \pm 7.03	54.63 \pm 2.95	53.61 \pm 2.31
All-in-one	EdgePreGprompt	59.30 \pm 10.17	54.95 \pm 9.47	62.02 \pm 3.15	66.53 \pm 14.84	21.42 \pm 3.01	50.56 \pm 9.27	49.88 \pm 12.32	52.55 \pm 6.16
	GraphCL	59.85 \pm 5.50	52.52 \pm 7.91	58.49 \pm 9.20	52.40 \pm 20.58	21.42 \pm 0.77	48.15 \pm 9.42	54.26 \pm 9.10	55.61 \pm 3.21
	SimGRACE	60.00 \pm 9.95	53.45 \pm 7.18	60.27 \pm 4.44	56.40 \pm 13.37	22.08 \pm 3.57	51.53 \pm 13.08	43.21 \pm 8.84	55.99 \pm 7.53
	DGI	64.28 \pm 0.75	52.63 \pm 14.14	68.94 \pm 6.02	75.73 \pm 6.03	22.87 \pm 0.93	52.17 \pm 12.81	59.81 \pm 15.62	54.95 \pm 6.52
	GraphMAE	63.88 \pm 7.32	50.09 \pm 0.33	65.69 \pm 3.31	72.00 \pm 0.11	21.04 \pm 2.51	53.83 \pm 7.02	61.98 \pm 11.32	56.56 \pm 4.54
GPF	EdgePreGPPT	63.80 \pm 1.07	55.73 \pm 3.59	65.62 \pm 7.36	80.00 \pm 0.67	22.17 \pm 2.17	50.19 \pm 10.89	54.20 \pm 13.30	52.19 \pm 6.17
	EdgePreGprompt	63.90 \pm 1.57	51.69 \pm 8.39	63.10 \pm 2.47	76.40 \pm 1.96	23.25 \pm 1.11	60.21 \pm 8.86	54.44 \pm 17.27	58.96 \pm 5.93
	GraphCL	65.67 \pm 5.58	57.12 \pm 1.99	65.57 \pm 2.24	59.20 \pm 12.95	23.96 \pm 0.62	52.17 \pm 14.65	58.64 \pm 4.86	52.65 \pm 5.87
	SimGRACE	64.20 \pm 1.29	55.48 \pm 3.48	62.36 \pm 1.86	55.20 \pm 11.93	22.58 \pm 1.18	66.06 \pm 18.23	61.30 \pm 16.21	53.23 \pm 6.95
	DGI	63.53 \pm 2.47	49.84 \pm 7.48	61.39 \pm 2.63	48.67 \pm 15.53	16.63 \pm 3.49	65.31 \pm 19.45	61.79 \pm 21.19	59.07 \pm 0.65
GPF-plus	GraphMAE	62.80 \pm 2.90	37.01 \pm 13.81	62.72 \pm 3.07	55.87 \pm 12.48	18.29 \pm 2.39	53.51 \pm 13.09	51.91 \pm 8.73	57.15 \pm 5.68
	EdgePreGPPT	65.25 \pm 2.65	51.91 \pm 8.13	63.35 \pm 2.45	74.27 \pm 1.55	19.92 \pm 2.19	44.50 \pm 4.46	54.63 \pm 10.59	51.59 \pm 5.62
	EdgePreGprompt	64.05 \pm 1.03	50.37 \pm 7.25	62.49 \pm 2.18	55.60 \pm 13.42	23.08 \pm 3.11	61.72 \pm 11.67	74.38 \pm 11.62	56.37 \pm 6.77
	GraphCL	63.25 \pm 2.36	53.87 \pm 3.44	62.90 \pm 2.52	54.00 \pm 12.02	22.38 \pm 1.93	49.33 \pm 11.40	50.19 \pm 4.33	52.34 \pm 6.89
	SimGRACE	65.97 \pm 0.69	53.45 \pm 7.18	62.36 \pm 1.86	50.13 \pm 13.88	23.87 \pm 1.45	62.31 \pm 8.87	25.62 \pm 8.25	57.54 \pm 4.65
MTG (Ours)	DGI	62.45 \pm 2.52	52.14 \pm 7.67	62.16 \pm 2.14	75.20 \pm 3.64	21.92 \pm 0.74	65.25 \pm 18.07	60.86 \pm 16.47	59.43 \pm 0.52
	GraphMAE	62.80 \pm 2.90	37.01 \pm 13.81	62.72 \pm 3.07	55.87 \pm 12.48	18.29 \pm 2.39	53.51 \pm 13.09	51.91 \pm 8.73	57.15 \pm 5.68
	EdgePreGPPT	65.25 \pm 2.65	51.91 \pm 8.13	63.35 \pm 2.45	74.27 \pm 1.55	19.92 \pm 2.19	44.50 \pm 4.46	54.63 \pm 10.59	51.59 \pm 5.62
	EdgePreGprompt	64.05 \pm 1.03	50.37 \pm 7.25	62.49 \pm 2.18	55.60 \pm 13.42	23.08 \pm 3.11	61.72 \pm 11.67	74.38 \pm 11.62	56.37 \pm 6.77
	GraphCL	63.25 \pm 2.36	53.87 \pm 3.44	62.90 \pm 2.52	54.00 \pm 12.02	22.38 \pm 1.93	49.33 \pm 11.40	50.19 \pm 4.33	52.34 \pm 6.89
	SimGRACE	65.97 \pm 0.69	53.45 \pm 7.18	62.36 \pm 1.86	50.13 \pm 13.88	23.87 \pm 1.45	62.31 \pm 8.87	25.62 \pm 8.25	57.54 \pm 4.65
Gprompt	DGI	63.70 \pm 2.84	52.81 \pm 7.35	62.81 \pm 1.99	71.87 \pm 7.79	28.67 \pm 1.72	46.68 \pm 19.61	74.65 \pm 12.14	55.17 \pm 6.35
	GraphMAE	63.98 \pm 2.71	45.42 \pm 7.11	65.37 \pm 2.03	64.27 \pm 8.79	24.92 \pm 1.55	51.10 \pm 16.87	55.12 \pm 15.59	58.09 \pm 1.73
	EdgePreGPPT	64.38 \pm 2.88	48.77 \pm 7.89	61.08 \pm 2.49	72.93 \pm 1.24	29.71 \pm 2.06	48.36 \pm 6.65	62.47 \pm 14.52	57.50 \pm 4.93
	EdgePreGprompt	64.00 \pm 3.54	50.77 \pm 0.91	60.38 \pm 2.47	50.27 \pm 8.35	12.99 \pm 2.98	24.46 \pm 2.27	52.87 \pm 12.00	50.06 \pm 16.36
	GraphCL	63.25 \pm 2.63	56.50 \pm 3.71	59.62 \pm 1.94	49.72 \pm 20.30	19.00 \pm 2.42	51.58 \pm 11.78	71.67 \pm 14.87	53.99 \pm 6.38
	SimGRACE	65.97 \pm 2.52	52.72 \pm 6.39	60.07 \pm 0.97	50.67 \pm 17.37	22.17 \pm 2.30	63.86 \pm 10.00	25.62 \pm 8.25	59.51 \pm 0.62
GPF	DGI	63.70 \pm 2.84	52.81 \pm 7.35	62.81 \pm 1.99	71.87 \pm 7.79	28.67 \pm 1.72	46.68 \pm 19.61	74.65 \pm 12.14	55.17 \pm 6.35
	GraphMAE	63.98 \pm 2.71	45.42 \pm 7.11	65.37 \pm 2.03	64.27 \pm 8.79	24.92 \pm 1.55	51.10 \pm 16.87	55.12 \pm 15.59	58.09 \pm 1.73
	EdgePreGPPT	64.38 \pm 2.88	48.77 \pm 7.89	61.08 \pm 2.49	72.93 \pm 1.24	29.71 \pm 2.06	48.36 \pm 6.65	62.47 \pm 14.52	57.50 \pm 4.93
	EdgePreGprompt	64.00 \pm 3.54	50.77 \pm 0.91	60.38 \pm 2.47	50.27 \pm 8.35	12.99 \pm 2.98	24.46 \pm 2.27	52.87 \pm 12.00	50.06 \pm 16.36
	GraphCL	63.25 \pm 2.63	56.50 \pm 3.71	59.62 \pm 1.94	49.72 \pm 20.30	19.00 \pm 2.42	51.58 \pm 11.78	71.67 \pm 14.87	53.99 \pm 6.38
	SimGRACE	65.97 \pm 2.52	52.72 \pm 6.39	60.07 \pm 0.97	50.67 \pm 17.37	22.17 \pm 2.30	63.86 \pm 10.00	25.62 \pm 8.25	59.51 \pm 0.62
GPF-plus	DGI	58.08 \pm 10.23	55.32 \pm 8.74	58.05 \pm 3.97	52.54 \pm 17.09	18.81 \pm 1.44	44.13 \pm 4.49	45.80 \pm 7.78	50.97 \pm 5.00
	GraphMAE	58.01 \pm 10.19	17.54 \pm 2.57	56.27 \pm 5.10	60.26 \pm 15.66	19.39 \pm 1.66	42.42 \pm 7.00	43.14 \pm 4.47	49.67 \pm 2.97
	EdgePreGPPT	58.89 \pm 11.11	53.51 \pm 7.87	61.58 \pm 3.03	49.72 \pm 12.38	16.84 \pm 3.73	42.05 \pm 5.59	47.32 \pm 2.37	52.83 \pm 1.88
	EdgePreGprompt	58.51 \pm 10.62	55.39 \pm 8.86	56.27 \pm 2.08	64.64 \pm 13.86	18.56 \pm 3.11	43.87 \pm 4.26	44.57 \pm 0.37	49.71 \pm 7.25
	GraphCL	58.83 \pm 10.22	52.04 \pm 10.22	57.08 \pm 8.81	51.26 \pm 19.96	19.60 \pm 1.34	44.29 \pm 5.52	47.69 \pm 4.92	54.82 \pm 2.66
	SimGRACE	59.21 \pm 10.45	52.82 \pm 8.34	55.53 \pm 7.37	52.05 \pm 11.07	21.63 \pm 3.19	43.90 \pm 7.83	40.90 \pm 0.25	53.39 \pm 6.72
All-in-one	DGI	63.99 \pm 0.86	50.43 \pm 0.08	68.82 \pm 5.72	73.80 \pm 4.55	14.63 \pm 1.31	43.21 \pm 1.33	53.56 \pm 10.74	43.35 \pm 5.95
	GraphMAE	62.94 \pm 1.54	22.83 \pm 1.04	62.48 \pm 1.62	69.80 \pm 7.77	15.61 \pm 1.28	46.34 \pm 2.82</		

Table 28: AUROC on 3-shot graph classification.

2646	Adaptation	Pre-training	IMDB-B	COLLAB	PROTEINS	MUTAG	ENZYMES	COX2	BZR	D&D
2647	Supervised	-	53.85 \pm 7.70	54.29 \pm 0.68	58.83 \pm 2.09	73.36 \pm 0.52	51.34 \pm 1.42	53.03 \pm 0.66	55.36 \pm 2.82	50.97 \pm 1.94
2648	Fine-tuning	DGI	53.85 \pm 7.71	79.16 \pm 1.29	59.21 \pm 1.87	72.49 \pm 0.69	55.06 \pm 0.72	59.34 \pm 3.68	55.52 \pm 3.89	50.91 \pm 1.85
2649		GraphMAE	53.86 \pm 7.71	72.58 \pm 11.44	59.12 \pm 1.77	73.70 \pm 2.39	51.64 \pm 1.15	56.52 \pm 2.87	57.30 \pm 2.71	50.87 \pm 1.75
2650		EdgePreGPPT	68.90 \pm 1.00	53.70 \pm 2.76	59.61 \pm 1.05	63.78 \pm 11.40	56.63 \pm 1.88	58.62 \pm 4.98	53.24 \pm 1.00	50.87 \pm 1.74
2651		EdgePreGprompt	53.88 \pm 7.76	54.66 \pm 1.28	57.43 \pm 1.26	72.67 \pm 0.71	52.81 \pm 1.23	56.43 \pm 2.54	52.85 \pm 3.05	55.71 \pm 3.36
2652		GraphCL	66.91 \pm 0.96	77.24 \pm 5.27	59.63 \pm 1.25	71.94 \pm 1.69	55.22 \pm 0.62	55.65 \pm 1.39	52.36 \pm 4.70	56.27 \pm 3.63
2653		SimGRACE	69.07 \pm 0.74	78.72 \pm 0.81	54.56 \pm 4.50	71.53 \pm 1.53	57.45 \pm 1.25	54.90 \pm 1.47	53.79 \pm 5.86	58.14 \pm 3.45
2654	GPPTPrompt	DGI	50.70 \pm 0.98	59.06 \pm 5.42	63.21 \pm 13.02	69.64 \pm 24.34	51.97 \pm 1.01	51.15 \pm 3.38	53.46 \pm 4.77	58.16 \pm 7.86
2655		GraphMAE	50.02 \pm 1.20	55.37 \pm 1.65	64.79 \pm 12.01	36.64 \pm 30.88	51.88 \pm 0.85	51.90 \pm 3.51	57.33 \pm 2.22	57.48 \pm 8.59
2656		EdgePreGPPT	60.13 \pm 5.46	59.32 \pm 8.93	68.26 \pm 2.20	53.05 \pm 23.65	52.97 \pm 1.80	54.30 \pm 1.55	53.75 \pm 1.34	54.71 \pm 6.13
2657		EdgePreGprompt	51.09 \pm 3.03	55.18 \pm 1.81	68.92 \pm 2.46	66.15 \pm 23.60	51.81 \pm 3.18	50.12 \pm 2.61	56.67 \pm 1.07	59.80 \pm 7.91
2658		GraphCL	50.36 \pm 13.14	70.37 \pm 8.98	71.44 \pm 3.56	41.39 \pm 32.92	51.66 \pm 0.79	54.79 \pm 2.46	55.63 \pm 1.51	58.02 \pm 8.00
2659		SimGRACE	50.30 \pm 13.72	63.01 \pm 0.70	57.69 \pm 9.30	59.52 \pm 26.16	49.66 \pm 2.26	53.90 \pm 4.39	53.94 \pm 3.10	60.31 \pm 6.86
2660	Gprompt	DGI	61.28 \pm 6.92	72.35 \pm 6.43	60.00 \pm 1.05	59.82 \pm 8.05	53.15 \pm 3.14	49.01 \pm 1.79	50.69 \pm 8.24	52.10 \pm 4.06
2661		GraphMAE	56.22 \pm 7.41	44.90 \pm 0.12	53.63 \pm 3.55	64.43 \pm 15.28	52.29 \pm 3.02	55.66 \pm 5.33	50.42 \pm 1.52	55.22 \pm 1.63
2662		EdgePreGPPT	63.01 \pm 2.64	74.04 \pm 6.87	65.82 \pm 4.00	56.24 \pm 15.55	51.97 \pm 3.30	49.66 \pm 7.34	50.37 \pm 2.68	57.12 \pm 1.01
2663		EdgePreGprompt	61.76 \pm 6.92	74.20 \pm 7.18	63.20 \pm 4.24	68.36 \pm 15.60	54.30 \pm 3.58	51.46 \pm 3.88	52.11 \pm 4.43	55.65 \pm 4.85
2664		GraphCL	62.10 \pm 7.10	72.58 \pm 8.88	55.52 \pm 9.16	54.21 \pm 19.23	52.15 \pm 2.03	57.07 \pm 3.48	52.27 \pm 2.39	57.24 \pm 4.44
2665		SimGRACE	63.49 \pm 7.53	73.85 \pm 5.74	50.07 \pm 7.27	56.06 \pm 18.58	53.72 \pm 4.10	53.97 \pm 4.68	49.80 \pm 7.28	56.78 \pm 6.19
2666	All-in-one	DGI	68.29 \pm 0.65	81.02 \pm 0.32	78.78 \pm 0.89	79.29 \pm 6.57	55.50 \pm 0.41	50.11 \pm 4.43	64.10 \pm 1.82	47.72 \pm 1.00
2667		GraphMAE	67.69 \pm 0.61	50.00 \pm 0.00	71.38 \pm 4.27	78.41 \pm 11.12	54.06 \pm 0.38	51.31 \pm 5.54	62.34 \pm 1.48	59.05 \pm 3.75
2668		EdgePreGPPT	67.39 \pm 0.61	80.54 \pm 1.13	71.08 \pm 0.87	81.40 \pm 0.45	55.76 \pm 1.18	47.76 \pm 1.24	48.35 \pm 3.93	54.96 \pm 0.53
2669		EdgePreGprompt	68.01 \pm 0.66	77.37 \pm 3.38	59.05 \pm 4.06	80.89 \pm 2.30	57.14 \pm 0.79	56.46 \pm 1.24	64.23 \pm 1.73	60.92 \pm 1.89
2670		GraphCL	68.55 \pm 0.68	81.56 \pm 1.31	68.66 \pm 3.13	75.02 \pm 2.18	54.68 \pm 0.82	58.33 \pm 4.46	54.20 \pm 4.83	55.30 \pm 3.48
2671		SimGRACE	67.71 \pm 0.63	79.47 \pm 0.36	62.54 \pm 0.80	73.98 \pm 2.36	54.94 \pm 0.85	47.16 \pm 4.60	54.11 \pm 1.26	58.19 \pm 0.80
2672	GPF	DGI	68.17 \pm 1.10	76.98 \pm 3.82	60.16 \pm 1.20	49.38 \pm 22.29	47.07 \pm 1.84	48.08 \pm 2.39	57.22 \pm 3.00	48.85 \pm 1.22
2673		GraphMAE	68.64 \pm 0.80	50.00 \pm 0.00	60.27 \pm 1.58	75.23 \pm 2.86	52.79 \pm 1.96	52.96 \pm 5.14	59.08 \pm 2.59	57.07 \pm 5.22
2674		EdgePreGPPT	72.39 \pm 1.43	76.68 \pm 3.14	59.70 \pm 2.16	71.74 \pm 1.36	53.23 \pm 0.59	55.95 \pm 3.53	57.16 \pm 1.15	55.12 \pm 1.37
2675		EdgePreGprompt	64.81 \pm 1.48	76.99 \pm 3.95	59.65 \pm 1.05	75.64 \pm 1.21	55.95 \pm 1.04	61.22 \pm 3.38	57.14 \pm 3.83	60.99 \pm 3.42
2676		GraphCL	68.50 \pm 0.89	79.36 \pm 0.64	58.20 \pm 2.58	75.42 \pm 2.40	55.17 \pm 1.18	57.66 \pm 3.49	56.20 \pm 0.72	54.38 \pm 2.29
2677		SimGRACE	68.88 \pm 0.73	79.18 \pm 0.70	59.03 \pm 1.13	54.34 \pm 11.05	56.49 \pm 4.32	59.26 \pm 4.32	53.33 \pm 0.93	58.78 \pm 0.91
2678	GPF-plus	DGI	67.30 \pm 2.04	78.76 \pm 3.08	59.98 \pm 1.03	78.67 \pm 3.24	55.76 \pm 0.99	58.01 \pm 1.54	55.60 \pm 4.64	53.17 \pm 0.34
2679		GraphMAE	66.86 \pm 1.34	50.00 \pm 0.00	61.20 \pm 1.57	72.94 \pm 0.86	49.96 \pm 8.00	47.18 \pm 2.64	54.12 \pm 12.01	59.32 \pm 3.11
2680		EdgePreGPPT	68.32 \pm 1.40	79.72 \pm 5.37	61.31 \pm 2.41	68.83 \pm 3.06	55.99 \pm 4.45	61.66 \pm 1.49	51.94 \pm 1.06	49.50 \pm 2.07
2681		EdgePreGprompt	66.08 \pm 4.10	78.31 \pm 2.86	58.73 \pm 2.17	51.73 \pm 17.01	57.28 \pm 2.04	59.88 \pm 2.24	52.69 \pm 2.74	55.53 \pm 2.48
2682		GraphCL	67.76 \pm 1.67	78.53 \pm 0.70	59.70 \pm 2.40	77.80 \pm 2.73	53.24 \pm 1.85	61.30 \pm 2.87	50.97 \pm 1.94	52.80 \pm 2.36
2683		SimGRACE	67.38 \pm 2.08	79.41 \pm 0.77	53.05 \pm 5.96	49.04 \pm 15.66	55.30 \pm 2.21	59.92 \pm 3.03	52.68 \pm 1.00	51.35 \pm 2.70
2684	MTG (Ours)	DGI	68.95 \pm 0.76	80.49 \pm 3.04	62.32 \pm 3.10	72.02 \pm 8.27	59.58 \pm 1.34	46.07 \pm 1.73	68.81 \pm 2.08	54.48 \pm 4.11
2685		GraphMAE	68.55 \pm 0.82	50.00 \pm 0.00	61.39 \pm 1.59	75.05 \pm 2.89	54.61 \pm 0.71	53.34 \pm 4.63	58.05 \pm 5.94	57.26 \pm 4.95
2686		EdgePreGPPT	72.87 \pm 0.86	77.24 \pm 2.52	57.91 \pm 1.55	72.79 \pm 3.33	63.07 \pm 2.61	52.85 \pm 3.60	66.10 \pm 4.03	56.70 \pm 2.20
2687		EdgePreGprompt	68.90 \pm 0.80	78.38 \pm 2.51	69.61 \pm 0.42	81.07 \pm 3.97	57.51 \pm 1.67	52.76 \pm 2.84	51.80 \pm 4.14	62.71 \pm 4.47
2688		GraphCL	68.58 \pm 0.69	81.55 \pm 0.42	59.80 \pm 1.08	76.23 \pm 2.36	53.27 \pm 0.85	58.85 \pm 0.87	57.23 \pm 7.72	54.20 \pm 1.33
2689		SimGRACE	69.00 \pm 0.85	78.44 \pm 3.57	65.16 \pm 2.85	67.17 \pm 8.36	51.30 \pm 1.01	54.05 \pm 4.52	56.49 \pm 7.52	59.78 \pm 0.85
2690	All-in-one	DGI	60.47 \pm 7.38	57.59 \pm 7.73	71.37 \pm 4.89	78.53 \pm 1.36	26.46 \pm 2.24	48.15 \pm 4.32	61.73 \pm 8.94	54.59 \pm 2.82
2691		GraphMAE	59.37 \pm 9.45	36.86 \pm 13.96	68.72 \pm 3.98	77.40 \pm 2.88	19.87 \pm 2.82	22.17 \pm 2.34	56.14 \pm 25.93	69.63 \pm 14.99
2692		EdgePreGPPT	63.62 \pm 2.30	57.86 \pm 5.88	70.56 \pm 2.54	80.93 \pm 1.96	26.13 \pm 1.09	68.42 \pm 11.71	38.27 \pm 18.11	64.71 \pm 3.22
2693		EdgePreGprompt	60.18 \pm 7.66	57.63 \pm 7.77	63.33 \pm 2.98	72.67 \pm 3.45	25.00 \pm 1.56	79.38 \pm 10.91	64.30 \pm 19.35	56.11 \pm 21.68
2694		GraphCL	61.80 \pm 4.92	57.04 \pm 4.46	69.69 \pm 6.19	69.33 \pm 2.46	26.71 \pm 2.17	56.41 \pm 6.50	56.73 \pm 7.80	58.28 \pm 2.18
2695		SimGRACE	63.05 \pm 3.01	54.01 \pm 0.83	68.72 \pm 4.97	74.27 \pm 2.62	26.67 \pm 0.99	62.95 \pm 8.57	53.35 \pm 10.24	51.36 \pm 9.14
2696	GPF	DGI	63.50 \pm 5.68	54.91 \pm 7.08	63.51 \pm 2.89	71.87 \pm 5.55	25.67 \pm 1.75	60.16 \pm 3.91	62.84 \pm 0.18	62.76 \pm 4.22
2697		GraphMAE	63.72 \pm 5.43	37.23 \pm 18.02	63.15 \pm 4.75	72.67 \pm 1.89	24.79 \pm 1.80	67.35 \pm 13.04	49.51 \pm 6.62	59.21 \pm 6.53
2698		EdgePreGPPT	68.13 \pm 3.31	60.68 \pm 4.67	61.89 \pm 4.59	70.93 \pm 3.00	23.04 \pm 1.13	68.20 \pm 12.65	24.01 \pm 5.97	64.46 \pm 3.57
2699		EdgePreGprompt	63.88 \pm 5.88	57.76 \pm 0.85	58.83 \pm 2.28	72.67 \pm 4.04	26.87 \pm 1.89	72.87 \pm 10.17	22.35 \pm 2.72	64.80 \pm 3.45
2700		GraphCL	60.18 \pm 10.28	57.43 \pm 3.27	63.08 \pm 4.23	73.87 \pm 3.51	25.79 \pm 1.76	60.70 \pm 11.73	57.59 \pm 5.89	52.78 \pm 10.34
2701		SimGRACE	60.43 \pm 4.53	55.67 \pm 7.42	60.74 \pm 3.46	72.27 \pm 1.51	26.21 \pm 0.96	29.81 \pm		

2700
2701

Table 30: F1-score on 5-shot graph classification.

Adaptation	Pre-training	IMDB-B	COLLAB	PROTEINS	MUTAG	ENZYMES	COX2	BZR	D&D
Supervised	-	61.53 \pm 3.82	46.72 \pm 7.81	60.12 \pm 2.97	68.77 \pm 4.51	21.36 \pm 3.02	50.40 \pm 4.10	49.85 \pm 2.02	61.16 \pm 2.22
Fine-tuning	DGI	37.27 \pm 7.49	60.77 \pm 1.97	59.48 \pm 2.21	69.60 \pm 5.01	23.93 \pm 3.09	46.29 \pm 3.39	21.92 \pm 0.07	53.50 \pm 13.04
	GraphMAE	48.52 \pm 12.68	47.93 \pm 10.31	58.76 \pm 5.50	61.19 \pm 5.53	21.10 \pm 2.81	46.30 \pm 3.29	34.64 \pm 16.14	60.62 \pm 2.52
	EdgePreGPPT	59.95 \pm 10.96	55.01 \pm 7.38	58.97 \pm 1.92	66.40 \pm 3.88	23.13 \pm 4.27	46.90 \pm 4.51	49.13 \pm 5.88	60.32 \pm 3.32
	EdgePreGprompt	61.87 \pm 3.87	58.08 \pm 3.74	57.72 \pm 3.83	67.43 \pm 5.46	24.23 \pm 3.11	45.22 \pm 2.84	29.92 \pm 15.69	55.91 \pm 9.68
	GraphCL	64.48 \pm 3.90	46.25 \pm 8.10	60.16 \pm 1.94	72.18 \pm 2.14	20.23 \pm 2.20	50.69 \pm 2.30	44.56 \pm 0.94	61.72 \pm 1.92
GPPTPrompt	SimGRACE	58.80 \pm 4.71	46.94 \pm 4.45	60.31 \pm 2.61	67.55 \pm 3.52	19.51 \pm 3.69	50.79 \pm 10.90	42.64 \pm 2.95	54.10 \pm 1.53
	DGI	33.29 \pm 0.37	44.26 \pm 14.52	51.17 \pm 11.32	62.76 \pm 9.57	15.91 \pm 3.76	31.80 \pm 11.62	40.57 \pm 12.66	49.10 \pm 8.69
	GraphMAE	33.15 \pm 0.33	16.01 \pm 2.20	56.63 \pm 5.43	61.64 \pm 4.83	18.70 \pm 2.65	36.00 \pm 12.12	45.03 \pm 4.56	48.97 \pm 2.70
	EdgePreGPPT	65.92 \pm 3.82	44.90 \pm 15.76	39.47 \pm 4.13	60.33 \pm 5.13	17.40 \pm 1.52	45.39 \pm 5.02	38.16 \pm 10.87	50.83 \pm 4.76
	EdgePreGprompt	33.15 \pm 0.33	19.75 \pm 7.06	44.10 \pm 11.48	33.67 \pm 17.23	19.46 \pm 2.35	42.06 \pm 4.74	41.95 \pm 7.64	55.63 \pm 2.35
Gprompt	GraphCL	55.16 \pm 14.72	55.24 \pm 1.26	40.33 \pm 1.26	65.16 \pm 6.09	19.05 \pm 1.73	46.02 \pm 10.48	39.32 \pm 8.94	54.10 \pm 2.94
	SimGRACE	59.66 \pm 9.14	54.05 \pm 3.81	54.48 \pm 10.12	62.48 \pm 5.78	19.62 \pm 1.57	49.41 \pm 6.89	50.14 \pm 3.71	54.01 \pm 1.31
	DGI	50.47 \pm 12.00	60.36 \pm 1.92	58.82 \pm 4.98	59.86 \pm 14.59	19.68 \pm 2.10	43.07 \pm 4.95	52.76 \pm 11.53	52.64 \pm 4.28
	GraphMAE	51.26 \pm 10.62	16.37 \pm 2.04	56.08 \pm 6.65	61.49 \pm 7.64	18.48 \pm 2.23	46.44 \pm 3.42	48.92 \pm 4.67	49.81 \pm 4.74
	EdgePreGPPT	66.49 \pm 4.14	57.50 \pm 2.41	61.89 \pm 1.74	61.80 \pm 11.24	16.31 \pm 1.68	48.08 \pm 4.53	46.79 \pm 5.22	51.83 \pm 4.02
All-in-one	EdgePreGprompt	50.18 \pm 11.72	58.02 \pm 1.57	53.81 \pm 6.27	70.82 \pm 1.39	18.42 \pm 3.25	46.63 \pm 4.27	47.81 \pm 6.75	55.47 \pm 3.78
	GraphCL	60.64 \pm 11.30	59.83 \pm 4.00	57.86 \pm 1.08	60.49 \pm 9.88	19.29 \pm 2.26	47.44 \pm 7.08	50.30 \pm 4.88	57.01 \pm 2.25
	SimGRACE	53.16 \pm 12.04	60.09 \pm 4.57	59.49 \pm 2.71	59.62 \pm 6.15	20.75 \pm 2.19	49.12 \pm 4.71	47.73 \pm 7.10	52.97 \pm 4.17
	DGI	59.53 \pm 8.82	55.32 \pm 5.81	70.60 \pm 4.58	76.43 \pm 1.37	17.66 \pm 2.59	44.71 \pm 2.85	52.91 \pm 7.30	52.63 \pm 1.53
	GraphMAE	58.72 \pm 10.43	17.43 \pm 2.21	66.84 \pm 3.16	76.59 \pm 2.86	15.28 \pm 0.64	45.02 \pm 5.39	50.25 \pm 14.39	57.48 \pm 1.16
GPF	EdgePreGPPT	63.43 \pm 2.34	57.44 \pm 6.03	69.82 \pm 2.07	78.29 \pm 1.00	18.20 \pm 5.07	47.22 \pm 3.60	46.61 \pm 3.47	53.27 \pm 3.89
	EdgePreGprompt	58.91 \pm 9.07	56.52 \pm 8.78	61.72 \pm 1.75	69.01 \pm 4.36	19.95 \pm 4.44	48.65 \pm 5.08	44.03 \pm 8.76	59.90 \pm 1.32
	GraphCL	61.47 \pm 5.33	56.68 \pm 4.02	68.30 \pm 5.95	67.42 \pm 3.89	22.30 \pm 0.99	47.14 \pm 2.57	45.65 \pm 4.16	53.88 \pm 4.86
	SimGRACE	62.85 \pm 2.99	55.22 \pm 5.07	67.22 \pm 4.47	71.75 \pm 2.16	21.06 \pm 0.77	51.71 \pm 4.63	48.74 \pm 3.72	40.69 \pm 6.82
	DGI	58.67 \pm 10.64	59.18 \pm 6.42	58.89 \pm 2.28	67.69 \pm 4.30	18.41 \pm 2.04	43.64 \pm 5.83	56.38 \pm 8.64	43.94 \pm 8.16
GPF-plus	GraphMAE	65.59 \pm 4.08	14.71 \pm 5.24	60.67 \pm 2.38	65.88 \pm 1.64	19.47 \pm 2.56	45.45 \pm 8.77	49.37 \pm 6.61	57.04 \pm 2.26
	EdgePreGPPT	67.75 \pm 5.58	57.75 \pm 1.17	61.14 \pm 4.21	63.56 \pm 4.73	19.89 \pm 2.46	43.97 \pm 2.80	30.06 \pm 8.48	55.24 \pm 3.51
	EdgePreGprompt	61.77 \pm 4.51	56.12 \pm 5.23	60.54 \pm 2.02	72.05 \pm 3.02	19.31 \pm 2.59	50.99 \pm 3.91	39.07 \pm 4.52	58.14 \pm 3.07
	GraphCL	58.58 \pm 10.31	54.42 \pm 4.20	58.69 \pm 2.31	67.61 \pm 3.98	21.36 \pm 3.31	50.58 \pm 4.57	47.55 \pm 4.52	40.86 \pm 7.24
	SimGRACE	61.27 \pm 4.49	54.22 \pm 8.92	59.44 \pm 2.34	75.56 \pm 5.57	23.55 \pm 3.05	25.14 \pm 14.15	26.14 \pm 5.64	33.65 \pm 9.49
MTG (Ours)	DGI	63.03 \pm 5.96	53.58 \pm 8.50	59.69 \pm 2.41	70.16 \pm 4.83	21.63 \pm 0.48	52.70 \pm 2.44	57.31 \pm 6.19	57.95 \pm 3.57
	GraphMAE	62.85 \pm 5.85	17.18 \pm 6.87	60.52 \pm 2.74	67.74 \pm 2.44	21.75 \pm 1.83	45.30 \pm 2.36	45.36 \pm 7.65	56.39 \pm 7.29
	EdgePreGPPT	67.66 \pm 3.65	60.45 \pm 4.30	58.78 \pm 2.63	68.26 \pm 2.34	20.46 \pm 1.22	45.80 \pm 4.06	21.07 \pm 7.39	60.10 \pm 2.62
	EdgePreGprompt	63.38 \pm 3.60	56.87 \pm 7.08	55.28 \pm 2.90	69.63 \pm 3.06	23.58 \pm 3.05	44.79 \pm 1.97	19.35 \pm 3.96	60.64 \pm 2.13
	GraphCL	58.81 \pm 10.82	57.11 \pm 3.43	60.02 \pm 2.04	69.79 \pm 2.97	22.03 \pm 2.03	47.74 \pm 4.03	53.04 \pm 4.37	47.52 \pm 13.56
MTG (Ours)	SimGRACE	59.10 \pm 10.57	58.56 \pm 4.61	60.30 \pm 2.04	69.16 \pm 2.98	22.60 \pm 2.36	51.12 \pm 11.99	43.15 \pm 1.95	53.98 \pm 1.48
	DGI	58.80 \pm 10.80	58.88 \pm 6.78	59.78 \pm 3.39	72.24 \pm 3.73	23.05 \pm 3.33	46.73 \pm 4.46	62.01 \pm 4.48	53.78 \pm 4.13
	GraphMAE	64.07 \pm 5.62	17.54 \pm 6.70	65.49 \pm 4.00	69.38 \pm 3.75	21.24 \pm 5.03	44.41 \pm 7.24	52.73 \pm 2.09	56.56 \pm 3.40
	EdgePreGPPT	69.06 \pm 4.09	59.90 \pm 6.04	59.41 \pm 1.33	74.08 \pm 4.85	33.66 \pm 2.53	48.74 \pm 5.48	59.70 \pm 4.96	56.92 \pm 3.19
	EdgePreGprompt	63.98 \pm 6.56	53.86 \pm 9.80	66.56 \pm 3.42	78.10 \pm 4.12	22.53 \pm 3.93	43.02 \pm 4.67	48.00 \pm 2.37	59.27 \pm 3.15
All-in-one	GraphCL	61.24 \pm 8.88	56.93 \pm 3.44	64.43 \pm 2.09	69.40 \pm 5.10	17.40 \pm 2.11	43.12 \pm 3.78	55.88 \pm 6.25	56.50 \pm 3.28
	SimGRACE	65.40 \pm 4.68	62.26 \pm 1.13	69.70 \pm 0.97	70.64 \pm 3.75	17.82 \pm 1.43	50.79 \pm 5.89	60.50 \pm 8.24	55.08 \pm 2.50
GPF	DGI	53.91 \pm 13.03	70.52 \pm 5.99	57.55 \pm 7.36	64.03 \pm 19.95	53.87 \pm 2.02	50.06 \pm 2.93	56.36 \pm 6.92	54.21 \pm 4.23
	GraphMAE	55.46 \pm 7.98	44.83 \pm 5.49	54.75 \pm 7.17	63.37 \pm 9.48	52.82 \pm 1.11	49.40 \pm 6.97	54.99 \pm 5.88	51.72 \pm 5.54
	EdgePreGPPT	70.26 \pm 4.44	73.55 \pm 4.01	67.07 \pm 0.80	66.04 \pm 10.33	53.52 \pm 2.27	52.47 \pm 2.25	52.16 \pm 2.83	53.26 \pm 4.39
	EdgePreGprompt	56.66 \pm 8.48	75.59 \pm 3.42	56.24 \pm 7.10	74.43 \pm 4.69	54.57 \pm 2.69	52.46 \pm 3.29	49.31 \pm 5.04	61.01 \pm 3.67
	GraphCL	52.62 \pm 12.32	75.45 \pm 3.52	61.03 \pm 5.77	64.43 \pm 10.15	54.04 \pm 2.81	56.22 \pm 8.12	50.45 \pm 6.37	57.89 \pm 3.91
GPF-plus	SimGRACE	57.24 \pm 12.21	73.41 \pm 3.61	60.58 \pm 5.34	64.67 \pm 8.28	55.02 \pm 1.57	56.79 \pm 5.66	56.83 \pm 6.49	53.99 \pm 6.27
	DGI	61.66 \pm 12.01	80.99 \pm 1.96	79.39 \pm 1.76	83.38 \pm 1.95	58.71 \pm 0.88	49.33 \pm 1.56	52.97 \pm 11.15	52.92 \pm 1.58
	GraphMAE	60.44 \pm 13.36	50.00 \pm 0.00	73.82 \pm 1.89	84.45 \pm 1.78	53.75 \pm 1.13	54.24 \pm 10.01	55.73 \pm 11.76	64.55 \pm 1.63
	EdgePreGPPT	69.53 \pm 3.98	81.50 \pm 1.45	77.60 \pm 1.84	85.46 \pm 2.74	54.18 \pm 3.09	52.22 \pm 5.14	39.69 \pm 2.87	58.41 \pm 0.60
	EdgePreGprompt	61.78 \pm 11.31	81.93 \pm 1.28	66.26 \pm 1.84	82.07 \pm 1.61	55.09 \pm 2.15	61.86 \pm 2.18	50.64 \pm 4.57	64.95 \pm 0.92
All-in-one	GraphCL	65.55 \pm 5.57	77.86 \pm 4.19	73.65 \pm 4.67	77.59 \pm 1.92	59.50 \pm 1.10	49.77 \pm 1.51	52.62 \pm 2.91	59.95 \pm 4.37
	SimGRACE	66.52 \pm 3.18	75.84 \pm 4.40	77.13 \pm 3.44	79.68 \pm 4.23	55.76 \pm 0.82	62.42 \pm 1.89	54.60 \pm 2.87	55.43 \pm 0.66
	DGI	61.28 \pm 13.33	80.91 \pm 1.35	59.36 \pm 1.27	68.29 \pm 4.20	57.38 \pm 0.69	55.65 \pm 2.89	69.56 \pm 8.43	52.10 \pm 1.18
	GraphMAE	71.36 \pm 4.86	50.00 \pm 0.00	60.79 \pm 1.35	73.75 \pm 6.18	57.51 \pm 1.83	55.80 \pm 3.40	57.87 \pm 6.08	59.78 \pm 6.01

2754
 2755
 2756 Table 32: 1-shot node classification accuracy (%) on Wisconsin for various backbone models. Supervised
 2757 learning baselines: GCN: 41.60 ± 3.10 , GAT: 34.51 ± 18.02 , GraphSAGE: 25.37 ± 5.61 , GIN: 28.91 ± 11.51 , GT:
 2758 20.91 ± 7.07 .

Fine-tuning						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	37.49 ± 5.13	36.80 ± 7.17	35.31 ± 9.31	40.69 ± 4.13	33.94 ± 7.74	37.37 ± 3.68
	16.00 ± 6.24	37.60 ± 10.69	20.00 ± 3.82	33.37 ± 4.76	18.86 ± 1.88	28.00 ± 9.40
	40.69 ± 9.46	43.77 ± 12.43	26.06 ± 5.38	29.94 ± 3.75	36.57 ± 4.88	9.37 ± 2.72
	34.29 ± 10.40	26.29 ± 7.81	25.14 ± 7.70	33.49 ± 7.69	22.63 ± 8.62	16.46 ± 4.53
	25.71 ± 3.07	39.77 ± 8.42	23.20 ± 2.65	28.23 ± 6.64	11.77 ± 1.06	14.51 ± 5.08
GPPT						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	29.94 ± 10.40	29.83 ± 9.34	23.89 ± 5.40	30.40 ± 6.81	25.03 ± 5.37	29.83 ± 6.44
	22.17 ± 6.13	33.94 ± 7.76	23.43 ± 4.46	37.94 ± 7.11	26.86 ± 6.12	29.83 ± 8.04
	26.51 ± 8.00	30.51 ± 5.40	21.49 ± 5.17	24.23 ± 6.55	20.91 ± 7.11	25.37 ± 7.22
	27.20 ± 5.34	24.00 ± 3.29	21.14 ± 1.84	20.46 ± 2.79	19.09 ± 14.19	19.54 ± 15.85
	27.20 ± 10.48	29.83 ± 5.80	28.00 ± 6.01	23.31 ± 3.01	27.66 ± 0.69	25.03 ± 5.43
Gprompt						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	67.71 ± 9.92	67.62 ± 18.06	67.37 ± 12.32	74.38 ± 13.15	77.07 ± 5.93	65.38 ± 13.70
	58.25 ± 13.83	67.77 ± 15.91	94.17 ± 2.26	84.28 ± 3.63	80.11 ± 16.65	57.18 ± 12.60
	66.48 ± 12.88	83.49 ± 15.93	87.52 ± 3.79	82.16 ± 2.64	65.50 ± 6.48	72.61 ± 5.97
	45.47 ± 9.62	37.72 ± 15.00	58.36 ± 15.10	59.29 ± 12.72	59.03 ± 19.98	71.80 ± 11.66
	56.03 ± 7.33	73.50 ± 9.72	76.97 ± 13.39	80.07 ± 2.84	59.31 ± 10.17	69.30 ± 10.57
All-in-one						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	56.02 ± 13.12	57.54 ± 10.66	66.29 ± 19.11	59.18 ± 12.30	39.14 ± 1.17	55.56 ± 14.70
	69.44 ± 5.19	36.25 ± 10.63	91.25 ± 4.33	92.65 ± 3.75	42.85 ± 9.16	36.61 ± 14.86
	74.88 ± 19.77	87.55 ± 3.78	98.60 ± 0.87	99.12 ± 0.64	67.28 ± 20.14	86.18 ± 9.68
	54.02 ± 15.90	35.31 ± 15.69	58.77 ± 13.43	57.07 ± 12.51	45.94 ± 9.52	25.30 ± 14.83
	60.22 ± 11.02	97.42 ± 2.13	94.61 ± 1.73	97.88 ± 2.24	51.33 ± 15.56	83.26 ± 16.29
GPF						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	62.69 ± 13.96	76.84 ± 10.50	78.35 ± 4.07	75.20 ± 13.22	51.60 ± 20.06	60.81 ± 26.52
	65.14 ± 11.94	74.39 ± 16.46	94.96 ± 1.17	76.60 ± 10.48	74.97 ± 17.06	60.57 ± 14.43
	68.12 ± 13.96	67.66 ± 13.37	74.06 ± 14.59	72.45 ± 10.14	59.69 ± 21.37	78.37 ± 14.84
	47.11 ± 11.28	49.47 ± 14.94	66.99 ± 17.76	54.96 ± 12.35	28.77 ± 22.76	23.55 ± 14.37
	39.85 ± 4.83	71.26 ± 14.43	72.67 ± 13.36	81.33 ± 3.41	78.19 ± 2.19	67.90 ± 10.53
GPF-plus						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	74.68 ± 11.81	82.11 ± 13.95	72.66 ± 12.05	78.76 ± 13.63	52.35 ± 19.69	73.49 ± 14.17
	93.34 ± 6.13	83.28 ± 12.20	95.24 ± 1.58	92.03 ± 4.64	87.49 ± 7.17	63.06 ± 18.45
	71.83 ± 17.50	85.47 ± 1.45	97.30 ± 1.68	80.35 ± 14.37	50.35 ± 8.91	71.95 ± 9.43
	57.55 ± 16.90	66.88 ± 14.55	82.79 ± 10.37	74.40 ± 13.11	29.94 ± 22.25	24.30 ± 17.29
	72.41 ± 11.37	95.19 ± 4.04	87.76 ± 15.73	80.58 ± 11.56	57.75 ± 19.89	63.79 ± 17.44
MTG (Ours)						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	67.72 ± 10.19	83.32 ± 12.46	73.80 ± 9.56	72.75 ± 11.21	48.41 ± 16.10	72.98 ± 9.75
	59.87 ± 9.77	82.16 ± 11.33	95.84 ± 1.15	81.99 ± 12.78	77.01 ± 12.03	61.75 ± 13.22
	76.90 ± 9.36	99.29 ± 1.41	87.23 ± 4.91	72.63 ± 10.16	62.44 ± 19.82	63.50 ± 17.62
	59.93 ± 13.84	69.96 ± 10.90	78.87 ± 16.32	83.57 ± 10.78	37.34 ± 15.08	34.48 ± 15.47
	58.35 ± 10.12	98.85 ± 1.02	84.45 ± 8.03	72.99 ± 10.45	93.45 ± 4.15	89.24 ± 2.66

2808

2809

2810 Table 33: 1-shot graph classification accuracy (%) on PROTEINS for various backbone models. Supervised
2811 learning baselines: GCN: 56.36 ± 7.97 , GAT: 48.34 ± 9.96 , GraphSAGE: 60.54 ± 2.95 , GIN: 59.66 ± 1.12 , GT:
2812 61.44 ± 2.48 .

2813

2814

Fine-tuning						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	60.00 ± 4.48	62.40 ± 1.494	58.27 ± 10.66	61.84 ± 2.59	63.44 ± 3.64	60.07 ± 3.21
	58.34 ± 6.52	61.06 ± 4.13	63.75 ± 3.71	54.09 ± 4.03	60.04 ± 3.06	58.65 ± 6.71
	60.70 ± 4.08	60.56 ± 5.12	61.60 ± 1.78	63.21 ± 1.80	61.80 ± 3.77	58.56 ± 1.84
	59.71 ± 1.16	59.75 ± 1.22	64.83 ± 3.56	65.35 ± 2.36	58.52 ± 0.77	58.49 ± 0.80
	53.87 ± 4.81	60.00 ± 3.99	64.92 ± 3.19	56.58 ± 3.28	62.88 ± 1.82	60.00 ± 1.60
GPPT						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	60.81 ± 1.55	60.72 ± 1.70	60.92 ± 2.47	57.03 ± 4.55	59.24 ± 1.01	55.42 ± 8.81
	57.71 ± 8.98	57.80 ± 10.55	58.04 ± 9.92	54.97 ± 7.45	52.29 ± 7.83	55.15 ± 9.84
	56.56 ± 6.73	57.73 ± 7.95	58.63 ± 11.78	56.94 ± 5.67	58.00 ± 7.80	54.74 ± 6.59
	62.27 ± 2.54	52.13 ± 11.00	52.52 ± 6.97	55.53 ± 8.92	55.78 ± 7.22	55.78 ± 7.22
	53.08 ± 7.56	57.35 ± 8.58	60.27 ± 3.92	55.51 ± 7.68	56.18 ± 5.79	55.87 ± 7.69
Gprompt						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	56.61 ± 7.93	57.66 ± 12.56	59.17 ± 11.26	55.55 ± 8.17	55.51 ± 10.73	57.53 ± 11.05
	61.08 ± 6.19	63.03 ± 2.61	64.47 ± 4.30	61.48 ± 3.34	59.12 ± 6.84	58.13 ± 7.27
	61.35 ± 2.21	59.48 ± 9.19	60.92 ± 3.16	63.30 ± 1.43	55.26 ± 2.61	63.21 ± 2.66
	54.36 ± 5.18	46.97 ± 11.45	55.82 ± 5.35	57.84 ± 10.75	56.92 ± 11.77	46.16 ± 10.78
	56.65 ± 5.81	60.99 ± 1.62	61.87 ± 5.60	55.33 ± 3.69	54.81 ± 7.62	58.97 ± 1.16
All-in-one						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	62.58 ± 7.07	66.49 ± 6.26	65.71 ± 5.49	61.82 ± 7.53	64.36 ± 7.30	61.17 ± 1.73
	60.04 ± 3.84	60.00 ± 6.04	62.11 ± 2.85	63.21 ± 2.22	58.36 ± 4.93	59.37 ± 5.59
	59.53 ± 4.94	60.70 ± 4.89	63.12 ± 1.59	59.98 ± 8.46	62.22 ± 3.81	62.04 ± 2.07
	61.55 ± 3.02	60.72 ± 4.32	59.78 ± 3.28	58.29 ± 12.13	40.81 ± 1.04	59.19 ± 1.04
	57.39 ± 3.66	58.92 ± 6.61	62.61 ± 4.08	60.20 ± 7.55	62.81 ± 1.63	50.52 ± 6.17
GPF						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	59.17 ± 3.63	58.65 ± 8.49	62.54 ± 2.55	61.82 ± 2.61	63.91 ± 3.26	63.35 ± 3.69
	63.01 ± 1.22	59.62 ± 5.38	47.53 ± 9.42	47.71 ± 7.14	56.65 ± 5.15	57.91 ± 3.10
	52.72 ± 6.43	59.17 ± 2.22	61.73 ± 2.59	64.54 ± 3.73	62.27 ± 2.60	58.00 ± 3.81
	61.19 ± 3.39	54.34 ± 8.61	60.58 ± 6.80	62.34 ± 1.19	59.19 ± 1.04	59.19 ± 1.04
	65.80 ± 7.42	60.16 ± 5.81	64.54 ± 7.18	61.21 ± 2.91	58.74 ± 5.51	59.57 ± 2.93
GPF-plus						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	61.26 ± 3.06	62.49 ± 2.05	63.06 ± 2.55	61.33 ± 2.81	59.75 ± 7.95	62.92 ± 2.78
	56.20 ± 12.87	57.35 ± 11.28	56.25 ± 8.61	53.24 ± 4.79	57.48 ± 11.74	57.48 ± 9.63
	56.22 ± 9.08	57.55 ± 10.56	56.31 ± 9.26	57.71 ± 9.60	53.89 ± 9.47	55.89 ± 4.30
	62.22 ± 2.49	61.75 ± 3.58	57.33 ± 9.24	64.99 ± 0.82	59.19 ± 1.04	59.19 ± 1.04
	53.39 ± 5.23	57.37 ± 10.95	57.39 ± 11.88	52.61 ± 5.30	57.62 ± 12.27	56.16 ± 5.07
MTG (Ours)						
Model	DGI	GraphMAE	EdgePreGPPT	EdgePreGprompt	GraphCL	SimGRACE
GCN	62.78 ± 2.36	59.62 ± 6.41	62.71 ± 2.30	65.66 ± 1.56	63.70 ± 2.87	66.98 ± 2.17
	61.48 ± 2.14	60.38 ± 4.81	53.46 ± 7.80	63.53 ± 1.25	49.12 ± 6.49	52.63 ± 4.14
	61.98 ± 2.03	58.85 ± 1.66	65.24 ± 1.83	65.88 ± 0.58	62.20 ± 3.35	60.94 ± 9.92
	61.55 ± 1.47	60.52 ± 3.27	65.64 ± 6.34	63.10 ± 0.39	60.19 ± 1.04	59.69 ± 3.21
	61.83 ± 6.86	57.19 ± 8.75	63.64 ± 5.55	59.91 ± 5.85	66.08 ± 2.70	61.72 ± 0.83

2854

2855

2856

2857

2858

2859

2860