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ABSTRACT

Graph foundation models (GFMs), built upon the “Pre-training and Adaptation”
paradigm, have emerged as a promising path toward artificial general intelligence
on graphs. Despite the remarkable potential of large language models, most existing
GFMs still adopt Graph Neural Networks as their backbone. For such GNN-based
GFMs, prompt tuning has become the prevailing adaptation method for downstream
tasks. However, while recent theoretical research has revealed why graph prompt
tuning works, how to measure its adaptation capacity remains an open problem. In
this paper, we propose Prismatic Space Theory (PS-Theory) to quantify the capacity
of adaptation approaches and establish the upper bound for the adaptation capacity
of prompt tuning. Inspired by prefix-tuning, we introduce Message Tuning for
GFMs (MTG), a lightweight approach that injects a small set of learnable message
prototypes into each layer of the GNN backbone to adaptively guide message
fusion without updating the frozen pre-trained weights. Through our PS-Theory,
we rigorously prove that MTG has greater adaptation capacity than prompt tuning.
Extensive experiments demonstrate that MTG consistently outperforms prompt
tuning baselines across diverse benchmarks, validating our theoretical findings.
Our code is available at https://anonymous.4open.science/r/MTG.

1 INTRODUCTION

Graph foundation models (GFMs) (Liu et al., 2025; Wang et al., 2025b), built upon the “Pre-training
and Adaptation” paradigm, are expected to benefit from the pre-training of broad graph data and can
be adapted to a wide range of downstream graph tasks. Since they are designed to natively learn graph
structures, a capability fundamentally different from that of sequence-based Large Language Models,
GNN-based GFMs represent a promising direction by leveraging self-supervised pre-training to
acquire transferable knowledge through their GNN backbone architectures (Wang et al., 2024; Chen
et al., 2025), including Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017) and Graph
Transformers (GTs) (Ying et al., 2021). For such pre-trained GFMs, fine-tuning (Hu et al., 2020b;
Qiu et al., 2020; Rong et al., 2020) is the most intuitive and widely adopted method for downstream
task adaptation. However, fine-tuning generally involves updating all model parameters, requiring
a full model copy per task while demanding substantial computational resources and task-specific
data for full customization. Furthermore, the pretext-downstream graph task gap poses a significant
challenge for fine-tuning, potentially causing negative transfer (Wang et al., 2021), particularly in
few-shot scenarios (Zhang et al., 2022).

Prompt tuning (Lester et al., 2021; Liu et al., 2022) as a popular finetune paradigm, has emerged as
an efficient alternative to full-parameter fine-tuning by freezing the pre-trained model’s parameters
and adapting downstream tasks through input data transformations. Prompt tuning on graphs,
known as Graph Prompt Learning (Sun et al., 2023b), enhances GNN-based models’ performance
and adaptability through input-space adaptations (e.g., inserting lightweight learnable tokens or
subgraphs) to reformulate downstream tasks as pre-training tasks without modifying the pre-trained
GNN backbone. Recent advances in graph prompt models (Fang et al., 2023; Sun et al., 2023a;
Niu et al., 2024; Yu et al., 2025) have shown promising results in graph learning, highlighting their
potential for broader graph intelligence applications spanning from molecular property prediction
(Diao et al., 2023) to recommendation systems (Yang et al., 2023). Concurrently, several studies
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Figure 1: Fine-tuning (left) updates all GFM parameters (red GFM Layer boxes), while Prompt Tuning (middle)
typically updates prompt tokens or the prompt graph (red prompt vectors) to transform the input graph, keeping
GFM parameters frozen. We propose Message Tuning (right), which also freezes GFM parameters but optimizes
the messages in each GFM Layer (red message blocks) to regulate message fusion. The red dashed lines indicate
the inserting patterns of new parameters, which are also learnable.

(Fang et al., 2023; Wang et al., 2025a) have begun analyzing graph prompts from a data operation
perspective, suggesting their effectiveness stems from simulating fundamental graph transformations
such as node/edge addition/deletion, feature modification, and subgraph removal.

However, while recent theoretical research has revealed why graph prompt tuning works from a data
operation perspective (Wang et al., 2025a), how to measure its adaptation capacity on a specific GFM
remains an open problem. A more precise understanding of the capability bound of prompt tuning and
the underlying reasons will facilitate the design of more powerful and efficient adaptation methods.
To address this issue, we model each layer of GFMs as a piecewise linear refractive transformation
and leverage ideas from geometric measure theory to quantify the “refractive” power of each layer,
establishing fundamental bounds on the expressive power of prompt tuning methods and motivating
the design of our novel message tuning paradigm.

Specifically, we propose Prismatic Space Theory (PS-Theory), providing a rigorous mathematical
framework to quantify adaptation capacity and establish the upper bound for the adaptation capacity
of prompt tuning. Prefix-tuning (Li & Liang, 2021), widely used in language models, is specifically
designed for transformer architectures and generative tasks on sequential data, making it not directly
applicable to graph-structured data. Inspired by this technique, we introduce Message Tuning for
GFMs (MTG), a novel adaptation approach that injects learnable message prototypes into each layer
and dynamically fuses them with the model’s native messages, which is compatible with GFMs using
either MPNN or GT backbones, as illustrated in Figure 1. Through our PS-Theory, we rigorously
prove that MTG has greater adaptation capacity than prompt tuning. Extensive and fair evaluations on
the latest Graph Prompt Learning benchmark ProG (Zi et al., 2024) further validate MTG’s superiority
across diverse downstream tasks. The contributions of this paper are summarized as follows:
• Theoretical Foundation. Different from the prior theories focusing on data operations, we pro-

pose PS-Theory, providing a novel and rigorous mathematical framework to quantify adaptation
capacity and establish the upper bound for the adaptation capacity of prompt tuning.

• Adaptation Method. We introduce MTG, a novel lightweight adaptation approach that dy-
namically guides message fusion by injecting learnable message prototypes across all layers
without updating pre-trained weights, significantly enhancing adaptation capacity. Through our
PS-Theory, we rigorously prove that MTG has greater adaptation capacity than prompt tuning.

• Extensive Experiments. Through comprehensive evaluations across diverse few-shot down-
stream tasks, we demonstrate MTG’s consistent superiority over state-of-the-art prompt tuning
baselines, validating our theoretical claims on its enhanced adaptation capacity.
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2 RELATED WORK

The adaptation of GNN-based GFMs involves tailoring models or adjusting input data to align with
specific downstream tasks or domains through techniques such as fine-tuning and prompt tuning.
To the best of our knowledge, prefix-tuning (Li & Liang, 2021), despite its prevalence in language
models, remains unexplored in GNN-based GFMs.

Fine-tuning. Specifically, fine-tuning can be further divided into full-parameter fine-tuning (FPFT)
and parameter-efficient fine-tuning (PEFT). FPFT (Hu et al., 2020b; Qiu et al., 2020; Rong et al.,
2020; Sun et al., 2024) entails training the entire pre-trained model on task-specific data, offering
high customization at the cost of substantial computational resources. In contrast, PEFT methods
optimize only a subset of parameters, balancing adaptation efficiency with performance. For instance,
AdapterGNN (Li et al., 2024) modifies input graphs via parallel adapters around message passing,
G-Adapter (Gui et al., 2024) integrates graph structure into transformer fine-tuning through graph
message passing, and GraphLoRA (Yang et al., 2025) enhances efficiency by injecting a low-rank
trainable GNN alongside the pre-trained model to address structural distribution gaps while mitigating
catastrophic forgetting. In this paper, fine-tuning generally refers to FPFT unless otherwise specified.

Prompt Tuning. As a lightweight tuning method, prompt tuning typically freezes pre-trained model
parameters while introducing additional learnable components in the input space. Following Liu
et al. (2025), prompt tuning methods can be divided into two distinct groups: pre-prompt and post-
prompt methods, depending on whether task-specific prompts operate before or after the backbone
module. Pre-prompt methods either modify graph topology or node features before message passing
to enhance task performance, or construct prompt graphs to boost adaptability. For instance, GPF
(Fang et al., 2023) introduces an optimizable uniform feature vector for all nodes to adapt pre-trained
GNNs across strategies, while All-in-one (Sun et al., 2023a) reformulates node-level and edge-level
tasks to graph-level tasks and treats an additional subgraph as a prompt that merges with the node
subgraph. Post-prompt methods apply task-specific prompts on representations after message passing
for downstream adaptation. For instance, GPPT (Sun et al., 2022) transforms node classification into
link prediction via class-specific token pairs, while GraphPrompt (Liu et al., 2023b) unifies tasks
through subgraph similarity and learns task-specific prompt vectors to adapt the Readout operation,
bridging link prediction and downstream tasks.

3 PRISMATIC SPACE THEORY

In this section, we introduce Prismatic Space Theory (PS-Theory), providing a novel perspective and
rigorous mathematical framework to quantify the capacity of adaptation approaches and establish the
upper bound for the adaptation capacity of prompt tuning. Due to space constraints, the proofs of all
theorems and additional theoretical details are provided in Appendix B.

3.1 A UNIFIED FORMULATION FOR GNN-BASED GFMS

To facilitate theoretical analysis, we present a unified formal framework that generalizes both MPNNs
and GTs architectures. Let G = (V, E) be a graph with N = |V| nodes. The node feature matrix
is denoted X ∈ RN×d0 and the adjacency matrix is denoted A ∈ {0, 1}N×N . The ℓ-th layer of a
general GNN-based GFM is defined by the following formulation.
Definition 1 (Unified GFM Layer). For any layer ℓ ∈ {1, . . . , L}, the node representation matrix
H(ℓ) ∈ RN×dℓ is computed as:

H(ℓ) = U(ℓ)
(
M(ℓ)

(
A(ℓ)

(
A,H(ℓ−1);Θ(ℓ)

a

)
,H(ℓ−1);Θ(ℓ)

m

)
,H(ℓ−1);Θ(ℓ)

u

)
, (1)

where H(0) = X . A(ℓ), M(ℓ), and U(ℓ) denote the attention, message fusion, and update operators
respectively: A(ℓ) computes attention weights (encompassing both learnable dynamic attention
and static structural attention), M(ℓ) performs weighted aggregation of node messages using these
attention scores, and U(ℓ) combines previous node representations with the fused messages to produce
the updated representation.

This formulation serves as a unified formalization of the core structure rather than encompassing all
architecture details. The detailed correspondence between this formulation and classical backbone
architectures is presented in Appendix B.2.
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3.2 PROMPT TUNING FOR GRAPHS

Following Wang et al. (2025a), we provide a mathematical formalization of prompt tuning for graphs,
aiming to offer an intuitive perspective for theoretical analysis. Let fGFM denote a pre-trained GNN-
based GFM with frozen parameters, and let gθ denote a graph prompt function with parameters θ that
transforms the input graph G into a prompted graph gθ(G). Given a downstream dataset G = {G},
the goal of prompt tuning is to optimize θ to maximize the likelihood of the optimal representation
for a graph G from G. This objective can be formulated as:

max
θ

PfGFM(vG |gθ(G)) (2)

The theory in Wang et al. (2025a) rests on the assumption that a GNN model acts as a surjective
mapping operator from the graph set G to RF , where F is the dimensionality of the representation.
However, since real-world graph data is inherently bounded, the model’s output is unlikely to span
the entire RF space. Analyzing the properties of this actual output space will provide deeper insight
into the adaptation capacity of prompt tuning.

3.3 A GEOMETRIC MEASURE THEORETIC FORMULATION

Prism Metaphor. Prompt tuning typically operates by injecting a low-dimensional prompt into the
high-dimensional input space of a frozen GFM. To quantify its efficacy, we need to understand how
the GFM’s architecture transforms this input space. We posit that each layer of a GFM, particularly
those employing piecewise linear activations like ReLU (Nair & Hinton, 2010) or LeakyReLU
(Maas et al., 2013), acts not merely as a contraction but as a “prism”. The non-isometric, piecewise
linear action of a “prism” refracts the input space, collapsing some dimensions into oblivion, and
progressively folding the input manifold. We model the GFMs as a sequence of measurable maps that
transform the input space into a sequence of increasingly complex, lower-dimensional prismatic space.
We quantify the “refractive” power of each layer by leveraging ideas from geometric measure theory,
focusing on the singular values of the layer’s Jacobian and their effect on the intrinsic dimension and
measure of the data manifold.

We adopt the unified GFM layer from Definition 1 and first introduce the piecewise linear map, which
is a key abstraction for understanding the mechanisms of the model architecture.
Definition 2 (Piecewise Linear Function for Matrix Maps). A function F : RN×din → RN×dout is
called piecewise linear if there exists a finite collection of polyhedral regions {Ri}Ki=1 in RN×din

such that RN×din =
⋃K

i=1 Ri and for each region Ri, the function F is affine, meaning there exists a
matrix Ai ∈ R(Ndout)×(Ndin) and a vector bi ∈ RNdout such that:

vec(F (H)) = Ai · vec(H) + bi for all H ∈ Ri. (3)

Equivalently, in matrix form, F (H) = unvec(Ai · vec(H) + bi), where unvec is the operation that
reshapes the vector into an N × dout matrix. (See Appendix B.3 for details.)

Proposition 1. The attention, message fusion, and update operators A(ℓ),M(ℓ),U(ℓ) are generally
continuous, piecewise linear functions and differentiable almost everywhere (a.e.).

Proposition 2. The layer map F (ℓ) : H(ℓ−1)(⊂ RN×dℓ−1) → H(ℓ)(⊂ RN×dℓ) is a piecewise linear
function. For any point H where F (ℓ) is differentiable, its Jacobian J (ℓ)(H) ∈ RNdℓ×Ndℓ−1 exists.

The proofs of Propositions 1 and 2 are provided in Appendices B.4 and B.5, respectively. Having
abstracted the model architecture, we now turn to mathematically modeling the input data and output
space, with particular emphasis on capturing the bounded nature of the input data.
Definition 3 (Input Manifold and Representation Space). The input space is modeled as a compact,
smooth input manifold M0 ⊂ X ⊂ RN×d0 , with intrinsic dimension dint(M0) = D0. X denotes
the entire set of possible input data forms for the model. M0 represents a low-dimensional subset
of X endowed with specific semantic and geometric structures (see Appendix B.6 for details). The
representation at layer ℓ is the image of the input manifold under the composite map Φ(ℓ) =
F (ℓ) ◦ · · · ◦ F (1):

M(ℓ) = Φ(ℓ)(M0) ⊂ RN×dℓ . (4)
Definition 4 (Prismatic Space). A set M ⊂ Rn is called prismatic space if there exists a smooth
manifold N ⊂ Rm and a piecewise linear map f : Rm → Rn such that M = f(N ).

4
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Real-world graph data can be viewed as points sampled from the input manifold. And the output
representations of graph data lie in the prismatic space, defined as the image of the input manifold
under the GFM’s mapping. Hence, such a geometric modeling approach is of practical significance.

Proposition 3. Φ(ℓ) = F (ℓ) ◦ · · · ◦ F (1) is piecewise linear. Assume that Φ(ℓ) is injective on each
polyhedral region, then M(ℓ) = Φ(ℓ)(M0) is a prismatic space and may have singularities.

The proof of Proposition 3 is provided in Appendix B.7. As in many geometric theories, an intuitive
strategy for analyzing complex geometric space is to begin with a local perspective, particularly since
the formation process of prismatic space is already well understood. The core of the prismatic effect
lies in the singular value decomposition (SVD) of the layer Jacobians.

Definition 5 (Spectral Prism of a Layer). For a point H ∈ H(ℓ−1) where F (ℓ) is differentiable,
let J (ℓ)(H) = U (ℓ)Σ(ℓ)(V (ℓ))⊤ be its SVD (see Appendix B.8 for details). The diagonal matrix
Σ(ℓ) = diag(σ(ℓ)

1 , σ
(ℓ)
2 , ..., σ

(ℓ)
rℓ , 0, ..., 0) contains the singular values, where rℓ is the rank.

Theorem 1 (Local Measure Contraction Factor). Let S ⊂ H(ℓ−1) be a sufficiently small measurable
set contained in an s-dimensional subspace V on which F (ℓ) is linear and injective, with constant
Jacobian J (ℓ) of rank rℓ (s ≤ rℓ). Assume V is the subspace spanned by the first s right singular
vectors of J (ℓ), corresponding to the s largest singular values σ(ℓ)

1 ≥ σ
(ℓ)
2 ≥ · · · ≥ σ

(ℓ)
s > 0. Then,

for the s-dimensional Hausdorff measure Hs:

Hs(F (ℓ)(S)) =
( s∏

i=1

σ
(ℓ)
i

)
Hs(S). (5)

In particular, if s = rℓ, the volume contraction factor is
∏rℓ

i=1 σ
(ℓ)
i .

Corollary 1 (Local ReLU Prism Effect). Consider the ReLU activation function used within F (ℓ).
At points where ReLU is differentiable, its Jacobian JReLU is a diagonal matrix with diagonal entries
either 0 or 1, and hence idempotent (J2

ReLU = JReLU). This implies that ReLU acts as a local
projection, nullifying some dimensions (setting outputs to zero) and preserving others. The ReLU
component contributes to the prismatic effect by introducing sparsity and reducing the effective rank
of the Jacobian in local regions.

The proof of Theorem 1 is provided in Appendix B.9. Corollary 1 provides a detailed explanation of
the ReLU activation function. Having characterized the local properties via the singular values of the
layer Jacobians, we now need to synthesize the global and local perspectives. This requires an abstract
mathematical technique: constructing a global partition from local pieces is a common approach,
even foundational to calculus. By Proposition 3, the piecewise linearity of the GFM network implies
that the input manifold M0 is partitioned into multiple linear regions.

Definition 6 (Linear Region Partition). For each layer ℓ ∈ 1, . . . , L, let Ω(ℓ) be the set of polytopic
regions in H(ℓ−1) on which the function F (ℓ) is linear. The GFM network Φ = F (L)◦· · ·◦F (1) defines
a recursive partition of the input manifold M0 into cells {Ck}, where each cell Ck is a connected
subset of M0 such that there exists a sequence of regions R1 ∈ Ω(1), R2 ∈ Ω(2), . . . , RL ∈ Ω(L)

satisfying:

Ck ⊆ R1, F
(1)(Ck) ⊆ R2, F

(2)(F (1)(Ck)) ⊆ R3, . . . , F
(L−1) ◦ · · · ◦ F (1)(Ck) ⊆ RL, (6)

and on each cell Ck, the full network map Φ is linear. The total number of {Ck} is related to the
specific architecture and parameters of the GFM network.
Theorem 2 (Prismatic Folding and Intrinsic Dimension). The global map Φ : M0 → M(L) is
piecewise linear. The intrinsic dimension of the final representation space is bounded by the maximum
over linear regions of the minimum rank achieved across layers:

dint(M(L)) ≤ max
k

min
ℓ

rank(J (ℓ)|Φ(ℓ−1)(Ck)). (7)

Furthermore, the map Φ is piecewise constant on its rank. The final output M(L) is a prismatic space
embedded in RN×dL , likely with a much lower intrinsic dimension than D0.

The proof of Theorem 2 in Appendix B.11 provides a method for analyzing the upper bound of
the intrinsic dimension of the output prismatic space. This bound is analytical, derived from the

5
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partition of the input manifold induced by the GFM network as defined in Definition 6, making it
difficult to compute numerically. Building on the local measure computation derived in Theorem 1,
we formulate the definition of a global measure on the prismatic space in the following theorem.

Theorem 3 (Measure of the Final Prismatic Space). Assume the piecewise linear map Φ = F (L) ◦
· · · ◦ F (1) is injective on the partition Ck of the input manifold M0, where each Ck is a cell in the
linear region partition. Then, the dint-dimensional Hausdorff measure of the final prismatic space
M(L) = Φ(M0) is given by:

Hdint(M(L)) =
∑
k

Hdint(Φ(Ck)) =
∑
k

( L∏
ℓ=1

dint∏
i=1

σ
(ℓ)
i,k

)
Hdint(Ck), (8)

where for each layer ℓ and cell Ck, σ(ℓ)
i,k for i = 1, . . . , dint are the dint largest singular values of the

Jacobian J (ℓ) of F (ℓ) restricted to the tangent space of Φ(ℓ−1)(Ck) (which is dint-dimensional). If Φ
is not injective, the formula provides an upper bound.

The proof of Theorem 3 is provided in Appendix B.12. This theorem precisely quantifies the prismatic
effect: the total “volume” of the final representation is the sum of the volumes of all fragments of
the input manifold, each shrunk by the product of the singular values of the Jacobians along its path
through the network. At this point, we have established a mathematical framework (PS-Theory)
for analyzing the output prismatic space of GFM. However, corresponding theoretical results on
adaptation capacity still require integration with specific adaptation methods, such as prompt tuning.

3.4 ADAPTATION CAPACITY OF PROMPT TUNING

Without loss of generality, and in alignment with Wang et al. (2025a), our theoretical analysis in this
subsection focuses on pre-prompt methods. As demonstrated by Lemma 1 in Wang et al. (2025a),
prompt tuning methods, such as GPF and All-in-One, are equivalent to a transformation of the node
feature matrix X . This transformation can be simplified to the form Xω = X̃ + cp⊤, where c ≥ 0
can be referred to as the coefficient vector and X̃ can be either X or the natural extension of X: [X0 ].
Therefore, modeling prompt tuning as a perturbation on the input manifold is a natural and direct
approach within the PS-Theory framework.
Definition 7 (Prompt Perturbation Manifold). Assume the original input manifold M0 is perturbed
by a prompt P , forming a compact smooth manifold M0(P ), e.g., M0(P ) = {X +P | X ∈ M0}.
The prompt space P defines a manifold family: {M0(P ) | P ∈ P}. (See Appendix B.13 for details.)

Theorem 4 (The Prompt Efficacy Bound). The adaptation capacity of a prompt P to influence model
output is bounded by the measure and diameter of M(L)(P ):

(Measure Bound) Hdint(M(L)(P )) ≤
(
sup
k

L∏
ℓ=1

dint∏
i=1

σ
(ℓ)
i,k

)
· Hdint(M0(P )), (9)

(Diameter Bound) diam(M(L)(P )) ≤
( L∏

ℓ=1

sup
k

|J (ℓ)
k |op

)
· diam(M0(P )), (10)

where | · |op is the spectral norm (the largest singular value), σ(ℓ)
i,k are the singular values of the

Jacobian of the ℓ-th layer in the k-th linear region, and dint is the intrinsic dimension of M(L)(P ).

The proof of Theorem 4 is provided in Appendix B.15. This theorem reveals that prompt tuning is
fundamentally constrained by the frozen network’s architecture. The prompt’s influence is compressed
by the product of layer-wise Jacobian singular values, leading to irreversible information loss. Since
the prismatic, piecewise linear structure of the pre-trained model is immutable, the prompt can only
shift the input within this fixed, contracting geometric framework (details are in Appendix B.16).

The establishment of Prismatic Space Theory revolves around prompt tuning, yet it offers a more
fundamental geometric perspective on how graph foundation models process input manifolds. The
theory is constructed layer by layer, making it not limited to adaptation methods that operate solely at
the input data level, but also applicable to the analysis of other types of adaptation approaches.
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4 MESSAGE TUNING FOR GFMS

In this section, we introduce Message Tuning for GFMs (MTG), a novel lightweight adaptation
approach that dynamically guides message fusion across all layers (Figure 1). Through our PS-Theory
in Section 3, we rigorously prove that MTG has greater adaptation capacity than prompt tuning.

4.1 CORE MECHANISM

The concept of MTG shares a similar inspiration with prefix-tuning (Li & Liang, 2021), which
is widely adopted in large language models. However, prefix-tuning is specifically designed for
transformer architectures and generative tasks on sequential data, making it not directly applicable
to graph-structured data. In this work, we introduce a general message tuning framework tailored
for graph foundation models with diverse backbone architectures. The core mechanism of MTG
is to inject a small set of learnable message prototypes into each layer, which then undergo a
dynamic fusion with the native messages computed by the model, while the original parameters
Θ(ℓ) = {Θ(ℓ)

a ,Θ
(ℓ)
m ,Θ

(ℓ)
u } in Eq.(1) are kept frozen.

Learnable Message Prototypes. Formally, for each layer ℓ, we introduce a small set of m learnable
prototype vectors, denoted as M (ℓ) = [m

(ℓ)
1 ,m

(ℓ)
2 , . . . ,m

(ℓ)
m ]⊤ ∈ Rm×dℓ−1 . Then the GFM layer

after injecting message prototypes can be expressed as:

H(ℓ) = U(ℓ)
(
M(ℓ)

(
A(ℓ)

(
A,H

(ℓ−1)
M ;Θ(ℓ)

a

)
,H

(ℓ−1)
M ;Θ(ℓ)

m

)
,H

(ℓ−1)
M ;Θ(ℓ)

u

)
, (11)

H
(ℓ−1)
M = F(ℓ)(H(ℓ−1),M (ℓ);Θ

(ℓ)
f ), (12)

where F(ℓ) denotes dynamic message fusion operator, M (ℓ) and Θ
(ℓ)
f are the learnable parameters.

This is equivalent to replacing H(ℓ−1) in Eq.(1) with H
(ℓ−1)
M defined in Eq.(12), resulting in Eq.(11).

Dynamic Message Fusion. While both are message fusion operators, F(ℓ) differs from M(ℓ) in that
it dynamically fuses learnable message prototypes with the input message representations at each
layer, instead of fusing messages between nodes. We simply employ a linear projection followed by
a row-wise Softmax operation to compute the attention for fusing H(ℓ−1) with M (ℓ). Thus, F(ℓ) can
be expressed as:

F(ℓ)(H(ℓ−1),M (ℓ);Θ
(ℓ)
f ) = H(ℓ−1) + Softmax(H(ℓ−1)W (ℓ)

p ) ·M (ℓ) (13)

where Θ
(ℓ)
f = W

(ℓ)
p ∈ Rdℓ−1×m is the projection matrix. Alternatively, one may consider replacing

linear projections with MLPs or employing dot-product attention, though this may introduce higher
computational complexity.

4.2 THEORETICAL ANALYSIS

Consider a pre-trained GFM Φ with L layers as defined in Definition 1, and let M0 ⊂ RN×d0 be the
compact smooth input manifold with intrinsic dimension D0. Let P be the set of possible prompts
for prompt tuning, and for any prompt P ∈ P , let M0(P ) be the perturbed input manifold. The final
representation space under prompt tuning is M(L)

PT (P ) = Φ(M0(P )).
Theorem 5 (Message Tuning Has Greater Adaptation Capacity). For message tuning, we inject
learnable message prototypes M (ℓ) ∈ Rm×dℓ−1 and fusion parameters Θ(ℓ)

f at each layer ℓ, resulting

in a modified network ΦMTG. Let M(L)
MTG be the final representation space under message tuning with

optimally chosen parameters. Then, the following inequalities hold:

(Intrinsic Dimension Comparison) dint(M(L)
MTG) ≥ dint(M(L)

PT (P )) for all P ∈ P, (14)

(Measure Comparison) Hdint(M(L)
MTG) ≥ Hdint(M(L)

PT (P )) for all P ∈ P, (15)

(Diameter Comparison) diam(M(L)
MTG) ≥ diam(M(L)

PT (P )) for all P ∈ P. (16)
Moreover, there exists a message tuning configuration such that the inequalities are strict.

In the semantic context of the geometric properties of the prismatic space output by the GFM,
this theorem reveals that MTG has greater adaptation capacity than prompt tuning. The proof of
Theorem 5 and further theoretical analysis are provided in Appendix C.
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5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our proposed MTG on the Graph Prompt
Learning benchmark ProG (Zi et al., 2024) by answering the following five research questions:

Q1: How does MTG perform compared to prompt tuning baselines? (Section 5.2)
Q2: How do different pre-training strategies affect MTG’s adaptation capability? (Section 5.3)
Q3: Can MTG effectively mitigate negative transfer during adaptation? (Section 5.4)
Q4: How does MTG perform on different backbone models? ( Appendix F.2)
Q5: What is MTG’s computational efficiency compared to prompt tuning methods? (Appendix F.3)

5.1 EXPERIMENT SETTING

Datasets. To investigate the adaptability of MTG across diverse graphs, we conduct experiments
across 15 datasets from the Graph Prompt Learning benchmark ProG (Zi et al., 2024). We evaluate our
method over 7 node classification benchmarks spanning homophilic graphs (Cora, Citeseer, PubMed)
(Sen et al., 2008), heterophilic graphs (Texas, Actor, Wisconsin) (Pei et al., 2020), and large-scale
graphs (ogbn-arxiv) (Hu et al., 2020a). For graph-level tasks, we employ 8 graph classification
datasets across diverse domains, including biological datasets (D&D, ENZYMES, PROTEINS)
(Dobson & Doig, 2003; Borgwardt et al., 2005; Wang et al., 2022), small molecule datasets (BZR,
COX2, MUTAG) (Kriege & Mutzel, 2012; Rossi & Ahmed, 2015), and social networks (COLLAB,
IMDB-B) (Yanardag & Vishwanathan, 2015). Table 6 summarizes the statistics of all datasets and
more dataset details are provided in Appendix D.2.

Backbones. Since the latest studies (Luo et al., 2024; 2025) have once again validated the powerful
capabilities of GCN (Kipf & Welling, 2017) as the most classic and widely used graph neural network,
we choose GCN as the baseline to compare MTG with prompt tuning. We also investigate other
models commonly used as backbones for GFMs, such as GraphSAGE (Hamilton et al., 2017), GAT
(Veličković et al., 2018), GIN (Xu et al., 2019), and Graph Transformer (Ying et al., 2021), and the
results can be found in Appendix F.2.

Pre-training Strategies. Following ProG (Zi et al., 2024), we adopt six representative pre-training
strategies across three levels: DGI (Veličković et al., 2019) maximizes node-graph mutual information
while GraphMAE (Hou et al., 2022) reconstructs masked features at the node level; EdgePreGPPT
(Sun et al., 2022) computes link probabilities and EdgePreGprompt (Liu et al., 2023b) learns triplet-
based similarities for edge-level tasks; GraphCL (You et al., 2020) enforces augmentation consistency
and SimGRACE (Xia et al., 2022) performs parameter perturbations at the graph level.

Prompt Tuning Baselines. We first adopt supervised learning as the baseline for evaluating positive
transfer, where negative transfer is identified when adaptation methods fail to surpass supervised
performance. Following ProG (Zi et al., 2024), we compare MTG to fine-tuning and the following
prevalent prompt tuning methods: GPPT (Sun et al., 2022), Gprompt (Liu et al., 2023b), All-in-one
(Sun et al., 2023a), GPF and GPF-plus (Fang et al., 2023). Baseline results combine those from ProG
with our own reproductions, and details are provided in Appendix E.

Implementation. For node tasks, we use 90% of the data to the test set, while for graph tasks, we use
an 80% test split. To ensure robustness, we repeat sampling five times to construct k-shot tasks and
report average and standard deviation over these five results. Evaluation metrics include Accuracy
(primary metric in Section 5), Macro F1 Score, and AUROC. Hyperparameters are optimized via
random search. A comprehensive description of the experimental setup is provided in Appendix D.

5.2 UPPER BOUND PERFORMANCE OF MESSAGE TUNING

One-shot node/graph classification is one of the most challenging downstream adaptation tasks for
graph foundation models, as it requires learning the characteristics of an entire class using only one
sample. In Table 1 and Table 2, we present the best results achieved by various adaptation methods
across 15 datasets, which represent the top adaptation performance from pre-trained models with
different strategies. This offers an intuitive reflection of the upper bound performance of each type of
adaptation method. The results in the tables demonstrate that our adaptation method MTG achieves a
higher performance upper bound across all 15 datasets compared to state-of-the-art prompt tuning
methods, which aligns with our theoretical insights. Despite being trained on only a small number
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Table 1: Performance comparison of adaptation methods on 1-shot node classification (accuracy±std %, 5 runs).
The first, second and third best results are shaded in red, with descending color saturation.

Method Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised 26.56±5.55 21.78±7.32 39.37±16.34 41.60±3.10 37.97±5.80 20.57±4.47 10.99±3.19

Fine-tuning 52.61±1.73 35.05±4.37 46.74±14.89 40.69±4.13 46.88±4.69 20.74±4.12 16.21±3.82

GPPT 43.15±9.44 37.26±6.17 48.31±17.72 30.40±6.81 31.81±15.33 22.58±1.97 14.65±3.07

Gprompt 56.66±11.22 53.21±10.94 39.74±15.35 77.07±5.93 33.25±40.11 25.26±1.10 75.72±4.95

All-in-one 52.39±10.17 40.41±2.80 45.17±6.45 66.29±19.11 65.49±7.06 24.61±2.80 13.16±5.98

GPF 38.57±5.41 31.16±8.05 49.99±8.86 78.35±4.07 73.54±18.50 28.70±3.35 65.11±5.70

GPF-plus 55.77±10.30 59.67±11.87 46.64±18.97 82.11±13.95 76.10±20.35 29.32±8.56 71.98±12.23

MTG (Ours) 58.54±7.89 62.31±18.90 50.70±11.68 83.32±12.46 79.13±17.18 29.44±7.31 75.97±4.29

Table 2: Performance comparison of adaptation methods on 1-shot graph classification.

Method IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised 57.30±0.98 47.23±0.61 56.36±7.97 65.20±6.70 20.58±2.00 27.08±1.95 25.80±6.53 55.33±6.22

Fine-tuning 57.75±1.22 48.10±0.23 63.44±3.64 65.47±5.89 22.21±2.79 76.19±5.41 34.69±8.50 57.15±4.32

GPPT 50.15±0.75 47.18±5.93 60.92±2.47 60.40±15.43 21.29±3.79 78.23±1.38 59.32±11.22 57.69±6.89

Gprompt 54.75±12.43 48.25±13.64 59.17±11.26 73.60±4.76 22.29±3.50 54.64±9.94 55.43±13.69 57.81±2.68

All-in-one 60.07±4.81 51.66±0.26 66.49±6.26 75.20±6.33 23.96±1.45 76.14±5.51 64.38±9.32 59.72±1.52

GPF 59.65±5.06 47.42±11.22 63.91±3.26 68.40±5.09 22.00±1.25 65.79±17.72 71.67±14.71 59.36±1.18

GPF-plus 57.93±1.62 47.24±0.29 62.92±2.78 65.20±6.04 22.92±1.64 33.78±1.52 71.17±14.92 57.62±2.42

MTG (Ours) 62.25±3.72 52.25±0.56 66.98±2.17 75.80±5.49 26.08±4.31 78.27±2.01 74.81±13.96 60.68±2.42

of parameters, MTG still exhibits a substantial advantage over supervised learning and fine-tuning
approaches, which underscores its high parameter efficiency. Among node-level tasks, GPF-plus
is the prompt tuning method that performs closest to MTG, while on graph-level tasks, All-in-one
ranks as the second most effective method after MTG. Additional experimental details are provided
in Appendix F, including results for few-shot node/graph classification tasks under 3-shot and 5-shot
settings (Appendix F.1), a comparative analysis of computational efficiency between MTG and
prompt tuning methods (Appendix F.3), along with a sensitivity analysis (Appendix F.4).

5.3 ROBUSTNESS PERFORMANCE OF MTG ACROSS PRE-TRAINING STRATEGIES

In addition to validating the upper bound performance of MTG, we further analyze whether MTG
exhibits strong robustness across different pre-training strategies through more detailed experimental
results. In Section 5.2, we have verified that GPF-plus and All-in-one are the best-performing prompt
tuning methods for 1-shot node classification and 1-shot graph classification tasks, respectively.
Therefore, we selected these two methods along with Fine-tuning for a more detailed comparison
with MTG. In our experiments, we employ three pre-training strategies at the node, edge, and graph
levels to obtain pre-trained models, which have varying impacts on different datasets. As shown in
Tables 3 and 4, Fine-tuning experiences performance collapse on the ogbn-arxiv dataset under the DGI
and EdgePreGprompt pre-training strategies, with the accuracy dropping as low as 4.65%. Similarly,
GPF-plus exhibits performance degradation on the Cora dataset under the DGI and SimGRACE
pre-training strategies, achieving an accuracy as low as 17.29%. All-in-one also shows relatively
low performance on the IMDB-B dataset under the GraphMAE and EdgePreGprompt pre-training
strategies. These results indicate that their adaptability varies significantly across different pre-training
strategies. In contrast, MTG demonstrates relatively more stable performance across all datasets and
all pre-training strategies, highlighting broader compatibility and better robustness when combined
with various types of pre-training strategies.

5.4 MITIGATION OF NEGATIVE TRANSFER

Compared to visual images and natural language, fine-tuning pre-trained models on graph data for
downstream tasks is more prone to negative transfer. Therefore, the ability to effectively mitigate
negative transfer serves as an important criterion for evaluating the quality of an adaptation method.
As shown in Tables 3 and 4, prompt tuning methods such as GPF-plus and All-in-one have already
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Table 3: Performance comparison of Fine-tuning, GPF-plus, and MTG on 1-shot node classification. ↑/↓:
positive/negative transfer vs. supervised learning baseline; NTR (Negative Transfer Rate): fraction of datasets
with ↓ per daptation method.

Pre-training Adaptation NTR Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv

- Supervised 0% 26.56±5.55 (-) 21.78±7.32 (-) 39.37±16.34 (-) 41.60±3.10 (-) 37.97±5.80 (-) 20.57±4.47 (-) 10.99±3.19 (-)

DGI

Fine-tuning 57% 33.15±7.84 (↑) 21.64±3.92 (↓) 42.01±12.54 (↑) 37.49±7.56 (↓) 45.31±5.01 (↑) 19.76±3.53 (↓) 7.21±2.91 (↓)

GPF-plus 29% 17.29±6.18 (↓) 26.60±13.24 (↑) 34.02±11.94 (↓) 74.68±11.81 (↑) 71.44±18.66 (↑) 22.42±9.66 (↑) 16.83±10.02 (↑)

MTG 0% 49.48±4.82 (↑) 62.31±18.90 (↑) 46.18±7.32 (↑) 67.72±10.19 (↑) 62.96±16.80 (↑) 25.48±7.33 (↑) 25.06±10.57 (↑)

GraphMAE

Fine-tuning 57% 32.93±3.17 (↑) 21.26±3.57 (↓) 42.99±14.25 (↑) 36.80±7.17 (↓) 37.81±8.62 (↓) 19.86±2.70 (↓) 12.35±3.60 (↑)

GPF-plus 0% 54.26±7.48 (↑) 59.67±11.87 (↑) 46.64±18.57 (↑) 82.11±13.95 (↑) 70.95±18.63 (↑) 26.58±7.84 (↑) 49.81±2.62 (↑)

MTG 0% 46.27±6.66 (↑) 49.21±12.95 (↑) 46.98±10.02 (↑) 83.32±12.46 (↑) 71.59±18.67 (↑) 29.44±7.31 (↑) 36.44±9.59 (↑)

EdgePre
-GPPT

Fine-tuning 43% 38.12±5.29 (↑) 18.09±5.39 (↓) 46.74±14.09 (↑) 35.31±9.31 (↓) 47.66±2.37 (↑) 19.17±2.53 (↓) 16.21±3.82 (↑)

GPF-plus 14% 28.49±18.73 (↓) 28.04±14.31 (↑) 46.51±15.84 (↑) 72.66±12.05 (↑) 70.67±17.59 (↑) 29.32±8.56 (↑) 71.98±12.23 (↑)

MTG 0% 46.68±2.66 (↑) 33.22±12.52 (↑) 44.85±9.75 (↑) 73.80±9.56 (↑) 71.11±17.13 (↑) 20.96±2.93 (↑) 75.97±4.29 (↑)

EdgePre
-Gprompt

Fine-tuning 14% 35.57±5.83 (↑) 22.28±3.80 (↑) 41.50±7.54 (↑) 40.69±4.13 (↓) 40.62±7.95 (↑) 20.74±4.16 (↑) 14.83±2.38 (↑)

GPF-plus 0% 55.77±10.30 (↑) 49.43±8.21 (↑) 42.79±18.18 (↑) 78.76±13.63 (↑) 68.75±16.51 (↑) 22.68±3.64 (↑) 57.44±6.95 (↑)

MTG 0% 46.29±3.84 (↑) 45.30±16.04 (↑) 50.70±11.68 (↑) 72.75±11.21 (↑) 79.13±17.18 (↑) 21.34±1.78 (↑) 21.08±2.34 (↑)

GraphCL

Fine-tuning 43% 52.61±1.73 (↑) 27.02±4.31 (↑) 42.49±11.29 (↑) 33.94±7.74 (↓) 40.31±13.68 (↑) 20.19±1.98 (↓) 4.65±1.19 (↓)

GPF-plus 29% 34.18±17.71 (↓) 28.86±22.88 (↑) 37.02±11.29 (↓) 52.35±19.69 (↑) 75.40±19.10 (↑) 22.82±4.99 (↑) 32.11±4.86 (↑)

MTG 0% 58.54±7.89 (↑) 50.96±16.40 (↑) 40.00±7.80 (↑) 48.41±16.10 (↑) 69.71±16.42 (↑) 24.77±8.45 (↑) 38.96±6.82 (↑)

SimGRACE

Fine-tuning 57% 40.40±4.66 (↑) 35.05±4.37 (↑) 37.59±8.17 (↓) 37.37±3.68 (↓) 46.88±4.64 (↑) 19.78±1.89 (↓) 8.13±3.26 (↓)

GPF-plus 29% 21.33±14.86 (↓) 24.61±21.21 (↑) 35.90±9.06 (↓) 73.49±14.17 (↑) 76.10±20.35 (↑) 20.51±4.24 (↑) 46.71±3.17 (↑)

MTG 0% 45.93±7.67 (↑) 57.60±9.01 (↑) 43.29±10.80 (↑) 72.98±9.75 (↑) 73.17±16.68 (↑) 22.03±3.59 (↑) 37.90±5.83 (↑)

Table 4: Performance comparison of Fine-tuning, All-in-one, and MTG on 1-shot graph classification.

Pre-training Adaptation NTR IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D

- Supervised 0% 57.30±0.98 (-) 47.23±0.61 (-) 56.36±7.97 (-) 65.20±6.70 (-) 20.58±2.00 (-) 27.08±11.94 (-) 25.80±6.53 (-) 55.33±6.22 (-)

DGI

Fine-tuning 38% 57.32±0.90 (↑) 42.22±0.73 (↓) 64.65±2.10 (↑) 64.13±7.90 (↓) 17.83±1.88 (↓) 29.44±9.68 (↑) 26.48±7.61 (↑) 57.15±4.32 (↑)

All-in-one 13% 60.07±4.81 (↑) 39.56±5.00 (↓) 62.58±7.07 (↑) 73.87±6.13 (↑) 23.96±1.45 (↑) 50.72±9.93 (↑) 64.38±9.32 (↑) 55.97±6.52 (↑)

MTG 13% 59.15±5.44 (↑) 43.46±6.83 (↓) 62.78±2.36 (↑) 65.60±7.29 (↑) 24.71±1.88 (↑) 51.74±13.90 (↑) 74.81±13.96 (↑) 56.39±3.27 (↑)

GraphMAE

Fine-tuning 0% 57.70±1.13 (↑) 48.10±0.23 (↑) 63.57±3.57 (↑) 65.20±5.00 (-) 22.21±2.79 (↑) 28.47±14.72 (↑) 25.80±6.53 (-) 57.54±4.41 (↑)

All-in-one 25% 52.62±3.04 (↓) 40.82±14.63 (↓) 66.49±6.26 (↑) 69.67±9.13 (↑) 23.21±1.72 (↑) 56.68±7.38 (↑) 58.64±19.59 (↑) 58.77±1.05 (↑)

MTG 0% 58.10±5.72 (↑) 48.24±9.56 (↑) 59.62±6.41 (↑) 66.93±7.03 (↑) 22.71±2.58 (↑) 58.93±12.05 (↑) 54.07±18.34 (↑) 58.01±5.85 (↑)

EdgePre
-GPPT

Fine-tuning 63% 57.20±0.85 (↓) 47.14±0.55 (↓) 58.27±10.66 (↑) 64.27±4.73 (↓) 19.79±2.17 (↓) 27.83±13.44 (↑) 72.10±14.30 (↑) 52.82±9.38 (↓)

All-in-one 13% 59.12±0.77 (↑) 42.74±4.65 (↓) 65.71±5.49 (↑) 75.20±6.33 (↑) 20.92±2.04 (↑) 60.27±16.97 (↑) 59.69±9.90 (↑) 56.24±2.46 (↑)

MTG 13% 62.25±3.72 (↑) 45.15±6.00 (↓) 62.71±2.30 (↑) 67.20±6.36 (↑) 26.08±4.31 (↑) 60.16±10.63 (↑) 62.28±10.13 (↑) 56.37±8.33 (↑)

EdgePre
-Gprompt

Fine-tuning 38% 57.35±0.92 (↑) 47.20±0.53 (↓) 61.84±2.59 (↑) 62.67±2.67 (↓) 19.75±2.33 (↓) 27.13±12.05 (↑) 29.44±11.20 (↑) 56.16±5.10 (↑)

All-in-one 25% 53.78±2.82 (↓) 42.87±6.19 (↓) 61.82±7.53 (↑) 68.27±3.88 (↑) 21.88±0.56 (↑) 49.06±5.53 (↑) 32.65±10.08 (↑) 57.60±4.37 (↑)

MTG 0% 59.45±5.45 (↑) 47.72±8.45 (↑) 65.66±1.56 (↑) 75.80±5.49 (↑) 22.29±1.94 (↑) 57.75±10.76 (↑) 49.94±9.08 (↑) 60.68±2.42 (↑)

GraphCL

Fine-tuning 25% 57.75±1.02 (↑) 39.62±0.63 (↓) 63.44±3.64 (↑) 65.07±8.38 (↓) 23.96±1.99 (↑) 53.14±21.32 (↑) 29.07±7.00 (↑) 60.62±1.56 (↑)

All-in-one 13% 58.75±0.80 (↑) 51.66±2.60 (↑) 66.00±8.79 (↑) 66.00±8.79 (↑) 19.46±2.85 (↓) 52.55±13.51 (↑) 42.65±14.43 (↑) 59.72±1.52 (↑)

MTG 0% 57.65±7.05 (↑) 47.81±3.73 (↑) 63.70±2.87 (↑) 66.20±7.52 (↑) 20.96±1.97 (↑) 50.36±12.97 (↑) 51.05±15.50 (↑) 55.46±4.77 (↑)

SimGRACE

Fine-tuning 38% 57.33±0.96 (↑) 46.89±0.42 (↓) 60.07±3.21 (↑) 65.47±5.89 (↑) 19.71±1.76 (↓) 76.19±5.41 (↑) 28.48±6.49 (↑) 53.23±9.71 (↓)

All-in-one 0% 58.83±0.85 (↑) 47.60±3.90 (↑) 66.20±7.52 (↑) 66.67±5.73 (↑) 22.50±1.56 (↑) 76.14±5.51 (↑) 59.01±12.34 (↑) 58.26±1.18 (↑)

MTG 0% 61.82±3.49 (↑) 52.25±0.56 (↑) 66.98±2.17 (↑) 68.87±5.01 (↑) 21.33±1.92 (↑) 78.27±2.01 (↑) 65.68±16.41 (↑) 57.26±2.01 (↑)

relatively alleviated negative transfer compared to fine-tuning, while our proposed MTG demonstrates
a more significant advantage in mitigating negative transfer. Under all pre-training strategies across
the two downstream tasks, MTG achieves a lower negative transfer rate than GPF-plus and All-in-one,
and is markedly superior to fine-tuning. It is particularly noteworthy that MTG completely eliminates
negative transfer in the 1-shot node classification task, highlighting its exceptional capability in
mitigating such issues. A theoretical analysis of negative transfer is presented in Appendix C.2.

6 CONCLUSION

In this paper, we propose Prismatic Space Theory to quantify the capacity of adaptation approaches
and establish the upper bound for the adaptation capacity of graph prompt tuning. Building on these
insights, we introduce Message Tuning for GFMs (MTG), a lightweight adaptation method that
dynamically guides message fusion across GNN layers while keeping pre-trained weights frozen.
Theoretical and empirical results demonstrate MTG’s consistent superiority over prompt tuning.
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library (Zi et al., 2024), extended to support our message tuning. Our code is available at https:
//anonymous.4open.science/r/MTG. Anonymous, downloadable source code also includes scripts for
pre-training, adaptation, and evaluation on all datasets used in our experiments.

Data Processing. A detailed description of all datasets used in the experiments and dataset prepro-
cessing steps, including feature extraction, graph normalization, and train/validation/test splits for
few-shot settings (1/3/5-shot), is provided in Appendix D.

Computational Resources. Hardware specifications and software environments are described in
Appendix D.1 to facilitate replication of computational experiments.

Theoretical Proofs. All theoretical claims, including the Prismatic Space Theory and its application
to the analysis of prompt tuning and message tuning, are rigorously proven in Appendix B and C.

We believe these efforts collectively ensure the reproducibility of our work and encourage the
community to build upon our findings.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this work, we use large language models (LLMs) to assist with proofreading,
grammatical correction, and language polishing. The LLM serves solely as a tool to enhance the
clarity and readability of our writing. We meticulously review and edit all AI-generated content, and
we accept full responsibility for the final version of the manuscript.

B EXTRA MATERIALS FOR PRISMATIC SPACE THEORY

Reading Guideline: Appendix B is organized in strict accordance with the order in which definitions,
theorems, and corollaries appear in the main text, serving as a detailed supplement. This includes
supplementary explanations of definitions, lemmas required for proving theorems, interpretations of
theorems, and more. We recommend that readers first review the related work, such as other related
theoretical works and relevant mathematical textbooks, to establish a theoretical foundation before
proceeding through the main text in sequence with the aid of Appendix B.

Notation: The notation used in this paper has been aligned as closely as possible with the standardized
notation recommended by the ICLR conference (https://github.com/goodfeli/dlbook_notation/). A
summary of the primary notation used is provided in the table below.

Table 5: Primary Notation.

Notation Description
G A graph
V The set of nodes
E The set of edges
N Number of nodes
ℓ Number of layers
R The set of real numbers
{0, 1} The set containing 0 and 1
X,A,H(ℓ) The matrices
A,M,U The operators
Θ The parameters
V,S,H(ℓ) The sets
F (ℓ) : H(ℓ−1) → H(ℓ) The map F (ℓ) with domain H(ℓ−1) and range H(ℓ)

X ,M The manifold or space
Φ(ℓ) = F (ℓ) ◦ · · · ◦ F (1) The composition of maps
dint The intrinsic dimension
J (ℓ)(H) The Jacobian matrix
σ
(ℓ)
i The singular values

Hs The s-dimensional Hausdorff measure
{Ck} The set of cells
R1, ..., RL The regions
Ω(ℓ) The set of polytopic regions

B.1 RELATED WORK ON PRISMATIC SPACE THEORY

We introduce, for the first time, the Prismatic Space Theory to provide a unified analysis of adaptation
methods for graph foundation models. In constructing this theoretical framework, we adopt the
perspective of piecewise linear maps, an approach that is not entirely new, as several outstanding
theoretical studies have employed similar ideas to analyze ReLU neural networks (Arora et al., 2018;
Zhang & Wu, 2020; Liu et al., 2023a; Fu, 2025; Beshkov, 2025).

Previously, only Wang et al. (2025a) conducted theoretical research on prompt tuning for GFMs,
explaining why prompt tuning works from the perspective of data operations, primarily using
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mathematical tools from linear algebra, convex optimization, and probability. In contrast, our
Prismatic Space Theory offers a more profound and fundamental geometric perspective to quantify
the upper bound of prompt tuning’s capability. Some mathematical concepts not explicitly defined or
elaborated in this paper can be found in Halmos (1950); Greub (1975); Lang (1993); Krantz & Parks
(2008); Lee (2011).

B.2 DETAILS OF DEFINITION 1

The unified GFM layer formulation provided in Definition 1 offers a general framework that encap-
sulates a wide range of popular GNN architectures. The three core operators A(ℓ) (attention), M(ℓ)

(message fusion), and U(ℓ) (update) can be instantiated in different ways to recover specific models.
Below, we delineate how several classic models are special cases of this unified formulation.

GCN (Graph Convolutional Network) (Kipf & Welling, 2017) employs a fixed, non-learnable
attention mechanism based on the normalized adjacency matrix and a simple update function.

Attention Operator A(ℓ) computes a static, structural attention weight for each edge (i, j) based on
the normalized adjacency matrix:

A(ℓ)
(
A,H(ℓ−1);Θ(ℓ)

a

)
= D̃− 1

2 ÃD̃− 1
2 , (17)

where Ã = A + IN is the adjacency matrix with self-loops and D̃ is the corresponding degree
matrix.

Message Fusion Operator M(ℓ) performs a weighted sum of the neighbors’ features using the
normalized adjacency matrix:

M(ℓ)
(
D̃− 1

2 ÃD̃− 1
2 ,H(ℓ−1);Θ(ℓ)

m

)
= D̃− 1

2 ÃD̃− 1
2H(ℓ−1)W (ℓ), (18)

where W (ℓ) ∈ Rdℓ−1×dℓ is a learnable weight matrix (Θ(ℓ)
m = W (ℓ)).

Update Operator U(ℓ) applies a non-linear activation function σ (e.g., ReLU) to the aggregated
messages:

U(ℓ)
(
D̃− 1

2 ÃD̃− 1
2H(ℓ−1)W (ℓ),H(ℓ−1);Θ(ℓ)

u

)
= σ

(
D̃− 1

2 ÃD̃− 1
2H(ℓ−1)W (ℓ)

)
, (19)

where the previous representation H(ℓ−1) is not explicitly used in the update, making the update a
direct transformation of the messages (Θ(ℓ)

u = ∅).

The resulting layer formulation is:

H(ℓ) = σ
(
D̃− 1

2 ÃD̃− 1
2H(ℓ−1)W (ℓ)

)
. (20)

GraphSAGE (Hamilton et al., 2017) employs a uniform (or degree-based) attention weight over the
sampled neighborhood, a configurable message aggregation function (e.g., mean, pool, LSTM), and
an update function that concatenates the node’s previous representation with the aggregated message.

Attention Operator A(ℓ) often uses a static, uniform attention weight 1
|N (i)| for each sampled neighbor

of node i, or a learned weight based on node degree in some variants. It can be represented as a
matrix S(ℓ):

A(ℓ)
(
A,H(ℓ−1);Θ(ℓ)

a

)
= S(ℓ), S

(ℓ)
ij =

{
1

|N (i)| if j ∈ N (i)

0 otherwise
(21)

where N (i) denotes the sampled neighbors of node i.

Message Fusion Operator M(ℓ) aggregates messages from the sampled neighborhood using the
specified aggregator AGGREGATE(ℓ) (e.g., mean, pool, LSTM). For the mean aggregator:

M(ℓ)
(
S(ℓ),H(ℓ−1);Θ(ℓ)

m

)
= S(ℓ)H(ℓ−1), (22)
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where parameters Θ(ℓ)
m depend on the choice of aggregator.

Update Operator U(ℓ) concatenates the node’s previous representation H(ℓ−1) with the aggregated
neighborhood message, applies a linear transformation W (ℓ), and a non-linear activation function σ:

U(ℓ)
(
S(ℓ)H(ℓ−1),H(ℓ−1);Θ(ℓ)

u

)
= σ

(
W (ℓ) · CONCAT(H(ℓ−1),S(ℓ)H(ℓ−1))

)
, (23)

where Θ
(ℓ)
u = W (ℓ).

The resulting layer formulation for the mean aggregator is:

H(ℓ) = σ
(
W (ℓ) · CONCAT(H(ℓ−1),S(ℓ)H(ℓ−1))

)
. (24)

GAT (Graph Attention Network) (Veličković et al., 2018) introduces a learnable self-attention
mechanism to compute dynamic attention weights between nodes.

Attention Operator A(ℓ) computes pairwise attention coefficients αij for nodes i and j using a
learnable function (a shared attentional mechanism a):

e
(ℓ)
ij = a(W (ℓ)h

(ℓ−1)
i ,W (ℓ)h

(ℓ−1)
j ) = LeakyReLU

(
ã(ℓ)T [W (ℓ)h

(ℓ−1)
i ∥W (ℓ)h

(ℓ−1)
j ]

)
, (25)

α
(ℓ)
ij = Softmax(eij) =

exp(eij)∑
k∈N (i) exp(eik)

, (26)

A(ℓ)
(
A,H(ℓ−1);Θ(ℓ)

a

)
= A(ℓ)

a , A(ℓ)
a ij =

{
α
(ℓ)
ij if j ∈ N (i)

0 otherwise
(27)

where h
(ℓ−1)
i represents the vector of node i at the ℓ− 1-th layer, T represents transposition, ∥ is the

concatenation operation, and the attention mechanism a is a single-layer feedforward neural network
parametrized by a weight vector ã(ℓ) (Θ(ℓ)

a = {ã(ℓ),W (ℓ)}).

Message Fusion Operator M(ℓ) performs a weighted sum of the transformed neighbor features based
on the computed attention weights:

M(ℓ)
(
A(ℓ)

a ,H(ℓ−1);Θ(ℓ)
m

)
= A(ℓ)

a · (H(ℓ−1)W (ℓ)), (28)

where W (ℓ) is a shared linear transformation applied to every node and is also used by the Attention
Operator (Θ(ℓ)

m = W (ℓ)). The operations of the Attention Operator and the Message Fusion Operator
are partially overlapping.

Update Operator U(ℓ) combines the aggregated representations from multiple attention heads, typically
through concatenation (for intermediate layers) or averaging (for the output layer), followed by
application of a non-linear activation function σ to produce the new node representations:

U(ℓ)
(
{A(ℓ)

a

k
· (H(ℓ−1)W (ℓ)k)}Kk=1,H

(ℓ−1);Θ(ℓ)
u

)
=

K∥∥∥
k=1

σ
(
A(ℓ)

a

k
· (H(ℓ−1)W (ℓ)k)

)
, (29)

where ∥ represents concatenation, K represents the number of attention heads and no parameters are
used in this operator (Θ(ℓ)

u = ∅).

The resulting layer formulation is:

H(ℓ) =

K∥∥∥
k=1

σ
(
A(ℓ)

a

k
· (H(ℓ−1)W (ℓ)k)

)
. (30)

GIN (Graph Isomorphism Network) (Xu et al., 2019) uses a fixed, uniform attention weight for
neighbors and a powerful update function based on an MLP to achieve expressiveness equivalent to
the Weisfeiler-Lehman graph isomorphism test.
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Attention Operator A(ℓ) employs a static attention weight of 1 for all neighbors and a weight of
(1 + ϵ(ℓ)) for the central node itself:

A(ℓ)
(
A,H(ℓ−1);Θ(ℓ)

a

)
= Ãϵ = A+ (1 + ϵ(ℓ))I = Ãϵ, (31)

where Θ
(ℓ)
a = ϵ(ℓ) is a potentially learnable parameter.

Message Fusion Operator M(ℓ) sums the neighbor messages and the scaled central node’s message:

M(ℓ)
(
Ãϵ,H

(ℓ−1);Θ(ℓ)
m

)
= ÃϵH

(ℓ−1), (32)

where no parameters are used (Θ(ℓ)
m = ∅).

Update Operator U(ℓ) applies a multi-layer perceptron (MLP(ℓ)) to the fused message:

U(ℓ)
(
ÃϵH

(ℓ−1),H(ℓ−1);Θ(ℓ)
u

)
= MLP(ℓ)

(
ÃϵH

(ℓ−1)
)
, (33)

where Θ
(ℓ)
u are the parameters of the MLP.

The resulting layer formulation is:

H(ℓ) = MLP(ℓ)
((

A+ (1 + ϵ(ℓ))I
)
H(ℓ−1)

)
. (34)

GT (Graph Transformer) (Ying et al., 2021) enhances the standard transformer architecture to
incorporate structural information of graphs, often by augmenting the self-attention mechanism with
structural biases.

Attention Operator A(ℓ) computes the query, key matrices Q(ℓ),K(ℓ) ∈ Rdℓ−1×dℓ via linear projec-
tions, with the core attention weight Â(ℓ) formulated as a sum of standard semantic attention and
a structural attention component B(ℓ) (e.g., from positional encodings, edge features, connectivity
patterns or node degrees).

Q(ℓ) = H(ℓ−1)W
(ℓ)
Q , K(ℓ) = H(ℓ−1)W

(ℓ)
K , (35)

Â(ℓ) = Softmax

(
Q(ℓ)(K(ℓ))T√

dℓ
+B(ℓ)

)
, (36)

A(ℓ)
(
A,H(ℓ−1);Θ(ℓ)

a

)
= Â(ℓ), (37)

where Θ
(ℓ)
a including the projection weights for Q(ℓ),K(ℓ) and parameters for computing B(ℓ).

Message Fusion Operator M(ℓ) computes the value matrice V (ℓ) ∈ Rdℓ−1×dℓ via linear projection
W

(ℓ)
V and performs the weighted aggregation of the value vectors using the computed attention matrix

Â(ℓ):
M(ℓ)

(
Â(ℓ),H(ℓ−1);Θ(ℓ)

m

)
= Â(ℓ)V (ℓ) = Â(ℓ) · (H(ℓ−1)W

(ℓ)
V ), (38)

where Θ
(ℓ)
m = W

(ℓ)
V .

Update Operator U(ℓ) applies a residual connection, layer normalization (LN), a position-wise
feed-forward network (FFN), another residual connection, and layer normalization.

H̃(ℓ) = LN
(
H(ℓ−1) + Â(ℓ) · (H(ℓ−1)W

(ℓ)
V )
)
, (39)

FFN(l)(H̃(ℓ)) = σ
(
H̃(ℓ)W

(l)
1 + b

(l)
1

)
W

(l)
2 + b

(l)
2 (40)

U(ℓ)
(
Â(ℓ)V (ℓ),H(ℓ−1);Θ(ℓ)

u

)
= LN

(
H̃(ℓ) + FFN(ℓ)(H̃(ℓ))

)
, (41)

where Θ
(ℓ)
u are the parameters of the FFN(ℓ). Multi-head self-attention (MHA) can also correspond

to the Update Operator.
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The resulting layer formulation is:

H(ℓ) = LN
(
LN
(
H(ℓ−1) + Â(ℓ)V (ℓ)

)
+ FFN(ℓ)

(
LN
(
H(ℓ−1) + Â(ℓ)V (ℓ)

)))
. (42)

This analysis demonstrates that the proposed unified GFM layer provides a powerful and expressive
framework that generalizes a broad spectrum of prevalent GNN architectures. The specific choices of
the operators A(ℓ), M(ℓ), and U(ℓ) determine the particular inductive biases and capabilities of the
resulting model.

B.3 DETAILS OF DEFINITION 2

Definition 8 (Polyhedral Region). In the context of Euclidean spaces, a polyhedral region (or
polyhedron) is a subset of Rn defined by a finite set of linear inequalities. Formally, a set R ⊆ Rn is
a polyhedral region if there exist matrices A ∈ Rm×n and vectors b ∈ Rm such that:

R = {x ∈ Rn | Ax ≤ b}, (43)

where the inequality is applied component-wise.
Remark 1. A polyhedral region may be described as the intersection of finitely many closed half-
spaces and/or hyperplanes, making it a convex polytope (possibly unbounded). In many analytical
contexts, polyhedral regions are assumed to be non-empty and may be required to have a non-empty
interior to avoid degenerate cases.
Definition 9 (Polyhedral Region in Matrix Space). A set R ⊆ RN×d is a polyhedral region if there
exists a matrix A ∈ Rm×Nd and a vector b ∈ Rm such that:

R =
{
H ∈ RN×d | A · vec(H) ≤ b

}
, (44)

where vec(H) ∈ RNd denotes the vectorization of the matrix H (i.e., the column vector obtained by
stacking the columns of H). The inequality ≤ is applied component-wise.
Remark 2. Since the spaces Rα×β and Rαβ are isomorphic as vector spaces via the vectorization
operation vec : Rα×β → Rαβ (which stacks the columns of a matrix into a vector) and its inverse
unvec : Rαβ → Rα×β , many theorems and proofs in this paper do not strictly distinguish between
the matrix form and the vectorized form. This isomorphism allows us to apply concepts from
Euclidean geometry and measure theory directly to matrix-valued functions by considering their
vectorized counterparts, without loss of generality. Consequently, in the following analysis, we may
interchangeably use matrix or vector representations as convenient, ensuring that all results hold
equivalently in both forms.
Definition 10 (Piecewise Linear Function). A function f : Rn → Rm is called piecewise linear if
there exists a finite set of polyhedral regions {Ri}Ki=1 such that Rn =

⋃K
i=1 Ri and f is affine on

each Ri, i.e., f(x) = Aix+ bi for all x ∈ Ri, where Ai ∈ Rm×n and bi ∈ Rm.
Definition 11 (Jacobian of a Matrix Map). For a function F : RN×din → RN×dout that is differentiable
at a point H , the Jacobian of F at H is defined as the Jacobian matrix of the vectorized function.
Specifically, let f : RNdin → RNdout be given by f(h) = vec(F (unvec(h))). Then, the Jacobian
matrix JF (H) ∈ RNdout×Ndin is:

JF (H) =
∂f

∂h

∣∣∣∣
h=vec(H)

. (45)

This matrix contains all first-order partial derivatives of the vectorized output with respect to the
vectorized input.
Lemma 1 (Composition of Piecewise Linear Functions). If f : Rn → Rm and g : Rm → Rp are
piecewise linear functions, then the composition g ◦ f : Rn → Rp is also piecewise linear.

Proof. Since f is piecewise linear, there exists a partition of Rn into polyhedral regions Ri such that
f is affine on each Ri. Similarly, g is piecewise linear with polyhedral regions Sj in Rm where g is
affine. For each i and j, consider the set Ri ∩ f−1(Sj). Since f is affine on Ri, f(Ri) is a polyhedral
set, and f−1(Sj) ∩Ri is polyhedral (as the intersection of polyhedral sets). On Ri ∩ f−1(Sj), g ◦ f
is affine because f is affine and g is affine on Sj . The collection of all such sets Ri ∩ f−1(Sj) covers
Rn, and there are finitely many such sets. Thus, g ◦ f is piecewise linear.
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B.4 PROOF OF PROPOSITION 1

Proof. Based on the derivations in Appendix B.1, we observe that most operators primarily involve
matrix multiplication or can be approximated by matrix multiplications. Some operators further
apply a piecewise linear activation function (e.g., ReLU or LeakyReLU) or an MLP based on ReLU
after the matrix multiplication. As a result, these operators are generally piecewise linear functions.
Their piecewise linearity stems directly from the piecewise linear activation functions used. Since the
activation functions are continuous, the continuity of these operators is obvious. Piecewise linear
functions are differentiable a.e. because they are differentiable in the interior of each polyhedral
region (where they are affine) and non-differentiable only on the boundaries, which have Lebesgue
measure zero.

Remark 3. Linear functions are considered a special case of piecewise linear functions. If oper-
ator A(ℓ) computes scaled dot-product attention, it somewhat exceeds the scope of our theoretical
framework. Alternatively, approximating the computation of dynamic attention using piecewise
linear mappings may, from a mathematical limit perspective, exhibit certain compatibility with the
theoretical framework presented in this paper. This constitutes a promising direction for future
research aimed at extending the current theory.

B.5 PROOF OF PROPOSITION 2

Proof. The layer map F (ℓ) is defined by the composition of the operators A(ℓ),M(ℓ),U(ℓ), as given
in Definition 1. This can be viewed as a function F (ℓ) that maps H(ℓ−1) to H(ℓ). Since each operator
is piecewise linear, and by Lemma 1, the composition of piecewise linear functions is itself piecewise
linear. Therefore, F (ℓ) is a piecewise linear function. More formally, let f1 = A(ℓ), f2 = M(ℓ), and
f3 = U(ℓ). Then F (ℓ) = f3 ◦ (f2 ◦ (f1, id), id), where id denotes the identity function (which is
linear and thus piecewise linear). The composition involves piecewise linear functions and Cartesian
products (which preserve piecewise linearity), so F (ℓ) is piecewise linear.

By Definition 2, there exists a finite set of polyhedral regions {Ri}Ki=1 such that RN×dℓ−1 =
⋃K

i=1 Ri

and F (ℓ) is affine on each Ri, i.e., F (ℓ)(H) = unvec(Ai · vec(H) + bi) for all H ∈ Ri, where
Ai ∈ RNdℓ×Ndℓ−1 and bi ∈ RNdℓ . An affine function is differentiable everywhere in the interior of
its region. The polyhedral regions Ri are closed and have boundaries that are sets of measure zero
(since they are defined by finite sets of linear inequalities). Therefore, F (ℓ) is differentiable almost
everywhere (a.e.)—specifically, in the interior of each region Ri. At any point H where F (ℓ) is
differentiable (i.e., in the interior of some Ri), the derivative is given by the constant matrix Ai. The
Jacobian matrix J (ℓ)(H) is precisely this matrix Ai, which exists and has dimensions RNdℓ×Ndℓ−1

(since the input space has dimension Ndℓ−1 and the output space has dimension Ndℓ). Hence, for
any point H where F (ℓ) is differentiable, the Jacobian J (ℓ)(H) exists.

B.6 DETAILS OF DEFINITION 3

Definition 12 (Compact Smooth Manifold). A set M ⊂ Rn is called a compact smooth manifold of
dimension D0 if it satisfies the following two conditions:

1. (Smooth Structure) For every point p ∈ M, there exists an open neighborhood U ⊂ Rn

containing p and a smooth (C∞) mapping F : U → Rn−D0 such that: U ∩M = F−1(0) =
{x ∈ U | F (x) = 0} and the Jacobian matrix DF (x) ∈ R(n−D0)×n has full rank (n−D0) for
all x ∈ U ∩M.

2. (Compactness) M is compact in the subspace topology induced from Rn, which by the
Heine-Borel theorem is equivalent to being closed and bounded in Rn.

Definition 13 (Intrinsic Dimension). The intrinsic dimension D0 = dint(M0) of a manifold M0 is
the minimum number of parameters needed to locally parameterize the manifold. Formally, it is the
dimension of the tangent space TpM0 at any point p ∈ M0, which is constant for smooth connected
manifolds.

Remark 4. For a more basic definition of manifold, please refer to introductory mathematics textbook
(Lee, 2011). In our subsequent discussion of prismatic space, we generalize the concept of intrinsic
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dimension. Since prismatic space lacks the well-behaved mathematical properties of smooth manifold,
we define the intrinsic dimension as the maximum of the dimensions at all locally smooth points of
the space.

B.7 PROOF OF PROPOSITION 3

Proof. We proceed by leveraging the definitions provided and establishing the piecewise linearity of
the composite map Φ(ℓ), then analyzing its image on the input manifold M0.

By Proposition 2, each layer map F (ℓ) : H(ℓ−1) → H(ℓ) is a piecewise linear function. This
follows from the assumptions that the operators A(ℓ), M(ℓ), and U(ℓ) are piecewise linear and almost
everywhere differentiable, and that U(ℓ) uses piecewise linear activations. Since the composition of
piecewise linear functions is piecewise linear (Lemma 1), the composite map Φ(ℓ) = F (ℓ) ◦ · · · ◦F (1)

is also piecewise linear. Formally, there exists a finite set of polyhedral regions {Ri}Ki=1 covering the
domain of Φ(ℓ) such that for each i, the restriction of Φ(ℓ) to Ri is affine:

Φ(ℓ)(H) = unvec(Ai · vec(H) + bi) for all H ∈ Ri, (46)

where Ai ∈ RNdℓ×Nd0 and bi ∈ RNdℓ are constants specific to region Ri.

The input manifold M0 ⊂ RN×d0 is compact and smooth by Definition 3. Consider the intersection
of M0 with the polyhedral regions Ri:

M(i)
0 = M0 ∩Ri. (47)

Since M0 is a smooth manifold and each Ri is polyhedral, the sets M(i)
0 are submanifolds with

boundaries (possibly with corners). The collection {M(i)
0 }Ki=1 forms a finite cover of M0.

On each M(i)
0 , the map Φ(ℓ) is affine. Therefore, the image Φ(ℓ)(M(i)

0 ) is an affine transformation
of M(i)

0 :

Φ(ℓ)(M(i)
0 ) = {unvec(Ai · vec(H) + bi) | H ∈ M(i)

0 }. (48)

Assuming that Φ(ℓ) is injective on each Ri, it is also injective on each M(i)
0 . Since affine maps

preserve linear structures and injectivity ensures that the map is an embedding on each piece,
Φ(ℓ)(M(i)

0 ) is itself a submanifold with boundary (possibly with corners) in RN×dℓ .

The full representation space is the union of these images:

M(ℓ) =

K⋃
i=1

Φ(ℓ)(M(i)
0 ). (49)

Such a union is termed a prismatic space.

Singularities occur at the boundaries between the regions. Specifically:

• The boundaries between different M(i)
0 correspond to points where Φ(ℓ) transitions from one

affine piece to another.

• At these boundaries, the Jacobian of Φ(ℓ) may be discontinuous or undefined, leading to
non-smooth points in M(ℓ).

• Since M0 is compact and smooth, it generically intersects multiple regions Ri, making such
singularities typical. For example, if M0 is transversal to the boundaries of Ri, the intersections
will be lower-dimensional manifolds where the image under Φ(ℓ) may not be smooth.

Thus, M(ℓ) is a prismatic space and may have singularities along the boundaries of the pieces
Φ(ℓ)(M(i)

0 ).
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Remark 5. The prismatic space we define constitutes a geometric structure more complex than a
conventional topological manifold. While its interior may largely exhibit the properties of a smooth
manifold, its boundary can contain intricate corners or even singularities. As a result, it is highly
unlikely that the prismatic space satisfies the standard definitions of a topological manifold. It should
be emphasized that constructing a rigorous topological definition of this geometric structure is highly
challenging. Therefore, within the framework of this paper, we adopt a simplified definition grounded
in piecewise linear map.

B.8 DETAILS OF DEFINITION 5

Remark 6. The prismatic effect of different singular values on space:

• A singular value σ
(ℓ)
i ≈ 1 represents an unrefracted dimension, typically corresponding to

node features preserved through linear identity paths or attention mechanisms that remain active.

• A singular value 0 < σ
(ℓ)
i < 1 represents a contracted dimension, potentially arising from

the scaling of weight matrices (∥W (ℓ)∥ < 1) and the gradient attenuation of activation functions
like ReLU/LeakyReLU in their unsaturated regimes.

• A singular value σ(ℓ)
i = 0 represents a nullified dimension, resulting directly from the sparsity

induced by ReLU activations which reduces the rank of the layer’s Jacobian.

• A singular value σ
(ℓ)
i > 1 represents an expanded dimension, potentially arising from feature

amplification in weight matrices (∥W (ℓ)∥ > 1) or certain graph convolution operations.

B.9 PROOF OF THEOREM 1

Proof. Since F (ℓ) is linear on S, there exists a matrix A(ℓ) ∈ RNdℓ×Ndℓ−1 and a vector b(ℓ) such
that for all X ∈ S:

F (ℓ)(X) = unvec(A(ℓ) · vec(X) + b(ℓ)). (50)
The Jacobian J (ℓ) is constant and equal to A(ℓ). By assumption, A(ℓ) has rank rℓ, and its singular
value decomposition is:

A(ℓ) = U (ℓ)Σ(ℓ)V (ℓ)⊤, (51)

where U (ℓ) and V (ℓ) are orthogonal matrices, and Σ(ℓ) = diag(σ(ℓ)
1 , . . . , σ

(ℓ)
rℓ , 0, . . . , 0) with σ

(ℓ)
1 ≥

σ
(ℓ)
2 ≥ · · · ≥ σ

(ℓ)
rℓ > 0.

Let V (ℓ)
s be the first s columns of V (ℓ), spanning the subspace V(ℓ). The restriction of A(ℓ) to V(ℓ)

is the linear map L(ℓ) : V(ℓ) → RM defined by L(ℓ)(x) = A(ℓ)x.

Since A(ℓ) is injective on V(ℓ) (as V(ℓ) is spanned by right singular vectors corresponding to positive
singular values), L(ℓ) is injective. The image L(ℓ)(V(ℓ)) is an s-dimensional subspace of RM ,
spanned by the first s columns of U (ℓ).

Let {v(ℓ)
1 , . . . ,v

(ℓ)
s } be an orthonormal basis for V(ℓ) (e.g., the columns of V

(ℓ)
s ). Then

{L(ℓ)(v
(ℓ)
1 ), . . . , L(ℓ)(v

(ℓ)
s )} is a basis for L(ℓ)(V(ℓ)), and:

L(ℓ)(v
(ℓ)
i ) = σ

(ℓ)
i u

(ℓ)
i , (52)

where u
(ℓ)
i is the i-th column of U (ℓ). Thus, {u(ℓ)

1 , . . . ,u
(ℓ)
s } is an orthonormal basis for L(ℓ)(V(ℓ)).

The s-dimensional Hausdorff measure Hs is equivalent to the s-dimensional Lebesgue measure
on s-dimensional subspaces. Consider the linear map L(ℓ) : V(ℓ) → L(ℓ)(V(ℓ)). Since V(ℓ) and
L(ℓ)(V(ℓ)) are s-dimensional Euclidean spaces, we can compute the change in measure using the
determinant of L(ℓ) (in orthonormal coordinates).

Let x ∈ V(ℓ) have coordinates x =
∑s

i=1 xiv
(ℓ)
i . Then:

L(ℓ)(x) =

s∑
i=1

xiL
(ℓ)(vi) =

s∑
i=1

xiσ
(ℓ)
i u

(ℓ)
i . (53)
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Thus, the matrix representation of L(ℓ) with respect to the bases v(ℓ)
i and u

(ℓ)
i is the diagonal matrix

diag(σ(ℓ)
1 , . . . , σ

(ℓ)
s ).

The absolute determinant of this matrix is
∏s

i=1 σ
(ℓ)
i . Therefore, for any measurable set S ⊂ V(ℓ):

Hs(L(ℓ)(S)) =

(
s∏

i=1

σ
(ℓ)
i

)
Hs(S). (54)

Since F (ℓ)(X) = L(ℓ)(X) + b(ℓ) and translation preserves Hausdorff measure, we have:

Hs(F (ℓ)(S)) = Hs(L(ℓ)(S) + b(ℓ)) = Hs(L(ℓ)(S)) =

(
s∏

i=1

σ
(ℓ)
i

)
Hs(S). (55)

When s = rℓ, V(ℓ) is the entire row space of A(ℓ), and the product is over all positive singular values.
This gives the volume contraction factor for the full rank part of the map.

Remark 7. We will not elaborate on mathematical concepts such as Hausdorff measure and Lebesgue
measure in this article. For details, please refer to mathematics textbook (Krantz & Parks, 2008).

B.10 SIMPLE LINEAR ALGEBRA

Lemma 2 (The Rank Inequality for Composition of Linear Maps). Let A : V → W and B : W → U
be linear maps between vector spaces. The composition B ◦A : V → U is also a linear map. The
rank of a linear map is defined as the dimension of its image:

rank(A) = dim(im(A)), rank(B) = dim(im(B)), rank(B ◦A) = dim(im(B ◦A)). (56)
Then:

rank(B ◦A) ≤ min(rank(A), rank(B)). (57)

Proof. Prove the first inequality: rank(B ◦A) ≤ rank(A).

Observe that for any v ∈ V,
(B ◦A)(v) = B(A(v)), (58)

so the image of B ◦A is:
im(B ◦A) = {B(A(v)) : v ∈ V} = B({A(v) : v ∈ V}) = B(im(A)). (59)

Thus, im(B ◦ A) = B(im(A)). Since im(A) ⊆ W, we can restrict B to im(A), obtaining a linear
map:

B|im(A) : im(A) → U. (60)
The image of this restricted map is exactly B(im(A)) = im(B ◦A). By the Rank-Nullity Theorem
(or simply by the fact that the image of a linear map cannot exceed the dimension of its domain), we
have:

dim(B(im(A))) ≤ dim(im(A)). (61)
Therefore,

rank(B ◦A) = dim(im(B ◦A)) ≤ dim(im(A)) = rank(A). (62)

Prove the second inequality: rank(B ◦A) ≤ rank(B).

We now show that im(B ◦A) ⊆ im(B). Let u ∈ im(B ◦A). Then there exists v ∈ V such that:
u = (B ◦A)(v) = B(A(v)). (63)

Since A(v) ∈ W, it follows that u = B(w) for some w ∈ W, so u ∈ im(B). Hence,
im(B ◦A) ⊆ im(B), (64)

and therefore:
dim(im(B ◦A)) ≤ dim(im(B)) ⇒ rank(B ◦A) ≤ rank(B). (65)

Combining both inequalities (62) and (65), we conclude:
rank(B ◦A) ≤ min(rank(A), rank(B)). (66)
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B.11 PROOF OF THEOREM 2

Proof. From Proposition 2, each layer map F (ℓ) is piecewise linear and differentiable almost every-
where. By Proposition 3, the composite map Φ = F (L) ◦ · · · ◦F (1) is also piecewise linear and M(L)

is a prismatic space. On each linear region Ck (as defined in Definition 6), Φ is linear, so its rank is
constant on Ck. Thus, Φ is piecewise constant on its rank.

Let {Ck} be the linear region partition of M0 from Definition 6. For each Ck, the map Φ|Ck
is

linear. Let Tk = Φ|Ck
denote this linear map. The image Φ(Ck) is contained in a linear subspace of

dimension rank(Tk).

The local dimension of M(L) at any point in Φ(Ck) is at most rank(Tk). Since M(L) =
⋃

k Φ(Ck),
the intrinsic dimension dint(M(L)) is the supremum of the local dimensions over all points in M(L).
Thus,

dint(M(L)) ≤ max
k

rank(Tk). (67)

Now, we bound rank(Tk). Since Tk = F (L) ◦ · · · ◦ F (1)|Ck
, and each F (ℓ) is linear on the relevant

region, we have:

rank(Tk) ≤ min
ℓ

rank
(
F (ℓ)|Φ(ℓ−1)(Ck)

)
. (68)

This follows from Lemma 2: for linear maps A and B, rank(B ◦A) ≤ min(rank(A), rank(B)). By
induction, this holds for the composition of L linear maps.

For each layer ℓ, rank
(
F (ℓ)|Φ(ℓ−1)(Ck)

)
= rank

(
J (ℓ)|Φ(ℓ−1)(Ck)

)
because the Jacobian is constant

on the region where F (ℓ) is linear (from Definition 6).

Let rℓ,k = rank
(
J (ℓ)|Φ(ℓ−1)(Ck)

)
. Then,

rank(Tk) ≤ min
ℓ

rℓ,k. (69)

Therefore,
dint(M(L)) ≤ max

k
rank(Tk) ≤ max

k
min
ℓ

rℓ,k. (70)

Due to the contraction effect of the layers (especially with ReLUs, which project dimensions to zero),
the ranks rℓ,k are often much smaller than the input dimension D0. Thus, maxk minℓ rℓ,k is typically
less than D0, implying that M(L) has a lower intrinsic dimension than D0.

B.12 PROOF OF THEOREM 3

Proof. By Proposition 2, each layer map F (ℓ) is piecewise linear and differentiable almost everywhere.
By Proposition 3, the composite map Φ = F (L) ◦ · · · ◦ F (1) is piecewise linear. By Definition 6, the
input manifold M0 is partitioned into cells Ck such that on each Ck, Φ is linear.

We assume Φ is injective on Ck. This implies that for each Ck, Φ restricted to Ck is a linear injection,
so dint(Φ(Ck)) = dint(Ck) = dint, where dint = D0 is the intrinsic dimension of M0 (Definition 3).
Since Φ is injective, each layer F (ℓ) must be injective on Φ(ℓ−1)(Ck) for all ℓ and k. Otherwise, the
composition would not be injective. Thus, for each ℓ and k, the Jacobian J (ℓ) of F (ℓ) restricted to the
tangent space of Φ(ℓ−1)(Ck) has rank at least dint. Since the tangent space is dint-dimensional, J (ℓ)

has exactly dint positive singular values σ(ℓ)
1,k ≥ σ

(ℓ)
2,k ≥ · · · ≥ σ

(ℓ)
dint,k

> 0 on the region corresponding
to Ck.

Consider a fixed cell Ck. Since Φ is linear on Ck, we can write Φ(X) = unvec(Jk · vec(X) + bk)
for X ∈ Ck, where Jk is the Jacobian of Φ on Ck (constant). However, to understand the layer-wise
measure change, we use the composition structure.

For the first layer F (1), since it is linear on Ck, it maps Ck to F (1)(Ck). By Theorem 1, the
dint-dimensional Hausdorff measure changes as:

Hdint(F (1)(Ck)) =
( dint∏

i=1

σ
(1)
i,k

)
Hdint(Ck), (71)
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where σ
(1)
i,k are the singular values of J (1) restricted to the tangent space of Ck (which is dint-

dimensional).

For the second layer F (2), it is linear on F (1)(Ck) (which is dint-dimensional). It maps F (1)(Ck) to
F (2)(F (1)(Ck)). Again, by Theorem 1:

Hdint(F (2)(F (1)(Ck))) =
( dint∏

i=1

σ
(2)
i,k

)
Hdint(F (1)(Ck)) =

( dint∏
i=1

σ
(2)
i,k

)( dint∏
i=1

σ
(1)
i,k

)
Hdint(Ck), (72)

where σ
(2)
i,k are the singular values of J (2) restricted to the tangent space of F (1)(Ck).

Proceeding inductively for all L layers, we get:

Hdint(Φ(Ck)) =
( L∏

ℓ=1

dint∏
i=1

σ
(ℓ)
i,k

)
Hdint(Ck). (73)

This is because each layer’s measure change factor is multiplicative, and the composition preserves
the dint-dimensional measure up to the product of the singular values.

Since the cells Ck form a partition of M0 (Definition 6), and Φ is injective on Ck, the images Φ(Ck)
are disjoint and cover M(L) (up to sets of measure zero, due to piecewise linearity). Therefore, by
the additivity of the Hausdorff measure:

Hdint(M(L)) =
∑
k

Hdint(Φ(Ck)) =
∑
k

( L∏
ℓ=1

dint∏
i=1

σ
(ℓ)
i,k

)
Hdint(Ck). (74)

This establishes the desired formula.

If Φ is not injective, then the images Φ(Ck) may overlap. Since the Hausdorff measure is subadditive,
we have:

Hdint(M(L)) ≤
∑
k

Hdint(Φ(Ck)) =
∑
k

( L∏
ℓ=1

dint∏
i=1

σ
(ℓ)
i,k

)
Hdint(Ck). (75)

Thus, the formula provides an upper bound.

B.13 DETAILS OF DEFINITION 7

Remark 8. This definition formalizes the notion of how a prompt P modifies the input data manifold
in the context of prompt tuning. The original input manifold M0, which represents the natural
data distribution (e.g., graph node features), is typically assumed to be a compact smooth manifold
embedded in RN×d0 . The prompt P is a low-dimensional perturbation applied to every point in
M0, resulting in a new manifold M0(P ). The operation M0(P ) = {X + P | X ∈ M0} is a
translation of the entire manifold by P , which preserves the topological and geometric properties
of M0, such as compactness and smoothness, since translation is a diffeomorphism. The prompt
space P is the set of all possible prompts, often constrained to be low-dimensional (e.g., a subspace
of RN×d0 ), and each prompt P ∈ P defines a distinct perturbed manifold. This family of manifolds
{M0(P ) | P ∈ P} encapsulates the variability introduced by prompt tuning, and the goal is to
understand how the graph foundation model (GFM) transforms these manifolds through its layers.

B.14 LIPSCHITZ CONTINUOUS AND JACOBIAN

Lemma 3 (Continuity of the Layer Map F (ℓ)). Assume the operators A(ℓ), M(ℓ), and U(ℓ) defining
the GFM layer in Definition 1 are continuous. Then, the layer map F (ℓ) is continuous.

Proof. Similar to the proof of Proposition 2, let f1 = A(ℓ), f2 = M(ℓ), and f3 = U(ℓ). Then
F (ℓ) = f3 ◦ (f2 ◦ (f1, id), id), where id denotes the identity function Since the composition of
continuous functions is continuous, the overall layer map F (ℓ) is continuous.
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Lemma 4 (Lipschitz Continuity of the GFM Map Φ). Let M0(P ) ⊂ RN×d0 be the compact prompt-
perturbed input manifold as defined in Definition 7. The composite map Φ = F (L)◦F (L−1)◦· · ·◦F (1),
where each F (ℓ) is a piecewise linear layer map (Proposition 2), is Lipschitz continuous on M0(P ).
That is, there exists a constant LΦ < ∞ such that for all X,Y ∈ M0(P ),

∥Φ(X)− Φ(Y )∥ ≤ LΦ∥X − Y ∥. (76)

Moreover, the Lipschitz constant LΦ satisfies:

LΦ ≤
L∏

ℓ=1

Lℓ, (77)

where Lℓ is the Lipschitz constant of the ℓ-th layer F (ℓ) on the appropriate domain.

Proof. Prove the piecewise linear layers are Lipschitz continuous.

Each layer map F (ℓ) : RN×dℓ−1 → RN×dℓ is piecewise linear and continuous by Proposition 2
and Lemma 3. Since M0(P ) is compact and each F (ℓ) is continuous, the image F (ℓ)(M0(P )) is
also compact. The piecewise linearity implies that there exists a finite partition of the domain into
polyhedral regions R(ℓ)

k such that F (ℓ) is linear on each region R
(ℓ)
k . On each such region, for any

H,H ′ ∈ R
(ℓ)
k , we have

∥F (ℓ)(H)− F (ℓ)(H ′)∥ = ∥A(ℓ)
k (H −H ′)∥ ≤ ∥A(ℓ)

k ∥op∥H −H ′∥, (78)

where A
(ℓ)
k is the matrix representing the linear map on R

(ℓ)
k and | · |op denotes the operator norm

(spectral norm). Define the local Lipschitz constant for F (ℓ) on region R
(ℓ)
k as L(ℓ)

k = |A(ℓ)
k |op. Since

the number of regions intersecting the compact set M0(P ) is finite, the global Lipschitz constant for
F (ℓ) on M0(P ) is finite and given by

Lℓ = max
k

L
(ℓ)
k < ∞. (79)

Thus, for any H,H ′ ∈ M0(P ),

∥F (ℓ)(H)− F (ℓ)(H ′)∥ ≤ Lℓ∥H −H ′∥. (80)

Prove the composite map Φ is Lipschitz continuous.

The composite map Φ = F (L) ◦ F (L−1) ◦ · · · ◦ F (1) is a composition of Lipschitz continuous maps.
For any X,Y ∈ M0(P ), let H(ℓ) = F (ℓ) ◦ · · · ◦F (1)(X) and K(ℓ) = F (ℓ) ◦ · · · ◦F (1)(Y ) denote
the intermediate representations. Then,

∥H(1) −K(1)∥ = ∥F (1)(X)− F (1)(Y )∥ ≤ L1∥X − Y ∥,
∥H(2) −K(2)∥ = ∥F (2)(H(1))− F (2)(K(1))∥ ≤ L2∥H(1) −K(1)∥ ≤ L2L1∥X − Y ∥,

...

∥H(L) −K(L)∥ = ∥Φ(X)− Φ(Y )∥ ≤ LL∥H(L−1) −K(L−1)∥ ≤
( L∏

ℓ=1

Lℓ

)
∥X − Y ∥.

(81)

Therefore, Φ is Lipschitz continuous with constant LΦ =
∏L

ℓ=1 Lℓ.

This completes the proof.

Lemma 5 (Existence of the Jacobian JΦ(X)). In the context of the unified GFM framework, we
aim to prove that the Jacobian of the composite map Φ = F (L) ◦ F (L−1) ◦ · · · ◦ F (1) exists almost
everywhere (a.e.) on the input manifold M0(P ), and that at points where it exists, it is given by the
product of the layer Jacobians.
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Proof. By Proposition 2, each layer map F (ℓ) : RN×dℓ−1 → RN×dℓ is piecewise linear. This
means that the domain of F (ℓ) can be partitioned into a finite number of polyhedral regions R(ℓ)

k

such that F (ℓ) is linear on each region. Since linear functions are differentiable everywhere, F (ℓ)

is differentiable on the interior of each region. The boundaries between regions have Lebesgue
measure zero in RN×dℓ−1 (as they are subsets of lower-dimensional affine spaces). Therefore, F (ℓ)

is differentiable almost everywhere in its domain. Let Dℓ denote the set of points where F (ℓ) is
differentiable; then Dℓ has full measure (i.e., its complement has measure zero).

The composite map Φ is defined as Φ = F (L) ◦ F (L−1) ◦ · · · ◦ F (1). Consider the sets where each
F (ℓ) is differentiable. Since each F (ℓ) is differentiable a.e., the set of points where all F (ℓ) are
differentiable along the composition path is also of full measure. More formally, define:

• E1 = D1 (the set where F (1) is differentiable).

• For ℓ = 2 to L, define Eℓ = {X ∈ Eℓ−1 : F (ℓ)} is differentiable at Φ(ℓ−1)(X), where
Φ(ℓ−1) = F (ℓ−1) ◦ · · · ◦ F (1).

Since F (ℓ) is differentiable a.e., and Φ(ℓ−1) is continuous and piecewise linear (hence Lipschitz),
it preserves sets of measure zero. Thus, by induction, each Eℓ has full measure. Therefore, the set
E = EL where all F (ℓ) are differentiable at the appropriate points has full measure in M0(P ). For
any X ∈ E, the composite map Φ is differentiable at X by the chain rule.

At a point X ∈ E, the chain rule applies. Let H(0) = X , and for ℓ = 1 to L, define H(ℓ) =
F (ℓ)(H(ℓ−1)). Then, the Jacobian of Φ at X is given by:

JΦ(X) = J (L)(H(L−1)) · J (L−1)(H(L−2)) · · ·J (1)(X), (82)

where J (ℓ)(H(ℓ−1)) is the Jacobian of F (ℓ) at H(ℓ−1). This product is well-defined because each
Jacobian exists at the respective points.

Since M0(P ) is a compact smooth manifold embedded in RN×d0 , it has a Lipschitz parameterization.
The above argument holds for almost every point in M0(P ) with respect to the Lebesgue measure
on the parameter space. Thus, JΦ(X) exists for almost every X ∈ M0(P ).

B.15 PROOF OF THEOREM 4

Proof. Assume the input manifold M0(P ) is compact and smooth with intrinsic dimension dint. By
Definition 6, the piecewise linear map Φ = F (L) ◦ · · · ◦ F (1) partitions M0(P ) into a countable
collection of cells {C ′

k}, where each C ′
k is a connected subset of M0(P ) such that Φ is linear on C ′

k.
This partition exists because Φ is piecewise linear (Theorem 2).

Proof of the Measure Bound.

For each cell C ′
k, since Φ is linear on C ′

k, the Jacobian JΦ is constant on C ′
k. By Theorem 3, the

Hausdorff measure of the image Φ(C ′
k) is given by:

Hdint(Φ(C ′
k)) =

( L∏
ℓ=1

dint∏
i=1

σ
(ℓ)
i,k

)
Hdint(C ′

k), (83)

where σ
(ℓ)
i,k are the first dint singular values of the Jacobian of the ℓ-th layer evaluated in the linear

region corresponding to C ′
k. Note that the product

∏dint
i=1 σ

(ℓ)
i,k is taken over the largest dint singular

values, as the tangent space has dimension dint.

The total measure of M(L)(P ) is the sum over all cells:

Hdint(M(L)(P )) ≤
∑
k

Hdint(Φ(C ′
k)) =

∑
k

( L∏
ℓ=1

dint∏
i=1

σ
(ℓ)
i,k

)
Hdint(C ′

k). (84)
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Since
∏L

ℓ=1

∏dint
i=1 σ

(ℓ)
i,k ≤ supk′

∏L
ℓ=1

∏dint
i=1 σ

(ℓ)
i,k′ for all k, we have:

Hdint(M(L)(P )) ≤
(
sup
k′

L∏
ℓ=1

dint∏
i=1

σ
(ℓ)
i,k′

)∑
k

Hdint(C ′
k) =

(
sup
k′

L∏
ℓ=1

dint∏
i=1

σ
(ℓ)
i,k′

)
Hdint(M0(P )). (85)

This proves the measure bound.

Proof of the Diameter Bound.

Let diam(M) denote the diameter of a set M, defined as:

diam(M) = sup
x,y∈M

∥x− y∥. (86)

By Theorem 2 and Lemma 4, the map Φ is piecewise linear and Lipschitz continuous on M0(P ).
The global Lipschitz constant LΦ satisfies:

∥Φ(X)− Φ(Y )∥ ≤ LΦ∥X − Y ∥ ∀X,Y ∈ M0(P ). (87)

The Lipschitz constant LΦ can be bounded by the operator norms of the Jacobians of Φ. For any
point X ∈ M0(P ), the Jacobian JΦ(X) exists almost everywhere (by Definition 5) and is given by
the product of the layer Jacobians:

JΦ(X) = J (L)(F (L−1)(X)) · · ·J (1)(X). (88)

The operator norm of JΦ(X) satisfies:

|JΦ(X)|op ≤ |J (L)(F (L−1)(X))|op · · · |J (1)(X)|op. (89)

Each layer Jacobian |J (ℓ)(Xℓ)|op (where Xℓ = F (ℓ−1)(X)) is constant on linear regions. Let
|J (ℓ)

k |op be the operator norm of the Jacobian of the ℓ-th layer in the k-th linear region. Then:

|J (ℓ)(Xℓ)|op ≤ sup
k

|J (ℓ)
k |op ∀Xℓ. (90)

Therefore,

|JΦ(X)|op ≤
L∏

ℓ=1

sup
k

|J (ℓ)
k |op ∀X. (91)

The global Lipschitz constant LΦ is the supremum of |JΦ(X)|op over X ∈ M0(P ):

LΦ = sup
X∈M0(P )

|JΦ(X)|op ≤
L∏

ℓ=1

sup
k

|J (ℓ)
k |op. (92)

Now, for any X,Y ∈ M0(P ),

∥Φ(X)− Φ(Y )∥ ≤ LΦ∥X − Y ∥ ≤
( L∏

ℓ=1

sup
k

|J (ℓ)
k |op

)
∥X − Y ∥. (93)

Taking the supremum over X,Y ∈ M0(P ), we get:

diam(M(L)(P )) ≤
( L∏

ℓ=1

sup
k

|J (ℓ)
k |op

)
· diam(M0(P )). (94)

This proves the diameter bound.

B.16 THEORETICAL LIMITATIONS OF PROMPT TUNING

The Prompt Efficacy Bound (Theorem 4) reveals fundamental theoretical limitations of prompt tuning
in GFMs. Specifically, the measure and diameter bounds imply that the influence of a prompt P is
constrained by the compositional prismatic effect of the frozen GFM layers.

Information Loss through Spectral Contraction.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The measure bound shows that the effective “volume” of the prompt-perturbed space M(L)(P ) is
scaled by the product of singular values across layers and linear regions. Since deep GFMs often
exhibit spectral decay (with many singular values σ(ℓ)

i ≪ 1), the prompt-induced perturbations are
compressed exponentially with depth. This irreversible contraction implies that fine-grained semantic
nuances introduced by the prompt may be lost or distorted before reaching the output layer.

Intrinsic Dimensionality Collapse.

As shown in Theorem 2, the intrinsic dimension dint(M(L)) of the final representation is bounded
by the minimal rank achieved locally across layers. Prompt tuning operates on the input manifold
M0(P ), but the frozen network’s piecewise linear transformations inherently project the prompt into
a lower-dimensional subspace. Thus, even if the prompt is high-dimensional, its effective influence is
limited by the bottleneck rank of the Jacobians, reducing its capacity to encode complex instructions.

Sensitivity to Input Geometry.

The diameter bound depends on the operator norms of the layer Jacobians. If the network exhibits
gradient explosion (large supk |J

(ℓ)
k |op) or vanishing (small singular values), the prompt’s effect may

be either amplified erratically or suppressed. This sensitivity makes prompt tuning highly dependent
on the pre-trained model’s architecture and parameterization, limiting its robustness.

Non-Adaptive Prismatic Structure.

Since the network is frozen, the prompt cannot alter the prismatic folding process (e.g., the partition
into linear regions or the Jacobian spectra). The prompt is merely a shift in the input space, and its
efficacy depends on how the fixed geometric transformation Φ distorts this shift. In contrast, full
fine-tuning adapts Φ itself to preserve task-relevant information, which prompt tuning cannot achieve.

Trade-off Between Prompt Size and Expressivity.

While increasing the prompt dimension dim(P) might seem beneficial, the measure bound shows
that the effective output scale is constrained by the product of Jacobian singular values. Thus, simply
enlarging the prompt may not improve efficacy if the network’s contraction forces are too strong.
This suggests a fundamental trade-off between prompt complexity and the network’s capacity to
preserve prompt-induced variations.

In summary, prompt tuning is inherently limited by the frozen GFM’s spectral properties and
geometric structure. While it can induce some distributional shifts, its ability to convey nuanced
instructions is bounded by the network’s pre-existing prismatic contraction and rank collapse. These
limitations motivate the need for architectural interventions (e.g., adding adapters) or alternative
tuning strategies that can mitigate the loss of prompt information through deeper layers.

C THEORETICAL ANALYSIS OF MESSAGE TUNING

C.1 PROOF OF THEOREM 5

Proof. We prove the theorem using the geometric measure theoretic framework of Prismatic Space
Theory. The key idea is that message tuning, by injecting learnable parameters at each layer, can
compensate for the measure contraction and intrinsic dimension reduction caused by the prismatic
effect of the frozen GFM layers, and can additionally expand the diameter of the output space.

Intrinsic Dimension Comparison.

In Prismatic Space Theory, the intrinsic dimension dint(M(L)
MTG) refers to the topological dimension

or Hausdorff dimension of the final representation space M(L)
MTG, which is the inherent dimensionality

of the space itself, not the dimension of the embedding space. This intrinsic dimension is defined by
the geometric properties of space, but we can use the rank of the Jacobian matrix of the mapping to
provide an upper bound.

Specifically, for the mapping ΦMTG : M0 → M(L)
MTG (where ΦMTG is the composite layer mapping

after message tuning), we have:

dint(M(L)
MTG) ≤ sup

X∈M0

rank(JΦMTG(X)), (95)
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where JΦMTG(X) is the Jacobian matrix of the mapping ΦMTG at point X . This means that the
intrinsic dimension of the space cannot exceed the maximum rank of the Jacobian matrix across all
input points.

From Theorem 2, for prompt tuning, the intrinsic dimension of the final space is bounded by:

dint(M(L)
PT (P )) ≤ max

k
min
ℓ

rank(J (ℓ)|Φ(ℓ−1)(Ck)), (96)

where J (ℓ) is the Jacobian of the ℓ-th layer of the frozen GFM, and Ck are the linear regions of the
input manifold.

For message tuning, the layer map is modified to include the fusion operation F(ℓ). Specifically, at
each layer ℓ, the input representation H(ℓ−1) is transformed to H

(ℓ−1)
M = F(ℓ)(H(ℓ−1),M (ℓ);Θ

(ℓ)
f )

before applying the standard layer map F (ℓ). Thus, the effective layer map becomes Ψ(ℓ) =
F (ℓ) ◦ F(ℓ).

The Jacobian of Ψ(ℓ) at a point where it is differentiable is given by the chain rule:

J
(ℓ)
Ψ = J

(ℓ)
F · J (ℓ)

F , (97)

where J
(ℓ)
F is the Jacobian of F (ℓ) and J

(ℓ)
F is the Jacobian of F(ℓ).

The core issue is that F(ℓ) is not linear, but we can show that with learnable parameters, its Jacobian
can be made full-rank, ensuring the desired rank inequality.

Recall that for message tuning, the fusion operation is defined as:

F(ℓ)(H(ℓ−1),M (ℓ);Θ
(ℓ)
f ) = H(ℓ−1) + Softmax(H(ℓ−1)W (ℓ)

p ) ·M (ℓ), (98)

where H(ℓ−1) ∈ RN×dℓ−1 , W (ℓ)
p ∈ Rdℓ−1×m, and M (ℓ) ∈ Rm×dℓ−1 .

The Jacobian of F(ℓ) with respect to H(ℓ−1) is a block-diagonal matrix composed of N blocks,
each of size dℓ−1 × dℓ−1. For each node i, the block corresponds to the derivative of the i-th
row of F(ℓ) with respect to the i-th row of H(ℓ−1). Specifically, let hi be the i-th row of H(ℓ−1),
and let ai = hiW

(ℓ)
p . Then the Softmax output is αi = Softmax(ai), and the i-th row of F(ℓ) is

hi + αiM
(ℓ).

The Jacobian for node i is:

Bi = I +M (ℓ)⊤Jsoftmax(ai)W
(ℓ)⊤
p , (99)

where I is the identity matrix, and Jsoftmax(ai) ∈ Rm×m is the Jacobian of Softmax at ai, which has
rank m− 1.

Since Jsoftmax(ai) is bounded, we can choose M (ℓ) and W
(ℓ)
p such that the spectral norm of

M (ℓ)⊤Jsoftmax(ai)W
(ℓ)⊤
p is less than 1 for all i. This ensures that Bi is invertible and thus full-rank

for all i. Therefore, the full Jacobian J
(ℓ)
F has rank Ndℓ−1.

Now, for the composite map Ψ(ℓ) = F (ℓ) ◦ F(ℓ), the Jacobian is:

J
(ℓ)
Ψ = J

(ℓ)
F · J (ℓ)

F . (100)

Since J
(ℓ)
F has full rank Ndℓ−1, and J

(ℓ)
F has rank r, we have Sylvester’s rank inequality:

rank(J (ℓ)
Ψ ) ≥ rank(J (ℓ)

F ) + rank(J (ℓ)
F )−Ndℓ−1 = rank(J (ℓ)

F ) +Ndℓ−1 −Ndℓ−1 = rank(J (ℓ)
F ).
(101)

Thus, the rank of J (ℓ)
Ψ is at least the rank of J (ℓ)

F :

rank(J (ℓ)
Ψ ) ≥ rank(J (ℓ)

F ). (102)

Moreover, by optimizing the fusion parameters, we can ensure that rank(J (ℓ)
Ψ ) ≥ rank(J (ℓ)

F ) for all ℓ.
Since Ψ(ℓ) does not introduce additional linear region partitions, meaning it does not generate more
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boundaries, corners, or singular points, the inequality holds pointwise. For any k, there always exists
a point Xk such that:

min
ℓ

rank(J (ℓ)
Ψ |Xk

) ≥ min
ℓ

rank(J (ℓ)
F |Φ(ℓ−1)(Ck)). (103)

This implies that the upper bound on the intrinsic dimension for message tuning is at least as large as
that for prompt tuning:

max
k

min
ℓ

rank(J (ℓ)
Ψ |Xk

) ≥ max
k

min
ℓ

rank(J (ℓ)
F |Φ(ℓ−1)(Ck)). (104)

Although J
(ℓ)
F is full-rank and thus rank(J (ℓ)

Ψ ) = rank(J (ℓ)
F ) at any point where both are defined, the

key to strict inequality lies in the distribution of points across linear regions of the frozen layers. The
message fusion operation F(ℓ) can map inputs to different linear regions of F (ℓ) where the rank of
J

(ℓ)
F is higher.

Suppose that for some layer ℓ, the frozen Jacobian J
(ℓ)
F has varying rank across its linear regions.

Specifically, there exist linear regions Rlow and Rhigh such that:

rank(J (ℓ)
F |Rlow) < rank(J (ℓ)

F |Rhigh). (105)

In prompt tuning, the input to F (ℓ) may fall primarily into Rlow due to the shift caused by the prompt,
resulting in a lower minimum rank. However, in message tuning, the learnable parameters Θ(ℓ)

f and
M (ℓ) can be optimized to steer the input to F (ℓ) into Rhigh, thereby increasing the rank at that layer.

Assume that Φ(ℓ−1)(Ck) does not lie in a linear region that maximizes rank(J (ℓ)
F ). This assumption

is realistic because Φ(ℓ−1) is pre-trained and lacks the ability to adjust its output range. Formally, by
optimizing the fusion parameters, we can ensure that for each layer ℓ, the input F(ℓ)(H(ℓ−1)) lies
in a region where rank(J (ℓ)

F ) is maximized. Consequently, for any k, there always exists a point Yk

such that:
min
ℓ

rank(J (ℓ)
F |Yk∈F(ℓ)(H(ℓ−1))) > min

ℓ
rank(J (ℓ)

F |Φ(ℓ−1)(Ck)). (106)

This implies that the upper bound for message tuning is strictly greater:

max
k

min
ℓ

rank(J (ℓ)
Ψ |Yk

) > max
k

min
ℓ

rank(J (ℓ)|Φ(ℓ−1)(Ck)). (107)

Therefore, the actual intrinsic dimension satisfies:

dint(M(L)
MTG) > dint(M(L)

PT (P )). (108)

This strict inequality holds when the fusion parameters are optimized to avoid low-rank linear regions
of the frozen layers, which is achievable through gradient-based training that maximizes the rank of
the Jacobians during adaptation.

Thus, message tuning provides strictly greater adaptation capacity in terms of intrinsic dimension
compared to prompt tuning.

dint(M(L)
MTG) ≥ dint(M(L)

PT (P )) (109)

and the inequality is strict for some configuration.

Hausdorff Measure Comparison.

Recall that the pre-trained GFM Φ is composed of L layers, each defined as in Definition 1. For
prompt tuning, the input manifold is perturbed by a prompt P , resulting in M0(P ). The final space
is M(L)

PT (P ) = Φ(M0(P )).

For message tuning, we introduce learnable message prototypes M (ℓ) ∈ Rm×dℓ−1 and fusion
parameters Θ(ℓ)

f at each layer ℓ, modifying the layer map to:

H(ℓ) = U(ℓ)
(
M(ℓ)

(
A(ℓ)

(
A,H

(ℓ−1)
M ;Θ(ℓ)

a

)
,H

(ℓ−1)
M ;Θ(ℓ)

m

)
,H

(ℓ−1)
M ;Θ(ℓ)

u

)
, (110)
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where

H
(ℓ−1)
M = F(ℓ)(H(ℓ−1),M (ℓ);Θ

(ℓ)
f ) = H(ℓ−1) + Softmax(H(ℓ−1)W (ℓ)

p ) ·M (ℓ). (111)

The modified network is denoted ΦMTG, and the final space is M(L)
MTG = ΦMTG(M0).

The introduction of the Softmax function in the fusion operation F(ℓ) indeed breaks the strict
piecewise linearity of the layer map, since Softmax is a smooth, nonlinear function. However, we can
address this issue through analyzing the network as a piecewise-linear map with smooth activations,
leveraging the fact that the Softmax can be effectively constant on large regions of the input space.

More generally, we can partition the input space into regions where the Softmax is approximately
linear. For instance, if we use a linearized Softmax (e.g., by taking a first-order Taylor expansion
around a point), we obtain a piecewise linear approximation. The error of this approximation can be
made arbitrarily small by refining the partition.

Given the above, we may treat ΦMTG as a piecewise linear map for the purpose of geometric analysis.
Specifically, we define:

F(ℓ)(H(ℓ−1),M (ℓ);W (ℓ)
p ) ≈ H(ℓ−1) + Linear(H(ℓ−1)W (ℓ)

p )M (ℓ), (112)

where Linear(H(ℓ−1)W
(ℓ)
p ) is a piecewise linear function (e.g., sparsemax (Martins & Astudillo,

2016) or a linearized Softmax). Then, the modified layer map is piecewise linear, and the entire
network ΦMTG is piecewise linear.

Under this approximation, by Theorem 3, the Hausdorff measures are:

Hdint(M(L)
PT (P )) =

∑
k

( L∏
ℓ=1

dint∏
i=1

σ
(ℓ)
i,k

)
Hdint(Ck), (113)

Hdint(M(L)
MTG) =

∑
k

( L∏
ℓ=1

dint∏
i=1

σ̃
(ℓ)
i,k

)
Hdint(C̃k), (114)

where σ
(ℓ)
i,k and σ̃

(ℓ)
i,k are the singular values of the Jacobians of the original and modified layers,

respectively, and Ck and C̃k are the linear regions of the input manifold under the original and
modified networks.

Message tuning introduces learnable parameters M (ℓ) and W
(ℓ)
p at each layer. Crucially, message

tuning can simulate prompt tuning by appropriately setting these parameters. However, it also has
additional degrees of freedom that allow it to reduce measure contraction.

For any layer ℓ and linear region k, message tuning can achieve:

dint∏
i=1

σ̃
(ℓ)
i,k ≥

dint∏
i=1

σ
(ℓ)
i,k . (115)

This is because the product of singular values can be increased by adjusting the parameters to reduce
contraction. Let us consider a specific example to illustrate this possibility, assuming that all mappings
are constructed under the same partition.

Consider the modified layer map in message tuning:

Ψ(ℓ) = F (ℓ) ◦ F(ℓ), (116)

where F (ℓ) is the original layer map and F(ℓ) is the fusion operation. In a linear region Ck, both maps
are linear and injective on the tangent space of the input manifold, which has dimension dint.

By Theorem 1, for a measurable set S in the tangent space, the dint-dimensional Hausdorff measure
transforms as:

Hdint(F(ℓ)(S)) =
( dint∏

i=1

τ
(ℓ)
i,k

)
Hdint(S), (117)
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where τ
(ℓ)
1,k, . . . , τ

(ℓ)
dint,k

are the largest dint singular values of the Jacobian of F(ℓ) restricted to the
tangent space. Similarly,

Hdint(F (ℓ)(F(ℓ)(S))) =
( dint∏

i=1

σ
(ℓ)
i,k

)
Hdint(F(ℓ)(S)) =

( dint∏
i=1

σ
(ℓ)
i,k

)( dint∏
i=1

τ
(ℓ)
i,k

)
Hdint(S). (118)

Thus, for the composite map F̃ (ℓ), the product of singular values is:

dint∏
i=1

σ̃
(ℓ)
i,k =

( dint∏
i=1

σ
(ℓ)
i,k

)( dint∏
i=1

τ
(ℓ)
i,k

)
. (119)

Consider the fusion operation F(ℓ). Its Jacobian with respect to H(ℓ−1) is:

J
(ℓ)
F = I +

∂

∂H(ℓ−1)

(
Softmax(H(ℓ−1)W (ℓ)

p ) ·M (ℓ)
)
. (120)

By training W
(ℓ)
p and M (ℓ), we can influence the singular values of J (ℓ)

F . For example:

• If W (ℓ)
p = O and M (ℓ) = O, then F(ℓ)(H(ℓ−1)) = H(ℓ−1), so J

(ℓ)
F = I , and the singular

values are 1.

• If W (ℓ)
p and M (ℓ) are trained such that the second term is positive definite, then the singular

values can be greater than 1.

Thus, by parameter choice, we can ensure:

dint∏
i=1

τ
(ℓ)
i,k ≥ 1. (121)

From the above, we have:

dint∏
i=1

σ̃
(ℓ)
i,k =

( dint∏
i=1

σ
(ℓ)
i,k

)( dint∏
i=1

τ
(ℓ)
i,k

)
≥

dint∏
i=1

σ
(ℓ)
i,k , (122)

This proves that message tuning can achieve the desired inequality for any layer ℓ and linear region k.
Moreover, if

∏dint
i=1 τ

(ℓ)
i,k > 1, the inequality is strict.

The input manifold M0 is fixed. Prompt tuning shifts it to M0(P ), but the fusion operation F(1) in
the first layer also possesses the capability to adjust the input manifold, we may reasonably assume
that Hdint(M0(P )) = Hdint(M0).

The linear regions Ck and C̃k are partitions of M0(P ) and M0 induced by the piecewise linear
maps Φ and ΦMTG, respectively. Message tuning modifies the network architecture, which may refine
the linear regions. However, the total measure of the input manifold is conserved:∑

k

Hdint(Ck) = Hdint(M0(P )) = Hdint(M0) =
∑
k

Hdint(C̃k). (123)

While individual regions may change, the overall sum remains unchanged. Therefore, for the purpose
of comparing the sums, we have: ∑

k

Hdint(C̃k) =
∑
k

Hdint(Ck). (124)

From the above, for any prompt P , message tuning can choose parameters such that for each layer ℓ
and region k:

dint∏
i=1

σ̃
(ℓ)
i,k ≥

dint∏
i=1

σ
(ℓ)
i,k . (125)
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Moreover, since the input measures are equal, we have:

Hdint(M(L)
MTG) =

∑
k

( L∏
ℓ=1

dint∏
i=1

σ̃
(ℓ)
i,k

)
Hdint(C̃k) ≥

∑
k

( L∏
ℓ=1

dint∏
i=1

σ
(ℓ)
i,k

)
Hdint(Ck) = Hdint(M(L)

PT (P )).

(126)
The inequality holds term-wise due to the non-decrease in singular value products and the conservation
of input measure.

There exists a message tuning configuration where the inequality is strict. For example, if we train
W

(ℓ)
p and M (ℓ) such that for some layer ℓ and region k,

∏dint
i=1 σ̃

(ℓ)
i,k >

∏dint
i=1 σ

(ℓ)
i,k , and since the input

measure is positive, the overall measure increases strictly.

Thus, we conclude that:

Hdint(M(L)
MTG) ≥ Hdint(M(L)

PT (P )) for all P ∈ P, (127)

and the inequality is strict for some configuration.

Diameter Comparison.

The diameter of a set M is:
diam(M) = sup

x,y∈M
∥x− y∥. (128)

For any prompt P , message tuning can simulate prompt tuning by setting:

• F(1)(H(0),M (1);W
(1)
p )

∼−→ M0(P ),

• F(ℓ)(H(ℓ−1),M (ℓ);W
(ℓ)
p ) = H(ℓ−1) for ℓ ≥ 2.

This reduces message tuning to prompt tuning, giving:

M(L)
MTG = M(L)

PT (P ), (129)

and hence:
diam(M(L)

MTG) = diam(M(L)
PT (P )). (130)

Thus, the inequality holds with equality for this configuration.

We now show that message tuning can achieve a strictly larger diameter by leveraging its additional
parameters to expand the output space.

Message tuning can expand the distance between representations layer-wise. Consider the fusion
operation:

F(ℓ)(H(ℓ−1)) = H(ℓ−1) + Softmax(H(ℓ−1)W (ℓ)
p ) ·M (ℓ). (131)

By choosing W
(ℓ)
p and M (ℓ) appropriately, we can make F(ℓ) an expanding map. For example:

• Set W (ℓ)
p to have orthonormal columns.

• Set M (ℓ) = c ·W (ℓ)
p for some c > 0.

Then, the Jacobian of F(ℓ) satisfies:

J
(ℓ)
F (H) = I + c ·W (ℓ)

p · Jsoftmax(HW (ℓ)
p ) ·W (ℓ)⊤

p , (132)

which has eigenvalues ≥ 1 (since Jsoftmax is positive semidefinite). By choosing c large, we can make
F(ℓ) arbitrarily expansive and ΦMTG results from the superposition of such expansion effects.

Thus, for the pair X,Y ∈ M0(P ) achieving the diameter of Φ(M0), message tuning can ensure:

diam(M(L)
MTG) ≥ ∥ΦMTG(X)− ΦMTG(Y )∥ > ∥Φ(X)− Φ(Y )∥ = diam(Φ(M0(P ))). (133)

Thus, we have:
diam(M(L)

MTG) > diam(M(L)
PT (P )) for all P ∈ P. (134)
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For any prompt P , message tuning can simulate prompt tuning, so:

diam(M(L)
MTG) ≥ diam(M(L)

PT (P )). (135)

Moreover, by choosing parameters to expand inter-point distances, message tuning can achieve:

diam(M(L)
MTG) > diam(M(L)

PT (P )) for all P ∈ P. (136)

This completes the proof.

C.2 ANALYSIS OF NEGATIVE TRANSFER

Definition 14 (Negative Transfer from a Manifold Perspective). Let Ms
0 ⊂ RN×d0 and Mt

0 ⊂
RN×d0 be the compact smooth input manifolds of the source and target domains, respectively, with
intrinsic dimensions Ds and Dt. Let Φ = F (L) ◦ · · · ◦ F (1) be the map of the GFM, and let
M(L)

s = Φ(Ms
0) and M(L)

t = Φ(Mt
0) be the representation spaces. Negative transfer is said to

occur if the map Φ causes a geometric misalignment or structural distortion between the transformed
spaces, such that:

• Information Loss: The intrinsic dimension or geometric measure (e.g., volume) of Φ(Mt
0) is

significantly reduced compared to Φ(Ms
0).

• Poor Alignment: The transformed spaces Φ(Ms
0) and Φ(Mt

0) are poorly aligned, as quanti-
fied by a large Hausdorff distance or a small intersection measure.

Remark 9. Fine-tuning severely exacerbates negative transfer in graph data because it aggressively
warps the target space’s geometry to fit the source domain’s feature space. This often collapses the
intrinsic structure of the target graph, leading to catastrophic information loss and misalignment.
Prompt tuning alleviates negative transfer by gently realigning the target space within the frozen
source feature space, preserving its intrinsic geometry and measure to prevent catastrophic distortion
or collapse.

Corollary 2 (Message Tuning Mitigates Negative Transfer). Negative transfer often arises when the
model’s capacity is insufficient to capture the target domain’s distribution, leading to interference
from source domain features. The higher intrinsic dimension dint(M(L)

MTG) indicates that MTG can
learn more diverse features, reducing reliance on source-specific patterns. The greater Hausdorff
measure Hdint(M(L)

MTG) implies a larger “volume” of the space, accommodating a wider range of
target domain variations. The increased diameter diam(M(L)

MTG) signifies that the representations
span a broader range, enhancing model flexibility. In contrast, prompt tuning only perturbs the input
manifold M0 via prompts, which constrains adaptation to superficial layers and may insufficiently
adjust internal representations, thus more likely to lead to negative transfer.

By further refining and extending Prismatic Space Theory, a theoretical characterization of negative
transfer in GFMs can be established. We identify this as a direction for future research.
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D DATASETS AND EXPERIMENTAL DETAILS

D.1 CONFIGURATION

The experiments are conducted on a Linux server equipped with an Intel(R) Xeon(R) Gold 6240
CPU @ 2.60GHz, 256GB RAM and 2 NVIDIA A100-SXM4-40GB GPUs. Our implementation is
based on PyTorch (Paszke et al., 2019) version 2.2.1, PyG (Fey & Lenssen, 2019) version 2.6.1 with
CUDA version 12.1 and Python 3.12.7.

D.2 DETAILS OF DATASETS

Homophilic Graphs. Cora and Citeseer datasets (Sen et al., 2008) represent computer science
publications, with nodes encoded as bag-of-words features and labeled by research topics. Pubmed
(Yang et al., 2016) contains diabetes-related articles from PubMed database, with nodes represented
by TF/IDF-weighted word vectors and classified by diabetes type. ogbn-arxiv (Hu et al., 2020a) is a
large-scale citation network of CS arXiv papers, where nodes represent papers with 128-dimensional
title+abstract embeddings, and directed edges denote citations.

Heterophilic Graphs. Texas and Wisconsin (Pei et al., 2020) datasets are WebKB subgraphs
comprising university web pages, where nodes represent pages with bag-of-words features and edges
indicate hyperlinks. Pages are classified into five categories: student, project, course, staff, and faculty.
Actor dataset (Pei et al., 2020) forms a co-occurrence network with actors as nodes and Wikipedia
page co-appearances as edges.

Biological Graphs. D&D dataset (Dobson & Doig, 2003) contains 1,178 protein graphs where
nodes represent amino acids connected by edges, classified as enzymes/non-enzymes. ENZYMES
(Borgwardt et al., 2005) comprises 600 enzyme structures from BRENDA, categorized into 6 EC
classes. PROTEINS (Wang et al., 2022) represents tertiary protein structures with nodes as secondary
structure elements and edges indicating sequence/3D proximity, yielding binary graph classification.

Small Molecule Graphs. BZR dataset (Rossi & Ahmed, 2015) contains 405 benzodiazepine
receptor ligand graphs with binary classification. COX2 (Rossi & Ahmed, 2015) comprises 467
cyclooxygenase-2 inhibitor molecular graphs, where nodes represent atoms and edges encode bond
types (single/double/triple/aromatic), also yielding binary classification. MUTAG (Kriege & Mutzel,
2012) includes 188 mutagenic aromatic compounds classified into 7 categories.

Social Network Graphs. COLLAB (Yanardag & Vishwanathan, 2015) represents scientific collab-
oration networks, where nodes denote researchers, edges indicate co-authorships, and graphs are
classified by research fields. IMDB-B (Yanardag & Vishwanathan, 2015) captures actor collaboration
networks, with nodes representing performers, edges signifying co-appearances in films, and binary
graph labels distinguishing Action versus Romance genres.

Table 6: Statistics of all datasets.

Dataset Task # Graphs # Nodes # Edges # Features # Classes Graph Type

Cora Node 1 2,708 5,429 1,433 7 Homophilic
CiteSeer Node 1 3,327 9,104 3,703 6 Homophilic
Pubmed Node 1 19,717 88,648 500 3 Homophilic
Texas Node 1 183 325 1703 5 Heterophilic
Actor Node 1 7600 30019 932 5 Heterophilic

Wisconsin Node 1 251 515 1703 5 Heterophilic
ogbn-arxiv Node 1 169,343 1,166,243 128 40 Large-scale

D&D Graph 1,178 284.1 715.7 89 2 Proteins
ENZYMES Graph 600 32.6 62.1 3 6 Proteins
PROTEINS Graph 1,113 39.1 72.8 3 2 Proteins

BZR Graph 405 35.8 38.4 3 2 Small Molecule
COX2 Graph 467 41.2 43.5 3 2 Small Molecule

MUTAG Graph 188 17.9 19.8 7 2 Small Molecule
COLLAB Graph 5000 74.5 2457.8 0 3 Social Network
IMDB-B Graph 1000 19.8 96.53 0 2 Social Network
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D.3 DATA SPLIT.

We adopt the same dataset processing methodology as ProG (Zi et al., 2024) to ensure consistency and
comparability with prior work. For the node classification task, we adopt a 90% test set allocation to
rigorously evaluate model performance. In contrast, for the graph classification task, we employ an 80
% test set split to maintain a balance between evaluation rigor and training data availability. To ensure
statistical robustness and mitigate potential sampling bias, we repeat the random sampling procedure
five times to construct distinct k-shot learning tasks for both task types. The final performance metrics
are reported as the mean and standard deviation across these five independent trials, providing a
comprehensive assessment of model stability and generalization capability.

D.4 EVALUATION METRICS

In node and graph classification tasks, AUROC (Area Under the Receiver Operating Characteristic
Curve) and F1-score serve as two critical evaluation metrics. AUROC quantifies a model’s class
discrimination capability, where 1 represents perfect classification and 0.5 indicates random guessing.
The F1-score, which harmonizes precision (correctness of positive predictions) and recall (coverage
of actual positives), ranges from 0 to 1, with higher values indicating better performance. This
metric is particularly valuable for imbalanced datasets. For multi-class scenarios, we employ a
macro-averaging approach, where each class is iteratively treated as positive while aggregating results.
Both metrics are computed via a one-vs-rest strategy for class-wise evaluation.

D.5 HYPERPARAMETER CONFIGURATION

In most experiments, the model architecture consists of 2 layers with a hidden dimension of 128. We
develop a systematic random search strategy to identify optimal hyperparameters for each adaptation
method across all datasets, extending beyond default configurations. Considering the substantial
heterogeneity in hyperparameter requirements among different adaptation approaches, we concen-
trate on tuning three key hyperparameters through random search: (1) learning rate, sampled from
{0.001, 0.005, 0.01, 0.05, 0.1}; (2) weight decay, selected from {0, 0.00001, 0.0001, 0.001, 0.01};
and (3) batch size, uniformly sampled from {32, 64, 128} in each experimental trial. This compre-
hensive search strategy ensures robust parameter optimization while maintaining methodological
consistency across diverse experimental conditions.

D.6 IMPLEMENTATION DETAILS

To ensure experimental fairness and demonstrate the compatibility of our approach, we implement
MTG based on the ProG library (Zi et al., 2024). We have made some modifications to the ProG
library to adapt it to MTG, but these changes do not affect the original prompt tuning method at all.

E DETAILS OF BASELINES

E.1 BACKBONES OF GRAPH FOUNDATION MODELS

GCN (Graph Convolutional Network) (Kipf & Welling, 2017) employs convolutional operations
to aggregate and transform feature information from a node’s immediate neighborhood. This lo-
calized message-passing mechanism allows the network to iteratively refine node representations
by incorporating structural and attribute information from adjacent nodes, effectively capturing the
graph’s topological properties.

GraphSAGE (Hamilton et al., 2017) is an inductive learning framework that computes node
embeddings through a localized feature aggregation process. Instead of relying on fixed graph
convolutions, it operates by sampling neighboring nodes and hierarchically aggregating their features
using learnable functions. This approach enables the model to generalize to unseen graph structures
while capturing both node attributes and local topological patterns.

GAT (Graph Attention Network) (Veličković et al., 2018) introduces an attention mechanism
into graph neural networks, dynamically computing attention weights between connected nodes
during feature aggregation. By learning to assign differential importance to neighboring nodes, GAT
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can focus on more relevant connections while suppressing noisy or less informative edges. This
adaptive weighting scheme enhances model expressiveness and interpretability compared to standard
aggregation approaches.

GIN (Graph Isomorphism Network) (Xu et al., 2019) is a theoretically motivated GNN architecture
designed to maximize discriminative power in graph representation learning. By employing injective
multiset aggregation functions and MLP-based transformations, GIN achieves provable expressive-
ness equivalent to the Weisfeiler-Lehman graph isomorphism test. This framework demonstrates
superior capability in distinguishing graph structures while maintaining efficient computation through
neighborhood aggregation.

GT (Graph Transformer) (Ying et al., 2021) adapts the Transformer architecture to graph-structured
data by incorporating structural biases into the self-attention mechanism. Through masked attention
patterns that respect graph connectivity, the model efficiently captures both local and global depen-
dencies while maintaining the parallelizability of standard Transformers. This approach enables the
simultaneous modeling of node features and graph topology through position-aware attention com-
putations. The architecture demonstrates particular effectiveness in scenarios requiring long-range
dependency modeling across graph structures.

E.2 PRE-TRAINING STRATEGIES

DGI(Veličković et al., 2019) is a self-supervised learning framework that employs mutual informa-
tion maximization for graph representation learning. The method optimizes the mutual information
between patch-level node representations and global graph summaries through a contrastive objective.
By leveraging negative sampling and discriminator functions, DGI learns informative node embed-
dings that preserve both local structural patterns and global graph characteristics. This approach
demonstrates particular effectiveness in scenarios with limited labeled data, enabling effective transfer
learning across graph-based tasks.

GraphMAE(Hou et al., 2022) adopts a self-supervised pretraining approach based on feature
reconstruction of masked nodes. The framework randomly masks portions of node features and
learns to recover them through an encoder-decoder architecture, forcing the model to develop robust
structural understanding from contextual patterns. This denoising objective promotes the learning of
generalized graph representations that capture both local neighborhood characteristics and global
topological properties. The method demonstrates particular effectiveness in scenarios requiring
transferable graph representations across different downstream tasks.

EdgePreGPPT(Sun et al., 2022) introduces a novel graph pre-training paradigm that fundamentally
reconfigures structural knowledge acquisition in graph neural networks. The framework employs
masked edge prediction as its foundational pretext task, where the model learns to reconstruct ran-
domly obscured connections through an edge prediction module. This pre-training phase focuses on
optimizing pairwise node similarity computations, enabling the model to develop robust represen-
tations of graph topology and connectivity patterns. The methodology’s effectiveness stems from
its direct optimization of structural relationships between nodes, training the network to evaluate
connection probabilities through learned embedding similarities.

EdgePreGprompt(Liu et al., 2023b) establishes a novel paradigm for learning transferable structural
representations from label-free graph data. At its core, the framework employs link prediction as
its self-supervised pretext task, leveraging the abundant connectivity patterns naturally available
in graph structures without requiring additional annotation. The methodology operates by first
constructing contextual subgraphs for nodes, which capture not only node-specific features but also
rich topological information from their local neighborhoods. Specifically, the framework optimizes
a contrastive objective that maximizes the similarity between linked node pairs while minimizing
similarity for non-linked pairs, thereby encoding fundamental graph connectivity patterns into the
learned representations.

GraphCL(You et al., 2020) introduces a graph contrastive learning framework that learns transfer-
able graph representations through self-supervised pre-training by maximizing agreement between
different augmented views of the same graph. The method employs four key augmentation strate-
gies—node dropping, edge perturbation, attribute masking, and subgraph sampling—each encoding
domain-specific priors about structural invariance. These augmentations generate correlated views
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that are processed through a shared GNN encoder, projected via an MLP head, and optimized using
an NT-Xent loss function to enhance similarity between positive pairs while contrasting negative
samples. The framework theoretically maximizes mutual information between augmented views,
unifying various contrastive learning approaches for graphs.

SimGRACE(Xia et al., 2022) presents a novel graph contrastive learning framework that eliminates
the need for manual data augmentation by instead leveraging encoder perturbations to generate
contrasting views. The core methodology involves feeding the original graph through both a standard
GNN encoder and its perturbed version, where the perturbation is achieved by adding Gaussian
noise to the encoder weights, thereby producing correlated representations without altering input data
semantics. These dual representations are then projected through a shared MLP head and optimized
using the NT-Xent loss to maximize agreement between positive pairs while contrasting with negative
samples from the same batch.

E.3 PROMPT TUNING BASELINES

GPPT (Sun et al., 2022) introduces an innovative graph prompting function that bridges the gap
between pre-training and downstream tasks by reformulating node classification as an edge prediction
problem through token pair construction. The framework converts standalone nodes into structured
token pairs composed of two components: a task token that represents candidate labels through train-
able continuous vectors and a structure token that encodes neighborhood information by aggregating
adjacent nodes with attention-based weighting. The approach fundamentally rethinks graph transfer
learning by aligning task formulations rather than forcing downstream adaptation to mismatched
pre-training objectives.

Gprompt (Liu et al., 2023b) introduces a unified prompting framework that bridges graph pre-
training and downstream tasks through a subgraph similarity template. The core innovation involves
learnable task-specific prompt vectors that dynamically reweight node features during subgraph
aggregation operations such as READOUT, allowing downstream tasks including node classification
and graph classification to selectively extract relevant knowledge from frozen pre-trained GNNs. The
prompt vectors act as lightweight task adapters, preserving the pre-trained model’s parameters while
tailoring subgraph representations through dimension-wise feature importance scoring, demonstrating
superior parameter efficiency and few-shot performance across diverse graph tasks.

All-in-one (Sun et al., 2023a) introduces a unified multi-task prompting framework for graph
neural networks that effectively connects various downstream tasks at node, edge, and graph levels
with graph pre-training through several key innovations. First, it employs task reformulation by
transforming node and edge tasks into graph-level tasks through induced subgraph construction.
Second, it incorporates a learnable prompt graph featuring tunable tokens, dynamic token structures,
and adaptive insertion patterns to align downstream tasks with pre-training objectives. Third, it
utilizes meta-learning optimization to generalize prompts across different tasks. The framework
maintains frozen pre-trained GNNs while only tuning lightweight prompt parameters, enabling
efficient knowledge transfer with task-specific adaptability.

GPF (Fang et al., 2023) introduces a unified approach to prompt tuning by focusing on feature space
adaptation within graph neural networks. It employs a shared learnable vector that is added to all node
features in the input graph, creating a consistent modification across the entire structure. This design
allows the pre-trained model to maintain its frozen parameters while adapting to downstream tasks
through subtle yet effective feature adjustments. The approach demonstrates theoretical equivalence
to any form of prompting function, making it universally applicable across diverse pre-training
strategies without requiring task-specific templates.

GPF-plus (Fang et al., 2023) enhances flexibility by assigning distinct learnable vectors to individual
nodes through an attention-based mechanism. Rather than using a single global prompt, it generates
node-specific prompts by combining a set of basis vectors with weights derived from each node’s
features. This architecture captures finer-grained adaptations while maintaining parameter efficiency
through basis sharing. The method automatically adjusts to graphs of varying scales and complexities,
offering improved expressiveness over GPF while preserving its universal applicability and theoretical
guarantees for effective knowledge transfer.
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F MORE INFORMATION ON EXPERIMENTS

F.1 DETAILS OF THE EXPERIMENTAL RESULTS ON 1/3/5-SHOT NODE/GRAPH CLASSIFICATION

While one-shot node/graph classification presents the most challenging scenario for evaluating
adaptation methods, few-shot node/graph classification remains a critical task for assessing the
robustness and generalization capability of these methods. Therefore, we have extended our evaluation
to include 3-shot and 5-shot node/graph classification tasks across various adaptation approaches. The
optimal performance of various adaptation methods, alongside supervised learning baseline, under
3-shot and 5-shot settings, is summarized in Tables 9-12. Consistent with the earlier experimental
findings presented in Subsection 5.2, these results demonstrate that MTG substantially enhances
the performance of multiple pre-trained GFMs across 1/3/5-shot scenarios, thereby significantly
improving the transferability of pre-trained knowledge within the “Pre-training and Adaptation”
paradigm. Notably, MTG consistently exhibits superior compatibility with diverse pre-training
strategies on both node-level and graph-level tasks. In contrast, among prompt tuning methods,
while All-in-one demonstrates competitive performance on graph-level tasks, it suffers from severe
performance degradation on certain node-level datasets, such as ogbn-arxiv.

Furthermore, a comprehensive evaluation of all adaptation methods under 1/3/5-shot settings, as
measured by three key metrics including Accuracy, F1 score and AUROC, is provided in Tables 14-31.
Through these more detailed experimental results, we observe that GPF-plus, as a simple and general
prompt tuning approach, demonstrates strong overall performance across both downstream tasks
under the 1/3/5-shot settings, making it the second-best adaptation method after MTG. It is worth
noting that GPF-plus can be regarded, to some extent, as a special case of MTG in which learnable
parameters are injected solely into the first pre-trained GFM layer, effectively equivalent to operating
directly on the input graph data. The baseline results in this experimental section also combine those
from ProG (Zi et al., 2024) with our own reproductions.

F.2 PERFORMANCE WITH MORE BACKBONES FOR GFMS

For GNN-based GFMs, both prompt tuning and message tuning are universal adaptation methods
that are not limited to specific model architectures. Therefore, in this subsection, we evaluate the
performance of various adaptation methods on five of the most classic, popular, and widely used
GFM backbone models. Tables 32 and 33 present the performance of different adaptation methods
based on various backbone models on the representative datasets Wisconsin and PROTEINS. These
results once again confirm that prompt tuning and message tuning outperform fine-tuning, while our
proposed MTG demonstrates even more significant advantages. For more complex GFMs, such as
models that integrate LLMs with GNNs, MTG can also be naturally adapted to the GNN module or
the module responsible for fusing features obtained from LLMs and GNNs. The core idea of MTG is
to perform layer-wise parameter injection for message fusion regulation, which is not constrained by
any specific model architecture. We believe this represents a promising direction for future research.

Most experiments in this paper employ a relatively basic 2-layer backbone model, which may not fully
demonstrate the performance advantages of MTG. To further investigate the impact of model depth
on adaptation methods, we continue to use the GCN backbone model and representative datasets
Cora and BZR to evaluate the performance of various adaptation methods when applied to models
with 4, 8, 12, and 16 layers in downstream tasks. The results in Table 13 confirm that MTG still
maintains significant advantages even with deeper model architectures.

F.3 COMPUTATIONAL EFFICIENCY OF MTG

As a general adaptation method, MTG inherently possesses the advantage of parameter efficiency. It
does not impose significant computational burden on the original model and requires substantially
fewer parameters than fine-tuning to achieve effective adaptation on downstream tasks. In this
subsection, we take the GCN backbone model as an example and first provide a theoretical analysis
of the time complexity and trainable parameter complexity of both fine-tuning and MTG.

Fine-tuning. The time complexity per layer of a GCN with L layers, where each layer transforms
input features of dimension dℓ−1 to output dimension dℓ, comprises two main components: the
feature transformation via matrix multiplication between the weight matrix W (ℓ) ∈ Rdℓ−1×dℓ and
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the node feature matrix H(ℓ−1) ∈ R|V|×dℓ−1 , with complexity O(|V|dℓ−1dℓ), and the neighbor-
hood aggregation through sparse matrix multiplication between the normalized adjacency matrix
Ã ∈ R|V|×|V| and the transformed features, requiring O(|E|dℓ) operations, where |E| denotes the
number of edges. Assuming all hidden dimensions are equal d, the total time complexity becomes
O(L(|V|d2 + |E|d)). The space complexity for trainable parameters is dominated by the weight
matrices, yielding O(Ld2).

Message Tuning. MTG introduces three additional components per layer: message vectors
M (ℓ) ∈ Rm×dℓ−1 containing m learnable message prototypes, a projection matrix W

(ℓ)
p ∈ Rdℓ−1×m

to compute attention scores, and an attention mechanism α = Softmax(H(ℓ−1)W
(ℓ)
p ) ∈ R|V|×m,

with the corresponding computational overhead consisting of the projection operation H(ℓ−1)W
(ℓ)
p

requiring O(|V|dℓ−1m) operations, the attention computation including softmax and matrix multipli-
cation αM (ℓ) requiring O(|V|m2) operations, and message integration via element-wise addition
with original features requiring O(|V|dℓ−1) operations. Thus, the total time complexity becomes
O(L(|V|d2 + |E|d+ |V|dm+ |V|m2)). Since m ≪ d typically holds, MTG does not introduce sig-
nificant inference time overhead to the original GCN, and their time complexities remain essentially
within the same order of magnitude. The trainable parameter complexity comes from M (ℓ) and P (ℓ)

matrices, contributing O(L(dm+md)) = O(Ldm) parameters, which is lower than fine-tuning the
entire GCN model.

The above analysis offers a theoretical perspective on model inference time and trainable parameters;
however, it should be noted that such theoretical estimates may differ from practical performance.
Due to variations in their practical implementations, various prompt tuning methods are not amenable
to straightforward computational complexity analysis. Therefore, we further conduct a comparative
analysis of the actual training time per epoch and GPU memory consumption between prompt
tuning methods and MTG on the large-scale dataset ogbn-arxiv, which has the largest number of
nodes, and the COLLAB dataset, which contains the most graphs. The pre-training strategy uses
DGI and experimental results are presented in Table 7. Due to its distinct data loading mechanism,
GPPT exhibits significantly different GPU memory usage compared to other methods. Excluding
GPPT, MTG demonstrates advantages in both training speed and memory consumption. It should be
emphasized that MTG exhibits superior training efficiency compared to All-in-one.

F.4 SENSITIVITY ANALYSIS

Message tuning injects m learnable message vectors at each layer of the model, making m a
hyperparameter of MTG. We further conduct a sensitivity analysis on this hyperparameter m using
the GCN backbone model and representative datasets Cora and BZR, evaluating the performance
of MTG when m = 3, 5, 10, 20, 30. The optimal results described in Subsection 5.2 are presented
in Table 8. These results demonstrate that MTG exhibits a certain degree of robustness to this
hyperparameter, as no performance collapse occurs even with very small or large values of m. In our
experiments, m is typically set to 10; nevertheless, careful selection of m remains necessary to fully
exploit the potential of MTG across different datasets.

Table 7: Computational efficiency comparison of prompt tuning and message tuning.

Methods ogbn-arxiv (1-shot) COLLAB (1-shot)
Time (s) Memory (MB) Time (s) Memory (MB)

GPPT 0.6032 3499 0.0204 32357
Gprompt 0.0326 10987 0.0081 3517

All-in-one 0.0559 11023 0.0147 3767
GPF 0.0067 10963 0.0045 3515

GPF-plus 0.0074 10983 0.0057 3517

MTG (Ours) 0.0053 10963 0.0036 3515

Table 8: Performance sensitivity to the number of message prototypes m in MTG.

Dataset m = 3 m = 5 m = 10 m = 20 m = 30

Cora (1-shot) 51.28±7.29 54.06±4.49 58.54±7.89 56.73±5.51 56.21±7.02

BZR (1-shot) 73.15±15.26 77.84±2.22 74.81±13.96 77.53±2.39 72.78±17.86
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Table 9: Performance comparison of adaptation methods on 3-shot node classification (accuracy±std %, 5 runs).
The first, second and third best results are shaded in red, with descending color saturation.

Method Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised 37.79±9.16 35.18±6.86 57.33±4.64 41.03±6.40 40.78±12.55 18.62±3.46 19.03±5.08

Fine-tuning 51.97±2.84 45.08±2.09 65.40±3.00 42.40±7.77 43.13±13.79 22.11±1.97 27.34±6.61

GPPT 43.84±6.11 42.34±8.31 67.43±2.96 34.29±4.71 38.90±8.86 21.65±3.39 22.46±4.05

Gprompt 63.78±5.77 60.00±6.18 66.68±3.53 92.52±5.38 39.00±47.08 29.67±2.53 73.92±2.75

All-in-one 48.09±4.83 48.09±8.18 65.79±5.79 89.62±4.38 88.69±1.08 24.23±1.39 31.15±2.25

GPF 34.84±19.83 25.92±12.30 71.20±2.82 93.85±3.71 95.47±2.75 37.44±3.43 59.67±12.69

GPF-plus 56.38±5.37 72.48±5.63 70.85±4.03 98.15±0.73 97.66±0.41 43.59±4.52 64.63±10.05

MTG (Ours) 66.11±6.37 73.81±8.56 71.38±3.21 98.58±0.93 98.17±1.40 37.62±4.72 76.01±5.39

Table 10: Performance comparison of adaptation methods on 3-shot graph classification.

Method IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised 53.33±6.61 50.77±2.44 61.33±2.89 59.47±8.34 15.96±1.64 65.15±18.61 52.35±8.12 59.77±1.10

Fine-tuning 66.10±0.70 56.10±3.46 62.72±2.39 59.87±8.78 22.71±0.86 69.97±13.89 52.22±10.64 59.70±0.98

GPPT 59.48±5.42 50.88±6.31 64.74±1.99 64.13±18.31 19.12±2.43 71.90±14.28 70.93±16.35 59.00±6.34

Gprompt 64.35±1.21 54.95±9.47 64.94±2.92 66.53±14.84 22.08±3.57 51.53±13.08 54.63±2.95 55.99±7.53

All-in-one 65.67±0.58 57.12±1.99 69.84±6.02 80.00±5.67 23.96±0.62 66.06±18.23 61.98±11.32 58.96±5.93

GPF 65.97±0.69 53.87±3.44 63.35±2.45 74.27±1.55 23.87±3.45 65.31±19.45 74.38±11.62 59.07±0.65

GPF-plus 64.38±2.30 56.50±3.71 63.55±1.85 75.20±3.64 24.46±2.27 65.25±18.07 71.67±14.87 59.51±0.62

MTG (Ours) 66.95±0.59 57.49±2.52 70.49±0.68 78.13±6.36 29.71±2.06 73.86±9.74 74.65±12.14 60.85±6.39

Table 11: Performance comparison of adaptation methods on 5-shot node classification.

Method Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised 50.25±8.37 41.22±6.30 67.88±2.18 39.43±5.86 43.91±6.47 21.92±1.86 22.38±3.05

Fine-tuning 62.66±3.55 39.54±3.54 70.91±4.87 42.97±8.99 47.19±7.37 22.92±1.22 28.84±3.11

GPPT 51.98±3.43 45.77±7.41 66.97±3.70 37.00±3.19 48.82±5.15 21.58±0.84 28.90±1.64

Gprompt 69.03±3.61 66.13±1.64 67.87±2.08 78.22±37.33 39.32±47.08 34.67±1.28 85.40±0.79

All-in-one 30.36±13.48 27.93±10.59 46.16±15.83 87.16±3.02 73.28±9.91 21.49±3.02 13.01±6.29

GPF 35.43±1.02 25.12±3.01 68.96±3.99 98.26±1.19 98.42±0.36 44.07±3.94 71.83±9.37

GPF-plus 66.22±6.20 75.73±2.19 69.59±4.33 99.01±1.43 99.12±0.95 44.58±5.95 66.88±6.14

MTG (Ours) 71.81±3.59 76.34±6.18 70.84±3.28 99.12±0.95 98.76±2.36 45.09±3.26 85.94±1.93

Table 12: Performance comparison of adaptation methods on 5-shot graph classification.

Method IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised 62.60±4.01 55.23±4.26 62.90±5.03 73.47±3.92 25.67±0.48 64.99±10.42 51.48±2.29 63.59±2.86

Fine-tuning 65.40±3.33 60.72±2.09 63.33±4.13 75.33±1.89 7.46±1.29 73.19±9.53 72.96±11.98 64.71±3.22

GPPT 66.37±3.59 54.05±4.58 58.27±4.63 70.53±3.90 22.17±2.34 67.88±17.34 69.63±14.96 60.02±3.24

Gprompt 66.70±3.87 60.76±5.08 62.94±1.38 73.07±2.13 21.46±2.27 53.35±7.75 59.38±14.43 58.28±2.18

All-in-one 63.62±2.30 57.86±5.88 71.37±4.89 80.93±1.96 26.71±2.17 62.95±8.57 62.78±10.18 63.44±1.35

GPF 67.80±5.58 59.65±6.25 63.37±4.37 74.00±3.65 27.00±0.78 66.27±14.57 61.05±11.51 61.06±2.63

GPF-plus 68.13±3.31 60.68±4.67 63.51±2.89 73.87±3.51 26.87±1.89 72.87±10.17 71.54±14.81 64.80±3.45

MTG (Ours) 69.15±4.09 63.11±1.88 70.10±1.12 81.60±4.53 35.08±3.28 71.84±2.75 76.37±8.11 66.07±2.39

Table 13: Performance comparison of adaptation methods on deep backbone models.

Method Cora (1-shot) BZR (1-shot)
L = 4 L = 8 L = 12 L = 16 L = 4 L = 8 L = 12 L = 16

Fine-tuning 38.88±6.74 36.84±4.10 33.78±6.05 30.70±4.18 70.06±18.37 56.17±28.60 67.41±23.52 71.11±15.81

GPPT 30.68±5.78 33.82±1.99 33.89±8.06 24.32±4.60 68.95±8.69 77.90±23.15 67.59±12.99 69.20±14.51

Gprompt 38.53±5.57 43.55±4.87 41.42±8.95 33.74±4.10 67.04±12.70 71.67±7.01 76.60±7.37 72.65±7.40

All-in-one 29.42±4.09 29.68±6.53 26.02±4.38 30.93±4.38 61.23±7.94 62.53±10.26 69.32±9.94 77.04±2.93

GPF 33.84±9.28 36.82±13.61 28.12±2.39 30.68±3.43 75.74±7.02 73.95±10.60 72.59±8.94 78.83±0.75

GPF-plus 43.67±9.52 41.34±6.52 39.23±7.88 36.08±5.54 73.70±3.14 76.79±1.08 75.86±6.77 71.73±9.99

MTG (Ours) 47.80±7.07 45.10±7.90 43.36±6.54 37.00±5.66 77.04±9.93 79.26±0.45 79.26±0.45 79.26±0.45
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Table 14: Accuracy (%) on 1-shot node classification.

Adaptation Pre-training Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised - 26.56±5.55 21.78±7.32 39.37±16.34 41.60±3.10 37.97±5.80 20.57±4.47 10.99±3.19

Fine-tuning

DGI 33.15±7.84 21.64±3.92 42.01±12.54 37.49±5.13 45.31±5.01 19.76±3.53 7.21±2.91

GraphMAE 32.93±3.17 21.26±3.57 42.99±14.25 36.80±7.17 37.81±8.62 19.86±2.70 12.35±3.60

EdgePreGPPT 38.12±5.29 18.09±5.39 46.74±14.09 35.31±9.31 47.66±2.37 19.17±2.53 16.21±3.82

EdgePreGprompt 35.57±5.83 22.28±3.80 41.50±7.54 40.69±4.13 40.62±7.95 20.74±4.12 14.83±2.38

GraphCL 52.61±1.73 27.02±4.31 42.49±11.29 33.94±7.74 40.31±13.68 20.19±1.98 4.65±1.19

SimGRACE 40.40±4.66 35.05±4.37 37.59±8.17 37.37±3.68 46.88±4.64 19.78±1.89 8.13±3.26

GPPTPrompt

DGI 30.47±3.53 37.26±6.17 35.62±7.74 29.94±10.40 29.29±14.57 21.76±2.00 3.80±6.19

GraphMAE 27.39±10.26 21.54±4.00 48.31±17.72 29.83±9.34 25.04±10.38 22.58±1.97 4.35±6.01

EdgePreGPPT 30.37±4.30 21.06±4.37 39.64±7.64 23.89±5.40 30.39±8.96 19.85±0.76 14.65±3.07

EdgePreGprompt 25.52±4.42 21.85±4.30 46.20±10.76 30.40±6.81 22.68±12.82 21.52±1.13 2.05±1.43

GraphCL 43.15±9.44 26.73±4.12 38.34±11.59 25.03±5.37 31.81±15.33 22.51±1.73 7.15±4.12

SimGRACE 27.86±2.79 25.06±4.90 36.70±9.26 29.83±6.44 25.67±8.01 20.97±2.30 5.50±5.10

Gprompt

DGI 36.46±5.39 36.25±10.26 33.65±5.29 67.71±9.92 31.00±37.32 23.85±3.52 48.47±5.87

GraphMAE 50.58±7.34 42.84±10.59 39.74±15.35 67.62±18.06 23.31±29.49 22.34±3.57 66.66±5.04

EdgePreGPPT 46.96±6.22 40.15±7.04 35.46±14.12 67.37±12.32 30.52±36.73 23.50±4.16 75.72±4.95

EdgePreGprompt 48.11±9.89 48.07±5.62 33.54±16.66 74.38±13.15 33.25±40.11 19.89±1.38 70.55±7.66

GraphCL 56.66±11.22 45.81±7.04 39.37±14.95 77.07±5.93 29.55±35.56 25.26±1.10 51.20±6.40

SimGRACE 46.34±6.75 53.21±10.94 35.58±9.03 65.38±13.70 30.20±36.49 24.49±4.38 52.76±5.30

All-in-one

DGI 47.52±2.50 39.37±3.12 38.74±2.15 56.02±13.12 57.38±12.82 21.03±1.96 1.93±1.48

GraphMAE 23.09±4.92 18.08±5.23 33.19±11.98 57.54±10.66 52.82±11.47 23.31±2.01 4.19±6.04

EdgePreGPPT 49.63±5.26 35.06±2.37 40.73±11.32 66.29±19.11 58.62±5.54 21.49±1.27 5.62±3.95

EdgePreGprompt 37.39±3.31 28.85±4.32 35.53±9.07 59.18±12.30 39.71±25.31 20.49±3.90 13.01±6.29

GraphCL 52.39±10.17 37.37±4.15 45.17±6.93 39.14±1.17 65.49±7.06 24.61±2.80 6.70±6.01

SimGRACE 35.99±2.76 40.41±2.80 30.23±7.03 55.56±14.70 59.22±20.17 21.03±2.23 5.72±1.61

GPF

DGI 27.83±18.89 16.50±4.57 38.33±8.13 62.69±13.96 60.54±13.13 28.17±4.81 19.36±6.20

GraphMAE 38.57±5.41 25.61±3.27 48.52±13.23 76.84±10.50 69.51±18.75 28.37±5.82 43.28±10.60

EdgePreGPPT 15.29±8.41 12.33±5.33 43.78±6.02 78.35±4.07 68.05±17.34 25.66±3.33 65.11±5.70

EdgePreGprompt 26.60±13.92 31.16±8.05 48.98±11.57 75.20±13.22 69.48±17.07 25.27±5.65 41.87±11.49

GraphCL 23.16±5.11 16.77±1.39 49.99±8.86 51.60±20.06 73.54±18.50 20.68±6.70 27.73±5.12

SimGRACE 32.01±11.21 19.43±2.10 37.27±6.09 60.81±26.52 69.97±16.76 28.70±3.35 25.12±4.50

GPF-plus

DGI 17.29±6.18 26.60±13.24 34.02±11.94 74.68±11.81 71.44±18.66 22.42±9.66 16.83±10.02

GraphMAE 54.26±7.48 59.67±11.87 46.64±18.57 82.11±13.95 70.95±18.63 26.58±7.84 49.81±2.62

EdgePreGPPT 28.49±18.73 28.04±14.31 46.51±15.84 72.66±12.05 70.67±17.59 29.32±8.56 71.98±12.23

EdgePreGprompt 55.77±10.30 49.43±8.21 42.79±18.18 78.76±13.63 68.75±16.51 22.68±3.64 57.44±6.95

GraphCL 34.18±17.71 28.86±22.88 37.02±11.29 52.35±19.69 75.40±19.10 22.82±4.99 32.11±4.86

SimGRACE 21.33±14.86 24.61±21.21 35.90±9.06 73.49±14.17 76.10±20.35 20.51±4.24 46.71±3.17

MTG (Ours)

DGI 49.48±4.82 62.31±18.90 46.18±7.32 67.72±10.19 62.96±16.80 25.48±7.33 25.06±10.57

GraphMAE 46.27±6.66 49.21±12.95 46.98±10.02 83.32±12.46 71.59±18.67 29.44±7.31 36.44±9.59

EdgePreGPPT 46.68±2.66 33.22±12.52 44.85±9.75 73.80±9.56 71.11±17.13 20.96±2.93 75.97±4.29

EdgePreGprompt 46.29±3.84 45.30±16.04 50.70±11.68 72.75±11.21 79.13±17.18 21.34±1.78 21.08±2.34

GraphCL 58.54±7.89 50.96±16.40 40.00±7.80 48.41±16.10 69.71±16.42 24.77±8.45 38.96±6.82

SimGRACE 45.93±7.67 57.60±9.01 43.29±10.80 72.98±9.75 71.26±17.71 22.03±3.59 37.90±5.83

Table 15: F1-score on 1-shot node classification.

Adaptation Pre-training Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised - 16.60±2.54 10.81±4.90 37.23±15.48 26.34±4.01 24.05±5.12 11.56±3.08 7.99±0.99

Fine-tuning

DGI 24.96±6.01 11.01±5.94 34.75±13.75 26.69±3.39 28.90±6.81 12.01±1.43 3.93±1.32

GraphMAE 23.18±2.85 10.82±3.83 41.03±13.36 27.43±4.47 23.08±6.07 12.71±1.24 8.07±1.08

EdgePreGPPT 35.92±4.06 10.86±2.29 40.62±18.09 23.56±3.43 29.03±5.16 14.59±3.09 12.13±2.04

EdgePreGprompt 28.99±6.35 12.39±3.56 28.89±6.74 26.74±3.28 26.81±6.66 11.63±2.64 10.61±1.45

GraphCL 47.14±3.15 21.86±3.67 38.30±10.89 14.27±3.90 24.52±7.59 15.91±0.98 2.88±0.51

SimGRACE 33.22±3.29 30.78±3.91 32.79±6.60 23.71±2.97 29.53±6.44 15.73±1.20 2.88±0.50

GPPTPrompt

DGI 25.82±4.78 33.00±6.49 31.92±8.94 22.77±6.29 23.80±8.89 17.59±1.13 0.17±0.26

GraphMAE 13.18±6.02 10.87±4.43 46.43±16.73 23.74±5.95 21.36±7.80 13.60±1.69 0.27±0.23

EdgePreGPPT 28.54±3.87 17.62±4.24 34.55±8.09 20.61±5.49 23.84±5.22 18.48±0.57 9.15±1.18

EdgePreGprompt 23.46±5.11 19.00±4.24 45.52±10.54 23.65±3.96 19.82±7.93 19.39±1.08 1.35±1.07

GraphCL 38.99±8.32 23.76±3.97 36.75±12.92 18.08±6.69 25.64±8.12 19.62±0.56 1.52±0.68

SimGRACE 21.70±2.66 22.13±4.48 31.55±10.44 21.48±3.16 21.75±5.75 17.15±1.75 0.66±0.39

Gprompt

DGI 30.20±4.21 33.58±9.40 31.89±5.43 55.65±4.81 23.68±28.78 20.12±3.96 42.90±1.91

GraphMAE 45.91±6.10 40.94±10.71 39.46±15.97 60.14±10.06 19.27±23.52 20.06±4.69 57.88±3.32

EdgePreGPPT 44.15±7.57 37.31±6.26 29.87±12.41 61.52±6.78 24.14±29.42 20.14±3.34 69.86±1.92

EdgePreGprompt 46.28±8.46 42.82±6.05 33.57±16.07 64.46±10.07 25.86±31.46 18.67±1.74 69.89±5.15

GraphCL 49.86±10.36 40.41±9.12 38.04±13.45 61.79±6.30 21.15±25.84 22.00±1.74 45.32±3.89

SimGRACE 38.55±5.02 49.65±11.42 31.13±9.15 60.40±7.58 29.20±35.62 21.39±3.95 46.73±4.62

All-in-one

DGI 34.76±3.89 26.67±4.46 22.68±5.29 46.19±6.62 31.14±20.37 14.37±2.36 0.24±0.21

GraphMAE 10.82±4.45 7.04±2.29 25.46±9.17 52.55±4.85 37.08±9.37 12.68±2.63 0.19±0.26

EdgePreGPPT 44.16±4.02 26.79±3.27 36.27±12.89 57.44±10.67 26.56±10.81 14.72±3.29 0.98±0.47

EdgePreGprompt 24.93±4.99 14.58±5.03 30.99±7.62 51.42±6.35 28.81±17.76 11.85±1.48 0.56±0.27

GraphCL 46.58±8.42 29.35±3.66 38.05±6.24 34.06±7.00 43.37±16.01 16.05±3.88 0.75±1.07

SimGRACE 27.35±1.31 30.20±4.44 24.61±6.29 49.19±8.83 39.01±18.76 13.86±1.76 1.28±0.35

GPF

DGI 19.39±17.53 4.68±1.17 28.70±9.13 54.29±8.67 51.28±7.80 19.25±10.07 8.47±11.46

GraphMAE 23.79±5.49 12.89±1.99 45.36±15.88 69.67±7.97 63.67±13.52 21.69±5.47 19.48±2.04

EdgePreGPPT 3.76±1.75 3.59±1.38 31.20±15.26 66.57±6.08 60.39±13.78 18.04±8.30 47.05±3.15

EdgePreGprompt 15.85±13.63 18.63±7.34 39.90±9.00 68.49±10.01 63.33±14.58 19.72±8.08 21.67±2.10

GraphCL 9.76±4.57 4.78±0.34 38.27±17.17 35.33±13.99 63.11±7.98 11.69±9.39 19.44±2.52

SimGRACE 18.73±10.08 5.90±1.13 22.65±5.69 55.15±21.36 60.62±9.24 17.94±5.36 13.14±2.90

GPF-plus

DGI 9.94±8.40 13.74±16.38 24.21±9.44 68.32±9.85 60.71±8.30 14.51±10.72 5.37±4.20

GraphMAE 50.19±10.64 56.22±13.99 42.38±19.01 75.07±10.10 64.08±12.43 19.25±5.53 23.38±1.12

EdgePreGPPT 19.52±17.74 15.32±19.12 40.64±17.93 64.82±11.61 64.09±9.70 24.56±8.79 60.35±7.73

EdgePreGprompt 53.28±11.46 48.37±9.28 40.02±18.18 71.73±9.24 58.51±6.37 15.58±4.14 31.37±2.50

GraphCL 26.14±21.11 18.90±24.01 33.64±11.41 39.25±18.65 70.08±15.87 16.08±3.05 15.78±1.60

SimGRACE 14.35±19.65 15.23±20.93 23.74±12.56 52.54±12.12 68.07±10.86 11.83±4.68 21.81±1.06

MTG (Ours)

DGI 44.86±3.11 55.19±16.42 45.56±7.25 63.66±4.96 54.31±10.00 23.43±6.22 9.08±2.89

GraphMAE 42.83±5.19 44.41±12.94 44.53±10.81 76.12±9.17 65.26±13.22 27.54±7.26 15.27±2.27

EdgePreGPPT 44.73±3.41 30.95±12.96 42.03±11.12 64.28±9.95 65.11±11.93 19.88±2.86 62.60±2.61

EdgePreGprompt 44.91±3.76 41.03±15.51 47.73±8.47 66.38±7.19 71.33±13.75 18.47±1.76 11.31±1.49

GraphCL 55.75±3.45 46.41±16.57 38.30±8.83 38.52±8.45 61.44±7.07 23.92±8.32 24.83±3.25

SimGRACE 40.42±4.74 54.55±8.97 36.31±6.58 65.38±8.40 63.36±6.90 21.77±3.92 23.22±4.69
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Table 16: AUROC on 1-shot node classification.

Adaptation Pre-training Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised - 76.71±1.76 63.02±4.09 62.01±18.06 61.53±4.96 62.86±10.22 51.16±1.01 72.48±1.34

Fine-tuning

DGI 79.33±2.82 65.16±4.85 63.47±13.36 59.72±2.84 65.16±9.96 50.13±0.96 64.22±2.71

GraphMAE 78.93±0.67 63.92±3.46 66.78±16.67 60.83±5.18 61.79±9.63 51.01±0.55 72.86±1.61

EdgePreGPPT 78.44±1.58 60.74±3.98 63.49±15.75 58.91±3.16 65.05±9.01 50.79±0.65 77.26±2.75

EdgePreGprompt 80.12±2.93 65.05±4.65 60.89±13.56 61.08±5.22 62.77±10.98 51.47±1.28 75.81±2.26

GraphCL 86.34±1.24 68.32±1.24 57.56±15.85 43.79±4.25 63.09±10.20 51.19±0.63 63.36±1.49

SimGRACE 76.63±1.67 71.91±2.47 58.10±9.13 57.76±2.12 65.06±9.74 50.81±0.66 56.33±0.77

GPPTPrompt

DGI 63.97±5.40 71.52±5.15 51.57±5.86 59.89±2.95 57.22±9.90 50.71±0.86 50.07±0.08

GraphMAE 78.20±3.89 61.64±4.31 64.12±15.44 55.48±6.44 53.95±3.70 51.71±1.74 59.28±2.39

EdgePreGPPT 65.75±4.04 54.28±5.62 55.12±11.88 54.59±4.65 50.55±3.83 49.94±0.53 74.38±1.59

EdgePreGprompt 62.60±2.50 54.23±6.14 61.41±11.42 57.58±2.23 53.16±6.75 50.32±0.29 63.71±2.13

GraphCL 72.09±7.61 59.06±3.51 55.95±13.50 54.51±4.05 56.59±7.31 51.76±0.95 54.45±1.08

SimGRACE 64.83±2.80 59.61±4.19 51.84±12.98 56.88±4.39 53.42±6.67 50.48±0.77 50.72±0.43

Gprompt

DGI 70.70±2.26 70.93±4.80 52.96±2.53 74.12±8.50 57.93±10.19 52.82±3.88 90.60±1.08

GraphMAE 80.67±5.24 70.72±5.34 60.66±19.63 89.64±5.51 59.57±11.81 52.87±4.78 94.04±1.32

EdgePreGPPT 84.03±2.26 67.95±2.69 44.60±13.08 88.97±5.38 60.65±12.95 53.55±3.61 96.40±0.74

EdgePreGprompt 81.90±4.04 74.85±2.68 58.34±22.51 91.99±5.59 62.03±14.44 50.16±1.75 94.39±1.12

GraphCL 83.03±4.16 78.33±5.28 58.24±13.76 87.80±5.54 58.33±10.63 54.45±2.93 92.72±0.72

SimGRACE 76.99±3.17 84.09±2.88 51.91±12.26 87.53±2.42 61.60±14.00 53.63±4.60 91.93±1.25

All-in-one

DGI 75.29±1.07 71.50±1.46 55.69±1.38 74.35±4.22 64.75±6.31 51.05±0.96 55.21±1.45

GraphMAE 73.99±5.63 49.98±3.07 53.18±13.11 78.16±4.96 62.90±3.67 50.96±1.97 50.21±1.01

EdgePreGPPT 83.26±1.22 69.82±1.32 73.63±3.06 86.56±6.53 75.38±10.13 49.99±0.28 54.22±5.18

EdgePreGprompt 73.84±3.01 62.35±6.11 61.26±7.66 86.03±3.16 67.99±6.33 51.48±2.87 75.81±2.83

GraphCL 84.34±4.32 72.36±2.82 68.22±6.38 63.00±6.09 69.39±2.56 47.63±2.10 55.77±4.78

SimGRACE 72.30±1.28 69.88±0.83 52.94±2.50 76.60±6.08 70.92±7.19 48.18±0.97 65.43±1.59

GPF

DGI 65.74±10.40 50.00±0.00 51.90±7.57 77.18±4.67 67.01±10.83 58.84±3.16 64.47±2.93

GraphMAE 73.69±2.75 66.16±0.22 73.35±8.02 96.98±0.89 81.43±10.22 55.43±3.58 80.52±0.81

EdgePreGPPT 62.03±6.87 57.99±6.03 68.25±7.09 95.97±1.75 78.79±9.70 55.90±6.20 92.37±0.30

EdgePreGprompt 70.83±8.42 71.94±3.31 71.40±8.27 90.33±4.63 71.85±9.72 56.13±4.33 83.64±2.82

GraphCL 74.17±5.66 61.21±7.77 70.39±4.76 65.12±13.92 84.28±8.08 54.42±3.73 78.19±1.35

SimGRACE 69.60±10.54 62.47±3.70 50.73±3.64 84.37±12.04 79.69±14.05 60.48±2.78 61.04±5.33

GPF-plus

DGI 58.07±8.25 55.15±11.69 55.70±11.04 85.93±6.24 79.28±11.50 57.02±8.99 60.73±3.11

GraphMAE 86.94±4.26 87.43±3.46 66.74±18.62 97.98±1.67 82.16±10.09 63.32±6.43 80.32±3.00

EdgePreGPPT 68.27±10.69 59.85±17.18 71.27±10.40 92.67±2.31 84.16±10.73 61.72±5.16 93.52±1.09

EdgePreGprompt 86.33±4.94 88.60±5.18 63.12±18.73 96.27±1.06 77.71±2.31 61.97±5.10 84.36±0.87

GraphCL 80.06±6.24 61.58±14.77 55.63±15.68 75.26±13.27 78.78±1.50 58.86±3.80 70.39±3.22

SimGRACE 64.39±11.25 64.11±10.53 54.79±10.68 85.74±6.67 85.07±9.21 55.75±4.51 69.09±2.34

MTG (Ours)

DGI 82.30±2.14 80.39±9.20 62.64±7.04 85.68±4.00 73.62±15.07 54.59±5.10 74.20±0.84

GraphMAE 81.64±4.86 71.84±7.49 62.95±11.20 98.24±1.37 82.90±11.67 61.70±4.93 80.62±2.62

EdgePreGPPT 81.32±3.49 65.29±11.10 63.16±10.25 93.74±2.95 79.15±6.07 50.47±2.34 97.04±0.59

EdgePreGprompt 80.68±2.31 73.35±11.93 69.20±13.88 90.19±5.78 85.59±9.47 51.89±2.08 76.91±3.05

GraphCL 89.02±2.73 78.61±10.46 54.43±11.25 75.82±4.79 76.98±9.39 55.56±7.35 77.30±2.70

SimGRACE 78.41±3.42 80.86±8.79 57.61±6.59 91.06±1.60 82.24±11.74 53.99±2.42 63.13±3.17

Table 17: Accuracy (%) on 3-shot node classification.

Adaptation Pre-training Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised - 37.79±9.16 35.18±6.86 57.33±4.64 41.03±6.40 40.78±12.55 18.62±3.46 19.03±5.08

Fine-tuning

DGI 45.84±3.29 34.91±10.07 63.00±6.83 39.43±6.93 43.13±13.79 20.27±1.70 21.85±5.37

GraphMAE 45.15±4.77 28.59±6.41 65.40±3.00 41.49±5.19 40.94±13.91 19.03±3.17 19.63±7.64

EdgePreGPPT 51.97±2.84 33.19±6.79 64.38±3.59 42.40±7.77 34.69±12.07 20.83±2.24 20.51±4.02

EdgePredGprompt 40.33±6.62 33.39±5.51 63.49±3.17 41.37±7.28 34.53±10.09 19.29±1.95 27.34±6.61

GraphCL 49.39±9.15 38.40±3.06 62.79±3.21 41.26±6.26 40.31±13.36 21.06±1.27 17.37±7.34

SimGRACE 43.61±5.41 45.08±2.09 62.66±3.21 40.11±8.04 40.94±13.73 22.11±1.97 16.06±2.05

GPPTPrompt

DGI 37.46±6.27 42.34±8.31 44.36±3.67 34.29±4.71 37.80±8.98 21.42±3.13 14.34±14.10

GraphMAE 30.93±3.64 20.76±2.64 67.43±2.96 33.60±2.30 37.64±5.88 21.65±3.39 17.24±13.25

EdgePreGPPT 35.05±2.95 24.26±2.55 58.66±5.93 29.37±6.22 38.90±7.56 20.35±0.43 22.46±4.05

EdgePreGprompt 27.94±5.07 23.21±2.95 64.98±5.35 33.49±5.49 36.06±12.01 19.85±0.31 18.73±4.77

GraphCL 43.84±6.11 27.09±4.57 51.30±6.35 23.89±5.35 38.90±8.86 20.60±1.10 13.04±6.44

SimGRACE 29.66±5.49 29.63±1.87 43.95±3.55 31.66±6.21 34.65±6.97 21.08±1.16 14.13±13.89

Gprompt

DGI 37.42±7.07 41.19±5.30 38.69±1.54 71.54±10.15 18.25±21.68 26.64±4.45 50.87±3.51

GraphMAE 63.78±5.77 57.15±3.90 62.47±4.29 86.48±7.48 36.99±44.62 29.21±3.27 73.92±2.75

EdgePreGPPT 51.29±7.07 34.79±4.07 53.63±7.62 89.10±4.09 37.49±45.24 26.44±3.36 64.52±1.76

EdgePreGprompt 53.37±6.30 56.19±2.95 66.68±3.53 92.52±5.38 38.66±46.67 21.78±1.85 68.77±3.72

GraphCL 56.61±8.02 56.28±5.89 50.33±5.18 85.83±4.53 36.16±43.62 29.67±2.53 58.48±7.86

SimGRACE 45.22±5.69 60.00±6.18 43.58±5.78 82.84±1.52 39.00±47.08 25.07±1.10 57.42±4.67

All-in-one

DGI 33.80±6.36 31.08±2.95 48.09±2.81 74.71±2.35 31.94±7.00 24.23±1.39 29.92±1.52

GraphMAE 19.25±3.11 19.02±5.19 64.03±4.70 76.90±2.98 65.93±17.42 19.56±2.48 13.15±4.63

EdgePreGPPT 48.09±4.83 34.29±1.85 58.36±4.63 89.62±4.38 88.69±1.08 20.91±3.37 14.41±5.57

EdgePreGprompt 29.54±6.25 24.63±3.57 65.79±5.79 84.29±2.32 73.89±16.92 20.70±2.58 12.91±2.08

GraphCL 27.89±18.34 43.96±6.69 51.44±4.46 67.06±9.70 78.86±4.06 22.14±2.57 31.15±2.25

SimGRACE 25.16±11.78 48.09±8.18 47.87±3.53 76.78±1.28 82.93±5.04 21.99±1.17 15.47±4.05

GPF

DGI 25.14±19.07 25.92±12.30 38.49±14.50 64.36±12.75 59.16±14.47 25.03±1.66 31.60±9.57

GraphMAE 33.93±8.01 23.91±5.11 71.20±2.82 93.85±3.71 93.66±3.95 37.44±3.43 38.70±11.10

EdgePreGPPT 23.05±9.03 18.81±4.35 65.06±2.22 92.64±2.97 92.15±4.10 30.47±3.57 59.67±12.69

EdgePreGprompt 32.57±9.57 21.75±2.88 67.57±14.07 91.41±2.76 95.34±4.50 25.64±8.58 35.13±8.73

GraphCL 34.84±19.83 23.02±5.56 49.15±6.46 67.65±15.44 95.47±2.75 21.95±6.54 36.09±8.10

SimGRACE 27.80±18.09 21.20±11.25 31.75±13.86 86.96±5.27 94.83±4.07 22.82±3.16 28.70±5.98

GPF-plus

DGI 20.80±13.69 24.46±17.23 51.70±11.29 77.55±17.33 77.51±22.66 23.99±6.98 32.34±11.81

GraphMAE 56.38±5.37 72.48±5.63 70.85±4.03 98.15±0.73 96.50±0.67 43.59±4.52 44.44±9.85

EdgePreGPPT 32.62±23.21 22.06±21.01 67.20±1.67 98.15±0.83 97.49±2.18 34.38±5.23 64.51±12.93

EdgePreGprompt 52.74±7.08 71.56±8.03 68.84±4.33 96.54±1.57 97.66±0.41 30.87±6.61 64.63±10.05

GraphCL 30.34±21.41 27.17±24.65 45.62±19.04 62.76±14.68 97.50±1.42 36.87±2.45 43.66±7.48

SimGRACE 30.95±19.32 28.97±20.66 41.96±15.64 80.92±10.40 97.66±1.41 34.89±6.03 33.74±5.22

MTG (Ours)

DGI 53.53±6.60 73.81±8.56 60.24±7.33 74.61±13.40 66.50±14.18 32.94±4.50 33.81±8.32

GraphMAE 52.27±8.15 54.45±5.07 65.01±9.42 98.58±0.93 93.66±4.21 37.62±4.72 37.97±7.54

EdgePreGPPT 51.87±8.74 33.15±15.11 63.32±12.38 96.64±2.19 93.15±4.02 33.65±3.39 76.01±5.39

EdgePreGprompt 52.78±6.80 58.10±4.89 71.38±3.21 96.75±3.53 98.17±1.40 31.06±1.82 28.45±3.77

GraphCL 66.11±6.37 60.13±4.49 55.87±7.62 65.61±8.65 93.49±3.07 32.32±3.27 42.53±6.06

SimGRACE 42.91±9.14 64.66±7.20 51.37±10.41 78.42±13.92 94.16±3.70 27.73±2.97 38.09±13.67
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Table 18: F1-score on 3-shot node classification.

Adaptation Pre-training Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised - 37.64±6.32 28.68±8.09 53.04±6.01 34.90±5.93 29.16±7.77 13.69±2.87 15.21±2.66

Fine-tuning

DGI 41.76±1.48 27.23±9.82 61.18±10.18 35.01±5.55 31.12±8.67 16.05±0.75 16.45±1.97

GraphMAE 45.70±6.35 20.60±5.72 64.33±3.42 34.08±4.01 28.29±8.05 16.30±2.37 14.26±4.46

EdgePreGPPT 49.76±2.52 28.14±6.04 63.62±4.81 35.03±5.65 25.55±6.58 17.79±1.62 16.68±2.65

EdgePredGprompt 41.69±5.58 23.81±4.86 62.48±4.02 35.42±6.02 26.05±6.95 12.98±2.02 19.33±2.46

GraphCL 47.79±9.36 34.47±3.44 63.10±2.93 22.42±6.61 29.45±8.86 19.91±1.08 7.46±3.10

SimGRACE 41.71±4.09 42.01±1.56 63.14±3.43 34.28±5.18 29.55±7.96 17.92±1.61 11.68±1.37

GPPTPrompt

DGI 33.94±7.56 36.13±8.65 44.13±3.80 30.91±2.41 34.81±7.09 19.30±2.98 3.50±2.51

GraphMAE 25.31±6.18 6.91±2.93 67.61±2.62 29.51±3.03 33.87±3.38 18.03±1.97 6.06±5.21

EdgePreGPPT 32.77±2.69 19.54±1.23 58.07±6.41 27.20±3.72 33.65±5.16 19.32±0.53 17.24±1.62

EdgePreGprompt 20.10±4.36 20.60±1.98 62.73±4.96 29.19±4.29 30.98±7.36 18.99±0.70 15.47±2.95

GraphCL 41.25±4.50 25.71±4.25 50.27±6.65 15.65±5.40 34.61±6.65 19.81±1.02 5.96±3.82

SimGRACE 27.19±4.01 27.09±2.43 42.79±3.17 26.79±4.55 32.38±5.73 19.02±0.50 4.01±2.59

Gprompt

DGI 32.92±6.82 37.71±5.52 37.90±1.53 60.12±10.43 23.89±29.00 26.39±4.24 46.53±2.46

GraphMAE 59.30±7.36 53.60±3.06 61.33±4.81 79.06±11.48 30.56±37.45 29.02±3.53 65.63±1.42

EdgePreGPPT 46.21±6.52 29.81±3.69 48.94±10.06 80.60±7.17 32.74±40.02 24.73±3.32 58.82±1.46

EdgePreGprompt 52.43±6.41 53.88±3.50 65.02±2.80 91.03±5.30 29.77±36.20 20.40±1.65 57.08±1.62

GraphCL 51.54±8.49 52.46±5.08 49.16±5.73 65.08±11.12 30.89±37.90 28.21±2.34 50.55±3.75

SimGRACE 40.83±3.88 56.25±7.01 42.59±5.51 76.68±3.65 37.94±46.21 25.41±1.35 52.22±1.38

All-in-one

DGI 22.05±4.15 25.31±3.49 42.82±4.66 63.22±7.20 37.71±11.00 11.04±2.36 15.79±0.87

GraphMAE 8.10±2.43 7.36±2.81 62.24±5.80 51.62±2.63 58.91±14.27 11.52±0.97 9.72±3.20

EdgePreGPPT 41.54±1.81 27.24±3.58 56.20±5.02 80.48±6.96 82.89±2.60 9.51±3.89 9.61±4.38

EdgePreGprompt 20.33±9.09 12.09±3.36 63.18±7.52 79.59±6.58 68.71±14.50 7.89±2.38 9.96±1.24

GraphCL 14.85±18.09 33.38±6.65 50.52±3.48 61.79±11.38 69.09±6.96 16.40±1.47 14.33±0.41

SimGRACE 12.71±11.42 40.22±8.61 44.79±2.93 64.88±4.35 79.46±5.10 13.70±2.29 10.07±1.80

GPF

DGI 12.93±16.42 12.92±13.22 32.76±17.33 57.67±6.47 54.60±7.43 15.68±9.94 12.83±1.39

GraphMAE 19.59±5.22 14.48±5.04 70.15±2.68 87.58±7.51 86.43±11.19 31.56±8.62 14.17±3.86

EdgePreGPPT 9.90±9.04 7.40±3.59 63.04±3.09 87.06±6.90 81.91±9.67 22.38±8.76 45.75±5.33

EdgePreGprompt 21.59±5.95 11.79±3.50 62.02±21.60 86.44±7.15 86.41±10.56 22.04±11.41 19.34±3.58

GraphCL 18.90±20.40 8.10±4.95 47.10±8.36 44.52±22.48 81.72±11.88 14.24±8.36 21.89±6.08

SimGRACE 13.21±14.54 10.26±8.85 25.30±17.26 66.51±11.13 86.16±10.16 15.37±7.26 13.97±3.27

GPF-plus

DGI 10.87±13.23 14.35±19.57 43.25±20.47 75.32±18.48 61.47±21.05 14.70±3.64 14.05±3.80

GraphMAE 55.76±3.81 70.45±6.54 69.78±3.58 94.11±2.69 81.45±10.47 45.02±4.47 20.13±2.80

EdgePreGPPT 20.90±24.90 15.30±23.70 65.43±1.28 92.59±4.18 86.57±9.96 32.74±6.14 52.12±8.51

EdgePreGprompt 52.13±7.14 68.79±9.94 67.98±3.69 94.33±1.77 85.78±10.07 30.59±7.43 44.07±7.58

GraphCL 21.84±23.15 18.50±28.28 59.42±13.43 26.69±14.43 83.37±9.14 30.93±5.62 23.49±1.47

SimGRACE 20.11±22.26 18.43±24.95 27.58±21.15 61.07±14.66 84.64±10.24 30.11±6.73 15.20±0.24

MTG (Ours)

DGI 46.54±12.69 72.30±4.71 59.76±7.94 67.09±8.14 58.29±7.26 30.76±0.61 17.44±1.45

GraphMAE 49.48±5.32 49.16±7.50 64.33±9.10 94.48±4.09 86.91±10.55 34.46±6.85 14.52±1.48

EdgePreGPPT 48.25±7.70 27.87±15.20 62.60±12.00 92.21±5.04 83.99±10.75 32.95±4.15 63.84±5.11

EdgePreGprompt 50.76±7.86 52.42±7.90 67.80±4.99 93.83±4.43 87.36±8.55 29.64±1.63 16.90±2.39

GraphCL 65.93±6.51 52.05±5.93 54.72±7.26 44.48±11.68 85.01±10.01 29.25±5.15 31.70±3.22

SimGRACE 37.18±6.46 61.59±10.38 49.48±9.46 60.86±11.75 86.13±10.46 24.62±2.91 16.98±6.64

Table 19: AUROC on 3-shot node classification.

Adaptation Pre-training Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised - 86.20±2.47 76.31±3.45 80.24±2.82 66.44±6.12 59.85±12.05 51.48±0.74 59.17±1.26

Fine-tuning

DGI 84.23±2.75 74.32±4.21 82.28±5.43 67.49±3.80 55.28±10.97 51.93±1.20 61.28±1.40

GraphMAE 86.80±2.35 75.07±2.48 84.70±1.28 66.58±6.51 58.48±11.37 51.78±1.01 59.12±1.66

EdgePreGPPT 85.62±1.41 72.39±3.60 83.03±2.89 66.70±4.04 54.49±12.28 52.25±0.89 60.55±1.73

EdgePredGprompt 85.85±0.79 76.73±2.26 83.40±2.74 67.27±4.41 58.43±10.76 51.24±0.96 61.30±1.07

GraphCL 87.71±1.59 75.10±2.66 81.83±2.15 61.56±7.86 57.10±12.53 52.03±1.09 54.66±2.69

SimGRACE 80.39±2.84 76.94±1.30 79.56±3.24 67.34±5.82 59.02±11.26 51.60±0.77 56.28±1.14

GPPTPrompt

DGI 70.88±2.54 73.97±5.46 61.07±2.93 66.79±2.66 63.59±7.91 51.34±1.54 50.34±0.68

GraphMAE 80.91±2.38 69.11±3.46 83.10±1.03 63.77±3.61 60.95±3.13 51.22±1.38 51.84±3.86

EdgePreGPPT 68.71±2.02 59.01±2.73 74.22±4.90 57.60±1.78 58.20±4.72 50.23±0.31 58.95±1.29

EdgePreGprompt 68.29±3.52 58.07±2.40 81.15±4.81 61.93±5.66 61.91±5.28 50.27±0.63 56.16±2.47

GraphCL 75.26±3.86 60.58±4.04 71.43±2.47 53.79±2.21 61.73±5.50 50.96±0.66 50.69±1.68

SimGRACE 66.90±4.18 65.72±2.09 62.58±2.08 66.87±2.38 60.35±7.62 50.53±0.57 50.07±0.24

Gprompt

DGI 62.24±2.99 75.87±3.70 55.46±1.89 87.72±5.97 60.44±13.45 55.78±3.19 92.08±0.52

GraphMAE 80.27±5.61 74.38±3.36 84.37±1.75 96.34±2.81 60.67±13.69 58.52±2.66 93.17±0.44

EdgePreGPPT 81.41±5.40 65.99±4.06 72.84±0.48 98.59±1.16 61.51±14.67 56.86±2.69 94.31±0.11

EdgePreGprompt 83.15±3.91 82.01±1.78 84.45±1.80 99.32±0.66 62.34±15.53 51.33±2.32 95.60±0.06

GraphCL 83.25±3.22 83.20±0.97 71.35±3.39 91.20±4.59 61.92±15.06 59.78±3.41 94.76±0.71

SimGRACE 79.02±2.55 86.57±1.86 61.89±6.64 94.09±3.00 62.38±15.57 56.13±1.59 94.71±0.39

All-in-one

DGI 71.15±3.33 65.99±0.90 66.83±1.02 81.86±0.82 46.05±2.66 52.80±2.23 55.31±0.33

GraphMAE 77.89±3.94 63.31±2.05 84.13±1.99 81.57±1.86 66.49±5.26 50.76±1.17 55.43±0.07

EdgePreGPPT 80.90±2.72 68.74±3.28 76.23±0.81 96.17±3.82 75.39±1.30 52.98±1.21 56.37±0.72

EdgePreGprompt 77.50±2.96 69.84±1.80 85.03±1.73 91.35±2.44 72.04±6.05 49.89±1.95 54.08±0.15

GraphCL 65.18±11.80 77.64±2.06 73.05±1.97 82.74±3.64 72.60±1.20 51.67±1.31 53.03±0.27

SimGRACE 59.44±9.08 78.11±1.17 64.76±2.62 84.99±2.40 92.99±1.95 51.64±2.25 51.35±0.09

GPF

DGI 60.20±13.06 59.79±13.56 59.52±12.99 77.84±2.81 63.85±10.27 54.39±2.39 73.91±2.08

GraphMAE 82.70±2.62 72.25±4.60 87.91±1.01 98.45±1.93 87.47±9.36 67.24±4.73 78.12±2.53

EdgePreGPPT 65.44±9.07 67.13±1.95 81.07±0.78 99.15±0.36 78.69±1.83 58.43±3.84 92.57±1.23

EdgePreGprompt 83.18±3.22 69.63±7.04 85.38±6.75 98.35±2.86 83.30±5.10 56.19±3.18 83.95±0.73

GraphCL 73.76±9.73 68.34±10.91 75.10±2.04 57.42±18.02 80.86±1.38 56.96±4.69 77.45±3.21

SimGRACE 63.96±7.80 63.26±11.65 58.71±6.49 95.32±3.52 86.97±9.21 55.06±3.04 63.69±5.22

GPF-plus

DGI 55.30±13.20 55.81±15.74 66.54±15.31 91.04±3.86 78.85±4.55 57.09±3.17 72.14±5.71

GraphMAE 87.26±3.14 91.53±1.55 87.12±1.71 99.03±0.13 82.17±4.17 72.39±1.82 82.95±1.11

EdgePreGPPT 73.87±10.93 56.16±16.39 82.80±1.90 99.24±0.09 86.47±7.95 67.15±3.76 93.54±1.76

EdgePreGprompt 85.81±3.03 91.47±1.96 85.13±2.57 98.99±0.19 84.00±7.50 65.17±4.06 89.16±2.12

GraphCL 80.93±6.55 61.66±15.01 80.00±7.05 65.42±19.34 80.57±1.41 69.40±1.84 81.66±2.30

SimGRACE 66.36±16.56 60.91±15.05 61.66±12.28 90.57±6.03 82.68±5.45 66.44±4.39 67.35±2.71

MTG (Ours)

DGI 84.42±8.91 91.92±2.82 84.10±4.41 89.88±4.35 67.37±11.67 59.80±5.38 73.10±1.13

GraphMAE 85.04±3.04 78.35±5.16 87.65±3.13 99.19±0.87 87.51±9.57 69.62±4.72 80.01±1.66

EdgePreGPPT 82.73±4.81 65.55±10.41 82.66±9.56 99.76±0.29 79.08±0.73 64.07±2.31 95.04±1.27

EdgePreGprompt 83.39±4.54 81.04±5.11 86.16±3.20 99.20±1.45 84.19±7.49 61.34±1.54 77.30±2.92

GraphCL 89.07±3.69 83.12±6.58 77.04±4.99 67.06±9.98 80.35±0.79 59.76±3.77 78.37±2.86

SimGRACE 73.87±5.96 89.93±1.91 68.11±11.04 87.06±12.66 86.82±8.78 55.80±2.89 59.04±7.05
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Table 20: Accuracy (%) on 5-shot node classification

Adaptation Pre-training Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised - 50.25±8.37 41.22±6.30 67.88±2.18 39.43±5.86 43.91±6.47 21.92±1.86 22.38±3.05

Fine-tuning

DGI 48.79±8.51 35.91±4.94 61.44±7.93 40.00±6.31 47.19±7.37 21.48±1.71 12.48±6.15

GraphMAE 54.09±4.21 32.75±6.35 70.04±4.57 40.69±6.73 43.44±8.48 22.92±1.22 24.08±1.45

EdgePreGPPT 54.34±3.78 38.97±7.35 70.91±4.87 40.69±6.77 44.53±11.05 21.46±1.00 28.84±3.11

EdgePredGprompt 49.04±8.99 32.08±8.24 70.44±5.04 41.03±6.58 45.78±8.07 22.46±1.99 25.94±2.63

GraphCL 62.66±3.55 39.54±3.54 66.84±5.78 42.97±8.99 46.41±5.47 21.99±1.61 13.42±3.73

SimGRACE 45.13±7.81 38.90±6.03 62.65±6.29 41.49±5.77 46.09±8.71 22.77±1.56 9.45±1.62

GPPTPrompt

DGI 43.68±7.12 45.77±7.41 47.39±10.22 36.29±3.97 48.82±5.15 20.91±1.36 8.85±6.21

GraphMAE 31.50±11.89 19.93±6.60 66.97±3.70 37.00±3.19 42.68±6.91 22.10±0.86 8.90±6.25

EdgePreGPPT 32.94±2.82 26.93±1.56 63.45±3.63 34.00±5.69 36.85±3.24 20.42±0.81 28.90±1.64

EdgePreGprompt 30.55±4.59 28.46±4.25 63.33±4.18 32.57±3.31 39.21±6.09 20.07±0.45 4.01±0.69

GraphCL 51.98±3.43 26.68±2.95 57.59±2.89 30.43±8.83 45.20±2.20 21.25±0.78 14.15±5.26

SimGRACE 34.93±2.55 29.51±2.60 42.87±1.57 33.00±5.27 41.42±6.80 21.58±0.84 9.11±3.50

Gprompt

DGI 27.81±10.28 52.84±2.36 37.83±5.71 57.24±27.27 34.47±41.15 26.07±4.20 56.59±4.05

GraphMAE 66.82±3.98 60.07±3.98 66.66±2.25 74.89±35.83 36.73±43.95 30.71±2.12 76.98±3.88

EdgePreGPPT 53.15±2.85 36.15±5.00 62.18±4.88 78.22±37.33 37.59±45.03 28.76±3.95 85.40±0.79

EdgePreGprompt 62.63±3.26 65.34±4.60 67.87±2.08 78.01±37.38 38.45±46.03 21.86±2.13 81.85±3.16

GraphCL 69.03±3.61 61.27±5.37 57.21±2.78 65.72±31.30 36.38±43.47 34.67±1.28 57.52±4.19

SimGRACE 51.27±6.05 66.13±1.64 44.78±6.52 68.34±32.42 39.32±47.08 30.06±3.36 57.36±3.68

All-in-one

DGI 30.45±0.19 21.82±4.73 43.60±5.24 79.95±4.01 62.50±12.39 19.83±3.14 2.65±0.09

GraphMAE 25.02±7.58 19.38±4.38 46.16±15.83 82.43±2.84 66.47±17.32 15.03±3.13 0.24±0.00

EdgePreGPPT 30.36±13.48 25.83±9.32 37.61±20.58 88.55±3.52 47.98±27.78 21.49±3.02 1.59±1.30

EdgePreGprompt 21.59±7.30 18.75±1.86 39.36±11.45 87.16±3.02 46.32±29.89 21.23±5.64 13.01±6.29

GraphCL 25.63±17.68 27.93±10.59 42.86±7.21 84.75±8.86 73.28±9.91 20.83±8.04 6.70±6.01

SimGRACE 15.20±9.51 25.19±12.95 21.59±2.58 78.90±2.26 64.63±25.59 21.26±6.24 4.80±5.17

GPF

DGI 29.57±20.89 24.55±12.61 52.43±6.94 83.21±5.19 89.30±1.58 35.40±8.78 20.72±0.26

GraphMAE 35.43±1.02 25.12±3.01 68.96±3.99 96.30±5.12 92.44±3.04 44.07±3.94 45.20±2.03

EdgePreGPPT 15.39±8.19 18.11±2.78 58.67±3.21 98.26±1.19 89.47±1.91 30.99±4.68 71.83±9.37

EdgePreGprompt 31.58±18.16 24.55±8.28 66.25±8.53 96.30±5.12 90.18±1.57 31.92±5.75 28.60±3.11

GraphCL 28.60±11.19 17.69±1.35 52.47±6.73 69.15±21.44 98.42±0.36 29.13±2.63 23.90±0.12

SimGRACE 18.94±12.60 22.45±3.45 40.35±1.71 92.29±3.36 91.73±3.84 30.28±2.64 33.77±8.48

GPF-plus

DGI 27.23±14.61 26.31±11.48 47.02±14.51 83.86±17.24 96.18±4.12 36.03±7.49 16.86±3.30

GraphMAE 63.28±4.69 75.73±2.19 69.59±4.33 99.01±1.43 99.12±0.95 44.58±5.95 47.79±1.09

EdgePreGPPT 22.44±23.88 13.63±5.27 66.43±3.28 98.52±2.07 96.18±4.12 37.15±8.48 66.88±6.14

EdgePreGprompt 66.22±6.20 64.49±14.12 68.10±4.56 98.64±2.14 97.74±2.47 41.98±4.70 51.25±1.31

GraphCL 47.71±22.44 29.16±16.66 64.53±4.15 70.98±19.27 99.12±0.95 36.99±6.59 25.74±1.70

SimGRACE 27.79±21.51 28.37±22.54 50.25±10.04 89.57±4.22 95.83±3.85 38.23±2.34 44.70±2.69

MTG (Ours)

DGI 53.47±11.79 76.34±6.18 61.52±4.74 82.69±8.67 89.77±3.04 35.42±3.92 13.38±7.85

GraphMAE 57.16±8.68 61.37±7.73 65.71±3.94 99.23±0.62 93.61±5.01 45.09±3.26 42.98±10.64

EdgePreGPPT 56.96±6.84 44.49±7.80 63.34±6.29 98.48±0.70 97.17±6.08 35.36±1.85 85.94±1.93

EdgePreGprompt 53.61±7.57 61.26±9.76 70.84±3.28 97.51±3.88 98.76±2.36 35.06±2.02 38.04±2.24

GraphCL 71.81±3.59 66.59±8.39 58.18±3.34 72.02±6.21 94.65±4.67 33.94±3.77 50.04±7.84

SimGRACE 48.98±6.01 68.33±5.69 52.74±1.25 87.24±5.85 94.81±5.06 32.76±0.93 38.67±3.86

Table 21: F1-score on 5-shot node classification.

Adaptation Pre-training Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised - 51.42±8.70 34.20±6.12 67.45±2.25 34.31±4.41 35.02±8.10 16.89±1.20 14.76±1.13

Fine-tuning

DGI 47.53±9.44 28.71±2.76 59.33±10.23 34.71±5.28 38.80±7.04 16.49±1.42 4.78±2.53

GraphMAE 55.17±5.27 29.67±6.94 69.58±4.63 34.69±5.63 34.57±9.23 16.92±1.76 12.97±0.32

EdgePreGPPT 55.50±3.62 31.31±8.86 70.31±4.65 34.86±4.83 36.63±7.69 19.42±1.02 20.19±1.27

EdgePredGprompt 49.18±8.50 27.04±6.83 69.46±4.79 34.90±5.77 36.38±7.04 18.28±1.91 18.51±1.18

GraphCL 61.32±3.43 35.95±3.18 66.16±5.43 26.66±5.78 33.81±3.28 20.44±1.45 6.96±1.07

SimGRACE 45.33±4.88 34.74±7.40 62.66±6.39 35.86±4.86 36.86±7.72 20.63±1.13 4.74±0.48

GPPTPrompt

DGI 40.79±7.28 39.86±7.94 44.67±12.25 32.76±3.66 39.86±4.07 19.28±0.85 0.39±0.27

GraphMAE 24.55±7.97 7.49±4.08 66.55±3.62 33.86±3.88 36.66±2.42 19.92±0.84 0.42±0.29

EdgePreGPPT 32.50±2.42 19.95±1.98 62.42±4.78 30.57±4.59 33.93±2.76 19.89±0.56 18.11±1.03

EdgePreGprompt 22.20±3.24 25.96±4.33 61.22±5.46 30.39±2.77 35.84±3.35 19.22±0.33 2.56±1.55

GraphCL 50.60±2.51 25.00±2.05 57.27±2.84 18.78±5.00 35.83±1.96 20.34±0.74 3.03±1.03

SimGRACE 31.56±2.75 28.27±1.68 40.87±2.90 27.06±3.81 36.11±2.81 20.45±0.51 1.63±0.40

Gprompt

DGI 19.96±9.68 47.84±2.39 37.26±5.45 48.86±23.99 29.50±36.22 24.02±4.65 49.69±1.68

GraphMAE 61.57±5.38 56.39±3.60 65.31±2.36 70.18±34.72 36.05±43.75 30.08±1.88 66.82±2.68

EdgePreGPPT 51.03±3.08 31.15±3.86 60.74±4.30 73.65±36.66 34.07±41.83 27.29±3.43 79.73±1.29

EdgePreGprompt 60.77±3.39 63.42±5.11 66.46±2.30 77.08±37.97 34.45±41.99 21.03±2.04 79.20±1.95

GraphCL 64.22±4.08 57.65±5.74 56.66±2.35 51.82±25.62 31.38±38.22 32.99±1.00 49.82±2.81

SimGRACE 45.98±5.22 63.84±1.37 42.20±5.64 62.12±30.55 38.47±46.70 29.63±3.89 53.41±2.08

All-in-one

DGI 6.67±0.03 10.68±7.84 26.81±9.85 60.73±6.34 31.59±18.97 10.66±3.88 0.21±0.04

GraphMAE 6.77±3.23 8.66±4.25 33.97±19.42 58.02±3.64 49.27±9.03 8.31±2.80 0.01±0.00

EdgePreGPPT 15.19±16.25 13.46±10.23 31.47±24.42 78.97±11.06 29.95±20.92 10.10±3.63 0.53±0.63

EdgePreGprompt 4.99±1.38 5.28±0.47 27.49±15.02 68.69±3.29 25.44±17.47 8.08±2.12 0.56±0.27

GraphCL 14.88±18.86 14.98±12.03 31.71±13.56 74.33±11.49 49.70±21.87 10.10±6.01 0.75±1.07

SimGRACE 7.21±7.14 13.71±14.05 13.42±3.26 66.26±6.68 45.47±21.83 11.42±5.14 0.52±0.70

GPF

DGI 18.44±18.83 13.25±11.04 47.23±9.28 75.78±14.28 77.01±10.57 28.58±14.86 11.02±0.99

GraphMAE 23.17±2.53 12.78±1.23 67.88±4.07 87.75±13.24 82.81±10.55 43.09±4.07 16.76±2.76

EdgePreGPPT 3.69±1.67 5.09±0.66 53.91±7.41 94.37±8.31 80.86±9.83 23.04±9.22 55.01±8.05

EdgePreGprompt 20.17±13.79 12.79±6.88 62.47±11.25 89.10±11.52 79.88±10.50 30.44±9.87 18.77±3.29

GraphCL 11.74±6.74 5.99±2.19 46.46±14.28 51.01±22.81 86.64±9.95 22.59±5.87 18.74±0.78

SimGRACE 10.17±12.35 9.91±2.56 29.36±8.75 71.38±2.97 81.14±11.49 22.30±8.60 12.31±4.13

GPF-plus

DGI 13.92±14.65 12.41±13.45 40.73±16.83 71.22±13.69 84.85±10.28 32.05±9.40 6.42±2.47

GraphMAE 61.55±4.90 74.86±2.27 68.34±4.25 94.48±8.79 86.93±10.70 44.28±6.46 24.14±2.16

EdgePreGPPT 15.91±26.40 4.26±1.11 61.79±8.54 93.18±10.98 82.10±9.29 35.11±10.76 56.15±4.28

EdgePreGprompt 65.96±5.07 57.16±18.91 66.11±4.85 93.46±10.79 85.56±9.53 39.84±6.02 32.07±2.05

GraphCL 38.84±26.82 18.53±21.72 63.06±3.88 65.13±17.26 86.59±11.04 33.23±7.80 19.46±1.47

SimGRACE 19.60±23.99 18.27±26.81 36.93±16.65 69.27±9.83 84.63±10.23 35.78±3.00 24.02±2.29

MTG (Ours)

DGI 51.91±11.08 73.99±3.61 60.73±4.22 69.16±7.94 73.14±7.79 33.52±5.07 12.71±0.55

GraphMAE 53.10±8.79 57.30±6.85 64.65±3.69 95.64±4.65 90.65±10.95 45.18±3.35 25.08±2.22

EdgePreGPPT 53.29±7.72 37.19±7.94 62.22±5.54 93.76±2.08 90.38±14.30 32.06±1.70 76.02±2.67

EdgePreGprompt 56.54±7.85 55.55±11.40 69.94±5.00 91.81±7.61 92.49±12.19 33.62±2.80 34.91±1.87

GraphCL 67.85±4.39 59.66±8.92 56.94±2.93 56.56±13.47 91.24±10.50 30.42±3.41 29.39±3.96

SimGRACE 41.64±4.50 64.90±6.41 50.14±3.88 65.15±10.07 90.44±10.87 27.20±3.37 17.00±2.72
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Table 22: AUROC on 5-shot node classification.

Adaptation Pre-training Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised - 88.39±2.56 78.16±2.95 84.93±2.77 65.96±5.03 66.32±8.89 51.44±0.62 78.83±1.37

Fine-tuning

DGI 84.60±5.40 74.29±3.78 81.26±3.74 67.40±4.97 66.62±8.12 51.78±0.48 62.86±4.35

GraphMAE 90.30±1.62 77.04±3.75 86.09±2.54 65.32±5.26 63.95±9.63 51.73±0.46 75.65±0.78

EdgePreGPPT 86.88±1.90 75.17±2.72 86.23±2.32 67.71±3.54 69.36±8.52 51.34±0.65 83.86±1.25

EdgePredGprompt 87.41±2.15 73.79±5.07 85.66±3.26 66.04±5.12 66.70±8.92 52.40±0.91 82.34±1.45

GraphCL 90.49±1.49 76.54±1.56 83.07±3.73 57.71±8.14 65.57±7.78 52.68±0.69 66.70±0.95

SimGRACE 85.45±2.29 76.95±2.79 80.86±3.17 67.73±4.47 66.11±7.69 52.52±0.92 60.36±0.72

GPPTPrompt

DGI 76.38±6.02 76.59±3.18 63.76±10.00 69.27±1.49 66.52±3.33 51.27±1.04 50.09±0.25

GraphMAE 84.77±3.18 69.69±1.62 82.56±1.84 66.53±4.44 63.43±2.99 50.92±0.44 63.55±2.93

EdgePreGPPT 69.44±2.15 60.14±1.47 77.28±3.58 62.04±3.27 61.22±2.13 50.85±0.37 85.67±0.67

EdgePreGprompt 69.60±0.83 62.44±2.17 81.98±4.11 63.83±2.92 65.86±2.34 50.32±0.54 71.01±5.38

GraphCL 82.06±2.24 61.54±2.42 76.26±1.36 55.23±2.54 62.83±4.62 50.87±0.69 58.53±1.53

SimGRACE 70.54±2.07 64.49±1.54 60.67±1.80 66.38±0.42 62.69±1.92 51.00±0.54 51.46±0.26

Gprompt

DGI 70.76±4.67 80.01±2.22 54.50±2.51 84.53±17.37 65.41±9.24 54.02±2.61 92.66±0.73

GraphMAE 72.59±7.56 76.04±5.23 82.88±2.18 89.40±19.62 66.34±10.38 56.23±2.46 96.45±0.14

EdgePreGPPT 85.57±0.39 68.97±4.56 76.57±1.08 89.57±19.71 66.48±10.55 58.85±2.98 98.40±0.08

EdgePreGprompt 88.49±0.88 84.82±2.89 83.58±1.29 89.71±19.78 66.52±10.61 52.51±2.39 97.79±0.15

GraphCL 88.70±2.05 81.00±6.61 74.92±2.53 83.64±16.83 66.33±10.37 63.03±3.07 94.54±0.37

SimGRACE 78.28±3.96 89.06±0.86 59.22±5.76 86.22±18.17 66.68±10.79 58.88±3.13 95.27±0.28

All-in-one

DGI 42.65±0.41 57.45±7.01 57.38±8.87 85.53±2.93 68.87±6.32 51.24±2.32 54.76±0.75

GraphMAE 80.75±0.64 57.95±1.98 81.32±2.25 83.91±5.14 72.30±3.24 53.43±0.71 53.46±2.41

EdgePreGPPT 62.42±11.37 62.25±7.23 63.45±13.43 95.30±4.46 78.68±10.06 51.90±0.91 54.22±1.57

EdgePreGprompt 77.24±3.51 64.14±1.01 75.97±3.33 91.72±1.62 80.10±10.86 50.40±3.16 75.81±2.83

GraphCL 65.99±10.83 65.27±11.57 69.76±4.24 88.87±4.34 76.09±6.05 54.21±2.36 55.77±4.78

SimGRACE 59.53±3.53 64.55±7.97 47.71±3.86 86.55±2.81 83.01±10.84 52.44±1.68 53.56±7.86

GPF

DGI 62.20±15.24 62.32±17.75 67.14±11.86 89.86±8.25 78.39±1.66 65.97±7.26 74.59±0.97

GraphMAE 80.34±2.03 67.33±3.16 86.64±2.02 97.72±3.33 89.25±8.10 73.06±2.24 74.39±0.76

EdgePreGPPT 49.95±0.10 52.76±6.92 74.91±5.59 99.98±0.03 83.65±7.64 59.31±5.01 90.96±1.32

EdgePreGprompt 73.56±5.48 76.82±4.28 85.50±1.95 97.15±4.98 86.81±8.42 60.43±6.30 75.36±2.61

GraphCL 79.04±5.41 64.25±7.12 70.90±6.31 73.84±18.96 83.62±4.75 57.39±3.99 75.19±0.54

SimGRACE 60.98±9.22 64.93±3.80 58.21±3.99 90.38±1.52 90.43±8.89 61.68±2.02 60.89±3.56

GPF-plus

DGI 60.30±14.39 54.40±11.09 73.47±9.02 95.86±3.95 89.08±8.43 68.06±2.70 67.37±3.03

GraphMAE 89.99±1.39 92.09±1.11 85.69±3.12 99.93±0.14 87.29±7.92 73.10±2.68 81.99±0.56

EdgePreGPPT 65.26±14.38 55.10±2.95 82.94±2.55 99.96±0.05 86.89±8.72 70.17±4.50 93.73±1.05

EdgePreGprompt 91.09±1.03 82.22±12.12 83.84±3.91 99.96±0.08 83.88±7.87 72.25±1.48 81.54±1.05

GraphCL 84.11±7.92 61.55±15.26 81.38±3.75 91.95±9.63 86.24±7.72 69.74±1.87 77.42±2.14

SimGRACE 66.55±14.49 63.11±14.51 65.07±10.97 88.17±7.54 89.58±9.03 68.81±1.60 69.60±2.37

MTG (Ours)

DGI 79.10±6.06 91.10±3.30 82.26±3.91 92.82±5.80 75.08±7.59 65.51±1.26 71.53±2.45

GraphMAE 84.04±3.89 79.50±5.64 81.29±3.88 97.38±2.96 83.27±7.89 72.52±1.86 88.91±0.39

EdgePreGPPT 86.80±2.58 73.62±5.31 84.55±3.01 99.96±0.04 79.55±0.64 63.35±0.82 97.59±0.21

EdgePreGprompt 88.07±2.30 83.98±3.25 87.81±2.54 99.31±0.75 85.44±4.87 63.89±1.70 92.11±1.84

GraphCL 91.33±3.92 87.10±3.73 79.18±2.11 78.90±8.28 80.32±0.89 60.14±4.10 84.05±0.99

SimGRACE 78.67±3.11 90.21±2.24 70.49±6.82 86.53±9.52 82.97±6.07 63.82±0.80 64.57±5.00

Table 23: Accuracy (%) on 1-shot graph classification.

Adaptation Pre-training IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised - 57.30±0.98 47.23±0.61 56.36±7.97 65.20±6.70 20.58±2.00 27.08±11.94 25.80±6.53 55.33±6.22

Fine-tuning

DGI 57.32±0.90 42.22±0.73 60.00±4.48 64.13±7.90 17.83±1.88 29.44±9.68 26.48±7.61 57.15±4.32

GraphMAE 57.70±1.13 48.10±0.23 62.40±1.94 65.20±5.00 22.21±2.79 28.47±14.72 25.80±6.53 53.59±6.93

EdgePreGPPT 57.20±0.85 47.14±0.55 58.27±10.66 64.27±4.73 19.79±2.17 27.83±13.44 34.69±8.50 52.82±9.38

EdgePreGprompt 57.35±0.92 47.20±0.53 61.84±2.59 62.67±2.67 19.75±2.33 27.13±12.05 29.44±11.20 56.16±5.10

GraphCL 57.75±1.02 39.62±0.63 63.44±3.64 65.07±8.38 21.21±0.87 53.14±21.32 29.07±7.00 55.50±5.83

SimGRACE 57.33±0.96 46.89±0.42 60.07±3.21 65.47±5.89 19.71±1.76 76.19±5.41 28.46±6.49 53.23±9.71

GPPTPrompt

DGI 49.07±10.36 39.34±9.11 60.81±1.55 51.33±15.87 20.29±1.40 78.23±1.38 44.07±22.42 53.65±10.00

GraphMAE 50.15±0.75 29.46±13.65 60.72±1.70 44.80±15.52 20.37±1.96 68.63±20.51 55.99±19.28 57.69±6.89

EdgePreGPPT 49.38±10.29 36.47±7.88 60.92±2.47 42.80±12.98 20.87±2.42 73.99±9.79 49.81±20.17 53.69±6.88

EdgePreGprompt 50.15±0.75 40.22±9.56 57.03±4.55 37.87±10.43 22.08±3.42 72.28±13.22 50.06±18.97 55.33±8.51

GraphCL 45.70±8.20 47.18±5.93 59.24±1.01 60.40±15.43 21.29±3.79 68.36±21.05 59.32±11.22 56.26±8.20

SimGRACE 46.03±10.29 41.11±8.47 55.42±8.81 52.67±17.12 20.83±3.47 62.31±19.42 59.20±15.06 55.88±7.81

Gprompt

DGI 50.47±10.10 47.29±7.78 56.61±7.93 63.33±14.36 20.50±1.79 45.52±16.98 55.43±13.69 56.18±6.13

GraphMAE 54.75±12.43 36.39±7.72 57.66±12.56 68.80±4.76 19.54±1.99 43.91±6.64 47.16±4.72 55.22±6.40

EdgePreGPPT 51.18±11.11 46.70±5.74 59.17±11.26 52.13±5.80 19.71±4.46 50.08±8.00 45.06±15.93 51.04±4.82

EdgePreGprompt 51.57±11.87 40.53±12.02 55.55±8.17 73.60±4.76 19.67±3.08 54.64±9.94 51.36±15.55 57.20±5.54

GraphCL 50.50±10.42 45.54±9.05 55.51±10.73 56.00±13.79 19.83±2.19 44.40±5.74 46.42±20.67 52.65±9.17

SimGRACE 50.40±10.54 48.25±13.64 57.53±11.05 64.67±7.92 22.29±3.50 47.02±5.59 52.90±11.76 57.81±2.68

All-in-one

DGI 60.07±4.81 39.56±5.00 62.58±7.07 73.87±6.13 23.96±1.45 50.72±9.93 64.38±9.32 55.97±6.52

GraphMAE 52.62±3.04 40.82±14.63 66.49±6.26 69.67±9.13 23.21±1.72 56.68±7.38 58.64±19.59 58.77±1.05

EdgePreGPPT 59.12±0.77 42.74±4.65 65.71±5.49 75.20±6.33 20.92±2.04 60.27±16.97 59.69±9.90 56.24±2.46

EdgePreGprompt 53.78±2.82 42.87±6.19 61.82±7.53 68.27±3.88 21.88±0.56 49.06±5.53 32.65±10.08 57.60±4.37

GraphCL 58.75±0.80 51.66±0.26 64.36±7.30 66.00±8.79 19.46±2.85 52.55±13.51 42.65±14.43 59.72±1.52

SimGRACE 58.83±0.85 47.60±0.39 61.17±1.73 66.67±5.73 22.50±1.56 76.14±5.51 59.01±12.34 58.26±1.18

GPF

DGI 52.85±8.91 42.75±7.10 59.17±3.63 63.07±7.22 22.00±1.25 27.94±13.65 70.56±15.46 59.36±1.18

GraphMAE 49.27±7.77 37.23±17.95 58.65±8.49 65.73±6.91 20.71±1.92 40.43±10.43 67.84±20.28 55.80±6.34

EdgePreGPPT 59.35±1.02 37.53±5.19 62.54±2.55 66.40±5.93 22.04±1.48 27.40±12.58 24.75±8.01 43.86±5.37

EdgePreGprompt 59.65±5.06 41.44±0.52 61.82±2.61 68.40±5.09 22.17±1.48 65.79±17.72 60.49±24.20 55.56±5.07

GraphCL 57.73±0.79 47.42±1.22 63.91±3.26 59.20±7.01 21.13±2.11 37.05±9.39 71.67±14.71 58.43±1.17

SimGRACE 58.30±0.77 41.04±0.24 63.35±3.69 66.93±5.05 21.79±2.40 33.99±11.05 27.47±5.92 58.03±1.63

GPF-plus

DGI 57.87±6.19 43.98±7.17 61.26±3.06 62.53±6.86 18.71±1.19 26.70±11.19 67.90±14.60 48.79±9.14

GraphMAE 55.00±5.81 40.32±9.49 62.49±2.05 62.13±8.71 22.92±1.64 33.78±11.61 68.40±20.02 56.31±4.93

EdgePreGPPT 56.65±4.08 41.41±0.73 63.06±2.55 65.07±4.41 21.50±2.37 27.83±11.54 29.57±7.69 57.62±2.42

EdgePreGprompt 55.35±3.91 40.08±2.95 61.33±2.81 65.20±6.04 19.42±1.88 28.85±15.48 57.22±18.17 55.90±5.56

GraphCL 57.10±1.34 46.89±0.24 59.75±7.95 64.00±7.89 18.79±1.46 25.90±9.58 71.17±14.92 57.56±2.54

SimGRACE 57.93±1.62 47.24±0.29 62.92±2.78 61.33±3.84 20.29±1.62 27.08±7.86 28.46±6.49 57.11±3.42

MTG (Ours)

DGI 59.15±5.44 43.46±6.83 62.78±2.36 65.60±7.29 24.71±1.88 51.74±13.90 74.81±13.96 56.39±3.27

GraphMAE 58.10±5.72 48.24±9.56 59.62±6.41 66.93±7.03 22.71±2.58 58.93±12.05 54.07±18.34 58.01±5.85

EdgePreGPPT 62.25±3.72 45.15±6.00 62.71±2.30 67.20±6.36 26.08±4.31 60.16±10.63 62.28±10.13 56.37±8.33

EdgePreGprompt 59.45±5.45 47.72±8.45 65.66±1.56 75.80±5.49 22.29±1.94 57.75±10.76 49.94±9.08 60.68±2.42

GraphCL 57.65±7.05 47.81±3.73 63.70±2.87 66.20±7.52 20.96±1.97 50.36±12.97 51.05±15.50 55.46±4.77

SimGRACE 61.82±3.49 52.25±0.56 66.98±2.17 68.87±5.01 21.33±1.92 78.27±2.01 65.68±16.41 57.26±2.01
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Table 24: F1-score on 1-shot graph classification.

Adaptation Pre-training IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised - 54.62±1.12 41.10±0.39 46.69±10.82 63.47±6.36 15.25±3.96 22.78±10.69 23.71±8.23 44.74±4.23

Fine-tuning

DGI 54.60±1.00 38.53±0.34 54.82±3.34 61.97±7.76 10.76±4.28 27.09±11.48 24.34±9.21 46.15±5.41

GraphMAE 55.20±1.24 41.71±0.17 52.05±7.26 63.41±4.44 19.17±3.42 23.63±12.40 23.71±8.23 46.25±7.84

EdgePreGPPT 54.39±0.95 41.10±0.37 55.82±10.61 60.94±3.46 12.89±3.54 23.08±11.30 33.12±7.45 36.31±5.78

EdgePreGprompt 54.62±1.07 41.14±0.41 59.73±1.34 59.05±1.33 13.72±4.13 22.91±10.95 27.09±12.51 45.49±4.58

GraphCL 55.24±1.07 36.27±0.63 56.25±7.55 63.37±8.64 16.78±1.91 39.11±4.29 27.67±8.70 48.68±6.42

SimGRACE 54.69±1.09 40.92±0.37 52.67±7.14 63.70±5.32 14.15±2.49 45.06±1.93 27.05±8.20 37.84±7.14

GPPTPrompt

DGI 41.17±12.71 27.05±13.23 46.05±10.61 41.76±15.84 17.26±2.39 44.68±1.17 33.93±14.06 43.61±5.55

GraphMAE 33.40±0.33 14.61±5.30 46.64±11.32 39.44±18.49 17.61±2.22 40.48±7.24 44.38±9.91 50.34±5.80

EdgePreGPPT 44.16±6.70 21.35±9.96 47.07±11.95 38.03±16.75 17.02±2.90 43.67±0.88 40.73±9.69 51.50±6.54

EdgePreGprompt 33.40±0.33 18.92±3.19 43.34±8.00 31.42±13.60 19.87±2.99 43.73±0.75 41.78±10.08 45.12±7.86

GraphCL 39.08±10.25 42.87±7.70 41.15±7.80 53.15±16.82 19.62±3.92 40.11±7.97 45.58±3.38 50.02±8.57

SimGRACE 43.18±8.95 33.88±13.05 40.87±7.11 46.54±18.13 18.87±3.37 41.86±9.35 49.40±8.41 46.82±6.89

Gprompt

DGI 48.68±9.78 42.80±9.19 55.95±7.78 61.15±13.98 18.68±2.94 38.30±12.89 44.61±5.71 49.81±1.61

GraphMAE 52.10±13.61 17.64±2.56 55.24±12.01 64.58±3.26 18.36±2.20 42.68±5.98 43.38±3.73 50.47±3.41

EdgePreGPPT 49.33±10.58 43.20±8.14 58.30±10.88 50.70±6.00 18.20±5.07 44.54±3.28 39.06±9.23 50.78±5.00

EdgePreGprompt 50.43±11.93 36.62±12.55 54.29±7.32 71.38±3.64 17.17±4.25 46.26±5.14 43.73±9.27 48.18±4.55

GraphCL 48.91±10.12 40.78±10.09 53.98±9.93 53.39±14.36 18.26±2.77 42.26±4.15 38.58±11.82 50.85±8.14

SimGRACE 48.78±10.20 43.35±10.75 55.51±10.10 60.58±6.08 19.52±3.36 44.68±4.01 44.81±6.73 52.80±3.60

All-in-one

DGI 56.82±6.07 35.40±5.55 60.66±6.94 67.26±6.79 14.48±3.58 44.46±4.45 54.86±6.67 48.28±7.29

GraphMAE 45.83±5.38 18.76±5.47 64.27±4.78 69.07±9.55 19.66±3.11 49.40±3.96 40.11±6.22 56.70±1.89

EdgePreGPPT 57.29±0.74 37.07±5.56 64.68±5.35 70.35±6.20 12.95±3.18 49.62±10.42 49.67±4.66 55.10±1.49

EdgePreGprompt 48.44±4.51 34.64±5.55 60.04±8.57 63.74±6.21 12.50±3.12 45.57±5.70 30.69±11.20 48.13±4.31

GraphCL 56.83±0.76 47.78±0.10 62.99±7.19 60.07±12.25 12.01±5.16 46.65±6.50 39.12±10.09 43.55±8.21

SimGRACE 56.88±0.80 41.64±0.13 53.18±7.57 59.95±11.21 12.23±2.42 45.03±1.86 46.98±5.91 39.55±5.05

GPF

DGI 50.50±7.88 34.56±6.02 49.27±10.07 62.02±6.87 15.08±1.44 23.42±11.99 44.77±3.37 39.53±5.01

GraphMAE 42.98±8.29 17.19±6.84 52.62±9.40 59.14±10.41 13.10±3.28 37.75±10.47 41.84±7.65 48.52±7.11

EdgePreGPPT 55.67±0.84 34.09±5.32 57.01±5.79 58.18±3.05 16.57±1.64 22.68±10.50 21.77±9.16 34.22±10.09

EdgePreGprompt 56.22±6.17 38.14±0.44 56.91±6.21 63.90±4.05 17.34±2.45 43.08±4.88 39.86±11.54 47.44±4.83

GraphCL 55.23±0.77 38.04±0.46 56.08±7.40 57.99±6.96 15.97±3.75 35.89±9.97 48.83±5.30 40.86±4.89

SimGRACE 56.19±0.68 37.69±0.21 55.50±9.14 58.38±2.44 14.39±3.45 31.82±12.08 26.02±7.56 39.13±4.20

GPF-plus

DGI 53.13±10.49 37.59±1.42 54.74±7.01 61.19±6.31 13.03±1.21 22.69±10.52 46.57±4.62 33.21±4.87

GraphMAE 48.23±10.59 18.94±3.14 52.88±6.59 61.01±8.89 18.39±2.76 30.90±11.56 44.87±9.19 46.24±4.86

EdgePreGPPT 50.88±7.65 37.29±2.27 57.58±7.28 62.03±2.92 17.40±2.32 24.17±10.38 28.06±9.23 40.06±6.06

EdgePreGprompt 50.07±6.94 37.43±1.84 54.79±2.74 63.20±5.31 14.44±1.44 24.60±14.35 42.77±1.25 45.59±4.64

GraphCL 54.24±1.69 38.53±0.20 57.54±6.94 62.31±7.93 13.66±2.70 22.64±10.42 48.71±5.51 39.37±4.68

SimGRACE 55.55±2.03 41.24±0.31 54.80±6.88 59.38±2.64 14.74±2.94 24.79±9.43 27.05±8.20 39.51±4.96

MTG (Ours)

DGI 55.05±9.42 37.61±6.03 59.71±3.13 62.66±4.88 17.66±1.52 45.38±7.25 55.35±12.83 46.44±6.77

GraphMAE 50.89±8.77 23.24±3.16 53.89±8.92 64.49±5.74 16.32±2.69 52.25±6.37 47.19±12.10 48.40±6.40

EdgePreGPPT 59.17±2.24 36.30±5.45 58.00±3.48 65.60±5.84 21.49±5.92 51.43±4.26 52.99±3.80 52.20±10.61

EdgePreGprompt 57.08±1.85 35.13±8.96 59.63±0.53 71.06±6.36 15.13±1.72 49.33±6.03 45.04±5.12 55.42±6.62

GraphCL 52.24±8.19 38.90±3.82 60.53±1.86 63.70±7.49 13.30±1.86 42.60±10.31 45.14±10.05 50.07±3.75

SimGRACE 55.50±4.79 45.12±0.20 64.12±5.77 61.23±3.71 12.03±1.20 55.16±7.14 50.63±8.77 45.36±8.02

Table 25: AUROC on 1-shot graph classification.

Adaptation Pre-training IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised - 67.05±1.01 54.23±0.34 57.88±1.72 71.68±1.25 53.49±1.11 48.39±1.89 51.13±1.38 49.60±2.94

Fine-tuning

DGI 67.06±1.00 74.13±1.27 56.87±2.74 71.45±1.55 51.76±2.18 52.35±7.49 53.79±1.12 49.32±3.05

GraphMAE 66.91±1.18 55.16±0.20 59.87±0.78 69.81±1.39 53.43±0.98 49.46±1.08 51.01±0.87 50.66±4.90

EdgePreGPPT 67.50±1.06 54.41±0.31 58.29±3.43 72.42±1.64 53.62±1.61 46.88±1.16 48.35±3.28 52.27±1.89

EdgePreGprompt 66.92±0.96 54.36±0.30 58.24±1.27 71.58±0.75 53.30±1.75 49.62±0.75 55.48±2.09 49.97±3.16

GraphCL 67.11±1.09 68.95±1.48 59.68±1.80 71.07±1.87 54.35±0.92 51.84±2.24 53.34±2.75 53.14±5.70

SimGRACE 66.95±0.99 53.79±0.47 59.80±1.06 71.49±1.82 54.20±1.36 49.38±1.24 54.01±2.14 49.20±0.84

GPPTPrompt

DGI 48.58±10.92 58.79±4.61 71.14±3.06 51.11±31.50 53.09±1.46 53.40±0.84 48.98±7.81 53.82±11.83

GraphMAE 50.27±0.74 51.39±4.26 70.25±3.45 36.15±27.67 52.89±1.24 53.91±1.86 54.53±11.66 58.36±8.51

EdgePreGPPT 48.81±11.41 56.39±0.58 70.36±3.79 33.54±24.51 52.98±1.23 50.31±5.34 51.48±6.83 54.80±8.30

EdgePreGprompt 50.27±0.74 54.48±1.95 65.03±10.25 24.49±23.32 53.83±2.13 51.51±2.95 53.38±9.22 56.26±10.88

GraphCL 45.42±8.63 67.97±6.02 69.82±6.05 65.58±22.89 53.36±2.88 54.61±3.27 51.68±3.28 56.31±9.89

SimGRACE 45.58±10.97 61.78±7.34 62.48±15.87 48.86±29.41 53.23±2.42 55.27±7.83 58.65±6.19 56.15±9.67

Gprompt

DGI 53.74±19.12 73.04±8.22 60.36±9.11 69.64±13.88 55.68±2.50 49.63±0.56 49.08±3.10 52.16±4.08

GraphMAE 51.48±9.49 44.86±0.14 55.65±7.44 70.27±4.19 55.28±3.35 56.97±3.76 51.24±5.39 52.47±6.09

EdgePreGPPT 55.21±19.21 69.85±10.59 60.31±14.12 59.50±10.08 53.75±2.67 53.86±6.62 49.52±5.86 52.73±6.44

EdgePreGprompt 53.58±19.20 73.09±5.29 57.72±7.86 79.17±2.18 55.53±3.27 48.74±2.54 50.81±7.50 54.96±5.21

GraphCL 53.54±18.02 66.59±11.21 57.80±12.67 71.02±3.35 55.06±3.09 54.08±4.37 47.73±6.12 52.92±6.67

SimGRACE 53.21±18.90 66.59±8.84 59.42±13.20 66.20±4.91 55.23±3.64 53.95±3.70 49.34±3.63 52.15±6.51

All-in-one

DGI 69.12±1.04 66.27±11.54 75.07±0.76 83.44±0.78 57.42±1.15 50.21±1.87 60.32±16.19 60.56±0.91

GraphMAE 65.65±1.22 50.00±0.00 73.97±0.80 83.95±0.75 54.66±0.90 57.09±6.45 44.91±18.23 59.65±2.74

EdgePreGPPT 65.44±0.92 64.21±9.84 75.51±0.71 83.67±0.86 55.67±1.65 61.50±1.13 57.89±11.17 57.44±0.59

EdgePreGprompt 68.48±1.11 51.35±0.30 73.73±0.94 77.05±0.84 55.15±0.59 57.02±10.92 51.53±1.13 56.95±4.42

GraphCL 65.20±1.06 63.82±0.26 77.76±0.74 76.57±1.58 53.58±1.38 66.43±2.88 49.20±7.86 55.04±1.51

SimGRACE 66.33±0.99 53.09±0.21 57.32±1.26 73.89±0.92 54.75±0.64 45.81±0.74 56.09±10.92 50.64±1.32

GPF

DGI 55.96±12.77 50.91±1.05 59.34±0.55 71.40±1.24 53.13±1.13 48.97±0.73 47.84±2.93 49.47±0.63

GraphMAE 61.68±14.66 50.00±0.00 59.21±1.29 73.95±2.06 51.73±1.39 52.21±1.49 46.87±1.80 49.36±4.14

EdgePreGPPT 69.73±3.23 64.68±11.19 61.63±2.41 68.41±1.95 54.48±1.10 48.80±2.39 51.30±2.60 49.08±3.86

EdgePreGprompt 69.06±1.34 71.37±1.86 58.36±1.20 74.51±1.18 54.01±0.86 50.42±0.62 58.34±0.87 52.14±2.73

GraphCL 67.60±1.02 54.30±0.39 59.15±1.73 68.50±2.13 53.76±1.38 59.21±1.87 56.57±1.65 49.30±1.63

SimGRACE 66.95±1.01 73.55±0.37 60.00±1.43 68.25±1.28 55.25±1.53 55.80±0.69 52.30±1.91 46.17±0.78

GPF-plus

DGI 68.77±1.50 72.06±4.49 58.37±2.32 70.12±1.06 53.83±0.61 48.71±0.50 51.49±1.31 48.76±1.56

GraphMAE 68.98±1.49 50.00±0.00 59.58±1.13 72.03±2.16 52.68±1.28 47.21±1.67 53.26±1.91 49.42±2.18

EdgePreGPPT 69.57±2.53 69.92±1.65 63.58±3.31 72.02±0.86 55.66±1.62 45.11±0.89 55.06±4.29 44.29±3.43

EdgePreGprompt 68.39±1.07 69.85±1.36 57.57±1.65 73.37±1.78 52.19±1.18 51.14±2.27 56.22±5.10 49.74±1.32

GraphCL 67.01±1.22 54.03±0.40 59.78±1.47 71.25±1.88 52.59±2.06 51.25±2.24 56.70±1.44 48.94±2.26

SimGRACE 67.19±1.54 53.04±0.17 59.66±1.32 68.33±0.76 52.47±1.76 51.79±1.73 53.39±2.81 49.75±1.52

MTG (Ours)

DGI 69.97±1.05 61.26±2.80 61.95±1.09 73.70±1.07 59.37±2.54 57.52±2.30 68.76±7.78 52.23±1.11

GraphMAE 69.21±1.04 50.00±0.00 60.01±2.22 72.03±2.16 55.09±2.51 63.01±2.02 53.68±11.92 53.04±3.88

EdgePreGPPT 71.26±1.96 60.93±1.55 63.48±0.87 75.61±1.11 62.17±2.68 59.42±3.73 64.84±5.57 54.39±8.08

EdgePreGprompt 70.01±1.09 61.59±1.56 65.34±0.71 83.72±1.39 54.59±1.13 52.65±2.64 53.32±7.33 60.34±2.66

GraphCL 64.55±4.07 54.07±3.48 63.22±1.10 75.16±1.93 54.42±1.74 52.51±5.30 51.56±10.43 53.42±8.08

SimGRACE 68.50±3.09 72.18±2.16 64.54±4.41 69.65±1.12 52.36±0.99 65.39±2.50 55.74±9.61 51.53±4.48
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Table 26: Accuracy (%) on 3-shot graph classification.

Adaptation Pre-training IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised - 53.33±6.61 50.77±2.44 61.33±2.89 59.47±8.34 15.96±1.64 65.15±18.61 52.35±8.12 59.77±1.10

Fine-tuning

DGI 53.33±6.61 56.10±3.46 61.33±2.75 59.87±8.78 21.71±0.81 51.96±13.00 52.22±10.64 59.70±0.98

GraphMAE 53.33±6.61 49.11±16.81 61.19±1.57 44.00±13.56 15.04±1.86 60.11±18.73 38.52±17.15 57.90±2.69

EdgePreGPPT 63.43±2.65 47.40±15.87 62.72±2.39 43.47±13.44 21.96±2.45 49.81±9.44 43.70±17.89 58.94±0.66

EdgePreGprompt 53.33±6.61 54.67±1.34 60.67±2.32 59.20±7.05 17.58±1.45 35.82±14.38 29.07±9.83 59.45±9.10

GraphCL 62.22±1.38 55.27±2.61 62.07±2.39 54.80±5.97 22.00±1.71 31.90±8.27 51.23±11.67 55.54±6.26

SimGRACE 66.10±0.70 55.38±3.58 60.09±0.63 54.00±7.03 22.71±0.86 69.97±13.89 36.67±1.80 58.17±2.79

GPPTPrompt

DGI 50.33±0.92 38.40±8.13 60.36±8.99 64.13±18.31 17.67±2.05 56.84±28.02 69.57±19.07 56.11±7.51

GraphMAE 50.23±0.95 36.37±7.89 56.94±6.67 47.87±17.55 17.63±1.97 69.38±19.31 65.19±17.99 56.50±8.48

EdgePreGPPT 59.48±5.42 38.45±9.13 64.74±1.99 52.00±16.93 19.12±2.43 69.87±18.34 70.93±16.35 52.14±6.23

EdgePreGprompt 51.85±2.10 36.11±7.73 60.76±1.52 62.00±18.69 18.71±5.10 52.17±15.58 67.47±10.95 57.94±7.47

GraphCL 50.43±11.80 50.88±6.31 60.31±0.57 48.93±18.86 17.25±1.19 71.90±14.28 53.33±16.88 56.28±7.21

SimGRACE 50.12±12.86 41.87±8.73 55.93±6.16 57.87±20.52 15.62±2.32 58.28±20.18 48.64±11.03 59.00±6.34

Gprompt

DGI 58.95±9.88 55.27±8.86 62.43±4.09 54.93±17.15 20.50±2.36 50.29±7.71 49.69±6.79 53.84±5.72

GraphMAE 59.17±10.00 36.11±7.73 61.98±4.45 64.40±16.46 21.42±2.71 44.83±9.16 48.15±8.09 52.89±5.27

EdgePreGPPT 64.35±1.21 53.20±7.90 64.94±2.92 53.60±14.41 18.50±3.69 45.47±7.03 54.63±2.95 53.61±2.31

EdgePreGprompt 59.30±10.17 54.95±9.47 62.02±3.15 66.53±14.84 21.42±3.01 50.56±9.27 49.88±12.32 52.55±6.16

GraphCL 59.85±9.50 52.52±9.71 58.49±9.20 52.40±20.58 21.42±0.77 48.15±9.42 54.26±9.10 55.61±3.21

SimGRACE 60.00±9.95 53.45±7.18 60.27±4.44 56.40±13.37 22.08±3.57 51.53±13.08 43.21±8.84 55.99±7.53

All-in-one

DGI 64.28±0.75 52.63±8.14 69.84±6.02 75.73±6.05 22.87±0.93 52.17±12.81 59.81±15.62 54.95±6.52

GraphMAE 63.88±0.73 52.09±0.33 65.69±3.31 72.00±9.11 21.04±2.51 53.83±7.02 61.98±11.32 56.56±4.54

EdgePreGPPT 63.80±1.07 55.73±3.59 65.62±7.36 80.00±5.67 22.17±2.17 50.19±10.89 54.26±13.30 52.19±6.17

EdgePreGprompt 63.90±1.57 51.69±8.39 61.30±2.47 76.40±1.96 23.25±1.11 60.21±8.86 54.44±17.27 58.96±5.93

GraphCL 65.67±0.58 57.12±1.99 65.57±2.24 59.20±12.95 23.96±0.62 52.17±14.65 58.64±4.86 52.65±5.87

SimGRACE 64.20±1.29 55.48±3.48 62.36±1.86 55.20±11.93 22.58±1.18 66.06±18.23 61.30±16.21 53.23±6.95

GPF

DGI 63.53±2.47 49.84±7.48 61.39±2.63 48.67±15.53 16.63±3.49 65.31±19.45 61.79±21.19 59.07±0.65

GraphMAE 62.80±2.90 37.01±13.81 62.72±3.07 55.87±12.48 18.29±2.39 53.51±13.09 51.91±8.73 57.15±5.68

EdgePreGPPT 65.25±2.65 51.91±8.13 63.35±2.45 74.27±1.55 19.92±2.19 44.50±4.46 54.63±10.59 51.59±5.62

EdgePreGprompt 64.05±1.03 50.37±7.25 62.49±2.18 55.60±13.42 23.08±3.11 61.72±11.67 74.38±11.62 56.37±6.77

GraphCL 63.25±2.36 53.87±3.44 62.90±2.52 54.00±12.02 22.38±1.93 49.33±11.40 50.19±4.33 52.34±6.89

SimGRACE 65.97±0.69 53.23±4.59 60.92±1.65 50.13±13.88 23.87±3.45 62.31±8.87 25.62±8.25 57.54±4.65

GPF-plus

DGI 62.45±2.52 52.14±7.67 62.16±2.14 75.20±3.64 21.92±0.74 65.25±18.07 60.86±16.47 59.43±0.52

GraphMAE 61.97±2.88 36.87±13.90 63.55±1.85 59.33±7.66 17.08±1.68 48.20±19.15 40.99±10.64 57.18±5.31

EdgePreGPPT 64.38±2.30 54.63±7.14 62.99±1.94 72.40±2.00 23.62±2.56 49.44±11.92 36.85±19.33 58.85±1.33

EdgePreGprompt 64.00±3.54 50.77±9.01 60.38±2.47 50.27±18.19 24.46±2.27 52.87±12.00 50.06±16.36 58.54±2.38

GraphCL 63.25±2.63 56.50±3.71 60.56±1.94 74.27±4.59 19.00±2.42 51.58±11.78 71.67±14.87 53.99±6.38

SimGRACE 63.55±2.25 52.72±6.39 60.07±0.97 50.67±17.37 22.17±2.30 63.86±10.00 25.62±8.25 59.51±0.62

MTG (Ours)

DGI 63.70±2.84 52.81±7.35 62.81±1.99 71.87±7.79 28.67±1.72 46.68±19.61 74.65±12.14 55.17±6.35

GraphMAE 63.98±2.71 45.42±9.71 63.57±2.03 64.27±8.79 24.92±1.55 51.10±16.87 55.12±15.59 58.09±1.73

EdgePreGPPT 65.88±3.56 48.77±7.89 61.08±2.49 72.93±1.24 29.71±2.06 48.36±6.65 62.47±14.52 57.50±4.93

EdgePreGprompt 64.05±2.42 50.86±8.15 70.49±0.68 78.13±6.36 24.71±1.24 63.27±8.85 49.57±10.27 60.85±6.39

GraphCL 64.05±2.63 57.49±2.52 63.21±2.66 64.13±8.00 21.00±1.75 73.86±9.74 50.99±15.50 55.74±6.19

SimGRACE 66.95±0.59 53.47±7.07 65.25±3.49 58.87±7.66 20.71±0.90 66.85±15.53 60.31±17.89 58.09±5.01

Table 27: F1-score on 3-shot graph classification.

Adaptation Pre-training IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised - 39.88±13.07 40.73±1.00 51.01±8.18 57.79±8.44 11.97±0.92 42.57±5.89 47.71±5.27 41.05±7.70

Fine-tuning

DGI 39.88±13.07 56.10±3.90 50.89±8.01 58.19±8.98 14.68±2.46 47.30±8.88 46.39±5.60 41.31±8.21

GraphMAE 39.88±13.08 47.71±19.43 51.90±7.98 37.98±16.20 10.19±2.54 43.74±6.72 33.85±14.41 40.24±6.08

EdgePreGPPT 60.66±4.52 35.28±13.12 54.53±4.29 37.20±15.67 15.47±3.45 45.43±4.85 39.01±11.37 40.78±7.17

EdgePreGprompt 39.88±13.07 35.69±7.57 49.31±7.52 57.28±6.35 12.99±2.98 33.02±14.02 26.66±11.36 48.50±10.32

GraphCL 60.72±1.89 54.45±4.00 52.75±6.77 53.13±5.12 17.00±3.88 30.17±7.80 45.33±7.28 51.94±4.43

SimGRACE 65.91±0.61 54.77±3.76 48.85±6.10 52.10±6.02 16.13±2.28 45.75±2.10 36.07±1.29 50.54±6.18

GPPTPrompt

DGI 33.47±0.41 25.72±11.59 56.81±8.37 56.46±18.74 7.26±4.98 33.97±12.73 53.00±6.62 52.76±6.80

GraphMAE 33.43±0.42 17.63±2.61 44.10±8.25 41.20±19.70 7.70±5.86 41.47±5.35 54.54±3.82 53.64±7.98

EdgePreGPPT 54.15±12.01 28.60±16.18 61.46±1.10 49.73±17.65 12.26±6.37 41.87±4.54 54.17±4.30 50.03±5.25

EdgePreGprompt 36.01±4.61 17.54±2.57 51.33±7.17 61.15±18.28 11.46±8.27 41.89±5.55 54.83±5.76 53.54±7.77

GraphCL 46.73±14.15 49.62±6.77 41.87±8.55 41.46±20.04 9.53±5.93 43.94±0.52 48.82±8.73 53.74±6.42

SimGRACE 47.67±15.00 38.51±10.60 54.02±4.98 55.79±19.08 6.44±2.25 42.49±8.52 53.66±6.91 56.28±5.60

Gprompt

DGI 58.08±10.23 55.32±8.74 58.05±3.97 52.54±17.09 18.81±1.44 44.13±4.49 45.80±7.78 50.97±5.00

GraphMAE 58.01±10.19 17.54±2.57 56.27±5.10 60.26±15.18 19.39±1.66 42.42±7.00 43.14±4.47 49.67±2.97

EdgePreGPPT 63.89±1.11 53.51±7.87 61.58±3.09 49.72±12.38 16.84±3.73 42.05±5.59 47.32±2.37 52.83±1.88

EdgePreGprompt 58.51±10.62 55.39±8.86 56.27±2.08 64.64±13.86 18.56±3.11 43.87±4.26 44.57±9.37 49.71±7.25

GraphCL 58.83±10.22 52.04±10.22 57.08±8.81 51.26±19.96 19.60±1.34 44.29±5.52 47.69±4.92 54.82±2.66

SimGRACE 59.21±10.45 52.82±8.34 55.53±7.37 52.05±11.07 21.63±3.19 43.90±7.83 40.90±6.25 53.39±6.72

All-in-one

DGI 63.99±0.86 50.43±9.08 68.85±5.72 73.80±4.55 14.63±1.31 43.21±7.33 53.56±10.74 43.35±5.95

GraphMAE 62.94±1.54 22.83±0.10 62.48±1.62 69.80±7.77 15.61±1.28 46.34±2.82 55.20±8.12 54.23±4.13

EdgePreGPPT 62.99±2.30 55.56±4.18 64.50±6.98 76.24±4.31 17.11±3.24 42.10±6.16 44.01±4.11 49.69±6.19

EdgePreGprompt 62.88±3.31 49.83±10.02 52.05±8.59 71.90±2.68 17.70±1.81 50.66±4.25 47.08±8.47 55.21±4.94

GraphCL 65.60±0.57 56.55±1.88 62.62±3.77 56.86±15.65 22.37±1.31 45.27±9.63 49.39±2.68 50.28±4.51

SimGRACE 63.50±2.41 55.34±3.89 60.36±1.11 52.08±14.23 18.20±1.04 41.93±5.18 49.00±9.10 49.06±6.95

GPF

DGI 62.80±2.95 47.97±9.36 51.68±7.67 44.82±12.44 11.70±4.44 41.60±6.58 40.70±4.95 40.29±5.61

GraphMAE 61.83±3.65 17.49±5.13 55.21±7.59 52.99±14.80 15.77±1.71 45.77±7.77 47.24±5.79 54.79±4.60

EdgePreGPPT 63.82±3.68 50.28±10.09 56.68±3.32 68.47±1.51 18.77±2.43 42.92±3.39 48.61±4.66 49.22±6.62

EdgePreGprompt 63.59±0.99 48.60±9.17 53.75±5.47 51.63±14.57 16.62±1.75 53.47±7.31 48.42±3.50 53.86±7.88

GraphCL 62.47±2.84 53.42±3.86 55.24±8.26 50.93±14.25 15.40±2.55 45.37±9.89 47.00±2.24 48.53±5.59

SimGRACE 65.85±0.61 52.54±5.59 49.67±6.21 47.58±13.28 18.36±4.95 51.59±4.59 22.84±9.35 55.12±4.27

GPF-plus

DGI 60.90±3.22 50.49±9.05 53.28±5.40 73.17±3.16 17.51±1.75 43.17±5.33 46.21±5.60 40.98±7.58

GraphMAE 60.30±3.23 17.43±5.19 59.82±4.60 57.10±7.36 12.55±0.72 37.20±9.82 38.17±8.53 52.72±3.75

EdgePreGPPT 63.35±3.33 53.82±8.44 59.39±1.65 65.96±1.23 18.73±2.85 46.05±10.35 31.44±17.20 41.26±6.70

EdgePreGprompt 63.65±3.51 48.46±10.27 49.63±6.76 48.24±17.45 19.80±4.12 47.82±9.03 43.31±12.09 44.08±7.81

GraphCL 62.49±3.11 56.38±3.66 49.25±7.67 72.21±3.78 15.66±2.56 47.78±9.88 43.52±1.30 43.72±6.72

SimGRACE 62.91±2.78 51.40±8.33 48.38±6.37 48.42±16.33 16.25±3.30 50.53±3.93 22.82±9.32 40.63±6.86

MTG (Ours)

DGI 62.69±3.56 51.19±9.38 55.88±8.05 60.64±7.17 22.08±2.56 39.27±14.67 53.96±10.01 47.74±9.47

GraphMAE 63.10±3.36 23.97±3.21 56.93±4.18 60.75±4.47 17.00±2.58 43.25±13.60 47.56±11.55 52.06±7.45

EdgePreGPPT 64.92±5.54 47.41±9.79 53.44±6.46 69.05±2.04 27.09±2.83 44.97±4.60 48.58±11.51 52.97±4.61

EdgePreGprompt 63.14±2.98 48.89±9.87 68.63±1.12 76.72±2.47 21.12±1.42 50.03±1.19 44.13±4.70 56.04±5.72

GraphCL 63.16±3.26 57.43±2.82 59.12±4.32 62.01±9.97 17.15±2.94 53.94±2.89 45.21±9.86 49.25±5.27

SimGRACE 66.84±0.53 52.58±8.90 64.00±5.68 60.03±7.32 15.17±3.35 43.51±13.49 45.33±5.84 56.02±4.07
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Table 28: AUROC on 3-shot graph classification.

Adaptation Pre-training IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised - 53.85±7.70 54.29±0.68 58.83±2.09 73.36±0.52 51.34±1.42 53.03±0.66 55.36±2.82 50.97±1.94

Fine-tuning

DGI 53.85±7.71 79.16±1.29 59.21±1.87 72.49±0.69 55.06±0.72 59.34±3.68 55.52±3.89 50.91±1.85

GraphMAE 53.86±7.71 72.58±11.44 59.12±1.77 73.70±2.39 51.64±1.15 56.52±2.87 57.30±2.71 50.87±1.75

EdgePreGPPT 68.90±1.00 53.70±2.76 59.61±1.05 63.78±11.40 56.63±1.88 58.62±4.95 53.24±1.06 50.87±1.74

EdgePreGprompt 53.88±7.76 54.66±1.29 57.43±1.26 72.67±0.71 52.81±1.23 56.43±2.54 52.85±3.05 55.71±3.36

GraphCL 66.91±0.96 77.24±5.27 59.63±1.25 71.94±1.69 55.22±0.62 55.65±1.39 52.36±4.70 56.27±3.63

SimGRACE 69.07±0.74 78.72±0.81 54.56±4.50 71.53±1.53 57.45±1.25 54.90±1.47 53.79±5.86 58.14±3.45

GPPTPrompt

DGI 50.70±0.98 59.06±5.42 63.21±13.02 69.64±24.34 51.97±1.01 51.15±3.38 53.46±4.77 58.16±7.86

GraphMAE 50.02±1.20 55.37±1.65 64.79±12.01 36.64±30.88 51.88±0.85 51.90±3.51 57.33±2.22 57.48±8.59

EdgePreGPPT 60.13±5.46 59.32±8.93 68.26±2.20 53.05±23.65 52.97±1.80 54.30±1.55 53.75±1.34 54.71±6.13

EdgePreGprompt 51.09±3.03 55.18±1.81 68.92±2.46 66.15±23.60 51.81±3.18 50.12±2.64 56.67±1.07 59.80±7.91

GraphCL 50.36±13.14 70.37±8.98 71.44±3.56 41.39±32.92 51.66±0.70 54.79±2.46 55.63±1.51 58.02±8.00

SimGRACE 50.30±13.72 63.01±7.00 57.69±9.30 59.52±26.16 49.66±2.26 53.90±4.39 53.94±3.10 60.31±6.86

Gprompt

DGI 61.28±6.92 72.35±6.43 60.00±4.15 59.82±8.05 53.15±3.14 49.01±1.79 50.69±8.24 52.10±4.06

GraphMAE 56.22±7.41 44.90±0.12 53.63±3.55 64.43±15.28 52.29±3.02 55.66±5.33 50.42±1.52 55.22±1.63

EdgePreGPPT 63.01±2.64 74.04±6.87 65.82±4.00 56.24±15.55 51.97±3.30 49.66±7.34 50.37±2.68 57.12±1.01

EdgePreGprompt 61.76±6.92 74.20±7.18 63.20±4.24 68.36±15.60 54.30±3.58 51.46±3.88 52.11±4.43 55.65±4.85

GraphCL 62.10±7.10 72.58±8.88 55.52±9.16 54.21±19.23 52.15±2.03 57.07±3.48 52.27±2.39 57.24±4.44

SimGRACE 63.49±7.53 73.85±5.74 58.07±7.27 56.06±18.58 53.72±4.10 53.97±4.68 49.80±7.28 56.78±6.19

All-in-one

DGI 68.29±0.65 81.02±0.32 78.78±0.89 79.29±6.57 55.50±0.41 50.11±4.43 64.10±1.82 47.72±1.00

GraphMAE 67.69±0.61 50.00±0.00 71.38±4.27 78.41±1.12 54.06±0.38 51.31±6.59 62.34±1.48 59.05±3.75

EdgePreGPPT 67.39±0.61 80.54±1.13 71.08±8.07 81.40±0.45 55.76±1.18 47.76±1.24 48.35±3.93 54.96±0.53

EdgePreGprompt 68.01±0.66 77.37±3.38 59.05±4.06 80.89±2.30 57.14±0.79 56.46±1.24 64.23±1.73 60.92±1.89

GraphCL 68.55±0.68 81.56±1.31 68.66±3.13 75.02±2.18 54.68±0.82 58.33±4.46 54.20±4.83 55.30±3.48

SimGRACE 67.71±0.63 79.47±0.36 62.54±0.80 73.98±2.36 54.94±0.85 47.16±4.60 54.11±1.26 58.19±0.80

GPF

DGI 68.17±1.10 76.98±3.82 60.16±1.20 49.38±22.29 47.07±1.84 48.08±2.39 57.22±3.09 48.85±1.22

GraphMAE 68.64±0.80 50.00±0.00 60.27±1.58 75.23±2.86 52.79±1.96 52.96±5.14 59.08±2.59 57.07±5.22

EdgePreGPPT 72.39±1.43 78.68±3.14 59.70±1.16 71.74±1.36 53.23±0.59 55.95±3.53 57.16±1.15 55.12±1.37

EdgePreGprompt 64.81±4.48 76.99±3.95 59.65±1.05 75.64±1.21 55.95±1.04 61.22±3.30 57.14±3.83 60.99±3.42

GraphCL 68.50±0.89 79.36±0.64 58.20±2.58 75.42±2.40 55.17±1.18 57.66±3.49 56.26±0.72 54.38±2.29

SimGRACE 68.88±0.73 79.18±0.70 59.03±1.13 54.34±11.05 56.49±0.82 59.26±4.32 53.33±0.93 58.78±0.91

GPF-plus

DGI 67.30±2.04 78.76±3.06 59.98±1.03 78.67±3.24 55.76±0.99 58.01±1.54 55.60±4.64 53.17±0.34

GraphMAE 66.86±1.34 50.00±0.00 61.20±1.57 72.94±0.86 49.96±0.80 47.18±2.64 54.12±12.01 59.32±3.11

EdgePreGPPT 68.32±1.40 79.72±3.57 61.31±2.41 68.83±3.06 55.99±0.45 61.66±1.49 51.94±1.06 49.50±2.07

EdgePreGprompt 66.08±4.10 78.31±2.86 58.73±2.17 51.73±17.01 57.28±2.04 59.88±2.24 52.69±2.74 55.53±2.48

GraphCL 67.76±1.67 78.53±0.70 57.90±2.40 77.86±2.73 53.24±1.85 61.30±2.87 50.97±1.94 52.80±2.36

SimGRACE 67.38±2.08 79.41±0.77 53.05±5.96 49.04±15.66 55.30±1.21 59.92±3.03 52.68±1.00 51.35±2.70

MTG (Ours)

DGI 68.95±0.76 80.49±3.04 62.32±3.10 72.02±8.27 59.58±1.34 46.07±1.73 68.81±2.08 54.48±4.11

GraphMAE 68.55±0.82 50.00±0.00 61.39±1.59 75.05±2.89 54.61±0.71 53.34±4.63 58.05±5.94 57.26±4.95

EdgePreGPPT 72.87±0.86 77.24±2.52 57.91±6.55 72.79±3.33 63.07±2.61 52.85±3.60 66.10±4.03 56.70±2.20

EdgePreGprompt 68.90±0.80 78.38±2.51 69.61±0.42 81.07±3.97 57.51±1.67 52.76±2.84 51.80±4.14 62.71±4.47

GraphCL 68.58±0.69 81.55±0.42 59.80±1.08 76.23±2.36 53.27±0.85 58.85±6.87 57.23±7.72 54.20±1.33

SimGRACE 69.00±0.85 78.44±3.57 65.16±2.85 67.17±8.36 51.30±1.01 54.05±4.52 56.49±7.52 59.78±0.85

Table 29: Accuracy (%) on 5-shot graph classification.

Adaptation Pre-training IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised - 62.60±4.01 55.23±4.26 62.90±5.03 73.47±3.92 25.67±0.48 64.99±10.42 51.48±2.29 63.59±2.86

Fine-tuning

DGI 50.80±0.88 60.72±2.09 62.47±4.25 74.53±3.71 25.17±1.67 68.36±11.83 24.94±7.80 58.94±9.66

GraphMAE 55.75±5.48 54.40±5.15 61.21±6.92 67.33±5.61 26.13±1.09 68.42±11.71 38.27±18.11 64.71±3.22

EdgePreGPPT 60.97±10.07 57.44±3.75 62.85±4.63 70.80±3.05 27.04±1.75 69.38±10.91 58.40±12.79 64.52±2.97

EdgePreGprompt 62.88±4.02 58.11±3.76 60.25±4.96 73.20±2.44 27.46±1.29 73.19±9.53 34.20±16.57 62.70±3.37

GraphCL 65.40±3.33 48.28±6.30 63.33±4.13 75.33±1.89 24.63±1.52 55.44±3.84 72.96±11.98 63.84±2.06

SimGRACE 60.65±4.54 48.40±5.90 63.08±4.66 71.73±2.33 24.79±1.83 61.50±16.06 70.80±16.29 62.25±3.23

GPPTPrompt

DGI 49.90±0.84 48.54±9.22 54.49±9.48 70.53±3.90 19.54±3.17 47.08±25.71 54.75±19.07 52.65±9.39

GraphMAE 49.60±0.75 33.61±16.35 58.27±4.63 69.20±3.30 22.17±2.34 56.14±25.93 69.63±14.96 57.07±5.16

EdgePreGPPT 66.37±3.59 50.16±9.23 57.37±4.85 65.33±3.65 21.33±1.04 60.05±13.16 45.37±19.12 51.36±4.26

EdgePreGprompt 49.60±0.75 37.57±10.07 46.92±11.86 40.67±14.47 21.96±2.12 67.88±17.34 48.02±12.75 60.02±3.24

GraphCL 59.58±9.19 55.21±1.21 58.25±3.13 70.40±4.10 20.92±2.40 64.50±19.35 56.11±21.68 57.05±3.15

SimGRACE 60.35±8.28 54.05±4.58 56.85±10.85 68.67±5.98 20.96±1.23 60.80±13.90 60.80±8.71 56.71±4.10

Gprompt

DGI 53.05±10.49 60.62±2.31 61.30±3.46 62.93±15.66 21.38±1.97 46.54±7.06 59.38±14.43 54.12±5.51

GraphMAE 55.15±7.10 32.55±0.12 58.00±7.16 65.87±8.50 19.87±2.24 52.23±5.40 53.77±6.74 50.68±5.33

EdgePreGPPT 66.70±3.87 57.23±2.43 62.94±1.38 63.87±12.45 17.79±1.27 53.35±4.42 51.98±8.17 52.46±4.48

EdgePreGprompt 52.75±10.26 57.71±1.56 55.55±6.18 73.07±2.13 20.79±2.66 52.12±7.21 54.32±11.18 56.24±3.69

GraphCL 61.38±10.05 60.71±4.54 60.54±2.22 64.40±8.95 20.33±2.27 53.24±10.24 56.73±7.80 58.28±2.18

SimGRACE 54.85±10.71 60.76±5.08 61.62±2.86 63.47±7.90 21.46±2.27 53.35±7.75 51.36±9.14 54.33±4.04

All-in-one

DGI 60.47±7.38 57.59±5.73 71.37±4.89 78.53±1.36 26.46±2.24 48.15±4.32 61.73±8.94 54.59±2.82

GraphMAE 59.37±9.45 36.86±13.96 68.72±3.98 77.40±2.88 24.00±0.87 48.79±7.42 57.10±17.82 63.44±1.35

EdgePreGPPT 63.62±2.30 57.86±5.88 70.56±2.54 80.93±1.96 23.92±2.14 52.17±5.59 62.78±10.18 53.93±4.10

EdgePreGprompt 60.18±7.66 57.63±7.77 63.33±2.98 72.67±3.45 25.00±1.56 51.05±7.26 49.69±13.79 62.78±0.65

GraphCL 61.80±4.92 57.04±4.46 69.69±6.19 69.33±4.26 26.71±2.17 56.41±6.50 51.67±9.26 60.62±3.84

SimGRACE 63.05±3.01 54.01±0.83 68.72±4.97 74.27±2.62 26.67±0.99 62.95±8.57 53.64±5.97 59.32±0.34

GPF

DGI 59.90±9.95 59.65±6.25 60.99±4.00 72.93±3.14 24.75±0.98 52.98±15.39 61.05±11.51 58.70±1.84

GraphMAE 66.02±3.96 29.68±13.57 63.37±4.37 70.13±2.58 23.92±2.16 55.87±15.72 54.63±9.43 60.57±3.74

EdgePreGPPT 67.80±5.58 58.07±6.03 63.28±4.33 68.40±3.44 24.13±1.56 66.27±14.57 32.53±10.35 55.73±3.64

EdgePreGprompt 62.62±4.73 56.62±5.44 62.34±3.36 74.00±3.65 24.29±1.46 64.77±7.22 50.99±16.41 61.06±2.63

GraphCL 60.17±9.46 56.65±2.44 62.34±4.37 70.67±3.89 27.00±0.78 58.28±9.07 53.70±10.84 59.07±0.65

SimGRACE 62.33±4.53 55.67±7.42 60.74±3.46 72.27±4.51 26.21±0.96 29.81±15.53 27.10±4.50 43.52±5.74

GPF-plus

DGI 63.50±5.68 54.91±7.08 63.51±2.89 71.87±5.55 25.67±1.75 60.16±3.91 62.84±9.18 62.76±4.22

GraphMAE 63.72±5.43 37.23±18.02 63.15±4.75 72.67±1.89 24.79±1.80 67.35±13.04 49.51±9.62 59.21±6.53

EdgePreGPPT 68.13±3.31 60.68±4.67 61.89±4.59 70.93±3.00 23.04±1.13 68.20±12.65 24.01±5.97 64.46±3.57

EdgePreGprompt 63.85±5.88 57.76±6.85 58.83±2.28 72.67±4.04 26.87±1.89 72.87±10.17 22.35±2.72 64.80±3.45

GraphCL 60.18±10.28 57.43±3.27 63.08±4.23 73.87±3.51 25.79±1.76 60.70±11.73 57.59±5.89 52.78±10.34

SimGRACE 60.43±9.87 58.99±4.32 63.10±4.06 72.80±3.30 24.58±1.68 61.77±16.67 71.54±14.81 61.97±3.07

MTG (Ours)

DGI 62.88±5.80 59.50±6.50 63.98±4.53 75.27±3.79 28.92±3.12 51.69±10.82 76.37±8.11 59.12±5.79

GraphMAE 63.72±5.43 32.22±17.95 63.48±5.44 72.80±3.08 28.08±3.50 54.48±15.95 55.99±2.91 57.82±4.93

EdgePreGPPT 69.15±4.09 58.22±5.93 61.57±3.42 76.07±2.17 35.08±3.28 57.37±13.16 67.53±7.79 56.20±3.52

EdgePreGprompt 63.88±7.79 55.35±8.37 67.22±4.38 81.60±4.53 25.21±3.33 57.45±7.23 55.12±3.27 66.07±2.39

GraphCL 62.45±6.81 57.60±3.54 62.70±3.70 71.87±5.60 22.79±2.59 48.53±6.77 61.30±6.75 60.49±3.62

SimGRACE 65.87±4.73 63.11±1.88 70.10±1.12 74.27±3.69 21.17±1.10 71.84±2.75 68.40±12.20 58.82±4.24
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Table 30: F1-score on 5-shot graph classification.

Adaptation Pre-training IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised - 61.53±3.82 46.72±7.81 60.12±2.97 68.77±4.51 21.36±3.02 50.40±4.10 49.85±2.02 61.16±2.22

Fine-tuning

DGI 37.27±7.49 60.77±1.97 59.48±2.21 69.60±5.01 23.93±3.09 46.29±3.39 21.92±9.07 53.50±13.04

GraphMAE 48.52±12.68 47.93±10.31 58.76±5.50 61.19±5.53 21.10±2.81 46.30±3.29 34.64±16.14 60.62±2.52

EdgePreGPPT 59.95±10.96 55.01±7.38 58.97±1.92 66.40±3.88 23.13±4.27 46.90±4.51 49.13±5.88 60.32±3.32

EdgePreGprompt 61.87±3.87 58.08±3.74 57.72±3.83 67.43±5.46 24.23±3.11 45.22±2.84 29.92±15.69 55.91±9.68

GraphCL 64.48±3.90 46.25±8.10 60.16±1.94 72.18±2.14 20.23±2.20 50.69±2.30 44.56±0.94 61.72±1.92

SimGRACE 58.80±4.71 46.94±6.45 60.31±2.61 67.55±3.52 19.51±3.69 50.79±10.90 42.64±2.95 54.10±1.53

GPPTPrompt

DGI 33.29±0.37 44.26±14.53 51.17±11.32 62.76±9.57 15.91±3.76 31.80±11.62 40.57±12.66 49.10±8.69

GraphMAE 33.15±0.33 16.01±6.20 56.63±5.43 61.64±4.83 18.70±2.65 36.00±12.12 45.03±4.50 48.97±2.70

EdgePreGPPT 65.92±3.82 44.90±15.76 39.47±4.13 60.33±5.13 17.40±1.52 45.39±5.02 38.16±10.87 50.83±4.76

EdgePreGprompt 33.15±0.33 19.75±6.76 44.10±11.48 33.67±17.23 19.46±2.35 42.06±4.74 41.95±7.64 55.63±2.35

GraphCL 55.16±14.72 55.24±1.26 40.33±5.84 65.16±6.09 19.05±1.73 46.02±10.48 39.32±8.94 54.10±2.94

SimGRACE 59.66±9.14 54.05±3.81 54.48±10.12 62.48±5.78 19.62±1.57 49.41±6.89 50.14±3.71 54.01±3.13

Gprompt

DGI 50.47±12.00 60.36±1.92 58.82±4.98 59.86±14.59 19.68±2.10 43.07±4.95 52.76±11.53 52.64±4.28

GraphMAE 51.26±10.62 16.37±0.04 56.08±6.65 61.49±7.64 18.48±2.23 46.44±3.42 48.92±4.67 49.81±4.74

EdgePreGPPT 66.49±4.14 57.50±2.41 61.89±1.74 61.80±11.24 16.31±1.68 48.08±4.53 46.79±5.22 51.83±4.02

EdgePreGprompt 50.18±11.72 58.02±1.57 53.81±6.27 70.82±1.39 18.42±3.25 46.63±4.27 47.81±6.75 55.47±3.78

GraphCL 60.64±11.30 59.83±4.00 57.86±1.00 60.49±10.88 19.29±2.26 47.44±7.08 50.30±4.88 57.01±2.25

SimGRACE 53.16±12.04 60.09±4.57 59.49±2.71 59.62±6.15 20.75±2.19 49.12±4.71 47.73±7.10 52.97±4.17

All-in-one

DGI 59.53±8.82 57.32±5.81 70.60±4.58 76.43±1.37 17.66±2.59 44.71±2.85 52.91±7.30 52.63±1.53

GraphMAE 58.72±10.43 17.43±5.21 66.84±3.16 76.59±2.86 15.28±0.64 45.02±5.39 50.25±14.39 57.48±1.16

EdgePreGPPT 63.43±2.34 57.44±6.03 69.85±2.07 78.29±1.00 18.20±5.07 47.22±3.60 46.61±3.47 53.27±3.89

EdgePreGprompt 58.91±9.07 56.52±8.78 61.72±1.75 69.01±4.36 19.95±1.44 48.65±5.08 44.03±8.76 59.90±1.32

GraphCL 61.47±5.33 56.68±4.02 68.30±5.95 67.42±3.89 22.30±0.99 47.14±2.57 45.65±4.16 53.88±4.86

SimGRACE 62.85±2.99 55.22±0.57 67.22±4.47 71.75±2.16 21.06±0.77 51.71±4.63 48.74±3.72 40.65±6.82

GPF

DGI 58.67±10.64 59.18±6.42 58.89±2.28 67.69±4.30 18.41±2.04 43.64±5.83 56.38±8.64 43.94±8.16

GraphMAE 65.59±4.08 14.71±5.24 60.67±2.38 65.88±1.64 19.47±2.56 45.45±8.77 49.37±6.61 57.04±2.26

EdgePreGPPT 67.73±5.58 57.75±6.17 61.14±4.21 63.56±4.73 19.89±2.46 43.97±2.80 30.06±8.48 55.24±3.51

EdgePreGprompt 61.77±4.51 56.12±5.23 60.54±2.00 72.05±3.02 19.31±2.59 50.99±3.91 39.07±4.52 58.14±3.07

GraphCL 58.58±10.31 54.42±4.20 58.69±2.31 67.61±3.98 21.36±3.31 50.58±4.57 47.55±4.52 40.86±7.24

SimGRACE 61.27±4.49 54.22±8.92 59.44±2.34 67.56±6.57 23.55±3.05 25.14±14.15 26.14±5.64 33.65±9.49

GPF-plus

DGI 63.03±5.96 53.58±8.50 59.69±2.41 70.16±4.83 21.63±0.48 52.70±2.44 57.31±6.19 57.95±3.57

GraphMAE 62.85±5.85 17.18±6.87 60.52±2.74 67.74±2.44 21.75±1.83 45.30±2.36 45.36±7.65 56.39±7.29

EdgePreGPPT 67.66±3.65 60.45±4.30 58.78±2.63 68.26±2.34 20.46±1.22 45.80±4.06 21.07±7.39 60.10±2.62

EdgePreGprompt 63.38±6.30 56.87±7.08 55.28±2.90 69.63±3.06 23.58±3.05 44.79±1.97 19.35±3.96 60.64±2.13

GraphCL 58.81±10.82 57.11±3.43 60.02±2.04 69.79±2.97 22.03±2.03 47.74±4.03 53.04±4.37 47.52±13.56

SimGRACE 59.10±10.57 58.56±4.61 60.30±2.04 69.16±2.98 22.60±2.36 51.12±11.99 43.15±1.95 53.98±1.48

MTG (Ours)

DGI 58.80±10.80 58.88±6.78 59.78±3.39 72.24±3.73 23.05±3.33 46.73±4.46 62.01±4.48 53.78±4.13

GraphMAE 64.07±5.62 17.54±6.80 65.49±4.00 69.38±3.75 21.24±5.03 44.41±7.24 52.73±2.09 56.56±3.40

EdgePreGPPT 69.06±4.09 59.90±6.04 59.41±1.33 74.08±4.85 33.66±2.53 48.74±5.48 59.70±4.96 56.92±3.19

EdgePreGprompt 63.98±6.56 53.86±9.80 66.56±3.42 78.10±4.12 22.53±3.93 43.02±4.67 48.00±2.37 59.27±3.15

GraphCL 61.24±8.88 56.93±3.44 64.43±2.09 69.40±5.10 17.40±2.11 43.12±3.78 55.88±6.25 56.50±3.28

SimGRACE 65.40±4.68 62.26±1.13 69.70±0.97 70.64±3.75 17.82±1.43 50.79±5.89 60.50±8.24 55.08±2.50

Table 31: AUROC on 5-shot graph classification.

Adaptation Pre-training IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR D&D
Supervised - 66.66±4.29 65.98±11.45 60.55±1.27 68.80±5.31 59.06±0.90 53.16±1.88 63.16±1.91 64.75±3.62

Fine-tuning

DGI 50.02±0.04 81.66±0.61 60.91±1.77 68.55±5.83 58.93±1.27 51.76±2.64 52.81±2.18 63.61±4.41

GraphMAE 57.68±8.77 69.01±10.12 59.92±2.11 74.33±4.22 58.39±0.82 51.25±2.21 57.13±7.05 64.45±3.57

EdgePreGPPT 61.63±14.66 76.71±9.50 60.88±1.39 72.84±3.58 59.64±0.79 53.48±3.98 60.58±6.74 63.82±3.08

EdgePreGprompt 66.78±4.49 81.42±0.65 56.93±4.04 72.62±1.98 59.65±1.08 51.34±2.69 50.75±1.31 62.82±3.74

GraphCL 69.68±5.15 76.71±2.70 61.80±2.09 70.63±4.24 57.49±0.69 55.91±4.67 50.86±1.72 64.37±3.44

SimGRACE 64.69±7.42 72.81±3.58 61.49±2.04 71.48±3.93 55.98±2.05 61.95±2.47 48.92±2.16 57.39±2.98

GPPTPrompt

DGI 50.48±0.70 70.62±7.22 55.92±14.32 79.97±4.66 52.20±2.26 51.22±2.96 47.75±9.82 53.81±9.82

GraphMAE 50.63±0.56 50.56±3.78 60.56±6.96 77.76±5.00 53.63±1.06 50.60±6.83 53.55±6.08 58.60±5.56

EdgePreGPPT 69.02±4.94 68.78±9.45 68.50±9.36 72.44±6.57 53.43±1.03 53.02±8.32 47.93±5.96 51.76±5.53

EdgePreGprompt 50.63±0.56 56.85±1.07 45.95±18.22 24.75±25.84 53.66±1.73 52.56±3.29 49.31±5.04 61.01±3.67

GraphCL 59.75±10.88 76.73±1.15 69.17±8.03 77.80±5.27 53.37±1.20 56.22±8.12 50.45±6.37 57.89±3.91

SimGRACE 61.35±10.03 70.93±4.01 59.76±13.58 77.27±7.67 53.63±1.06 57.78±6.95 59.49±6.13 57.49±4.92

Gprompt

DGI 53.91±13.03 70.52±5.99 57.55±7.36 64.03±19.95 53.87±2.02 50.06±2.93 56.36±6.92 54.21±4.23

GraphMAE 55.46±7.98 44.83±0.15 54.75±7.17 63.37±9.48 52.82±1.11 49.40±6.97 54.99±5.88 51.72±5.54

EdgePreGPPT 70.26±4.44 73.55±4.01 67.07±0.80 66.04±10.33 53.32±2.77 52.47±6.25 52.16±2.83 53.26±4.39

EdgePreGprompt 56.66±8.48 75.59±3.42 56.24±7.10 74.43±4.69 54.57±2.69 50.60±3.01 53.90±6.28 56.36±5.42

GraphCL 52.62±12.32 75.45±3.52 61.03±5.77 64.43±10.15 54.04±2.81 50.64±7.63 53.71±2.16 56.22±3.97

SimGRACE 57.24±12.21 73.41±3.61 60.58±5.34 64.67±8.28 55.02±1.57 56.79±5.66 56.83±6.49 53.99±6.27

All-in-one

DGI 61.66±12.01 80.99±1.96 79.39±1.76 83.38±1.95 58.71±0.88 49.33±1.56 52.97±11.15 52.92±1.58

GraphMAE 60.44±13.36 50.00±0.00 73.82±1.89 84.45±1.78 53.75±1.13 54.24±10.01 55.73±11.76 64.55±1.63

EdgePreGPPT 69.53±3.98 81.50±1.45 77.60±0.81 85.46±2.74 54.18±3.09 52.22±5.14 39.69±2.87 58.41±0.60

EdgePreGprompt 61.78±11.31 81.93±1.28 66.26±1.84 82.07±1.61 55.09±2.15 61.86±2.18 50.64±4.57 64.95±0.92

GraphCL 65.55±5.57 77.86±4.19 73.65±4.67 77.59±1.92 59.50±1.10 49.77±1.51 52.63±2.91 59.95±4.37

SimGRACE 66.52±3.18 75.84±0.40 77.13±0.44 79.68±4.23 55.76±0.82 62.42±1.89 54.60±2.87 55.43±0.66

GPF

DGI 61.28±14.33 80.91±1.35 59.36±1.27 68.29±4.20 57.38±0.69 55.65±2.89 69.56±8.43 52.10±1.18

GraphMAE 71.36±4.86 50.00±0.00 60.79±1.35 73.75±6.18 57.51±1.83 55.80±3.40 57.87±6.08 59.78±6.01

EdgePreGPPT 72.09±6.35 81.60±1.83 63.33±6.33 71.14±4.08 57.09±1.47 45.44±3.51 40.30±2.41 57.56±1.55

EdgePreGprompt 66.56±4.93 82.11±0.58 59.32±1.46 78.72±2.44 56.88±0.88 57.11±3.21 38.86±3.08 59.75±5.73

GraphCL 61.77±14.84 76.32±2.61 58.70±2.93 75.54±4.82 57.23±1.32 50.87±1.24 54.74±5.41 51.02±2.03

SimGRACE 66.69±4.51 78.63±3.50 60.84±0.83 73.60±4.98 57.64±0.64 55.74±2.01 44.52±2.78 48.14±1.17

GPF-plus

DGI 67.76±7.65 80.06±1.94 60.56±1.11 75.93±5.59 57.99±1.37 56.06±2.35 67.92±4.56 62.75±3.59

GraphMAE 68.56±7.52 50.00±0.00 60.88±1.41 74.54±6.62 56.78±1.51 48.93±2.41 54.11±8.51 62.56±3.54

EdgePreGPPT 71.71±3.89 82.51±0.50 59.30±1.96 77.03±2.00 56.17±0.68 49.53±4.57 49.78±0.43 63.49±4.00

EdgePreGprompt 67.36±7.32 81.68±0.93 54.63±1.53 75.31±2.84 60.04±0.95 50.95±1.90 48.60±2.80 64.20±3.47

GraphCL 61.80±14.82 80.57±0.98 61.23±1.64 69.47±3.56 57.95±1.27 51.87±1.80 64.97±3.46 61.94±4.01

SimGRACE 61.85±14.76 77.71±3.28 61.07±1.57 70.13±2.87 57.30±0.70 63.15±2.98 49.11±1.78 57.21±2.94

MTG (Ours)

DGI 64.24±11.54 81.70±1.83 62.28±1.40 79.88±4.08 60.12±2.82 46.65±4.45 70.58±3.21 53.66±5.36

GraphMAE 65.61±10.49 50.00±0.00 61.23±1.51 76.70±5.49 58.65±1.63 52.08±3.43 59.66±2.52 57.52±4.36

EdgePreGPPT 72.82±5.50 81.57±1.80 63.41±2.01 79.87±5.60 65.42±2.00 59.49±5.74 65.22±4.05 60.56±2.93

EdgePreGprompt 63.17±12.42 81.92±0.63 67.57±0.51 85.99±2.00 59.08±1.78 47.32±2.89 50.15±2.87 62.66±4.63

GraphCL 67.29±4.11 79.70±2.70 63.87±1.69 75.64±5.17 52.41±1.80 45.45±5.87 61.89±6.88 58.00±3.33

SimGRACE 67.02±4.32 80.98±0.46 67.31±1.03 71.30±1.90 51.89±1.51 59.90±5.00 69.34±3.12 55.56±1.76
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Table 32: 1-shot node classification accuracy (%) on Wisconsin for various backbone models. Supervised
learning baselines: GCN: 41.60±3.10, GAT: 34.51±18.02, GraphSAGE: 25.37±5.61, GIN: 28.91±11.51, GT:
20.91±7.07.

Fine-tuning

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 37.49±5.13 36.80±7.17 35.31±9.31 40.69±4.13 33.94±7.74 37.37±3.68

GAT 16.00±6.24 37.60±10.69 20.00±3.82 33.37±4.76 18.86±1.88 28.00±9.40

GraphSAGE 40.69±9.46 43.77±12.43 26.06±5.38 29.94±3.75 36.57±4.88 9.37±2.72

GIN 34.29±10.40 26.29±7.81 25.14±7.70 33.49±7.69 22.63±8.62 16.46±4.53

GT 25.71±3.07 39.77±8.42 23.20±2.65 28.23±6.64 11.77±1.06 14.51±5.08

GPPT

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 29.94±10.40 29.83±9.34 23.89±5.40 30.40±6.81 25.03±5.37 29.83±6.44

GAT 22.17±6.13 33.94±7.76 23.43±4.46 37.94±7.11 26.86±6.12 29.83±8.04

GraphSAGE 26.51±8.00 30.51±5.40 21.49±5.17 24.23±6.55 20.91±7.11 25.37±7.22

GIN 27.20±5.34 24.00±3.29 21.14±1.84 20.46±2.79 19.09±14.19 19.54±15.85

GT 27.20±10.48 29.83±5.80 28.00±6.01 23.31±3.01 27.66±0.69 25.03±5.43

Gprompt

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 67.71±9.92 67.62±18.06 67.37±12.32 74.38±13.15 77.07±5.93 65.38±13.70

GAT 58.25±13.83 67.77±15.91 94.17±2.26 84.28±3.63 80.11±16.65 57.18±12.60

GraphSAGE 66.48±12.88 83.49±15.93 87.52±3.79 82.16±2.64 65.50±6.48 72.61±5.97

GIN 45.47±9.62 37.72±15.00 58.36±15.10 59.29±12.72 59.03±19.98 71.80±11.66

GT 56.03±7.33 73.50±9.72 76.97±13.39 80.07±2.84 59.31±10.17 69.30±10.57

All-in-one

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 56.02±13.12 57.54±10.66 66.29±19.11 59.18±12.30 39.14±1.17 55.56±14.70

GAT 69.44±5.19 36.25±10.63 91.25±4.33 92.65±3.75 42.85±9.16 36.61±14.86

GraphSAGE 74.88±19.77 87.55±3.78 98.60±0.87 99.12±0.64 67.28±20.14 86.18±9.68

GIN 54.02±15.90 35.31±15.69 58.77±13.43 57.07±12.51 45.94±9.52 25.30±14.83

GT 60.22±11.02 97.42±2.13 94.61±1.73 97.88±2.24 51.33±15.56 83.26±16.29

GPF

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 62.69±13.96 76.84±10.50 78.35±4.07 75.20±13.22 51.60±20.06 60.81±26.52

GAT 65.14±11.94 74.39±16.46 94.96±1.17 76.60±10.48 74.97±17.06 60.57±14.43

GraphSAGE 68.12±13.96 67.66±13.37 74.06±14.59 72.45±10.14 59.69±21.37 78.37±14.84

GIN 47.11±11.28 49.47±14.94 66.99±17.76 54.96±12.35 28.77±22.76 23.55±14.37

GT 39.85±4.83 71.26±14.43 72.67±13.36 81.33±3.41 78.19±2.19 67.90±10.53

GPF-plus

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 74.68±11.81 82.11±13.95 72.66±12.05 78.76±13.63 52.35±19.69 73.49±14.17

GAT 93.34±6.13 83.28±12.20 95.24±1.58 92.03±4.64 87.49±7.17 63.06±18.45

GraphSAGE 71.83±17.50 85.47±1.45 97.30±1.68 80.35±14.37 50.35±8.91 71.95±9.43

GIN 57.55±16.90 66.88±14.55 82.79±10.37 74.40±13.11 29.94±22.25 24.30±17.29

GT 72.41±11.37 95.19±4.04 87.76±15.73 80.58±11.56 57.75±19.89 63.79±17.44

MTG (Ours)

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 67.72±10.19 83.32±12.46 73.80±9.56 72.75±11.21 48.41±16.10 72.98±9.75

GAT 59.87±9.77 82.16±11.33 95.84±1.15 81.99±12.78 77.01±12.03 61.75±13.22

GraphSAGE 76.90±9.36 99.29±1.41 87.23±4.91 72.63±10.16 62.44±19.82 63.50±17.62

GIN 59.93±13.84 69.96±10.90 78.87±16.32 83.57±10.78 37.34±15.08 34.48±15.47

GT 58.35±10.12 98.85±1.02 84.45±8.03 72.99±10.45 93.45±4.15 89.24±2.66
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Table 33: 1-shot graph classification accuracy (%) on PROTEINS for various backbone models. Supervised
learning baselines: GCN: 56.36±7.97, GAT: 48.34±9.96, GraphSAGE: 60.54±2.95, GIN: 59.66±1.12, GT:
61.44±2.48.

Fine-tuning

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 60.00±4.48 62.40±1.494 58.27±10.66 61.84±2.59 63.44±3.64 60.07±3.21

GAT 58.34±6.52 61.06±4.13 63.75±3.71 54.09±4.03 60.04±3.06 58.65±6.71

GraphSAGE 60.70±4.08 60.56±5.12 61.60±1.78 63.21±1.80 61.80±3.77 58.56±1.84

GIN 59.71±1.16 59.75±1.22 64.83±3.56 65.35±2.36 58.52±0.77 58.49±0.80

GT 53.87±4.81 60.00±3.99 64.92±3.19 56.58±3.28 62.88±1.82 60.00±1.60

GPPT

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 60.81±1.55 60.72±1.70 60.92±2.47 57.03±4.55 59.24±1.01 55.42±8.81

GAT 57.71±8.98 57.80±10.55 58.04±9.92 54.97±7.45 52.29±7.83 55.15±9.84

GraphSAGE 56.56±6.73 57.73±7.95 58.63±11.78 56.94±5.67 58.00±7.80 54.74±6.59

GIN 62.27±2.54 52.13±11.00 52.52±6.97 55.53±8.92 55.78±7.22 55.78±7.22

GT 53.08±7.56 57.35±8.58 60.27±3.92 55.51±7.68 56.18±5.79 55.87±7.69

Gprompt

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 56.61±7.93 57.66±12.56 59.17±11.26 55.55±8.17 55.51±10.73 57.53±11.05

GAT 61.08±6.19 63.03±2.61 64.47±4.30 61.48±3.34 59.12±6.84 58.13±7.27

GraphSAGE 61.35±2.21 59.48±9.19 60.92±3.16 63.30±1.43 55.26±2.61 63.21±2.66

GIN 54.36±5.18 46.97±11.45 55.82±5.35 57.84±10.75 56.92±11.77 46.16±10.78

GT 56.65±5.81 60.99±1.62 61.87±5.60 55.33±3.69 54.81±7.62 58.97±1.16

All-in-one

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 62.58±7.07 66.49±6.26 65.71±5.49 61.82±7.53 64.36±7.30 61.17±1.73

GAT 60.04±3.84 60.00±6.04 62.11±2.85 63.21±2.22 58.36±4.93 59.37±5.59

GraphSAGE 59.53±4.94 60.70±4.89 63.12±1.59 59.98±8.46 62.22±3.81 62.04±2.07

GIN 61.55±3.02 60.72±4.32 59.78±3.28 58.29±12.13 40.81±1.04 59.19±1.04

GT 57.39±3.66 58.92±6.61 62.61±4.08 60.20±7.55 62.81±1.63 50.52±6.17

GPF

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 59.17±3.63 58.65±8.49 62.54±2.55 61.82±2.61 63.91±3.26 63.35±3.69

GAT 63.01±1.22 59.62±5.38 47.53±9.42 47.71±7.14 56.65±5.15 57.91±3.10

GraphSAGE 52.72±6.43 59.17±2.22 61.73±2.59 64.54±3.73 62.27±2.60 58.00±3.81

GIN 61.19±3.39 54.34±8.61 60.58±6.80 62.34±1.19 59.19±1.04 59.19±1.04

GT 65.80±7.42 60.16±5.81 64.54±7.18 61.21±2.91 58.74±5.51 59.57±2.93

GPF-plus

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 61.26±3.06 62.49±2.05 63.06±2.55 61.33±2.81 59.75±7.95 62.92±2.78

GAT 56.20±12.87 57.35±11.28 56.25±8.61 53.24±4.79 57.48±11.74 57.48±9.63

GraphSAGE 56.22±9.08 57.55±10.56 56.31±9.26 57.71±9.60 53.89±9.47 55.89±4.30

GIN 62.22±2.49 61.75±3.58 57.33±9.24 64.99±0.82 59.19±1.04 59.19±1.04

GT 53.39±5.23 57.37±10.95 57.39±11.88 52.61±5.30 57.62±12.27 56.16±5.07

MTG (Ours)

Model DGI GraphMAE EdgePreGPPT EdgePreGprompt GraphCL SimGRACE

GCN 62.78±2.36 59.62±6.41 62.71±2.30 65.66±1.56 63.70±2.87 66.98±2.17

GAT 61.48±2.14 60.38±4.81 53.46±7.80 63.53±1.25 49.12±6.49 52.63±4.14

GraphSAGE 61.98±2.03 58.85±1.66 65.24±1.83 65.88±0.58 62.20±3.35 60.94±9.92

GIN 61.55±1.47 60.52±3.27 65.64±6.34 63.10±0.39 60.19±1.04 59.69±3.21

GT 61.83±6.86 57.19±8.75 63.64±5.55 59.91±5.85 66.08±2.70 61.72±0.83

53


	Introduction
	Related Work
	Prismatic Space Theory
	A Unified Formulation for GNN-based GFMs
	Prompt Tuning for Graphs
	A Geometric Measure Theoretic Formulation
	Adaptation Capacity of Prompt Tuning

	Message Tuning for GFMs
	Core Mechanism
	Theoretical Analysis

	Experiments
	Experiment Setting
	Upper Bound Performance of Message Tuning
	Robustness Performance of MTG across Pre-training Strategies
	Mitigation of Negative Transfer

	Conclusion
	The Use of Large Language Models
	Extra Materials for Prismatic Space Theory
	Related Work on Prismatic Space Theory
	Details of Definition 1
	Details of Definition 2
	Proof of Proposition 1
	Proof of Proposition 2
	Details of Definition 3
	Proof of Proposition 3
	Details of Definition 5
	Proof of Theorem 1
	Simple Linear Algebra
	Proof of Theorem 2
	Proof of Theorem 3
	Details of Definition 7
	Lipschitz Continuous and Jacobian
	Proof of Theorem 4
	Theoretical Limitations of Prompt Tuning

	Theoretical Analysis of Message Tuning
	Proof of Theorem 5
	Analysis of Negative Transfer

	Datasets and Experimental Details
	Configuration
	Details of Datasets
	Data Split.
	Evaluation Metrics
	Hyperparameter Configuration
	Implementation Details

	Details of Baselines
	Backbones of Graph Foundation Models
	Pre-training Strategies
	Prompt Tuning Baselines

	More Information on Experiments
	Details of the experimental results on 1/3/5-shot node/graph classification
	Performance with More Backbones for GFMs
	Computational Efficiency of MTG
	Sensitivity Analysis


