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ABSTRACT

Graph foundation models (GFMs), built upon the “Pre-training and Adaptation”
paradigm, have emerged as a promising path toward artificial general intelligence
on graphs. Despite the remarkable potential of large language models, most existing
GFMs still adopt Graph Neural Networks as their backbone. For such GNN-based
GFMs, prompt tuning has become the prevailing adaptation method for downstream
tasks. However, while recent theoretical research has revealed why graph prompt
tuning works, how to measure its adaptation capacity remains an open problem. In
this paper, we propose Prismatic Space Theory (PS-Theory) to quantify the capacity
of adaptation approaches and establish the upper bound for the adaptation capacity
of prompt tuning. Inspired by prefix-tuning, we introduce Message Tuning for
GFMs (MTG), a lightweight approach that injects a small set of learnable message
prototypes into each layer of the GNN backbone to adaptively guide message
fusion without updating the frozen pre-trained weights. Through our PS-Theory,
we rigorously prove that MTG has greater adaptation capacity than prompt tuning.
Extensive experiments demonstrate that MTG consistently outperforms prompt
tuning baselines across diverse benchmarks, validating our theoretical findings.
Our code is available at https://anonymous.4open.science/t/MTG.

1 INTRODUCTION

Graph foundation models (GFMs) (Liu et al., 2025; Wang et al., 2025b), built upon the “Pre-training
and Adaptation” paradigm, are expected to benefit from the pre-training of broad graph data and can
be adapted to a wide range of downstream graph tasks. Since they are designed to natively learn graph
structures, a capability fundamentally different from that of sequence-based Large Language Models,
GNN-based GFMs represent a promising direction by leveraging self-supervised pre-training to
acquire transferable knowledge through their GNN backbone architectures (Wang et al., 2024; Chen
et al., 2025), including Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017) and Graph
Transformers (GTs) (Ying et al., 2021). For such pre-trained GFMs, fine-tuning (Hu et al., 2020b;
Qiu et al., 2020; Rong et al., 2020) is the most intuitive and widely adopted method for downstream
task adaptation. However, fine-tuning generally involves updating all model parameters, requiring
a full model copy per task while demanding substantial computational resources and task-specific
data for full customization. Furthermore, the pretext-downstream graph task gap poses a significant
challenge for fine-tuning, potentially causing negative transfer (Wang et al., 2021), particularly in
few-shot scenarios (Zhang et al., 2022).

Prompt tuning (Lester et al., 2021; Liu et al., 2022) as a popular finetune paradigm, has emerged as
an efficient alternative to full-parameter fine-tuning by freezing the pre-trained model’s parameters
and adapting downstream tasks through input data transformations. Prompt tuning on graphs,
known as Graph Prompt Learning (Sun et al., 2023b), enhances GNN-based models’ performance
and adaptability through input-space adaptations (e.g., inserting lightweight learnable tokens or
subgraphs) to reformulate downstream tasks as pre-training tasks without modifying the pre-trained
GNN backbone. Recent advances in graph prompt models (Fang et al., 2023; Sun et al., 2023a;
Niu et al., 2024; Yu et al., 2025) have shown promising results in graph learning, highlighting their
potential for broader graph intelligence applications spanning from molecular property prediction
(Diao et al., 2023) to recommendation systems (Yang et al., 2023). Concurrently, several studies
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Figure 1: Fine-tuning (left) updates all GFM parameters (red GFM Layer boxes), while Prompt Tuning (middle)
typically updates prompt tokens or the prompt graph (red prompt vectors) to transform the input graph, keeping
GFM parameters frozen. We propose Message Tuning (right), which also freezes GFM parameters but optimizes
the messages in each GFM Layer (red message blocks) to regulate message fusion. The red dashed lines indicate
the inserting patterns of new parameters, which are also learnable.

(Fang et al., 2023; Wang et al., 2025a) have begun analyzing graph prompts from a data operation
perspective, suggesting their effectiveness stems from simulating fundamental graph transformations
such as node/edge addition/deletion, feature modification, and subgraph removal.

However, while recent theoretical research has revealed why graph prompt tuning works from a data
operation perspective (Wang et al., 2025a), how to measure its adaptation capacity on a specific GFM
remains an open problem. A more precise understanding of the capability bound of prompt tuning and
the underlying reasons will facilitate the design of more powerful and efficient adaptation methods.
To address this issue, we model each layer of GFMs as a piecewise linear refractive transformation
and leverage ideas from geometric measure theory to quantify the “refractive” power of each layer,
establishing fundamental bounds on the expressive power of prompt tuning methods and motivating
the design of our novel message tuning paradigm.

Specifically, we propose Prismatic Space Theory (PS-Theory), providing a rigorous mathematical
framework to quantify adaptation capacity and establish the upper bound for the adaptation capacity
of prompt tuning. Prefix-tuning (Li & Liang, 2021), widely used in language models, is specifically
designed for transformer architectures and generative tasks on sequential data, making it not directly
applicable to graph-structured data. Inspired by this technique, we introduce Message Tuning for
GFMs (MTG), a novel adaptation approach that injects learnable message prototypes into each layer
and dynamically fuses them with the model’s native messages, which is compatible with GFMs using
either MPNN or GT backbones, as illustrated in Figure 1. Through our PS-Theory, we rigorously
prove that MTG has greater adaptation capacity than prompt tuning. Extensive and fair evaluations on
the latest Graph Prompt Learning benchmark ProG (Zi et al., 2024) further validate MTG’s superiority
across diverse downstream tasks. The contributions of this paper are summarized as follows:

* Theoretical Foundation. Different from the prior theories focusing on data operations, we pro-
pose PS-Theory, providing a novel and rigorous mathematical framework to quantify adaptation
capacity and establish the upper bound for the adaptation capacity of prompt tuning.

¢ Adaptation Method. We introduce MTG, a novel lightweight adaptation approach that dy-
namically guides message fusion by injecting learnable message prototypes across all layers
without updating pre-trained weights, significantly enhancing adaptation capacity. Through our
PS-Theory, we rigorously prove that MTG has greater adaptation capacity than prompt tuning.

» Extensive Experiments. Through comprehensive evaluations across diverse few-shot down-
stream tasks, we demonstrate MTG’s consistent superiority over state-of-the-art prompt tuning
baselines, validating our theoretical claims on its enhanced adaptation capacity.
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2 RELATED WORK

The adaptation of GNN-based GFMs involves tailoring models or adjusting input data to align with
specific downstream tasks or domains through techniques such as fine-tuning and prompt tuning.
To the best of our knowledge, prefix-tuning (Li & Liang, 2021), despite its prevalence in language
models, remains unexplored in GNN-based GFMs.

Fine-tuning. Specifically, fine-tuning can be further divided into full-parameter fine-tuning (FPFT)
and parameter-efficient fine-tuning (PEFT). FPFT (Hu et al., 2020b; Qiu et al., 2020; Rong et al.,
2020; Sun et al., 2024) entails training the entire pre-trained model on task-specific data, offering
high customization at the cost of substantial computational resources. In contrast, PEFT methods
optimize only a subset of parameters, balancing adaptation efficiency with performance. For instance,
AdapterGNN (Li et al., 2024) modifies input graphs via parallel adapters around message passing,
G-Adapter (Gui et al., 2024) integrates graph structure into transformer fine-tuning through graph
message passing, and GraphLoRA (Yang et al., 2025) enhances efficiency by injecting a low-rank
trainable GNN alongside the pre-trained model to address structural distribution gaps while mitigating
catastrophic forgetting. In this paper, fine-tuning generally refers to FPFT unless otherwise specified.

Prompt Tuning. As a lightweight tuning method, prompt tuning typically freezes pre-trained model
parameters while introducing additional learnable components in the input space. Following Liu
et al. (2025), prompt tuning methods can be divided into two distinct groups: pre-prompt and post-
prompt methods, depending on whether task-specific prompts operate before or after the backbone
module. Pre-prompt methods either modify graph topology or node features before message passing
to enhance task performance, or construct prompt graphs to boost adaptability. For instance, GPF
(Fang et al., 2023) introduces an optimizable uniform feature vector for all nodes to adapt pre-trained
GNNss across strategies, while All-in-one (Sun et al., 2023a) reformulates node-level and edge-level
tasks to graph-level tasks and treats an additional subgraph as a prompt that merges with the node
subgraph. Post-prompt methods apply task-specific prompts on representations after message passing
for downstream adaptation. For instance, GPPT (Sun et al., 2022) transforms node classification into
link prediction via class-specific token pairs, while GraphPrompt (Liu et al., 2023b) unifies tasks
through subgraph similarity and learns task-specific prompt vectors to adapt the Readout operation,
bridging link prediction and downstream tasks.

3  PRISMATIC SPACE THEORY

In this section, we introduce Prismatic Space Theory (PS-Theory), providing a novel perspective and
rigorous mathematical framework to quantify the capacity of adaptation approaches and establish the
upper bound for the adaptation capacity of prompt tuning. Due to space constraints, the proofs of all
theorems and additional theoretical details are provided in Appendix B.

3.1 A UNIFIED FORMULATION FOR GNN-BASED GFMs

To facilitate theoretical analysis, we present a unified formal framework that generalizes both MPNNs
and GTs architectures. Let G = (V, £) be a graph with N = |V| nodes. The node feature matrix
is denoted X € RY*9o and the adjacency matrix is denoted A € {0,1}¥*¥N . The ¢-th layer of a
general GNN-based GFM is defined by the following formulation.

Definition 1 (Unified GFM Layer). For any layer ¢ € {1,..., L}, the node representation matrix
HO ¢ RNX4 s computed as:

HO — ¢® (;mw) (g[(a (A,Hw—l); @((f)) CHD, @%)) CHUD, @g)) ’ (1

where H® = X. A0 9O and U denote the attention, message fusion, and update operators
respectively: AL computes attention weights (encompassing both learnable dynamic attention
and static structural attention), MO performs weighted aggregation of node messages using these
attention scores, and $\) combines previous node representations with the fused messages to produce
the updated representation.

This formulation serves as a unified formalization of the core structure rather than encompassing all
architecture details. The detailed correspondence between this formulation and classical backbone
architectures is presented in Appendix B.2.
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3.2 PROMPT TUNING FOR GRAPHS

Following Wang et al. (2025a), we provide a mathematical formalization of prompt tuning for graphs,
aiming to offer an intuitive perspective for theoretical analysis. Let fggv denote a pre-trained GNN-
based GFM with frozen parameters, and let gy denote a graph prompt function with parameters 6 that
transforms the input graph G into a prompted graph g¢(G). Given a downstream dataset G = {G},
the goal of prompt tuning is to optimize 6 to maximize the likelihood of the optimal representation
for a graph G from G. This objective can be formulated as:

Ineax PfGFM (Ug|g9 (g)) (@)

The theory in Wang et al. (2025a) rests on the assumption that a GNN model acts as a surjective
mapping operator from the graph set G to RY", where F' is the dimensionality of the representation.
However, since real-world graph data is inherently bounded, the model’s output is unlikely to span
the entire RY space. Analyzing the properties of this actual output space will provide deeper insight
into the adaptation capacity of prompt tuning.

3.3 A GEOMETRIC MEASURE THEORETIC FORMULATION

Prism Metaphor. Prompt tuning typically operates by injecting a low-dimensional prompt into the
high-dimensional input space of a frozen GFM. To quantify its efficacy, we need to understand how
the GFM’s architecture transforms this input space. We posit that each layer of a GFM, particularly
those employing piecewise linear activations like ReLU (Nair & Hinton, 2010) or LeakyReLLU
(Maas et al., 2013), acts not merely as a contraction but as a “prism”. The non-isometric, piecewise
linear action of a “prism” refracts the input space, collapsing some dimensions into oblivion, and
progressively folding the input manifold. We model the GFMs as a sequence of measurable maps that
transform the input space into a sequence of increasingly complex, lower-dimensional prismatic space.
We quantify the “refractive” power of each layer by leveraging ideas from geometric measure theory,
focusing on the singular values of the layer’s Jacobian and their effect on the intrinsic dimension and
measure of the data manifold.

We adopt the unified GFM layer from Definition 1 and first introduce the piecewise linear map, which
is a key abstraction for understanding the mechanisms of the model architecture.

Definition 2 (Piecewise Linear Function for Matrix Maps). A function F : RN*dn — RN>dou jg
called piecewise linear if there exists a finite collection of polyhedral regions { R;} | in RN *dn
such that RN *din = U1K:1 R; and for each region R;, the function I is affine, meaning there exists a
matrix A; € RWda)x(Ndin) gnd g vector b; € RN« sych that:

vec(F(H)) = A, -vec(H)+b; forall H € R;. 3)

Equivalently, in matrix form, F(H) = unvec(A; - vec(H ) + b;), where unvec is the operation that
reshapes the vector into an N X d,, matrix. (See Appendix B.3 for details.)

Proposition 1. The attention, message fusion, and update operators A9, MO O are generally
continuous, piecewise linear functions and differentiable almost everywhere (a.e.).

Proposition 2. The layer map F©) : H—1 (C RNV *de-1) — HE) (C RVN*9%) is a piecewise linear
function. For any point H where F\9) is differentiable, its Jacobian J©) (H) € RNdexNde—1 pyists,

The proofs of Propositions 1 and 2 are provided in Appendices B.4 and B.5, respectively. Having
abstracted the model architecture, we now turn to mathematically modeling the input data and output
space, with particular emphasis on capturing the bounded nature of the input data.

Definition 3 (Input Manifold and Representation Space). The input space is modeled as a compact,
smooth input manifold My C X C RN* with intrinsic dimension di(Mo) = Dy. X denotes
the entire set of possible input data forms for the model. M represents a low-dimensional subset
of X endowed with specific semantic and geometric structures (see Appendix B.6 for details). The
representation at layer { is the image of the input manifold under the composite map ®) =
FOo...0 p).

MO = O (M) c RN*d, )
Definition 4 (Prismatic Space). A set M C R" is called prismatic space if there exists a smooth
manifold N C R™ and a piecewise linear map f : R™ — R" such that M = f(N).
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Real-world graph data can be viewed as points sampled from the input manifold. And the output
representations of graph data lie in the prismatic space, defined as the image of the input manifold
under the GFM’s mapping. Hence, such a geometric modeling approach is of practical significance.

Proposition 3. &) = F(©) o ... o F() js piecewise linear. Assume that ) is injective on each
polyhedral region, then M®) = &© (M) is a prismatic space and may have singularities.

The proof of Proposition 3 is provided in Appendix B.7. As in many geometric theories, an intuitive
strategy for analyzing complex geometric space is to begin with a local perspective, particularly since
the formation process of prismatic space is already well understood. The core of the prismatic effect
lies in the singular value decomposition (SVD) of the layer Jacobians.

Definition 5 (Spectral Prism of a Layer). For a point H € H“~Y where F) is differentiable,
let JOH) = UOSO(VO)T be its SVD (see Appendix B.8 for details). The diagonal matrix

»® = diag(ay), O’éz), e agf), 0,...,0) contains the singular values, where T is the rank.

Theorem 1 (Local Measure Contraction Factor). Ler S € H=1 be a sufficiently small measurable
set contained in an s-dimensional subspace V on which F9) is linear and injective, with constant
Jacobian JO) of rank vy (s < r¢). Assume V is the subspace spanned by the first s right singular

vectors of J\9, corresponding to the s largest singular values ay) > oy) > 2> aﬁ“ > 0. Then,
for the s-dimensional Hausdorff measure H?:

1o (FOE) = ([[o)36). )
i=1

In particular, if s = ry, the volume contraction factor is H:il 01@).

Corollary 1 (Local ReLU Prism Effect). Consider the ReLU activation function used within F©).
At points where ReLU is differentiable, its Jacobian Jg.ry is a diagonal matrix with diagonal entries
either 0 or 1, and hence idempotent (J3,;; = Jgerv). This implies that ReLU acts as a local
projection, nullifying some dimensions (setting outputs to zero) and preserving others. The ReLU
component contributes to the prismatic effect by introducing sparsity and reducing the effective rank
of the Jacobian in local regions.

The proof of Theorem 1 is provided in Appendix B.9. Corollary 1 provides a detailed explanation of
the ReLU activation function. Having characterized the local properties via the singular values of the
layer Jacobians, we now need to synthesize the global and local perspectives. This requires an abstract
mathematical technique: constructing a global partition from local pieces is a common approach,
even foundational to calculus. By Proposition 3, the piecewise linearity of the GFM network implies
that the input manifold M, is partitioned into multiple linear regions.

Definition 6 (Linear Region Partition). For each layer ¢ € 1,. .., L, let Q) be the set of polytopic
regions in H =Y on which the function F) is linear. The GFM network ® = F(1)o. ..o () defines
a recursive partition of the input manifold M into cells {Cy}, where each cell Cy, is a connected

subset of Mg such that there exists a sequence of regions Ry € Q1) Ry € Q@) ... R e QL)
satisfying:

Ck C Ry, FO(Cy) C Ry, FA(FW(Cy)) C Ry, ..., FE Voo FO(C) C Ry, (6)

and on each cell Cy, the full network map ® is linear. The total number of {C};} is related to the
specific architecture and parameters of the GFM network.

Theorem 2 (Prismatic Folding and Intrinsic Dimension). The global map ® : My — M) g
piecewise linear. The intrinsic dimension of the final representation space is bounded by the maximum
over linear regions of the minimum rank achieved across layers:

dip(MD)) < max mein rank(J® loe-1)(cp))- @)

Furthermore, the map ® is piecewise constant on its rank. The final output M") is a prismatic space
embedded in RN >4, likely with a much lower intrinsic dimension than Dy.

The proof of Theorem 2 in Appendix B.11 provides a method for analyzing the upper bound of
the intrinsic dimension of the output prismatic space. This bound is analytical, derived from the
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partition of the input manifold induced by the GFM network as defined in Definition 6, making it
difficult to compute numerically. Building on the local measure computation derived in Theorem 1,
we formulate the definition of a global measure on the prismatic space in the following theorem.

Theorem 3 (Measure of the Final Prismatic Space). Assume the piecewise linear map ® = F(I) o
-+ 0 F) js injective on the partition C, of the input manifold Mg, where each Cj, is a cell in the

linear region partition. Then, the d;,,-dimensional Hausdor{f measure of the final prismatic space
M) = ®(My) is given by:

L dinr
4 :
dint M(L) Z Hdmr — Z ( H H O.Z(Jz)f}_ld,m(ck)’ (8)
k l=11i=1
where for each layer { and cell Cy, 052 fori=1,... diy are the d, largest singular values of the

Jacobian J© of F (O restricted to the tangent space of ) (Cy) (which is djy,-dimensional). If @
is not injective, the formula provides an upper bound.

The proof of Theorem 3 is provided in Appendix B.12. This theorem precisely quantifies the prismatic
effect: the total “volume” of the final representation is the sum of the volumes of all fragments of
the input manifold, each shrunk by the product of the singular values of the Jacobians along its path
through the network. At this point, we have established a mathematical framework (PS-Theory)
for analyzing the output prismatic space of GFM. However, corresponding theoretical results on
adaptation capacity still require integration with specific adaptation methods, such as prompt tuning.

3.4 ADAPTATION CAPACITY OF PROMPT TUNING

Without loss of generality, and in alignment with Wang et al. (2025a), our theoretical analysis in this
subsection focuses on pre-prompt methods. As demonstrated by Lemma 1 in Wang et al. (2025a),
prompt tuning methods, such as GPF and All-in-One, are equivalent to a transformation of the node
feature matrix X . This transformation can be simplified to the form X, = X + cp',wherec >0
can be referred to as the coefficient vector and X can be either X or the natural extension of X: [¥].
Therefore, modeling prompt tuning as a perturbation on the input manifold is a natural and direct
approach within the PS-Theory framework.

Definition 7 (Prompt Perturbation Manifold). Assume the original input manifold M is perturbed
by a prompt P, forming a compact smooth manifold My(P), e.g., Mo(P) ={X +P | X € My}
The prompt space P defines a manifold family: {My(P) | P € P}. (See Appendix B.13 for details.)
Theorem 4 (The Prompt Efficacy Bound). The adaptation capacity of a prompt P to influence model
output is bounded by the measure and diameter of MF) (P):

L di
(Measure Bound) Hd"”’(./\/l(L) < (SUPHHU(, ) - HE(Mo(P)), ©)
¢=11i=1
L
(Diameter Bound) diam(./\/l(L)(P)) < (Hsup \J,ge)L,p) - diam(Mqy(P)), (10)
k
(=1

where | - |,p, is the spectral norm (the largest singular value), 02(2 are the singular values of the

Jacobian of the (-th layer in the k-th linear region, and d, is the intrinsic dimension of MF) (P).

The proof of Theorem 4 is provided in Appendix B.15. This theorem reveals that prompt tuning is
fundamentally constrained by the frozen network’s architecture. The prompt’s influence is compressed
by the product of layer-wise Jacobian singular values, leading to irreversible information loss. Since
the prismatic, piecewise linear structure of the pre-trained model is immutable, the prompt can only
shift the input within this fixed, contracting geometric framework (details are in Appendix B.16).

The establishment of Prismatic Space Theory revolves around prompt tuning, yet it offers a more
fundamental geometric perspective on how graph foundation models process input manifolds. The
theory is constructed layer by layer, making it not limited to adaptation methods that operate solely at
the input data level, but also applicable to the analysis of other types of adaptation approaches.
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4 MESSAGE TUNING FOR GFMS

In this section, we introduce Message Tuning for GFMs (MTG), a novel lightweight adaptation
approach that dynamically guides message fusion across all layers (Figure 1). Through our PS-Theory
in Section 3, we rigorously prove that MTG has greater adaptation capacity than prompt tuning.

4.1 CORE MECHANISM

The concept of MTG shares a similar inspiration with prefix-tuning (Li & Liang, 2021), which
is widely adopted in large language models. However, prefix-tuning is specifically designed for
transformer architectures and generative tasks on sequential data, making it not directly applicable
to graph-structured data. In this work, we introduce a general message tuning framework tailored
for graph foundation models with diverse backbone architectures. The core mechanism of MTG
is to inject a small set of learnable message prototypes into each layer, which then undergo a
dynamic fusion with the native messages computed by the model, while the original parameters

0 = {0, 0 e} inEq.(1) are kept frozen.

Learnable Message Prototypes. Formally, for each layer ¢/, we introduce a small set of m learnable

prototype vectors, denoted as = , e, ]T € R™*de-1 Then the GFM layer
after injecting message prototypes can be expressed as:

HO — ¢® (;mw) (m(m (A7 H. @ga) CHUY, @%)) CHY. @5}")) A

H) =gOHECD 00, (12)

where F*) denotes dynamic message fusion operator, and are the learnable parameters.

This is equivalent to replacing H¢~1) in Eq.(1) with H =1 defined in Eq.(12), resulting in Eq.(11).

Dynamic Message Fusion. While both are message fusion operators, ) differs from M) in that
it dynamically fuses learnable message prototypes with the input message representations at each
layer, instead of fusing messages between nodes. We simply employ a linear projection followed by

a row-wise Softmax operation to compute the attention for fusing H“~1 with . Thus, §® can
be expressed as:

FOHCD), 0 )y = HY 4 Softmax(H “~1 ) (13)
where = € R%-1Xm g the projection matrix. Alternatively, one may consider replacing

linear projections with MLPs or employing dot-product attention, though this may introduce higher
computational complexity.

4.2 THEORETICAL ANALYSIS

Consider a pre-trained GFM ® with L layers as defined in Definition 1, and let My C R™ %90 be the
compact smooth input manifold with intrinsic dimension Dj. Let P be the set of possible prompts
for prompt tuning, and for any prompt P € P, let M (P) be the perturbed input manifold. The final
representation space under prompt tuning is Ml(#) (P) = (My(P)).

Theorem 5 (Message Tuning Has Greater Adaptation Capacity). For message tuning, we inject

(0

learnable message prototypes M) 6 Rdef* and fusion parameters © § at each layer ¢, resulting

in a modified network ®yr¢. Let M MTG be the final representation space under message tuning with
optimally chosen parameters. Then, the following inequalities hold:

(Intrinsic Dimension Comparison) dm,(MMTG) > di,,,(/\/l,(,?)(P)) forall P € P, (14)

(Measure Comparison) —H% (M}(WLTG) > ’Hd""’(/\/l(L) (P)) forall PP, (15)
(Diameter Comparison) dlam(./\/lMTG) > dlam(M(L)(P)) forall P € P. (16)

Moreover, there exists a message tuning configuration such that the inequalities are strict.

In the semantic context of the geometric properties of the prismatic space output by the GFM,
this theorem reveals that MTG has greater adaptation capacity than prompt tuning. The proof of
Theorem 5 and further theoretical analysis are provided in Appendix C.
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5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our proposed MTG on the Graph Prompt
Learning benchmark ProG (Zi et al., 2024) by answering the following five research questions:

Q1: How does MTG perform compared to prompt tuning baselines? (Section 5.2)

Q2: How do different pre-training strategies affect MTG’s adaptation capability? (Section 5.3)

Q3: Can MTG effectively mitigate negative transfer during adaptation? (Section 5.4)

Q4: How does MTG perform on different backbone models? ( Appendix F.2)

QS: What is MTG’s computational efficiency compared to prompt tuning methods? (Appendix F.3)

5.1 EXPERIMENT SETTING

Datasets. To investigate the adaptability of MTG across diverse graphs, we conduct experiments
across 15 datasets from the Graph Prompt Learning benchmark ProG (Zi et al., 2024). We evaluate our
method over 7 node classification benchmarks spanning homophilic graphs (Cora, Citeseer, PubMed)
(Sen et al., 2008), heterophilic graphs (Texas, Actor, Wisconsin) (Pei et al., 2020), and large-scale
graphs (ogbn-arxiv) (Hu et al., 2020a). For graph-level tasks, we employ 8 graph classification
datasets across diverse domains, including biological datasets (D&D, ENZYMES, PROTEINS)
(Dobson & Doig, 2003; Borgwardt et al., 2005; Wang et al., 2022), small molecule datasets (BZR,
COX2, MUTAG) (Kriege & Mutzel, 2012; Rossi & Ahmed, 2015), and social networks (COLLAB,
IMDB-B) (Yanardag & Vishwanathan, 2015). Table 6 summarizes the statistics of all datasets and
more dataset details are provided in Appendix D.2.

Backbones. Since the latest studies (Luo et al., 2024; 2025) have once again validated the powerful
capabilities of GCN (Kipf & Welling, 2017) as the most classic and widely used graph neural network,
we choose GCN as the baseline to compare MTG with prompt tuning. We also investigate other
models commonly used as backbones for GFMs, such as GraphSAGE (Hamilton et al., 2017), GAT
(Velickovi¢ et al., 2018), GIN (Xu et al., 2019), and Graph Transformer (Ying et al., 2021), and the
results can be found in Appendix F.2.

Pre-training Strategies. Following ProG (Zi et al., 2024), we adopt six representative pre-training
strategies across three levels: DGI (Velickovi¢ et al., 2019) maximizes node-graph mutual information
while GraphMAE (Hou et al., 2022) reconstructs masked features at the node level; EdgePreGPPT
(Sun et al., 2022) computes link probabilities and EdgePreGprompt (Liu et al., 2023b) learns triplet-
based similarities for edge-level tasks; GraphCL (You et al., 2020) enforces augmentation consistency
and SimGRACE (Xia et al., 2022) performs parameter perturbations at the graph level.

Prompt Tuning Baselines. We first adopt supervised learning as the baseline for evaluating positive
transfer, where negative transfer is identified when adaptation methods fail to surpass supervised
performance. Following ProG (Zi et al., 2024), we compare MTG to fine-tuning and the following
prevalent prompt tuning methods: GPPT (Sun et al., 2022), Gprompt (Liu et al., 2023b), All-in-one
(Sun et al., 2023a), GPF and GPF-plus (Fang et al., 2023). Baseline results combine those from ProG
with our own reproductions, and details are provided in Appendix E.

Implementation. For node tasks, we use 90% of the data to the test set, while for graph tasks, we use
an 80% test split. To ensure robustness, we repeat sampling five times to construct k-shot tasks and
report average and standard deviation over these five results. Evaluation metrics include Accuracy
(primary metric in Section 5), Macro F1 Score, and AUROC. Hyperparameters are optimized via
random search. A comprehensive description of the experimental setup is provided in Appendix D.

5.2 UPPER BOUND PERFORMANCE OF MESSAGE TUNING

One-shot node/graph classification is one of the most challenging downstream adaptation tasks for
graph foundation models, as it requires learning the characteristics of an entire class using only one
sample. In Table 1 and Table 2, we present the best results achieved by various adaptation methods
across 15 datasets, which represent the top adaptation performance from pre-trained models with
different strategies. This offers an intuitive reflection of the upper bound performance of each type of
adaptation method. The results in the tables demonstrate that our adaptation method MTG achieves a
higher performance upper bound across all 15 datasets compared to state-of-the-art prompt tuning
methods, which aligns with our theoretical insights. Despite being trained on only a small number
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Table 1: Performance comparison of adaptation methods on 1-shot node classification (accuracy+std %, 5 runs).

The s and best results are shaded in red, with descending color saturation.
Method Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised 26.56i5_55 21.7817_32 39~37i16.34 41 .60:&3_10 37-9715.80 20-57:t4.47 10.9913_19

Fine—tuning ‘ 52.61:&1‘73 35.051437 46.74:&1439 40.6914_13 46.8814.69 20.74:&4‘12 16.21:&3_82
GPPT | 43155944 37261617 483lii177e 30401681  31.8li1s3s  22.5811.97  14.654307
Gprompt | 56.66111.20 5321i10.04 397411535  77.071593 332544001 25261110  75.7214.95
|

Allin-one | 5239:1017 4041050 45174645 662911911 6549:705 24611050 13.1645.0s
GPF 38574541 31164505 4999:i5ss  78.35i407 73.5411850 28701335 65.1145.170
GPF-plus | 557711030 59.67s1187 46.6411507 821111305 76.1010035 29.324556 71.9811203
MTG (Ours) | 58.541780 623111590 507011165 833211046 79.13417.18 2944173 75971420

Table 2: Performance comparison of adaptation methods on 1-shot graph classification.

Method | IMDB-B  COLLAB PROTEINS MUTAG ENZYMES  COX2 BZR D&D
Supervised | 57301005 47.23z061 56361797 65201670  20.581500 27.084195 25.804653 55331620
Fine-tuning | 57751120 48104023 63.44usg1 65474580 22211079 76094541  34694s50 5715403

GPPT | 50.151075 47.184505 60924047 604011545 21294379 = 78234135 593241122 57.6946.80
Gprompt | 547511043 482541360 591721106 7360447 22294350 54641901 554311360 57.8lunes
All-in-one | 60.07:481 51661026 66494626  7520:635 23961145 7614155 64381932 59724150

GPF | 59.65.1505 474241120 6391306 68401500 22004105 657921772  T167s1am 5936411s
GPFplus | 57934165 47241020 62924075 65204608 22924164 33781152 711711400 57.624040
MTG (Ours) | 62251372 52254056 66984217  75.80i540 26084431 78274001 748liizos  60.6840.4

of parameters, MTG still exhibits a substantial advantage over supervised learning and fine-tuning
approaches, which underscores its high parameter efficiency. Among node-level tasks, GPF-plus
is the prompt tuning method that performs closest to MTG, while on graph-level tasks, All-in-one
ranks as the second most effective method after MTG. Additional experimental details are provided
in Appendix F, including results for few-shot node/graph classification tasks under 3-shot and 5-shot
settings (Appendix F.1), a comparative analysis of computational efficiency between MTG and
prompt tuning methods (Appendix F.3), along with a sensitivity analysis (Appendix F.4).

5.3 ROBUSTNESS PERFORMANCE OF MTG ACROSS PRE-TRAINING STRATEGIES

In addition to validating the upper bound performance of MTG, we further analyze whether MTG
exhibits strong robustness across different pre-training strategies through more detailed experimental
results. In Section 5.2, we have verified that GPF-plus and All-in-one are the best-performing prompt
tuning methods for 1-shot node classification and 1-shot graph classification tasks, respectively.
Therefore, we selected these two methods along with Fine-tuning for a more detailed comparison
with MTG. In our experiments, we employ three pre-training strategies at the node, edge, and graph
levels to obtain pre-trained models, which have varying impacts on different datasets. As shown in
Tables 3 and 4, Fine-tuning experiences performance collapse on the ogbn-arxiv dataset under the DGI
and EdgePreGprompt pre-training strategies, with the accuracy dropping as low as 4.65%. Similarly,
GPF-plus exhibits performance degradation on the Cora dataset under the DGI and SimGRACE
pre-training strategies, achieving an accuracy as low as 17.29%. All-in-one also shows relatively
low performance on the IMDB-B dataset under the GraphMAE and EdgePreGprompt pre-training
strategies. These results indicate that their adaptability varies significantly across different pre-training
strategies. In contrast, MTG demonstrates relatively more stable performance across all datasets and
all pre-training strategies, highlighting broader compatibility and better robustness when combined
with various types of pre-training strategies.

5.4 MITIGATION OF NEGATIVE TRANSFER

Compared to visual images and natural language, fine-tuning pre-trained models on graph data for
downstream tasks is more prone to negative transfer. Therefore, the ability to effectively mitigate
negative transfer serves as an important criterion for evaluating the quality of an adaptation method.
As shown in Tables 3 and 4, prompt tuning methods such as GPF-plus and All-in-one have already
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Table 3: Performance comparison of Fine-tuning, GPF-plus, and MTG on 1-shot node classification. 7/]:
positive/negative transfer vs. supervised learning baseline; NTR (Negative Transfer Rate): fraction of datasets
with | per daptation method.

Pre-training ‘ Adaptation ‘ NTR ‘ Cora Citeseer Pubmed ‘Wisconsin Texas Actor ogbn-arxiv

Supervised ‘ 0% ‘ 26.56.555 (-) 21784732 (-)  39.3711634 () 41.6013.10 (-) 37971580 () 20.5714.47 () 10991319 ()

Fine-tuning | 57% | 33.15:784 (1) 21.64:302 (1) 42011254 () 37491756 (1) 4531500 (1) 19762353 (1) 7214001 (1)
DGI GPF-plus | 29% | 17.29:6.15 (1) 266041324 (1) 340201104 (1) 746811181 (1) T1Adiige6 (1) 22424966 (1) 16.83110.02 (1)
MTG 0% | 49481482 (1) 623141800 (1) 46.184732 (1) 67.72410.19 (1) 629611680 (1) 25.4817.33 (1) 25.06410.57 (1)

Fine-tuning | 57% | 32934317 (1) 21264557 (1) 429941425 (1) 3680177 () 37.81iseo (1) 19864270 (1) 12354560 (1)
GraphMAE GPF-plus 0% | 54264748 (1) 59.6741187 (1) 46.6441857 (1) 82.11i1305 (1) 709541563 (1)  26.581784 (1) 49.8ling2 (1)
MTG 0% | 46.271666 (1) 492141295 (1) 469811002 (1) 833211246 (1) 715911867 (1) 29444731 (1) 36441959 (1)

Edeep Fine-tuning | 43% | 38.121529 (1) 18.09:539 (1)  46.74114.00 (1) 35311931 (1)  47.661237 (1) 19172253 (1) 16214382 (1)
gePre

_GPPT GPF-plus | 14% | 284911575 (1) 28.0441431 (1) 465141584 (1) 72.66112.05 (1) 70.67117.50 (1) 29.3248.56 (1) 71.98412.25 (1)

MTG 0% | 46.68:266 (1) 332211250 (1) 44851975 (1) 73801956 (1)  7L1llii7.13 (1) 20961293 (1) 75.9714.20 (1)

— Fine-tuning | 14% | 35.571583 (1) 22284380 (1)  41.501754 (1) 40.691413 (1)  40.62:7.05 (1) 20.74:4.16 (1)  14.834238 (1)
ePre

_Gpgmmp[ GPE-plus | 0% | 557711030 (1) 49431821 (1) 427911818 (1) 787641363 (1)  68.7511651 (1) 22681364 (1) 57.4416.05 (1)

MTG 0% | 46.29.354 (1) 453011604 (1) 50.70111.68 () 727541121 () 791311718 (1) 21344175 (1) 21.0842.34 (1)

Fine-tuning | 43% | 52.61+173 (1) 27.021431 (1) 424911120 (1) 33941772 () 403111368 (1) 20192105 (1) 4655110 (1)
GraphCL GPF-plus | 29% | 34.18417.71 (1)  28.8642088 (1)  37.0241120 (1) 523541969 (1) 75.40419.10 (1) 22.8244.99 (1) 32.1144.86 (1)
MTG 0% | 58541789 (1) 50.96+1640 (1) 40.00+780 () 4841+t1610(1) 697111642 (1) 24771845 (1) 38961682 (1)

Finc—tuning 57% 40.40+4.66 (1) 35.0544.37 (1) 37.59.5.17 (1) 37.37 1368 (1) 46.8814.64 (1) 19.78.1 80 (1) 8.13.13.26 (1)
SimGRACE | GPF-plus | 29% | 21.33+1456 (1) 24.61101.01 (1) 35901006 (1) 734911417 (1) 761022035 (1) 20512404 (1) 46714347 (1)
MTG 0% | 45934767 (1) 57604901 (1) 432911080 (1) 72984975 (1) 73.1711668 (1) 22.0343.50 (1) 37904583 (1)

Table 4: Performance comparison of Fine-tuning, All-in-one, and MTG on 1-shot graph classification.

Pre-training ‘ Adaptation ‘ NTR ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES Ccox2 BZR D&D

Supervised ‘ 0% | 57304005 (-) 47231061 (-) 56364797 (-) 65201670 (-) 20.584200(-) 27.08411.04 (-) 25804653 (-) 55331622 (-)

Fine-tuning | 38% | 57.3240.90 (1) 42225073 (1)  64.651210 (1) 6413700 (1) 17831155 (1) 29440068 (1) 26484761 (1) 57155432 ()
DGI All-in-one | 13% | 60.07+4.81 (1) 39.56.:500 (1) 62584707 (1) 73.871613 (1) 23964145 (1) 50.721003 (1) 64381032 (1) 55971652 (1)
MTG 13% | 59054544 (1) 43461653 (1) 62.781236 (1) 65.6017.20 (1) 24711188 (1) 517441300 (1) 74811306 (1) 56394327 (1)

Fine-tuning | 0% | 57.7041.13 (1)  48.104023 (1) 63.574357 (1) 65201500 (-) 22214979 (1) 284711472 (1) 25804653 () 57.541441 (1)
GraphMAE | All-in-one | 25% | 52.62:504 (1) 40.82:1563 (1) 66491606 (1) 69.6719.13 (1) 23214172 (1) 56.68:7.35 (1) 58.6441050 (1) 58.77x1.05 ()

MTG 0% | 58.104572 (1) 48244956 (1) 59.6246.41 (1) 66931703 (1) 22714258 (1) 589311205 (1) 540711834 (1) 58.014585 (1)

Edacp Fine-tuning | 63% | 57.204055 (1)  47.144055 (1) 58.27410.66 (1) 64270073 ()) 19794047 (1) 278311344 (1) 721041430 (1)  52.824935 (1)
ePre

_Ggpprl- All-in-one | 13% | 59.12.40.77 (1) 42741565 (1) 65714549 (1) 75204633 (1) 20.924904 (1) 602741697 (1) 59.6919.90 (1) 56.244946 (1)

MTG 13% | 62254372 (1) 45154600 (1) 62714230 (1) 67204636 (1) 26.081431 (1) 60.1641063 (1) 622841013 (1) 56374533 (1)

EdgeP Fine-tuning | 38% | 57.3540.92 (1)  47.204053 (1) 61.844250 (1)  62.67:067 (1) 19751033 (1) 271311205 (1) 294441120 (1) 56.1645.10 (1)
ePre

—Gp%ompt All-in-one | 25% | 53784252 (1) 42871610 (1) 61.8247.53 (1)  68.271385 (1) 21884056 (1) 49.061555 (1) 32.65+10.08 (1) 57.60+4.37 (1)

MTG 0% | 59454545 (1) 47724845 (1) 65.6641.56 (1) 75.8015.40 (1) 22294104 (1) 577511076 (1) 49942005 (1) 60.6812.42 (1)

Fine-tuning | 25% | 57.7541.02 (1) 39.625063 (1) 63445364 (1) 65075535 (1) 23964199 (1) 53.1410132 (1) 29.0747.00 (1) 60.6241.56 (1)
GraphCL All-in-one | 13% | 58.7540.80 (1)  51.6642.60 (1)  66.004g79 (1)  66.00+579 (1) 19461055 (1) 525511351 (1) 426511443 (1) 59.724152 (1)
MTG 0% | 57.6547.05 (1) 47.8li373 (1) 63701287 (1)  66.20+752 (1)  20.9641.97 (1) 503611297 (1) 51.0541550 (1) 55464477 (1)

Fine-tuning | 38% | 57.33+0.06 (1) 46.89+0.42 (1)  60.07+321 (1) 65471580 (1) 19711176 (1) 7619541 (1) 28484649 (1) 53.231071 (1)
SimGRACE All-in-one 0% | 58.834085 (1) 47.604390 (1) 66204750 (1)  66.674573 (1) 22504156 (1) 76144551 (1) 59.0149234 (1) 58264118 ()
MTG 0% | 61.824349 (1) 52254056 (1) 66984217 (1) 68871501 (1) 21.3341.92 (1) 78274201 (1) 656841641 (1) 57.2642.01 (1)

relatively alleviated negative transfer compared to fine-tuning, while our proposed MTG demonstrates
a more significant advantage in mitigating negative transfer. Under all pre-training strategies across
the two downstream tasks, MTG achieves a lower negative transfer rate than GPF-plus and All-in-one,
and is markedly superior to fine-tuning. It is particularly noteworthy that MTG completely eliminates
negative transfer in the 1-shot node classification task, highlighting its exceptional capability in
mitigating such issues. A theoretical analysis of negative transfer is presented in Appendix C.2.

6 CONCLUSION

In this paper, we propose Prismatic Space Theory to quantify the capacity of adaptation approaches
and establish the upper bound for the adaptation capacity of graph prompt tuning. Building on these
insights, we introduce Message Tuning for GFMs (MTG), a lightweight adaptation method that
dynamically guides message fusion across GNN layers while keeping pre-trained weights frozen.
Theoretical and empirical results demonstrate MTG’s consistent superiority over prompt tuning.

10
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Code and Resources. We have developed a reproducible codebase MTG based on the ProG
library (Zi et al., 2024), extended to support our message tuning. Our code is available at https:
/lanonymous.4open.science/t/MTG. Anonymous, downloadable source code also includes scripts for
pre-training, adaptation, and evaluation on all datasets used in our experiments.

Data Processing. A detailed description of all datasets used in the experiments and dataset prepro-
cessing steps, including feature extraction, graph normalization, and train/validation/test splits for
few-shot settings (1/3/5-shot), is provided in Appendix D.

Computational Resources. Hardware specifications and software environments are described in
Appendix D.1 to facilitate replication of computational experiments.

Theoretical Proofs. All theoretical claims, including the Prismatic Space Theory and its application
to the analysis of prompt tuning and message tuning, are rigorously proven in Appendix B and C.

We believe these efforts collectively ensure the reproducibility of our work and encourage the
community to build upon our findings.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this work, we use large language models (LLMs) to assist with proofreading,
grammatical correction, and language polishing. The LLM serves solely as a tool to enhance the
clarity and readability of our writing. We meticulously review and edit all Al-generated content, and
we accept full responsibility for the final version of the manuscript.

B EXTRA MATERIALS FOR PRISMATIC SPACE THEORY

Reading Guideline: Appendix B is organized in strict accordance with the order in which definitions,
theorems, and corollaries appear in the main text, serving as a detailed supplement. This includes
supplementary explanations of definitions, lemmas required for proving theorems, interpretations of
theorems, and more. We recommend that readers first review the related work, such as other related
theoretical works and relevant mathematical textbooks, to establish a theoretical foundation before
proceeding through the main text in sequence with the aid of Appendix B.

Notation: The notation used in this paper has been aligned as closely as possible with the standardized
notation recommended by the ICLR conference (https://github.com/goodfeli/dlbook_notation/). A
summary of the primary notation used is provided in the table below.

Table 5: Primary Notation.

Notation Description

g A graph

% The set of nodes

& The set of edges

N Number of nodes

/ Number of layers

R The set of real numbers
{0,1} The set containing 0 and 1
X, A HY The matrices

20,00, 8 The operators

® The parameters

V,S,H® The sets

FO {1 _ [© The map F) with domain H(*~1) and range H)
X, M The manifold or space

o) = F® o...0 F()  The composition of maps
dint The intrinsic dimension
JO(H) The Jacobian matrix

O'y) The singular values

H? The s-dimensional Hausdorff measure
{C} The set of cells

Ry,...,Rp The regions

Q) The set of polytopic regions

B.1 RELATED WORK ON PRISMATIC SPACE THEORY

We introduce, for the first time, the Prismatic Space Theory to provide a unified analysis of adaptation
methods for graph foundation models. In constructing this theoretical framework, we adopt the
perspective of piecewise linear maps, an approach that is not entirely new, as several outstanding
theoretical studies have employed similar ideas to analyze ReLU neural networks (Arora et al., 2018;
Zhang & Wu, 2020; Liu et al., 2023a; Fu, 2025; Beshkov, 2025).

Previously, only Wang et al. (2025a) conducted theoretical research on prompt tuning for GFMs,
explaining why prompt tuning works from the perspective of data operations, primarily using
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mathematical tools from linear algebra, convex optimization, and probability. In contrast, our
Prismatic Space Theory offers a more profound and fundamental geometric perspective to quantify
the upper bound of prompt tuning’s capability. Some mathematical concepts not explicitly defined or
elaborated in this paper can be found in Halmos (1950); Greub (1975); Lang (1993); Krantz & Parks
(2008); Lee (2011).

B.2 DETAILS OF DEFINITION 1

The unified GFM layer formulation provided in Definition 1 offers a general framework that encap-
sulates a wide range of popular GNN architectures. The three core operators ) (attention), 9t(*)
(message fusion), and 4(¥) (update) can be instantiated in different ways to recover specific models.
Below, we delineate how several classic models are special cases of this unified formulation.

GCN (Graph Convolutional Network) (Kipf & Welling, 2017) employs a fixed, non-learnable
attention mechanism based on the normalized adjacency matrix and a simple update function.

Attention Operator 21() computes a static, structural attention weight for each edge (7, 7) based on
the normalized adjacency matrix:

20 (A,H“*D; @gp) — D iAD 3, 17)
where A = A + Iy is the adjacency matrix with self-loops and D is the corresponding degree

matrix.

Message Fusion Operator 99 performs a weighted sum of the neighbors’ features using the
normalized adjacency matrix:

mo ([TéA[)faH(zfn;@%)) — D SAD P HEOWO, (18)

where W8 € Ré-1%de i a learnable weight matrix (@%) = W),

Update Operator £(*) applies a non-linear activation function o (e.g., ReLU) to the aggregated
messages:

NG (b—%gb—%me—l)ww), HY, @gp) _ (b—%AD—%H“-l)W“)) , (19
where the previous representation H 1 is not explicitly used in the update, making the update a

direct transformation of the messages (@Sf) = Q).

The resulting layer formulation is:

HO -4 (b—%Aﬁ—%Hw—wa) . (20)

GraphSAGE (Hamilton et al., 2017) employs a uniform (or degree-based) attention weight over the
sampled neighborhood, a configurable message aggregation function (e.g., mean, pool, LSTM), and
an update function that concatenates the node’s previous representation with the aggregated message.

Attention Operator 2(“) often uses a static, uniform attention weight \Nil(z)l for each sampled neighbor
of node i, or a learned weight based on node degree in some variants. It can be represented as a
matrix S©):

1 - .
90 (A,wal);@ge)) — 50, s - {wo if j € N (i) 21

0 otherwise

where A/ (i) denotes the sampled neighbors of node i.

Message Fusion Operator M) aggregates messages from the sampled neighborhood using the
specified aggregator AGGREGATE" (e.g., mean, pool, LSTM). For the mean aggregator:

om® (5@ HD. @%)) — SO, (22)
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where parameters (-)%) depend on the choice of aggregator.

Update Operator (9 concatenates the node’s previous representation H (‘~1) with the aggregated
neighborhood message, applies a linear transformation W), and a non-linear activation function o

(o (Sw) HED, FE-D. @g)) —q (W“) - CONCAT(HY), S“)H“—”)) , (23

where 6(6) w®,

The resulting layer formulation for the mean aggregator is:
HO =5 (W“) - CONCAT(H -1, s“)H(H))) . (24)
GAT (Graph Attention Network) (Velickovic et al., 2018) introduces a learnable self-attention

mechanism to compute dynamic attention weights between nodes.

Attention Operator (¥} computes pairwise attention coefficients oy; for nodes 7 and j using a
learnable function (a shared attentional mechanism a):

el = a(WORY WORY) = LeakyReLU (0T W RV |Ww ORI V]) - 25)

7]

Q0 __ exples)
;" = Softmax(e;;) = Zke/\/(i) oxplen)’ (26)
0 e ‘
) (A,H(Z_l); @(f)) =AB  AB o ifj e N(Z) 27
¢ “ ‘o 0 otherwise

where h§“> represents the vector of node i at the ¢ — 1-th layer, T represents transposition, || is the
concatenation operation, and the attention mechanism a is a single-layer feedforward neural network

parametrized by a weight vector a9 (@) = {a(0, W (1),
Message Fusion Operator 9(¥) performs a weighted sum of the transformed neighbor features based
on the computed attention weights:

om0 (Aff’,H(‘f—l); @7(75)) =AY (HOWO), (28)

where W () is a shared linear transformation applied to every node and is also used by the Attention
Operator (@%) = W (). The operations of the Attention Operator and the Message Fusion Operator
are partially overlapping.

Update Operator £((“) combines the aggregated representations from multiple attention heads, typically
through concatenation (for intermediate layers) or averaging (for the output layer), followed by
application of a non-linear activation function o to produce the new node representations:

§(0) ({Ag)k . (H(f—l)W(Z)k)}kK:bH(ff—l); @;3)) H (A(/)k H(” 1)w(f)k)) . (29

where || represents concatenation, K represents the number of attention heads and no parameters are
used in this operator (@(é) ).
The resulting layer formulation is:
K
HO = H o (Ag@’“ : (H“*”WW“)) . (30)
k=1
GIN (Graph Isomorphism Network) (Xu et al., 2019) uses a fixed, uniform attention weight for

neighbors and a powerful update function based on an MLP to achieve expressiveness equivalent to
the Weisfeiler-Lehman graph isomorphism test.
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Attention Operator 2(*) employs a static attention weight of 1 for all neighbors and a weight of
(1 + €9) for the central node itself:

20 (A, HD, @gp) A=A+ (1+eNI=A, G1)

where (-),(f) = ¢® is a potentially learnable parameter.

Message Fusion Operator 9t(“) sums the neighbor messages and the scaled central node’s message:
me (Ae,H“*l); @5,{)) = A H, (32)

where no parameters are used (@ﬁ,‘? = Q).

Update Operator £(*) applies a multi-layer perceptron (MLP®) to the fused message:

4@ (A HD, HY00) = MLp® (A HIY), (33)

where (-)q(f) are the parameters of the MLP.

The resulting layer formulation is:

HO® = MLP® ((A +(1+ e“>)1) H“*l)) . (34)

GT (Graph Transformer) (Ying et al., 2021) enhances the standard transformer architecture to
incorporate structural information of graphs, often by augmenting the self-attention mechanism with
structural biases.

Attention Operator 2(*) computes the query, key matrices Q(©), K (*) € R%-1*4 via linear projec-
tions, with the core attention weight A® formulated as a sum of standard semantic attention and
a structural attention component B() (e.g., from positional encodings, edge features, connectivity
patterns or node degrees).

QY = Iq(f—l)mfg)7 KO — Iq(f—l)m/}(f)7 (35)
) O (K (O\T
A® — Softmax <Q(jdi) n B“)) : (36)
7
(0 ( A, H(z—l);@g)) — A0, 37)

where ('-)l(f) including the projection weights for Q*), K(“) and parameters for computing B,

Message Fusion Operator (Y} computes the value matrice V') € R%-1*4 via linear projection
W‘(,Z) and performs the weighted aggregation of the value vectors using the computed attention matrix
AW

) (A(g)7 HD, 9%)) — AOyO _ 4@ . (H(Z—I)W‘(/l))7 (38)

where @%) = W‘(/Z).

Update Operator (©) applies a residual connection, layer normalization (LN), a position-wise
feed-forward network (FFN), another residual connection, and layer normalization.

HO _ IN (Hw—l) L AO . (H“*UW&*))) , (39)
FENO(H®) = o (AOW 1 50) Wi 1 b (40)
(0 (A(Z)V(e)’H(eq); @52)) _ LN (ﬁ(l) L FFN® (ﬁ(z))) 7 (41)

where G)q(f) are the parameters of the FFN®). Multi-head self-attention (MHA) can also correspond
to the Update Operator.
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The resulting layer formulation is:

HO _IN (LN ( HD 4 A(avw)) 4+ FFN® (LN ( HED 4 A@)V(f)))) . (42)

This analysis demonstrates that the proposed unified GFM layer provides a powerful and expressive
framework that generalizes a broad spectrum of prevalent GNN architectures. The specific choices of
the operators 2A*), MO and U® determine the particular inductive biases and capabilities of the
resulting model.

B.3 DETAILS OF DEFINITION 2

Definition 8 (Polyhedral Region). In the context of Euclidean spaces, a polyhedral region (or
polyhedron) is a subset of R"™ defined by a finite set of linear inequalities. Formally, a set R C R™ is
a polyhedral region if there exist matrices A € R™*"™ and vectors b € R™ such that:

R={x eR" | Ax < b}, (43)
where the inequality is applied component-wise.

Remark 1. A polyhedral region may be described as the intersection of finitely many closed half-
spaces and/or hyperplanes, making it a convex polytope (possibly unbounded). In many analytical
contexts, polyhedral regions are assumed to be non-empty and may be required to have a non-empty
interior to avoid degenerate cases.

Definition 9 (Polyhedral Region in Matrix Space). A set R C RN X4 is a polyhedral region if there
exists a matrix A € R™*Nd gnd g vector b € R™ such that:

R:{HERNXd|A-vec(H)§b}, (44)

where vec(H ) € RNY denotes the vectorization of the matrix H (i.e., the column vector obtained by
stacking the columns of H ). The inequality < is applied component-wise.

Remark 2. Since the spaces R**? and R*? are isomorphic as vector spaces via the vectorization
operation vec : R**8 — R*P (which stacks the columns of a matrix into a vector) and its inverse
unvec : R? — R*B many theorems and proofs in this paper do not strictly distinguish between
the matrix form and the vectorized form. This isomorphism allows us to apply concepts from
Euclidean geometry and measure theory directly to matrix-valued functions by considering their
vectorized counterparts, without loss of generality. Consequently, in the following analysis, we may
interchangeably use matrix or vector representations as convenient, ensuring that all results hold
equivalently in both forms.

Definition 10 (Piecewise Linear Function). A function f : R™ — R™ is called piecewise linear if
there exists a finite set of polyhedral regions {R;}X | such that R" = Uf; R; and f is affine on
each R;, i.e., f(x) = A;x + b; for all x € R;, where A; € R™*" and b; € R™.

Definition 11 (Jacobian of a Matrix Map). For a function F : RN*dn — RNXdou that is differentiable
at a point H, the Jacobian of F' at H is defined as the Jacobian matrix of the vectorized function.
Specifically, let f : RN — RNdow pe given by f(h) = vec(F(unvec(h))). Then, the Jacobian
matrix Jp(H) € RNdouxNdun jg.

_or

H) = .
JF( ) oh h=vec(H)

(45)
This matrix contains all first-order partial derivatives of the vectorized output with respect to the
vectorized input.

Lemma 1 (Composition of Piecewise Linear Functions). If f : R — R and g : R™ — RP are
piecewise linear functions, then the composition g o f : R™ — RP is also piecewise linear.

Proof. Since f is piecewise linear, there exists a partition of R™ into polyhedral regions R; such that
f is affine on each R;. Similarly, g is piecewise linear with polyhedral regions S; in R™ where g is
affine. For each i and j, consider the set B; N f~1(.S;). Since f is affine on R;, f(R;) is a polyhedral
set, and f~1(S;) N R; is polyhedral (as the intersection of polyhedral sets). On R; N f~1(S;), go f
is affine because f is affine and g is affine on .S;. The collection of all such sets R; N f~*(S;) covers
R™, and there are finitely many such sets. Thus, g o f is piecewise linear. [
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B.4 PROOF OF PROPOSITION 1

Proof. Based on the derivations in Appendix B.1, we observe that most operators primarily involve
matrix multiplication or can be approximated by matrix multiplications. Some operators further
apply a piecewise linear activation function (e.g., ReLU or LeakyReLU) or an MLP based on ReL.U
after the matrix multiplication. As a result, these operators are generally piecewise linear functions.
Their piecewise linearity stems directly from the piecewise linear activation functions used. Since the
activation functions are continuous, the continuity of these operators is obvious. Piecewise linear
functions are differentiable a.e. because they are differentiable in the interior of each polyhedral
region (where they are affine) and non-differentiable only on the boundaries, which have Lebesgue
measure zero. O

Remark 3. Linear functions are considered a special case of piecewise linear functions. If oper-
ator A computes scaled dot-product attention, it somewhat exceeds the scope of our theoretical
framework. Alternatively, approximating the computation of dynamic attention using piecewise
linear mappings may, from a mathematical limit perspective, exhibit certain compatibility with the
theoretical framework presented in this paper. This constitutes a promising direction for future
research aimed at extending the current theory.

B.5 PROOF OF PROPOSITION 2

Proof. The layer map F(*) is defined by the composition of the operators 2, M©, (O as given
in Definition 1. This can be viewed as a function F'(*) that maps H“~1) to H®). Since each operator
is piecewise linear, and by Lemma 1, the composition of piecewise linear functions is itself piecewise
linear. Therefore, F(*) is a piecewise linear function. More formally, let f; = A, fo = 9M© and
f3 = UO. Then F®) = f3 0 (fy 0 (f1,id),id), where id denotes the identity function (which is
linear and thus piecewise linear). The composition involves piecewise linear functions and Cartesian
products (which preserve piecewise linearity), so F() is piecewise linear.

By Definition 2, there exists a finite set of polyhedral regions { R; } X | such that RV *de-1 = Ufil R;
and F() is affine on each R;, i.e., F)(H) = unvec(A; - vec(H) + b;) for all H € R;, where
A; € RNdexNde—1 and b; € RV, An affine function is differentiable everywhere in the interior of
its region. The polyhedral regions R; are closed and have boundaries that are sets of measure zero
(since they are defined by finite sets of linear inequalities). Therefore, F() is differentiable almost
everywhere (a.e.)—specifically, in the interior of each region R;. At any point H where F(*) is
differentiable (i.e., in the interior of some R;), the derivative is given by the constant matrix A;. The
Jacobian matrix J©)(H) is precisely this matrix A;, which exists and has dimensions R dxNdz—1
(since the input space has dimension Ndy_; and the output space has dimension Ndy). Hence, for
any point H where F() is differentiable, the Jacobian J ) (H) exists. O

B.6 DETAILS OF DEFINITION 3

Definition 12 (Compact Smooth Manifold). A set M C R" is called a compact smooth manifold of
dimension Dy if it satisfies the following two conditions:

1. (Smooth Structure) For every point p € M, there exists an open neighborhood U C R"

containing p and a smooth (C*) mapping F : U — R"~P0 such that: UN M = F~1(0) =
{x € U | F(z) = 0} and the Jacobian matrix DF(x) € R("=Po)X" hag full rank (n — Dy) for
allx e UN M.

2. (Compactness) M is compact in the subspace topology induced from R", which by the
Heine-Borel theorem is equivalent to being closed and bounded in R™.
Definition 13 (Intrinsic Dimension). The intrinsic dimension Do = d; (M) of a manifold M is
the minimum number of parameters needed to locally parameterize the manifold. Formally, it is the
dimension of the tangent space T\, M at any point p € My, which is constant for smooth connected
manifolds.

Remark 4. For a more basic definition of manifold, please refer to introductory mathematics textbook
(Lee, 2011). In our subsequent discussion of prismatic space, we generalize the concept of intrinsic
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dimension. Since prismatic space lacks the well-behaved mathematical properties of smooth manifold,
we define the intrinsic dimension as the maximum of the dimensions at all locally smooth points of
the space.

B.7 PROOF OF PROPOSITION 3
Proof. We proceed by leveraging the definitions provided and establishing the piecewise linearity of
the composite map ®(“), then analyzing its image on the input manifold M.

By Proposition 2, each layer map F(©) : H=D — H® is a piecewise linear function. This
follows from the assumptions that the operators A 9@ and UD are piecewise linear and almost
everywhere differentiable, and that {{(“) uses piecewise linear activations. Since the composition of
piecewise linear functions is piecewise linear (Lemma 1), the composite map &) = F(©) o...o F(1)
is also piecewise linear. Formally, there exists a finite set of polyhedral regions {R; } | covering the
domain of ®® such that for each 1, the restriction of o0 to R; is affine:

&) (H) = unvec(A; - vec(H) + b;) forall H € R;, (46)
where A; € RN%*Ndo and b; € RV are constants specific to region R;.

The input manifold My C R¥*40 is compact and smooth by Definition 3. Consider the intersection
of M with the polyhedral regions R;:

M) = Mo R;. (47)

Since My is a smooth manifold and each R; is polyhedral, the sets /\/l((f) are submanifolds with
boundaries (possibly with corners). The collection {./\/lg)} K | forms a finite cover of M.

On each M((f), the map &) is affine. Therefore, the image o) (Méi)) is an affine transformation
of M{":
") (./\/lg)) = {unvec(A,; -vec(H)+b;) | H € /\/léi)}. (48)

Assuming that ®() is injective on each R;, it is also injective on each Mgi). Since affine maps
preserve linear structures and injectivity ensures that the map is an embedding on each piece,

® (ML) is itself a submanifold with boundary (possibly with corners) in RN d¢,

The full representation space is the union of these images:

K
MO = JoOm)). (49)

i=1
Such a union is termed a prismatic space.

Singularities occur at the boundaries between the regions. Specifically:
* The boundaries between different Méi) correspond to points where ®() transitions from one
affine piece to another.

« At these boundaries, the Jacobian of ®) may be discontinuous or undefined, leading to
non-smooth points in M),

* Since M, is compact and smooth, it generically intersects multiple regions R;, making such
singularities typical. For example, if M, is transversal to the boundaries of R;, the intersections
will be lower-dimensional manifolds where the image under ®“) may not be smooth.

Thus, M‘“) is a prismatic space and may have singularities along the boundaries of the pieces
O (M. O
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Remark 5. The prismatic space we define constitutes a geometric structure more complex than a
conventional topological manifold. While its interior may largely exhibit the properties of a smooth
manifold, its boundary can contain intricate corners or even singularities. As a result, it is highly
unlikely that the prismatic space satisfies the standard definitions of a topological manifold. It should
be emphasized that constructing a rigorous topological definition of this geometric structure is highly
challenging. Therefore, within the framework of this paper, we adopt a simplified definition grounded
in piecewise linear map.

B.8 DETAILS OF DEFINITION 5

Remark 6. The prismatic effect of different singular values on space:
* A singular value 052) ~ 1 represents an unrefracted dimension, typically corresponding to
node features preserved through linear identity paths or attention mechanisms that remain active.
* A singular value 0 < Ul@) < 1 represents a contracted dimension, potentially arising from

the scaling of weight matrices (|W9)|| < 1) and the gradient attenuation of activation functions
like ReLU/LeakyReLU in their unsaturated regimes.

* A singular value age) = 0 represents a nullified dimension, resulting directly from the sparsity
induced by ReLU activations which reduces the rank of the layer’s Jacobian.
(0

* A singular value o;’ > 1 represents an expanded dimension, potentially arising from feature

amplification in weight matrices (|W©) || > 1) or certain graph convolution operations.

B.9 PROOF OF THEOREM 1

Proof. Since F (©) is linear on S, there exists a matrix A®) € RNdexNde-1 and a vector b) such
that for all X € S:
FO(X) = unvec(AD - vec(X) + bD). (50)
The Jacobian J ) is constant and equal to A®). By assumption, A() has rank 7, and its singular
value decomposition is:
AW — U(/f)z](f)v(f)T7 (51)

where U and V' (©) are orthogonal matrices, and () = diag(aﬁe), e ,aﬁf), 0,...,0) with O’;Z) >
£)

aée) > 20,(7 > 0.
Let V;(L]) be the first s columns of V (), spanning the subspace V(*). The restriction of A®) to V()
is the linear map L) : V() — RM defined by L) (x) = A©) .

Since A® is injective on V) (as V(® is spanned by right singular vectors corresponding to positive
singular values), L(©) is injective. The image L) (V) is an s-dimensional subspace of R,
spanned by the first s columns of U“),

Let {vge), . ,vg)} be an orthonormal basis for V(¥ (e.g., the columns of Vs(é)). Then
{LOW), ... LO @)} is a basis for LO (V®), and:

LO () = 0wy, (52)
where uy) is the i-th column of U ), Thus, {ugé), e ug)} is an orthonormal basis for L(9) (V(9),

The s-dimensional Hausdorff measure H?® is equivalent to the s-dimensional Lebesgue measure
on s-dimensional subspaces. Consider the linear map L) : VO — L®(V®), Since V() and
L® (V(Z)) are s-dimensional Euclidean spaces, we can compute the change in measure using the
determinant of L (in orthonormal coordinates).

Let ¢ € V() have coordinates ¢ = Y_;_, a:ivy). Then:

LY (x) = inL(z) (v;) = Z xiay)uge). (53)
i=1 i=1
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0

%

Thus, the matrix representation of L(¥) with respect to the bases v; ’ and ugz)
diag(a@, e ogz)).

is the diagonal matrix

)

The absolute determinant of this matrix is Hle o, . Therefore, for any measurable set S C \4OR

1 (LO(S)) = (H &) HE(S). (54)

Since F(Y(X) = L) (X) + b") and translation preserves Hausdorff measure, we have:

HE(FO(S)) = HH(LO(S) + b)) = 1 (LO(S)) = <H af)) HE(S). (55)

When s = 74, V() is the entire row space of A(*), and the product is over all positive singular values.
This gives the volume contraction factor for the full rank part of the map. O

Remark 7. We will not elaborate on mathematical concepts such as Hausdorff measure and Lebesgue
measure in this article. For details, please refer to mathematics textbook (Krantz & Parks, 2008).

B.10 SIMPLE LINEAR ALGEBRA

Lemma 2 (The Rank Inequality for Composition of Linear Maps). Let A : V — Wand B: W — U
be linear maps between vector spaces. The composition B o A : V — U is also a linear map. The
rank of a linear map is defined as the dimension of its image:
rank(A) = dim(im(A)), rank(B) = dim(im(B)), rank(Bo A)=dim(im(Bo A)). (56)
Then:
rank(B o A) < min(rank(A), rank(B)). 57

Proof. Prove the first inequality: rank(B o A) < rank(A).

Observe that forany v € V,
(B o A)(v) = B(A(v)), (58)
so the image of B o A is:
im(Bo A) = {B(A(v)) : v € V} = B({A(v) : v € V}) = B(im(A)). (59)
Thus, im(B o A) = B(im(A)). Since im(4) C W, we can restrict B to im(A), obtaining a linear
map:
B|im(A) : 1m(A) — U. (60)
The image of this restricted map is exactly B(im(A)) = im(B o A). By the Rank-Nullity Theorem
(or simply by the fact that the image of a linear map cannot exceed the dimension of its domain), we
have:
dim(B(im(A))) < dim(im(A)). (61)
Therefore,
rank(B o A) = dim(im(B o A)) < dim(im(A4)) = rank(A). (62)

Prove the second inequality: rank(B o A) < rank(B).
We now show that im(B o A) C im(B). Let u € im(B o A). Then there exists v € V such that:

u = (Bo A)(v) = B(A(v)). (63)
Since A(v) € W, it follows that u = B(w) for some w € W, so u € im(B). Hence,
im(Bo A) Cim(B), (64)
and therefore:
dim(im(Bo A)) < dim(im(B)) = rank(Bo A) < rank(B). (65)
Combining both inequalities (62) and (65), we conclude:
rank(B o A) < min(rank(A), rank(B)). (66)
O
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B.11 PROOF OF THEOREM 2

Proof. From Proposition 2, each layer map F') is piecewise linear and differentiable almost every-
where. By Proposition 3, the composite map ® = F(X) o . ..o F(1) is also piecewise linear and M (F)
is a prismatic space. On each linear region C; (as defined in Definition 6), ® is linear, so its rank is
constant on C. Thus, ® is piecewise constant on its rank.

Let {C}} be the linear region partition of Mg from Definition 6. For each Cy, the map ®|¢, is
linear. Let T}, = ®|¢, denote this linear map. The image ®(C},) is contained in a linear subspace of
dimension rank (7).

The local dimension of M () at any point in ®(C}) is at most rank(7}). Since ML) =, ®(Cy),

the intrinsic dimension dj, (M (%)) is the supremum of the local dimensions over all points in M (%),
Thus,
dim(M(L)) < m;;ix rank(7T}). (67)

Now, we bound rank(7}). Since T, = F(") o --- 0 F(M|, , and each F(¥) is linear on the relevant
region, we have:

rank(T}) < mtjn rank (F(é)|q>(é—1)(ck)) . (68)

This follows from Lemma 2: for linear maps A and B, rank(B o A) < min(rank(A),rank(B)). By
induction, this holds for the composition of L linear maps.

For each layer /, rank (F)|ge-1)(¢,)) = rank (J[g-1)(¢,)) because the Jacobian is constant
on the region where F' () is linear (from Definition 6).

Let 7y = rank (J]ge-1)(c,)). Then,

rank(Tk.) < m}n Tek- (69)

Therefore,
dig(MD)) < mkaxrank(Tk.) < max mein o k- (70)

Due to the contraction effect of the layers (especially with ReLUs, which project dimensions to zero),
the ranks 7 ;, are often much smaller than the input dimension Dy. Thus, max;, ming ry j is typically

less than Dy, implying that M (%) has a lower intrinsic dimension than Dj. O

B.12 PROOF OF THEOREM 3

Proof. By Proposition 2, each layer map F'(¥) is piecewise linear and differentiable almost everywhere.
By Proposition 3, the composite map ® = F(X) o ... o F(1 is piecewise linear. By Definition 6, the
input manifold M is partitioned into cells C' such that on each C}, ® is linear.

We assume @ is injective on CY,. This implies that for each C, ® restricted to CY, is a linear injection,
8O dint(P(Ck)) = dine(Cx) = dint, Where dine = Dy is the intrinsic dimension of M (Definition 3).
Since ® is injective, each layer F'(¥) must be injective on ®(~1)(C},) for all £ and k. Otherwise, the
composition would not be injective. Thus, for each ¢ and &, the Jacobian J (0 of FO restricted to the
tangent space of oU-1) (C) has rank at least dj,. Since the tangent space is dj,-dimensional, J O
has exactly d;,, positive singular values ai?ﬁ > ag,)f > 2 O'((ii‘)h & > 0 on the region corresponding

to Ck.

Consider a fixed cell Cy. Since @ is linear on Cy, we can write ®(X ) = unvec(Jy, - vec(X) + by)
for X € C}, where Jy, is the Jacobian of ® on C}, (constant). However, to understand the layer-wise
measure change, we use the composition structure.

For the first layer F'(1), since it is linear on Cy, it maps Cj to F())(Cy). By Theorem 1, the
dini-dimensional Hausdorff measure changes as:

dint

/Hdim(F(l)(Ck)) _ (Ho—z(,lk))Hdim(Ck)’ (71)

=1
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where ag’lk) are the singular values of J (1) restricted to the tangent space of Cj, (which is diy-

dimensional).

For the second layer F(?), it is linear on F(!)(C},) (which is diy-dimensional). It maps F(1)(Cy) to
F®)(FMW(Cy)). Again, by Theorem 1:

e w0 - ({2 e - (F1o2) (oo,

=1

where al( k) are the singular values of J(?) restricted to the tangent space of F'(1)(Cy,).

Proceeding inductively for all L layers, we get:

L din

Pl (D ( e )Hd'"‘ ). (73)

(=1i=1

This is because each layer’s measure change factor is multiplicative, and the composition preserves
the djp-dimensional measure up to the product of the singular values.

Since the cells C, form a partition of M, (Definition 6), and ® is injective on C}, the images ®(C,)
are disjoint and cover M () (up to sets of measure zero, due to piecewise linearity). Therefore, by
the additivity of the Hausdorff measure:

L din
i (M(D)) Z Him(@(Cr) = 3 (T T o) i (C). (74)
k (=1i=1

This establishes the desired formula.

If ® is not injective, then the images ®(C}) may overlap. Since the Hausdorff measure is subadditive,

we have:
L diy

I (MD)) < ZHd (Cr) =Y (H Hagf;)Hdin‘(ck). (75)

k {=11i=1

Thus, the formula provides an upper bound. O

B.13 DETAILS OF DEFINITION 7

Remark 8. This definition formalizes the notion of how a prompt P modifies the input data manifold
in the context of prompt tuning. The original input manifold Mg, which represents the natural
data distribution (e.g., graph node features), is typically assumed to be a compact smooth manifold
embedded in RN *%. The prompt P is a low-dimensional perturbation applied to every point in
M, resulting in a new manifold Mo(P). The operation My(P) = {X + P | X € My} isa
translation of the entire manifold by P, which preserves the topological and geometric properties
of My, such as compactness and smoothness, since translation is a diffeomorphism. The prompt
space P is the set of all possible prompts, often constrained to be low-dimensional (e.g., a subspace
of RV*d0) and each prompt P € P defines a distinct perturbed manifold. This family of manifolds
{Mo(P) | P € P} encapsulates the variability introduced by prompt tuning, and the goal is to
understand how the graph foundation model (GFM) transforms these manifolds through its layers.

B.14 LipsCHITZ CONTINUOUS AND JACOBIAN

Lemma 3 (Continuity of the Layer Map F(©)). Assume the operators A0, MO and U°) defining
the GFM layer in Definition I are continuous. Then, the layer map F'©) is continuous.

Proof. Similar to the proof of Proposition 2, let f; = A®), fo, = MO and f3 = UO. Then
8 = f3 0 (fy 0 (f1,id),id), where id denotes the identity function Since the composition of
continuous functions is continuous, the overall layer map F'(¥) is continuous. [
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Lemma 4 (Lipschitz Continuity of the GFM Map ®). Let My (P) C RV*% pe the compact prompt-
perturbed input manifold as defined in Definition 7. The composite map ® = F(I) o F(L=Do.. .o (1),
where each FO is a piecewise linear layer map (Proposition 2), is Lipschitz continuous on My (P).
That is, there exists a constant L < 0o such that for all X, Y € My(P),

[2(X) — @(Y)|| < La|| X = Y. (76)

Moreover, the Lipschitz constant Lg satisfies:
L
Lo <[] L, (77)
£=1
where Ly is the Lipschitz constant of the {-th layer F\©) on the appropriate domain.

Proof. Prove the piecewise linear layers are Lipschitz continuous.

Each layer map F'(©) : RN*de—1 _ RN*d i piecewise linear and continuous by Proposition 2
and Lemma 3. Since M (P) is compact and each F(¥) is continuous, the image F(©) (M(P)) is

also compact. The piecewise linearity implies that there exists a finite partition of the domain into

polyhedral regions R,(f) such that F() is linear on each region R,(f). On each such region, for any

H H ¢ R,(f), we have
¢ ¢
|FOHE) ~ FOE)| = || A (H — H)| < | A ol H — H'|| (78)
where A,(f) is the matrix representing the linear map on Rz(f) and | - |op denotes the operator norm

(spectral norm). Define the local Lipschitz constant for F'(“) on region R,(f) as L,(f) = |A,(f) |op- Since
the number of regions intersecting the compact set M (P) is finite, the global Lipschitz constant for

F®) on My(P) is finite and given by
L; = max LY < 0. (79)

Thus, forany H, H' € My(P),

IF©(H) — FOH')|| < L H - H'|. (80)

Prove the composite map P is Lipschitz continuous.

The composite map ® = F(F) o F(L=1 o ... o F(1) is a composition of Lipschitz continuous maps.
Forany X, Y € My(P),let H®) = FOo...0c FM(X)and K¥) = F¥) o...0 F(Y') denote
the intermediate representations. Then,

IHY - KW| = |FO(X) - FOY)| < L X - Y],

IH® — K| = |[FOEDY) - FOED)| < L|HY - KO| < LLi|IX - Y],

(81)
L
|HD - KO = [8(X) - o(Y)| < L [HED - KED| < (T ) 1X - V).
=1
Therefore, P is Lipschitz continuous with constant Lg = Hle L.
This completes the proof. O

Lemma 5 (Existence of the Jacobian Jg(X)). In the context of the unified GFM framework, we
aim to prove that the Jacobian of the composite map ® = F(I) o FE=V o ... o0 F() exists almost
everywhere (a.e.) on the input manifold My (P), and that at points where it exists, it is given by the
product of the layer Jacobians.
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Proof. By Proposition 2, each layer map F(©) : RN*de—1 _, RNXde g piecewise linear. This
means that the domain of F¥) can be partitioned into a finite number of polyhedral regions R,(f)
such that F(¥) is linear on each region. Since linear functions are differentiable everywhere, F(¢)
is differentiable on the interior of each region. The boundaries between regions have Lebesgue
measure zero in RV *de-1 (as they are subsets of lower-dimensional affine spaces). Therefore, F®
is differentiable almost everywhere in its domain. Let D, denote the set of points where F() is
differentiable; then D, has full measure (i.e., its complement has measure zero).

The composite map  is defined as & = F(E) o F(L=1 o ... 0 F(1)_ Consider the sets where each
F® is differentiable. Since each F'¥) is differentiable a.e., the set of points where all F® are
differentiable along the composition path is also of full measure. More formally, define:

e 1 = D1 (the set where FO g differentiable).

« For { = 2to L, define B, = {X € E,_; : F¥} is differentiable at ®(*~1)(X), where
U1 = ple-1) 5 ... o (1)

Since F'(¥) is differentiable a.e., and ®“~1) is continuous and piecewise linear (hence Lipschitz),
it preserves sets of measure zero. Thus, by induction, each E;, has full measure. Therefore, the set
E = E;, where all F'©) are differentiable at the appropriate points has full measure in My (P). For
any X € E, the composite map & is differentiable at X by the chain rule.

At a point X € FE, the chain rule applies. Let H®O® = X, and for { = 1to L, define H®) =
FO(H®1Y). Then, the Jacobian of ® at X is given by:

Jo(X) = T HED) . gE=DgE=2y . g (X)), (82)

where J () (H“~1)) is the Jacobian of F() at H*~1), This product is well-defined because each
Jacobian exists at the respective points.

Since M (P) is a compact smooth manifold embedded in RV > it has a Lipschitz parameterization.
The above argument holds for almost every point in M (P) with respect to the Lebesgue measure
on the parameter space. Thus, Jg (X)) exists for almost every X € M (P). O

B.15 PROOF OF THEOREM 4

Proof. Assume the input manifold M (P) is compact and smooth with intrinsic dimension dj,;. By
Definition 6, the piecewise linear map ® = F") o ... o F(1) partitions M (P) into a countable
collection of cells {C}.}, where each C}, is a connected subset of M (P) such that ® is linear on C,.
This partition exists because P is piecewise linear (Theorem 2).

Proof of the Measure Bound.

For each cell C’k, since ® is linear on Ck, the Jacobian Jg is constant on C’,’C. By Theorem 3, the
Hausdorff measure of the image ®(C},) is given by:

L din

i (@(Ch)) = (TT Tt n™(ch. (83)

{=1i=1

where 0(2 are the first dj, singular values of the Jacobian of the ¢-th layer evaluated in the linear

region corresponding to Cj,. Note that the product H ™o, ,2 is taken over the largest dj, singular

values, as the tangent space has dimension djy.

The total measure of M(X)(P) is the sum over all cells:

L din
ey lm( ) < ZHdlm () = Z (H Ha(f))fHdm‘ (). (84)
k {=11i=1
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Since [T, [1%, o) < sup, T2, [1%, 0! o, %), for all k, we have:

(MDD (P)) < (S}:’Pﬁnaz k/> Z’Hd'"‘ (Ch) = (SUPHHUz k,)?—ld‘"‘ o(P)). (85)

£=1i=1 £=1i=1
This proves the measure bound.
Proof of the Diameter Bound.
Let diam(M) denote the diameter of a set M, defined as:
diam(M) = sup |z —yl|. (86)

x,ye

By Theorem 2 and Lemma 4, the map & is piecewise linear and Lipschitz continuous on M (P).
The global Lipschitz constant Lg satisfies:

2(X)—2(Y)|| <Ls|| X -Y]| VX,Y € My(P). (87)

The Lipschitz constant Lg can be bounded by the operator norms of the Jacobians of ®. For any
point X € M (P), the Jacobian Jg (X ) exists almost everywhere (by Definition 5) and is given by
the product of the layer Jacobians:

Jo(X) = JP(FED(X)) - JH(X). (88)
The operator norm of Jg (X)) satisfies:
[ o (X)lop < [T (EED(X))op -+ [TH (X op- (89)

Each layer Jacobian |J(“)(X,)|op (Where X, = F~1 (X)) is constant on linear regions. Let
|J ,ge) lop be the operator norm of the Jacobian of the ¢-th layer in the k-th linear region. Then:

TOXep < sup T oy ¥Xo ©0)
Therefore,
L
o (X)lp < [[sup 177 ep VX 1)
=1
The global Lipschitz constant Lg is the supremum of |J (X)|op over X € Mo (P):
L
Lo= sup |Jo(X)|p < []sup I lop- (92)
XeMo(P) o1k
Now, forany X, Y € My (P),
= ¢
[#(X) ~ 2(¥)] < Lo X =¥ < (T sup 17" kp ) IX ~ ¥ 93)
=1

Taking the supremum over X,Y € M, (P), we get:

L
diam(M ) (P)) < (H sup |J " |op) - diam(Mo (P)). (94)
k

{=1

This proves the diameter bound. O
B.16 THEORETICAL LIMITATIONS OF PROMPT TUNING
The Prompt Efficacy Bound (Theorem 4) reveals fundamental theoretical limitations of prompt tuning

in GFMs. Specifically, the measure and diameter bounds imply that the influence of a prompt P is
constrained by the compositional prismatic effect of the frozen GFM layers.

Information Loss through Spectral Contraction.
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The measure bound shows that the effective “volume” of the prompt-perturbed space M5 (P) is
scaled by the product of singular values across layers and linear regions. Since deep GFMs often
exhibit spectral decay (with many singular values O,EZ) < 1), the prompt-induced perturbations are
compressed exponentially with depth. This irreversible contraction implies that fine-grained semantic

nuances introduced by the prompt may be lost or distorted before reaching the output layer.
Intrinsic Dimensionality Collapse.

As shown in Theorem 2, the intrinsic dimension d;, (M (%)) of the final representation is bounded
by the minimal rank achieved locally across layers. Prompt tuning operates on the input manifold
M (P), but the frozen network’s piecewise linear transformations inherently project the prompt into
a lower-dimensional subspace. Thus, even if the prompt is high-dimensional, its effective influence is
limited by the bottleneck rank of the Jacobians, reducing its capacity to encode complex instructions.

Sensitivity to Input Geometry.

The diameter bound depends on the operator norms of the layer Jacobians. If the network exhibits

gradient explosion (large supy, |.J ,52) lop) or vanishing (small singular values), the prompt’s effect may
be either amplified erratically or suppressed. This sensitivity makes prompt tuning highly dependent
on the pre-trained model’s architecture and parameterization, limiting its robustness.

Non-Adaptive Prismatic Structure.

Since the network is frozen, the prompt cannot alter the prismatic folding process (e.g., the partition
into linear regions or the Jacobian spectra). The prompt is merely a shift in the input space, and its
efficacy depends on how the fixed geometric transformation ® distorts this shift. In contrast, full
fine-tuning adapts ® itself to preserve task-relevant information, which prompt tuning cannot achieve.

Trade-off Between Prompt Size and Expressivity.

While increasing the prompt dimension dim () might seem beneficial, the measure bound shows
that the effective output scale is constrained by the product of Jacobian singular values. Thus, simply
enlarging the prompt may not improve efficacy if the network’s contraction forces are too strong.
This suggests a fundamental trade-off between prompt complexity and the network’s capacity to
preserve prompt-induced variations.

In summary, prompt tuning is inherently limited by the frozen GFM’s spectral properties and
geometric structure. While it can induce some distributional shifts, its ability to convey nuanced
instructions is bounded by the network’s pre-existing prismatic contraction and rank collapse. These
limitations motivate the need for architectural interventions (e.g., adding adapters) or alternative
tuning strategies that can mitigate the loss of prompt information through deeper layers.

C THEORETICAL ANALYSIS OF MESSAGE TUNING

C.1 PROOF OF THEOREM 5

Proof. We prove the theorem using the geometric measure theoretic framework of Prismatic Space
Theory. The key idea is that message tuning, by injecting learnable parameters at each layer, can
compensate for the measure contraction and intrinsic dimension reduction caused by the prismatic
effect of the frozen GFM layers, and can additionally expand the diameter of the output space.

Intrinsic Dimension Comparison.

In Prismatic Space Theory, the intrinsic dimension dim(MI(\/ILT)G) refers to the topological dimension

or Hausdorff dimension of the final representation space M](\,[LT)G, which is the inherent dimensionality
of the space itself, not the dimension of the embedding space. This intrinsic dimension is defined by
the geometric properties of space, but we can use the rank of the Jacobian matrix of the mapping to
provide an upper bound.

Specifically, for the mapping Py : Mo — MI(\,[LT)G (where ®y1g is the composite layer mapping
after message tuning), we have:

dint(MI(\/fT)G) < Xseu./\ril rank(J(I)MTG (X))v 95)
0
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where Jg,,.,(X) is the Jacobian matrix of the mapping ®ymrg at point X. This means that the
intrinsic dimension of the space cannot exceed the maximum rank of the Jacobian matrix across all
input points.

From Theorem 2, for prompt tuning, the intrinsic dimension of the final space is bounded by:

dim (M (P)) < max minrank(J g1 (0., (96)
where J () is the Jacobian of the (-th layer of the frozen GFM, and C}, are the linear regions of the
input manifold.

For message tuning, the layer map is modified to include the fusion operation F©). Specifically, at
each layer ¢, the input representation H (‘1) is transformed to H\; " = §O (H¢-), M) @y))
before applying the standard layer map F(©). Thus, the effective layer map becomes ¥(¥) =
FO 650,

The Jacobian of W(®) at a point where it is differentiable is given by the chain rule:
gy =a0 g, 97)
where Jg) is the Jacobian of F'(©) and Jg) is the Jacobian of F(©).

The core issue is that § ) is not linear, but we can show that with learnable parameters, its Jacobian
can be made full-rank, ensuring the desired rank inequality.

Recall that for message tuning, the fusion operation is defined as:
FOEEY, MO;0) = HY + Softmax(HVW, ) - M), (98)

where H(™1) ¢ RN xdees WD) ¢ Rie-1xm and M(D) ¢ Rm*de1,

The Jacobian of F© with respect to H“~1) is a block-diagonal matrix composed of N blocks,
each of size dy_1 x dy—1. For each node ¢, the block corresponds to the derivative of the ¢-th
row of §© with respect to the i-th row of H (=1, Specifically, let h; be the i-th row of H (=1,
and let a; = hiWZSZ). Then the Softmax output is o; = Softmax(a; ), and the i-th row of 5O is
hi + OéiM([).
The Jacobian for node 1 is:

B =1+ MY Jygimax (@) WOT, (99)

where T is the identity matrix, and Jyofmax(@;) € R™>™ is the Jacobian of Softmax at a;, which has
rank m — 1.

Since Jyormax(@;) is bounded, we can choose M () and W,gé) such that the spectral norm of
M (E)TJgoftmax(ai)Wy)T is less than 1 for all 7. This ensures that B; is invertible and thus full-rank
for all 7. Therefore, the full Jacobian Jg) has rank Ndy_1.

Now, for the composite map U = p) S(Z), the Jacobian is:
gy =a) gl (100)
Since Jée) has full rank Nd,_1, and J g ) has rank r, we have Sylvester’s rank inequality:

rank(J&,[)) > rank(JI(f)) + rank(Jg)) — Ndy—, = rank(Jg)) + Ndp—1 — Ndy_1 = rank(Jg)).

(101)
Thus, the rank of JfI,e) is at least the rank of J z(f ):
rank(Jg)) > rank(JI(f)). (102)

Moreover, by optimizing the fusion parameters, we can ensure that rank(Jg)) > rank(Jff)) for all /.
Since W) does not introduce additional linear region partitions, meaning it does not generate more
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boundaries, corners, or singular points, the inequality holds pointwise. For any k, there always exists
a point X}, such that:

mzinrank(Jé,e)|Xk) > mzinrank(J}(f)h)(g_l)(Ck)). (103)

This implies that the upper bound on the intrinsic dimension for message tuning is at least as large as
that for prompt tuning:

max min rank(JY | x,) > max min rank(J 3 |ge 1 (e ))- (104)

Although J () s full-rank and thus rank(Jy, (e)) = rank(J (¢ )) at any point where both are defined, the
key to strict mequahty lies in the distribution of points across linear regions of the frozen layers. The
message fusion operation F©) can map inputs to different linear regions of F'(“) where the rank of

J g ) is higher.

Suppose that for some layer ¢, the frozen Jacobian Jl(f) has varying rank across its linear regions.
Specifically, there exist linear regions R,y and Rpign such that:

rank(Jff”me) < rank(Jg)|Rhigh). (105)

In prompt tuning, the input to F'() may fall primarily into Rj,, due to the shift caused by the prompt,
resulting in a lower minimum rank. However, in message tuning, the learnable parameters @;@ and
M® can be optimized to steer the input to F' ® into Rhign, thereby increasing the rank at that layer.

Assume that ®(*~1)(C},) does not lie in a linear region that maximizes rank(J g )). This assumption
is realistic because ®(“~1) is pre-trained and lacks the ability to adjust its output range. Formally, by
optimizing the fusion parameters, we can ensure that for each layer ¢, the input §©) (H (‘5_1)) lies

in a region where rank(Jl(f)) is maximized. Consequently, for any k, there always exists a point Y}
such that:

mgn rank(JI(f) lyi ez (HC-1)) > m@in rank(Jg) loe—1)(cp))- (106)
This implies that the upper bound for message tuning is strictly greater:
max m}n rank(J&,e) ly,) > max mein rank(J 9| g1y (Cx))- (107)

Therefore, the actual intrinsic dimension satisfies:

dine( M) > dind (M (P)). (108)

This strict inequality holds when the fusion parameters are optimized to avoid low-rank linear regions
of the frozen layers, which is achievable through gradient-based training that maximizes the rank of
the Jacobians during adaptation.

Thus, message tuning provides strictly greater adaptation capacity in terms of intrinsic dimension
compared to prompt tuning.

dim(MMTG) > dmt(M ( )) (109)
and the inequality is strict for some configuration.

Hausdorff Measure Comparison.

Recall that the pre-trained GFM & is composed of L layers, each defined as in Definition 1. For
prompt tuning, the input manifold is perturbed by a prompt P, resulting in M (P). The final space

is My (P) = ®(Mo(P)).

For message tuning, we introduce learnable message prototypes MY ¢ R™>d1 and fusion
parameters (9502) at each layer ¢, modifying the layer map to:

HO — ¢® (m(@ (Q[(z) (A,HI(\‘j;”;@g@) 7H1(\z4—1);@%>) ’H](é—n;@g)) , (110)
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where

Hy D =5O0@HD MO 0) = H*D + Softmax(H VWD) - M®. (111

The modified network is denoted ®yi1g, and the final space is /\/l G = Py (My).

The introduction of the Softmax function in the fusion operation F© indeed breaks the strict
piecewise linearity of the layer map, since Softmax is a smooth, nonlinear function. However, we can
address this issue through analyzing the network as a piecewise-linear map with smooth activations,
leveraging the fact that the Softmax can be effectively constant on large regions of the input space.

More generally, we can partition the input space into regions where the Softmax is approximately
linear. For instance, if we use a linearized Softmax (e.g., by taking a first-order Taylor expansion
around a point), we obtain a piecewise linear approximation. The error of this approximation can be
made arbitrarily small by refining the partition.

Given the above, we may treat ®yrg as a piecewise linear map for the purpose of geometric analysis.
Specifically, we define:

FOHY, MO W) ~ HY + Linear(H "YW/ 0 MY, (112)

where Linear( H (efl)WISZ)) is a piecewise linear function (e.g., sparsemax (Martins & Astudillo,
2016) or a linearized Softmax). Then, the modified layer map is piecewise linear, and the entire
network ®yrg is piecewise linear.

Under this approximation, by Theorem 3, the Hausdorff measures are:

Hew (M (P Z(HHU )Hd-m ), (113)

k t=1i=1

i (M) = Z(HH 51 1 (Cu), (114)

=1i=1

0

where o; ; and o(e)

are the singular values of the Jacobians of the original and modified layers,

respectively, and C’k and C}, are the linear regions of the input manifold under the original and
modified networks.

Message tuning introduces learnable parameters M () and W,Sf) at each layer. Crucially, message
tuning can simulate prompt tuning by appropriately setting these parameters. However, it also has
additional degrees of freedom that allow it to reduce measure contraction.

For any layer ¢ and linear region k, message tuning can achieve:

dint

ﬁalk >Ha (115)

This is because the product of singular values can be increased by adjusting the parameters to reduce
contraction. Let us consider a specific example to illustrate this possibility, assuming that all mappings
are constructed under the same partition.

Consider the modified layer map in message tuning:
g — )4 3(5)7 (116)

where F() is the original layer map and F(® is the fusion operation. In a linear region C}, both maps
are linear and injective on the tangent space of the input manifold, which has dimension djy,.

By Theorem 1, for a measurable set S in the tangent space, the diy-dimensional Hausdorff measure
transforms as:

i (30 (S (Hﬂ k)ydnm (117)
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where 7'1(2, . Ty) . are the largest diy, singular values of the Jacobian of F(*) restricted to the

tangent space. Slmllarly,
X .m(F(F)( 7 din 3(1’) (©) H(iim(s). (118)
= (T os)eeo0sn = (T1o40) (17

Thus, for the composite map (), the product of singular values is:

dint dint

H (Ha )(H Z)). (119)

Consider the fusion operation ). Its Jacobian with respect to H“~1) is:

JO =1+ (SOftmax(H(f—l)W;f)) : M“)) . (120)

0
OH (=1
By training W,EZ) and M), we can influence the singular values of Jée). For example:

« WY = 0and M©® = O, then FO(HV) = HED 50 J([) I, and the singular
values are 1.

o If WISZ) and M (9 are trained such that the second term is positive definite, then the singular
values can be greater than 1.

Thus, by parameter choice, we can ensure:

ﬁTZ L (121)

From the above, we have:

dim

&

u,’:]

(Ho—“))([[ ) = H ol (122)

This proves that message tuning can achieve the desired inequality for any layer ¢ and linear region k.
Moreover, if Hi‘“‘l 7(? > 1, the inequality is strict.

The input manifold M is fixed. Prompt tuning shifts it to Mg (P), but the fusion operation ) in
the first layer also possesses the capability to adjust the input manifold, we may reasonably assume
that % (Mo(P)) = Hdi“‘(./\/lo).

The linear regions Cy and C, are partitions of M (P) and M, induced by the piecewise linear

maps ¢ and y1g, respectively. Message tuning modifies the network architecture, which may refine
the linear regions. However, the total measure of the input manifold is conserved:

DI (C) = I (Mo(P) = Hi(Mo) = 3 H™(Cr). (123)

While individual regions may change, the overall sum remains unchanged. Therefore, for the purpose

of comparing the sums, we have:
Z Hé(C Z Hém(Cy,). (124)

From the above, for any prompt P, message tuning can choose parameters such that for each layer ¢
and region k:

50 >t (125)
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Moreover, since the input measures are equal, we have:

Hdim( 1(\/ILT)G Z (H H (Z)>Hdlm > Z ( H H O_([)>Hdml ) _ Hdim(Ml()%) (P))

(=11i=1 {=11i=1
(126)
The inequality holds term-wise due to the non-decrease in singular value products and the conservation
of input measure.

There exists a message tuning configuration where the inequality is strict. For example if we train

W(e) and M) such that for some layer ¢ and region k, H "0 2) > HZ = a2 k, and since the input
measure is positive, the overall measure increases strictly.

Thus, we conclude that:

Hm(MEB ) > 1 (ME (P)) forall P e P, (127)
and the inequality is strict for some configuration.
Diameter Comparison.

The diameter of a set M is:
diam(M) = sup [z —y|. (128)

z,yeM
For any prompt P, message tuning can simulate prompt tuning by setting:

« FOHEHO, MO W) =5 Mo(P),
e FOEHED MO W) = HED for e > 2.

This reduces message tuning to prompt tuning, giving:

Miie = MG (P), (129)
and hence: I
diam(M{f);) = diam(ME (P)). (130)

Thus, the inequality holds with equality for this configuration.

We now show that message tuning can achieve a strictly larger diameter by leveraging its additional
parameters to expand the output space.

Message tuning can expand the distance between representations layer-wise. Consider the fusion
operation:
FOHY) = HY + Softmax(H VW) . M©), (131)

By choosing W,S“ and M (©) appropriately, we can make ) an expanding map. For example:

* Set nge) to have orthonormal columns.

e Set M = ¢ W, for some ¢ > 0.

Then, the Jacobian of S(f) satisfies:
Jée) (H) =I+c- W;Se) : Jsoftmax(HWZSZ)) ' W,gé)T, (132)

which has eigenvalues > 1 (since Jofimax 1S positive semidefinite). By choosing c large, we can make
& arbitrarily expansive and ®yrg results from the superposition of such expansion effects.

Thus, for the pair X, Y € M(P) achieving the diameter of (M), message tuning can ensure:
diam(M{H) > [Purra(X) — Pura(Y)]| > [|9(X) — S(Y) | = diam(@(Mo(P))).  (133)

Thus, we have:
diam(M{H,) > diam(MSX (P))  forall P € P. (134)
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For any prompt P, message tuning can simulate prompt tuning, so:

diam(M{f;) > diam(Mbr) (P)). (135)

Moreover, by choosing parameters to expand inter-point distances, message tuning can achieve:
diam(M{F)) > diam(MSE (P))  forall P € P. (136)
This completes the proof. O

C.2 ANALYSIS OF NEGATIVE TRANSFER

Definition 14 (Negative Transfer from a Manifold Perspective). Let M§ C RN gnd M} C
RN*do pe the compact smooth input manifolds of the source and target domains, respectively, with
intrinsic dimensions Dy and Dy. Let ® = FF) o ... o F(Y) be the map of the GFM, and let

MP) = O(M§) and MEL) = ®(MY}) be the representation spaces. Negative transfer is said to
occur if the map ® causes a geometric misalignment or structural distortion between the transformed
spaces, such that:

o Information Loss: The intrinsic dimension or geometric measure (e.g., volume) of ®(MY) is
significantly reduced compared to ®(M§).

e Poor Alignment: The transformed spaces ®(M3) and ®(M}) are poorly aligned, as quanti-
fied by a large Hausdorff distance or a small intersection measure.

Remark 9. Fine-tuning severely exacerbates negative transfer in graph data because it aggressively
warps the target space’s geometry to fit the source domain’s feature space. This often collapses the
intrinsic structure of the target graph, leading to catastrophic information loss and misalignment.
Prompt tuning alleviates negative transfer by gently realigning the target space within the frozen
source feature space, preserving its intrinsic geometry and measure to prevent catastrophic distortion
or collapse.

Corollary 2 (Message Tuning Mitigates Negative Transfer). Negative transfer often arises when the

model’s capacity is insufficient to capture the target domain’s distribution, leading to interference

from source domain features. The higher intrinsic dimension dim(/\/l}(‘,,LT)G) indicates that MTG can

learn more diverse features, reducing reliance on source-specific patterns. The greater Hausdorff
measure Hd""’(./\/lj(\,[LT)G) implies a larger “volume” of the space, accommodating a wider range of
target domain variations. The increased diameter diam(/\/lz(wLT)G) signifies that the representations
span a broader range, enhancing model flexibility. In contrast, prompt tuning only perturbs the input

manifold M via prompts, which constrains adaptation to superficial layers and may insufficiently
adjust internal representations, thus more likely to lead to negative transfer.

By further refining and extending Prismatic Space Theory, a theoretical characterization of negative
transfer in GFMs can be established. We identify this as a direction for future research.
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D DATASETS AND EXPERIMENTAL DETAILS

D.1 CONFIGURATION

The experiments are conducted on a Linux server equipped with an Intel(R) Xeon(R) Gold 6240
CPU @ 2.60GHz, 256GB RAM and 2 NVIDIA A100-SXM4-40GB GPUs. Our implementation is
based on PyTorch (Paszke et al., 2019) version 2.2.1, PyG (Fey & Lenssen, 2019) version 2.6.1 with
CUDA version 12.1 and Python 3.12.7.

D.2 DETAILS OF DATASETS

Homophilic Graphs. Cora and Citeseer datasets (Sen et al., 2008) represent computer science
publications, with nodes encoded as bag-of-words features and labeled by research topics. Pubmed
(Yang et al., 2016) contains diabetes-related articles from PubMed database, with nodes represented
by TF/IDF-weighted word vectors and classified by diabetes type. ogbn-arxiv (Hu et al., 2020a) is a
large-scale citation network of CS arXiv papers, where nodes represent papers with 128-dimensional
title+abstract embeddings, and directed edges denote citations.

Heterophilic Graphs. Texas and Wisconsin (Pei et al., 2020) datasets are WebKB subgraphs
comprising university web pages, where nodes represent pages with bag-of-words features and edges
indicate hyperlinks. Pages are classified into five categories: student, project, course, staff, and faculty.
Actor dataset (Pei et al., 2020) forms a co-occurrence network with actors as nodes and Wikipedia
page co-appearances as edges.

Biological Graphs. D&D dataset (Dobson & Doig, 2003) contains 1,178 protein graphs where
nodes represent amino acids connected by edges, classified as enzymes/non-enzymes. ENZYMES
(Borgwardt et al., 2005) comprises 600 enzyme structures from BRENDA, categorized into 6 EC
classes. PROTEINS (Wang et al., 2022) represents tertiary protein structures with nodes as secondary
structure elements and edges indicating sequence/3D proximity, yielding binary graph classification.

Small Molecule Graphs. BZR dataset (Rossi & Ahmed, 2015) contains 405 benzodiazepine
receptor ligand graphs with binary classification. COX2 (Rossi & Ahmed, 2015) comprises 467
cyclooxygenase-2 inhibitor molecular graphs, where nodes represent atoms and edges encode bond
types (single/double/triple/aromatic), also yielding binary classification. MUTAG (Kriege & Mutzel,
2012) includes 188 mutagenic aromatic compounds classified into 7 categories.

Social Network Graphs. COLLAB (Yanardag & Vishwanathan, 2015) represents scientific collab-
oration networks, where nodes denote researchers, edges indicate co-authorships, and graphs are
classified by research fields. IMDB-B (Yanardag & Vishwanathan, 2015) captures actor collaboration
networks, with nodes representing performers, edges signifying co-appearances in films, and binary
graph labels distinguishing Action versus Romance genres.

Table 6: Statistics of all datasets.

Dataset Task  #Graphs #Nodes #Edges  # Features # Classes Graph Type

Cora Node 1 2,708 5,429 1,433 7 Homophilic
CiteSeer Node 1 3,327 9,104 3,703 6 Homophilic
Pubmed Node 1 19,717 88,648 500 3 Homophilic

Texas Node 1 183 325 1703 5 Heterophilic

Actor Node 1 7600 30019 932 5 Heterophilic

Wisconsin ~ Node 1 251 515 1703 5 Heterophilic
ogbn-arxiv  Node 1 169,343 1,166,243 128 40 Large-scale

D&D Graph 1,178 284.1 715.7 89 2 Proteins

ENZYMES Graph 600 32.6 62.1 3 6 Proteins
PROTEINS  Graph 1,113 39.1 72.8 3 2 Proteins

BZR Graph 405 35.8 38.4 3 2 Small Molecule

COX2 Graph 467 41.2 43.5 3 2 Small Molecule
MUTAG  Graph 188 17.9 19.8 7 2 Small Molecule
COLLAB  Graph 5000 74.5 2457.8 0 3 Social Network
IMDB-B Graph 1000 19.8 96.53 0 2 Social Network
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D.3 DATA SPLIT.

We adopt the same dataset processing methodology as ProG (Zi et al., 2024) to ensure consistency and
comparability with prior work. For the node classification task, we adopt a 90% test set allocation to
rigorously evaluate model performance. In contrast, for the graph classification task, we employ an 80
% test set split to maintain a balance between evaluation rigor and training data availability. To ensure
statistical robustness and mitigate potential sampling bias, we repeat the random sampling procedure
five times to construct distinct k-shot learning tasks for both task types. The final performance metrics
are reported as the mean and standard deviation across these five independent trials, providing a
comprehensive assessment of model stability and generalization capability.

D.4 EVALUATION METRICS

In node and graph classification tasks, AUROC (Area Under the Receiver Operating Characteristic
Curve) and Fl-score serve as two critical evaluation metrics. AUROC quantifies a model’s class
discrimination capability, where 1 represents perfect classification and 0.5 indicates random guessing.
The F1-score, which harmonizes precision (correctness of positive predictions) and recall (coverage
of actual positives), ranges from O to 1, with higher values indicating better performance. This
metric is particularly valuable for imbalanced datasets. For multi-class scenarios, we employ a
macro-averaging approach, where each class is iteratively treated as positive while aggregating results.
Both metrics are computed via a one-vs-rest strategy for class-wise evaluation.

D.5 HYPERPARAMETER CONFIGURATION

In most experiments, the model architecture consists of 2 layers with a hidden dimension of 128. We
develop a systematic random search strategy to identify optimal hyperparameters for each adaptation
method across all datasets, extending beyond default configurations. Considering the substantial
heterogeneity in hyperparameter requirements among different adaptation approaches, we concen-
trate on tuning three key hyperparameters through random search: (1) learning rate, sampled from
{0.001,0.005,0.01,0.05,0.1}; (2) weight decay, selected from {0, 0.00001, 0.0001,0.001,0.01};
and (3) batch size, uniformly sampled from {32, 64,128} in each experimental trial. This compre-
hensive search strategy ensures robust parameter optimization while maintaining methodological
consistency across diverse experimental conditions.

D.6 IMPLEMENTATION DETAILS

To ensure experimental fairness and demonstrate the compatibility of our approach, we implement
MTG based on the ProG library (Zi et al., 2024). We have made some modifications to the ProG
library to adapt it to MTG, but these changes do not affect the original prompt tuning method at all.

E DETAILS OF BASELINES

E.1 BACKBONES OF GRAPH FOUNDATION MODELS

GCN (Graph Convolutional Network) (Kipf & Welling, 2017) employs convolutional operations
to aggregate and transform feature information from a node’s immediate neighborhood. This lo-
calized message-passing mechanism allows the network to iteratively refine node representations
by incorporating structural and attribute information from adjacent nodes, effectively capturing the
graph’s topological properties.

GraphSAGE (Hamilton et al., 2017) is an inductive learning framework that computes node
embeddings through a localized feature aggregation process. Instead of relying on fixed graph
convolutions, it operates by sampling neighboring nodes and hierarchically aggregating their features
using learnable functions. This approach enables the model to generalize to unseen graph structures
while capturing both node attributes and local topological patterns.

GAT (Graph Attention Network) (Velickovi¢ et al., 2018) introduces an attention mechanism
into graph neural networks, dynamically computing attention weights between connected nodes
during feature aggregation. By learning to assign differential importance to neighboring nodes, GAT
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can focus on more relevant connections while suppressing noisy or less informative edges. This
adaptive weighting scheme enhances model expressiveness and interpretability compared to standard
aggregation approaches.

GIN (Graph Isomorphism Network) (Xu et al., 2019) is a theoretically motivated GNN architecture
designed to maximize discriminative power in graph representation learning. By employing injective
multiset aggregation functions and MLP-based transformations, GIN achieves provable expressive-
ness equivalent to the Weisfeiler-Lehman graph isomorphism test. This framework demonstrates
superior capability in distinguishing graph structures while maintaining efficient computation through
neighborhood aggregation.

GT (Graph Transformer) (Ying et al., 2021) adapts the Transformer architecture to graph-structured
data by incorporating structural biases into the self-attention mechanism. Through masked attention
patterns that respect graph connectivity, the model efficiently captures both local and global depen-
dencies while maintaining the parallelizability of standard Transformers. This approach enables the
simultaneous modeling of node features and graph topology through position-aware attention com-
putations. The architecture demonstrates particular effectiveness in scenarios requiring long-range
dependency modeling across graph structures.

E.2 PRE-TRAINING STRATEGIES

DGI(Velickovi¢ et al., 2019) is a self-supervised learning framework that employs mutual informa-
tion maximization for graph representation learning. The method optimizes the mutual information
between patch-level node representations and global graph summaries through a contrastive objective.
By leveraging negative sampling and discriminator functions, DGI learns informative node embed-
dings that preserve both local structural patterns and global graph characteristics. This approach
demonstrates particular effectiveness in scenarios with limited labeled data, enabling effective transfer
learning across graph-based tasks.

GraphMAE(Hou et al., 2022) adopts a self-supervised pretraining approach based on feature
reconstruction of masked nodes. The framework randomly masks portions of node features and
learns to recover them through an encoder-decoder architecture, forcing the model to develop robust
structural understanding from contextual patterns. This denoising objective promotes the learning of
generalized graph representations that capture both local neighborhood characteristics and global
topological properties. The method demonstrates particular effectiveness in scenarios requiring
transferable graph representations across different downstream tasks.

EdgePreGPPT(Sun et al., 2022) introduces a novel graph pre-training paradigm that fundamentally
reconfigures structural knowledge acquisition in graph neural networks. The framework employs
masked edge prediction as its foundational pretext task, where the model learns to reconstruct ran-
domly obscured connections through an edge prediction module. This pre-training phase focuses on
optimizing pairwise node similarity computations, enabling the model to develop robust represen-
tations of graph topology and connectivity patterns. The methodology’s effectiveness stems from
its direct optimization of structural relationships between nodes, training the network to evaluate
connection probabilities through learned embedding similarities.

EdgePreGprompt(Liu et al., 2023b) establishes a novel paradigm for learning transferable structural
representations from label-free graph data. At its core, the framework employs link prediction as
its self-supervised pretext task, leveraging the abundant connectivity patterns naturally available
in graph structures without requiring additional annotation. The methodology operates by first
constructing contextual subgraphs for nodes, which capture not only node-specific features but also
rich topological information from their local neighborhoods. Specifically, the framework optimizes
a contrastive objective that maximizes the similarity between linked node pairs while minimizing
similarity for non-linked pairs, thereby encoding fundamental graph connectivity patterns into the
learned representations.

GraphCL(You et al., 2020) introduces a graph contrastive learning framework that learns transfer-
able graph representations through self-supervised pre-training by maximizing agreement between
different augmented views of the same graph. The method employs four key augmentation strate-
gies—node dropping, edge perturbation, attribute masking, and subgraph sampling—each encoding
domain-specific priors about structural invariance. These augmentations generate correlated views
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that are processed through a shared GNN encoder, projected via an MLP head, and optimized using
an NT-Xent loss function to enhance similarity between positive pairs while contrasting negative
samples. The framework theoretically maximizes mutual information between augmented views,
unifying various contrastive learning approaches for graphs.

SimGRACE(Xia et al., 2022) presents a novel graph contrastive learning framework that eliminates
the need for manual data augmentation by instead leveraging encoder perturbations to generate
contrasting views. The core methodology involves feeding the original graph through both a standard
GNN encoder and its perturbed version, where the perturbation is achieved by adding Gaussian
noise to the encoder weights, thereby producing correlated representations without altering input data
semantics. These dual representations are then projected through a shared MLP head and optimized
using the NT-Xent loss to maximize agreement between positive pairs while contrasting with negative
samples from the same batch.

E.3 PROMPT TUNING BASELINES

GPPT (Sun et al., 2022) introduces an innovative graph prompting function that bridges the gap
between pre-training and downstream tasks by reformulating node classification as an edge prediction
problem through token pair construction. The framework converts standalone nodes into structured
token pairs composed of two components: a task token that represents candidate labels through train-
able continuous vectors and a structure token that encodes neighborhood information by aggregating
adjacent nodes with attention-based weighting. The approach fundamentally rethinks graph transfer
learning by aligning task formulations rather than forcing downstream adaptation to mismatched
pre-training objectives.

Gprompt (Liu et al., 2023b) introduces a unified prompting framework that bridges graph pre-
training and downstream tasks through a subgraph similarity template. The core innovation involves
learnable task-specific prompt vectors that dynamically reweight node features during subgraph
aggregation operations such as READOUT, allowing downstream tasks including node classification
and graph classification to selectively extract relevant knowledge from frozen pre-trained GNNs. The
prompt vectors act as lightweight task adapters, preserving the pre-trained model’s parameters while
tailoring subgraph representations through dimension-wise feature importance scoring, demonstrating
superior parameter efficiency and few-shot performance across diverse graph tasks.

All-in-one (Sun et al., 2023a) introduces a unified multi-task prompting framework for graph
neural networks that effectively connects various downstream tasks at node, edge, and graph levels
with graph pre-training through several key innovations. First, it employs task reformulation by
transforming node and edge tasks into graph-level tasks through induced subgraph construction.
Second, it incorporates a learnable prompt graph featuring tunable tokens, dynamic token structures,
and adaptive insertion patterns to align downstream tasks with pre-training objectives. Third, it
utilizes meta-learning optimization to generalize prompts across different tasks. The framework
maintains frozen pre-trained GNNs while only tuning lightweight prompt parameters, enabling
efficient knowledge transfer with task-specific adaptability.

GPF (Fang et al., 2023) introduces a unified approach to prompt tuning by focusing on feature space
adaptation within graph neural networks. It employs a shared learnable vector that is added to all node
features in the input graph, creating a consistent modification across the entire structure. This design
allows the pre-trained model to maintain its frozen parameters while adapting to downstream tasks
through subtle yet effective feature adjustments. The approach demonstrates theoretical equivalence
to any form of prompting function, making it universally applicable across diverse pre-training
strategies without requiring task-specific templates.

GPF-plus (Fang et al., 2023) enhances flexibility by assigning distinct learnable vectors to individual
nodes through an attention-based mechanism. Rather than using a single global prompt, it generates
node-specific prompts by combining a set of basis vectors with weights derived from each node’s
features. This architecture captures finer-grained adaptations while maintaining parameter efficiency
through basis sharing. The method automatically adjusts to graphs of varying scales and complexities,
offering improved expressiveness over GPF while preserving its universal applicability and theoretical
guarantees for effective knowledge transfer.
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F MORE INFORMATION ON EXPERIMENTS

F.1 DETAILS OF THE EXPERIMENTAL RESULTS ON 1/3/5-SHOT NODE/GRAPH CLASSIFICATION

While one-shot node/graph classification presents the most challenging scenario for evaluating
adaptation methods, few-shot node/graph classification remains a critical task for assessing the
robustness and generalization capability of these methods. Therefore, we have extended our evaluation
to include 3-shot and 5-shot node/graph classification tasks across various adaptation approaches. The
optimal performance of various adaptation methods, alongside supervised learning baseline, under
3-shot and 5-shot settings, is summarized in Tables 9-12. Consistent with the earlier experimental
findings presented in Subsection 5.2, these results demonstrate that MTG substantially enhances
the performance of multiple pre-trained GFMs across 1/3/5-shot scenarios, thereby significantly
improving the transferability of pre-trained knowledge within the “Pre-training and Adaptation”
paradigm. Notably, MTG consistently exhibits superior compatibility with diverse pre-training
strategies on both node-level and graph-level tasks. In contrast, among prompt tuning methods,
while All-in-one demonstrates competitive performance on graph-level tasks, it suffers from severe
performance degradation on certain node-level datasets, such as ogbn-arxiv.

Furthermore, a comprehensive evaluation of all adaptation methods under 1/3/5-shot settings, as
measured by three key metrics including Accuracy, F1 score and AUROC, is provided in Tables 14-31.
Through these more detailed experimental results, we observe that GPF-plus, as a simple and general
prompt tuning approach, demonstrates strong overall performance across both downstream tasks
under the 1/3/5-shot settings, making it the second-best adaptation method after MTG. It is worth
noting that GPF-plus can be regarded, to some extent, as a special case of MTG in which learnable
parameters are injected solely into the first pre-trained GFM layer, effectively equivalent to operating
directly on the input graph data. The baseline results in this experimental section also combine those
from ProG (Zi et al., 2024) with our own reproductions.

F.2 PERFORMANCE WITH MORE BACKBONES FOR GFMs

For GNN-based GFMs, both prompt tuning and message tuning are universal adaptation methods
that are not limited to specific model architectures. Therefore, in this subsection, we evaluate the
performance of various adaptation methods on five of the most classic, popular, and widely used
GFM backbone models. Tables 32 and 33 present the performance of different adaptation methods
based on various backbone models on the representative datasets Wisconsin and PROTEINS. These
results once again confirm that prompt tuning and message tuning outperform fine-tuning, while our
proposed MTG demonstrates even more significant advantages. For more complex GFMs, such as
models that integrate LLMs with GNNs, MTG can also be naturally adapted to the GNN module or
the module responsible for fusing features obtained from LLMs and GNNs. The core idea of MTG is
to perform layer-wise parameter injection for message fusion regulation, which is not constrained by
any specific model architecture. We believe this represents a promising direction for future research.

Most experiments in this paper employ a relatively basic 2-layer backbone model, which may not fully
demonstrate the performance advantages of MTG. To further investigate the impact of model depth
on adaptation methods, we continue to use the GCN backbone model and representative datasets
Cora and BZR to evaluate the performance of various adaptation methods when applied to models
with 4, 8, 12, and 16 layers in downstream tasks. The results in Table 13 confirm that MTG still
maintains significant advantages even with deeper model architectures.

F.3 COMPUTATIONAL EFFICIENCY OF MTG

As a general adaptation method, MTG inherently possesses the advantage of parameter efficiency. It
does not impose significant computational burden on the original model and requires substantially
fewer parameters than fine-tuning to achieve effective adaptation on downstream tasks. In this
subsection, we take the GCN backbone model as an example and first provide a theoretical analysis
of the time complexity and trainable parameter complexity of both fine-tuning and MTG.

Fine-tuning. The time complexity per layer of a GCN with L layers, where each layer transforms
input features of dimension dy;_; to output dimension dy, comprises two main components: the
feature transformation via matrix multiplication between the weight matrix W () e R%-1%d and
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the node feature matrix H (¢~ ¢ RIVIXde-1 with complexity O(|V|d,_1d,), and the neighbor-
hood aggregation through sparse matrix multiplication between the normalized adjacency matrix
A € RVIXIVI and the transformed features, requiring O(|€|d,) operations, where |€| denotes the
number of edges. Assuming all hidden dimensions are equal d, the total time complexity becomes
O(L(|V|d? + |€|d)). The space complexity for trainable parameters is dominated by the weight
matrices, yielding O(Ld?).

Message Tuning. MTG introduces three additional components per layer: message vectors
M) e R™*de—1 containing m learnable message prototypes, a projection matrix WISZ) € Rde-1xm
to compute attention scores, and an attention mechanism « = Softmax(H (Z’l)WZEZ)) € RIVIxm,

with the corresponding computational overhead consisting of the projection operation H (‘=1 W,gé)
requiring O(|V|dy—1m) operations, the attention computation including softmax and matrix multipli-
cation a M ) requiring O(|V|m?) operations, and message integration via element-wise addition
with original features requiring O(|V|dy—1) operations. Thus, the total time complexity becomes
O(L(|V|d? + |E|d + |V|dm + |V|m?)). Since m < d typically holds, MTG does not introduce sig-
nificant inference time overhead to the original GCN, and their time complexities remain essentially
within the same order of magnitude. The trainable parameter complexity comes from M (©) and P()
matrices, contributing O(L(dm + md)) = O(Ldm) parameters, which is lower than fine-tuning the
entire GCN model.

The above analysis offers a theoretical perspective on model inference time and trainable parameters;
however, it should be noted that such theoretical estimates may differ from practical performance.
Due to variations in their practical implementations, various prompt tuning methods are not amenable
to straightforward computational complexity analysis. Therefore, we further conduct a comparative
analysis of the actual training time per epoch and GPU memory consumption between prompt
tuning methods and MTG on the large-scale dataset ogbn-arxiv, which has the largest number of
nodes, and the COLLAB dataset, which contains the most graphs. The pre-training strategy uses
DGI and experimental results are presented in Table 7. Due to its distinct data loading mechanism,
GPPT exhibits significantly different GPU memory usage compared to other methods. Excluding
GPPT, MTG demonstrates advantages in both training speed and memory consumption. It should be
emphasized that MTG exhibits superior training efficiency compared to All-in-one.

F.4 SENSITIVITY ANALYSIS

Message tuning injects m learnable message vectors at each layer of the model, making m a
hyperparameter of MTG. We further conduct a sensitivity analysis on this hyperparameter m using
the GCN backbone model and representative datasets Cora and BZR, evaluating the performance
of MTG when m = 3, 5, 10, 20, 30. The optimal results described in Subsection 5.2 are presented
in Table 8. These results demonstrate that MTG exhibits a certain degree of robustness to this
hyperparameter, as no performance collapse occurs even with very small or large values of m. In our
experiments, m is typically set to 10; nevertheless, careful selection of m remains necessary to fully
exploit the potential of MTG across different datasets.

Table 7: Computational efficiency comparison of prompt tuning and message tuning.

Methods ogbn-arxiv (1-shot) COLLAB (1-shot)
Time (s) Memory (MB) | Time (s) Memory (MB)

GPPT 0.6032 3499 0.0204 32357
Gprompt 0.0326 10987 0.0081 3517
All-in-one 0.0559 11023 0.0147 3767
GPF 0.0067 10963 0.0045 3515
GPF-plus 0.0074 10983 0.0057 3517
MTG (Ours) \ 0.0053 10963 \ 0.0036 3515

Table 8: Performance sensitivity to the number of message prototypes m in MTG.

Dataset ‘ m=3 m=25 m =10 m =20 m = 30

Cora (l-ShOt) 51.28i7_29 54.06i4_49 58~54i7.89 56A73i5>51 56.21i7_02
BZR (1-shot) | 73.154115.06 77.8440090 74.8111396 77.534239 72.78117.86
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Table 9: Performance comparison of adaptation methods on 3-shot node classification (accuracy+std %, 5 runs).

The s and best results are shaded in red, with descending color saturation.
Method Cora Citeseer Pubmed  Wisconsin Texas Actor ogbn-arxiv
Supervised 37~79i9,16 35-18i6.86 57~33i4.64 41-03i6.40 40.78i12455 1862i346 19-03i5.08

|
|
Fine—tuning ‘ 51-97j:2.84 45.083:2'(]9 65.403:3.0(] 42.403:7'77 43~13i13479 22.113:1‘97 27-34j:6.61
GPPT | 43844611 42344831 67434095 34291471 389041886 21.654330 22461405
Gprompt ‘63.78i5_77 60-00i6,18 66.68i3_53 92-52i5.38 39-00i47.08 29.67i2_53 73-92i2.75
|

|

|

|

All-in-one 48.094 483 48.094518 65794579 89.624438 88.691108 24231139 31.154905
GPF 348411983 259241230 71204282 93851371 95474075 37441343 59.67112.69
GPF-plus 56.3845.37 72484563 70.854403 98.154073 97.664041 43.5941455 64.634110.05
MTG (Ours) | 66.111437 73.814856 713843201 98584093 98.174140 37.624470 76.014539

Table 10: Performance comparison of adaptation methods on 3-shot graph classification.

Method ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES COx2 BZR D&D
Supervised ‘ 53.3316.61 50.7741244 61.331259 59.47 15.34 15964164 65.1511861 52354812 59771110
Fine-tuning ‘ 66.100.70 56.10+3.46 62.7215 39 59.87 5.7 227141086 699711380 522241064 59.7040.08

GPPT | 59481542 50884631 64741109 6413118310 19124243 719011498 709311635  59.004634
Gprompt | 64.35:191 54951947 64941597 665311481  22.081357  51.5311308  54.631205 55991753
All-in-one | 65.671+0.58 57.121190  69.844602 | 80.004567 23961062 66.0611823 619811132  58.9615.03

GPF ‘ 65971069 53.87+1344 63.3512.45 742711 55 23.8713.45 653111945 7438+1162 59.07+065

GPF-plus ‘ 64.384230 56.501371 63.5511.85 752043 64 244641597 652511807 T1.6711487 59511062

MTG (Ours) | 66.9510.50 57491252 70494068 78131636  2971is06  73.864074 74.6511214 60.8516.39

Table 11: Performance comparison of adaptation methods on 5-shot node classification.

Method Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
50251837  41.224630 67.88421s 39431586 4391i6ar 21921186  22.3843.05

62.664+355 39544351 | 70914487 42974599 47194737 22924120 28.844311

Supervised

Fine-tuning

\
\
\

GPPT | 51981343 45771741 66974370 37.001319 48821515 21.584081  28.90+1.64
Gprompt ‘ 69.0313.61 66.1311 64 67.871208 7822143733 393214708 34.6711908 85404079
All-in-one | 30.36+13.48 27.9311050 46.1611583 87161300 73281991 21491302  13.0116.29

GPF ‘ 35431102 25.1243.01 68.961399  98.2611 19 98421936 44.071394 71.831937
GPF-plus ‘ 66.221620 75734519 69591433  99.0111 43 99.121 995 44.581595 66.88416.14

MTG (Ours) ‘ 71811359 76.34.16.15 70841308  99.12.0.95 98.761236 45.091396 85.94.4 93

Table 12: Performance comparison of adaptation methods on 5-shot graph classification.

Method ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES COox2 BZR D&D
Supervised | 62.60.1401 552344926 62904503 73474392 25671048 649911042 51481999 63591286
Fine-tuning ‘ 65404333 60.724909 63.331413  75.3311.89 7.4641.29 73191953 7296411198 6471139

GPPT | 66.371350 54.051458 5827:463 70.531390 22171934 678811734 69.63:11496 60.0243204
Gprompt ‘ 66.7013.87 60.764508 62941138 73.071213 21.464997 53354775  59.38+1443 58.28191s
All-in-one ‘ 63.621230 57864583 | 71371480 80.931196 26714917 62954857 627811018 63.444135

GPF ‘ 67.804558 59.651625 63371437 74004365 27.004078 662741457 61.0541151 61.064263

GPF-plus | 68.131331 60.68+467 635li080 73.871351 26871180  72.8711017 715441481 64.801345

MTG (Ours) | 69155400 63.11515s 70105112 81605455 35081505 71845575 76374511 66075250

Table 13: Performance comparison of adaptation methods on deep backbone models.

Cora (1-shot) BZR (1-shot)
L=4 L=38 L=12 L =16 L=4 L=8 L=12 L=16

Fine—tuning 38.8815_74 36.843:4_10 33.783:5_05 30-70j:4.18 70.()63:18_37 56-17j:28,60 67.41123_52 71.11i15_g1
GPPT 30.684578  33.824199 33.894806 24.324460 | 68954869 779042315 67.59412.99 69.2041451
Gprompt | 38.531557 43.551487 41424595 33741410 | 67.0411270 71671701 76601737  72.6517.40
All-in-one 29-42i4.09 29.683:5_53 26.023:4_38 30~93j:4.38 61.233:7_94 62~53j:10,26 69.32i9vg4 7704igq';
GPF 338449928 36.8241361 28124039 30.684343 | 757441702 739541060 72594894  78.8340.75
GPF—plus 43467ig_52 41.34i(§_52 39-23i7.88 36.08}_5_54 73-70i3.14 76-79i1.08 75.8615_77 71.73ig_99

MTG (Ours) ‘ 47~80i7.07 45~10i7.90 43.36i0_54 37-00i5.b‘6 ‘ 77-04i9.93 79.26i0_45 79.26i0>45 79.26i0_45

Method
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Table 14: Accuracy (%) on 1-shot node classification.

Adaptation | Pre-training | Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised | - | 26561555 21.78+732 393741630 41.601310 37971580  20.57:1447 10994319
DGI 33154784 21641390 420141250 37491513 4531501 19.764353 7214001
GraphMAE 32934317 21264357 429941405 36.804717  37.8lisgex  19.861070 123513460
Fine-tuning | E9SCPEGPPT | 381250 18095550 467451009 353Ligs 4766107 1917:055  1621s5s
EdgePreGprompt | 35.5715s3 22281380 41501751 40.691413  40.621705 20741412 14831055
GraphCL 52614173 27.024431 424941129 33944774 403111368 20.1947.9s 4.6511.19
SimGRACE 40404466  35.051437 37591817 37374368 46.881464 19781189  8.1343.96
DGI 30471353 37261617 35.62i774 299441040 292911457 21761200  3.8046.19
GraphMAE 27.39+1026 21541400 483111772 29.831931  25.04:1038 22.581197 435160
GPPTPrompt |  EOSePreGPPT | 3037.050 21065057  39.64srmn 2891500 3039505 19855070 14655507
EdgePreGprompt | 25524442  21.851430 462041076 30401681 22.6841280 21.524713  2.0541.43
GraphCL 43151944 26731412 383441150 25031537 31.8liis3z 22.51e173 7054402
SimGRACE 27.861079  25.061490 36.701926 29831641  25.674801 20974230  5.5045.10
DGI 36464539 36.2511006 33.65i520 67714992  31.00i3732 23.85i350 48474587
GraphMAE 505847314 42.8411050 397441535 67.624118.06 23.31i2949 22344357 66.6645.04
Goromnt EdgePreGPPT | 46.961g05  40.15:701 354641412 673711232 30.5213673 23.50:416 75724405
P P EdgePreGprompt | 48.11.9 89 48071562 335411666 743841315 33.25:4011 19891138 70551766
GraphCL 56.66+11.22  458li70a  39.3711405  77.071503  29.55:3556 25.261110  51.2046.40
SimGRACE 46341675 53211001 35581003 653841570 3020640 24494438 52761530
DGI 47521050 39371312 38741015 56.02411312 573811282 21.0311.96 19341 48
GraphMAE 23091490 18081505 33.19:i110s 57.5411066 52.82:1147 2331i001 4191604
Allinone EdgePreGPPT | 49.631505 35.061057 407311132 662911011 58624551 2149:107 5624505
EdgePreGprompt | 37.39133;  28.85:14320  35.531907 59.1811230 39.71:2531 20491300 13.0146.20
GraphCL 523941047 37374415 45174693  39.144117 65491706 24611050  6.7046.01
SimGRACE 35991076 4041ios0 30231703 555611470 592240017 21.031s03 5724161
DGI 278341880 16501457 38331513  62.69i1396 60.5411313 28.171481  19.3646.20
GraphMAE 38.5715.41 25.614307 485241303 76.8441050 695141875 28374582 43.28410.60
GPF EdgePreGPPT 15294841 12334533 43784602 78354407 68.05417.34 25.664333 65.114570
EdgePreGprompt | 26.60+13.92  31.164505 489811157 752011320 694811707 25274565 41.87111.49
GraphCL 23164511 16771130  49.99:586  51.60400.06 73.5411850 20.681670 27.7315.12
SIMGRACE | 32011121 19431010 37272600 60.814065 69.9711676 28701335 25.124450
DGI 17294615 26.6041324 34.02111.914 746811151 714411566 22424966 16.83110.02
GraphMAE 54261745  59.67:1187 46.6411857 821111305 709511863 26581751  49.81 1050
GPF-plus EdgePreGPPT 284941573 28.0441431 465141584 72.6041205 70.67+1750 29324856 71.98112.03
) EdgePreGprompt | 55.77+1030 49431821 427911518 787611363 68.7511651 22.681361 57444605
GraphCL 341811771 288640285 37.0241129 52.3541969 754041910 22824499 3211446
SIMGRACE | 213341486 246130121 35901006 734941417 761040035 2051404 46714517
DGI 49484480 623111890 46.184730  67.72110.19 629611680 2548i733 25.06410.57
GraphMAE 46271666 492141295 469811002 833241246 71.59:+1867 29444731 36444959
MTG (Ours) EdgePreGPPT 46.681266 332211252 44.85i975  73.801956 71.1lii713 20961203  75.9714.99
EdgePreGprompt | 46.294381 453041604 50.7041168 727511121 791311718 21.344178  21.084234
GraphCL 58544780 509611640 40.001750 4841i1610 697111642 24774845 38964652
SimGRACE 45934767  57.601901 432915080 72984975 T1.26417.71  22.034350  37.9045.83
Table 15: Fl-score on 1-shot node classification.
Adaptation \ Pre-training \ Cora Citeseer Pubmed ‘Wisconsin Texas Actor ogbn-arxiv
Supervised | B | 16604251 1081ip90 372341548 26342001 24051500 11561305 7.99:0.00
DGI 24961601  11.0li59s 347511375  26.691330 28904651 1201143 393113
GraphMAE 23184285 10821383 41.0311336 27431447  23.084607 12711124 8.074108
Fine-tuning EdgePreGPPT 35921406 10.864009 40.6241500 23.561343  29.031516 14594300 12131004
EdgePreGprompt | 28.99.¢.35 12.394356 28.8946.74 26.74 1308 26.8116.66 11.63 1564 10.6141 45
GraphCL 47044515 21861567 383011080 14271300 24521750 15914008 2.8840.51
SimGRACE 33221309 30781301 3279660 237linor 29534641 15731120 2881050
DGI 25824478  33.00x640 31924804 22774620  23.804s89  17.59:113 0171026
GraphMAE 13.1846.02 10871443 464311673 23744505 21364780  13.60:1160 0271023
GPPTPrompt EdgePreGPPT 28541387 17.624404 34554800 20.614549  23.84459 18.4810.57 9.1541 18
EdgePreGprompt | 23.46451; 19.0044.04 455241054 23.6513.96 19.8247.93 193944 08 1.354 07
GraphCL 38994832  23.761397  36.7541202  18.084660  25.641s12  19.62:056  1.52i068
SimGRACE 21704066 22132445 315541041 21484316 21751575 17054175  0.6610.30
DGI 30.2044.21 33581940 31.894543 55651481  23.6819878  20.124396  42.9041.91
GraphMAE 45914610 409411071 394641507 601411006 192742350 20.061460  57.881332
Goromnt EdgePreGPPT | 44154757 37311626 298711041 61525678 240410940  20.14135;  69.8651.02
promp EdgePreGprompt | 46281545 42821605 33.5711607 644611007 25.8613145 18.671174  69.894515
GraphCL 49.8611036 4041912 38.0411345 61794630 2115425814 22001174 45324389
SimGRACE 38.554502  49.65:1142 31131915 6040755 292043560 21.394305  46.731462
DGI 34764380  26.67+446  22.681529 46.194i662 31.1449037  14.374036 0.2410.01
GraphMAE 10824445 7.04.4999 25464917  52.554485 37.08.19.37 12.6815.63 0.1940.26
Allinone | FdgePreGPPT | 44161500 26794557 362711280 5T44ii0ar 265611081 14720500 0984047
EdgePreGprompt | 24.931499  14.584503 309941762 51424635 28.8ly1776 11.854148 0.56.40.27
GraphCL 46.58.15.42 29.35.43.66 38.05.6.24 34.061700 433711601 16054388 0.7541.07
SimGRACE 27351131 30201444 24614629 49191883 39.01p1s76  13.8611.76 1.28.40.35
DGI 193951755 4.68+107 28704913 54.29:867 51284780 192541007 84711146
GraphMAE 23.7945.49 12895199 453611588 69.67:797  63.6711350 21694547 1948504
GPF EdgePreGPPT 3764175 359:138 312011506 66.571608 603911378 18.041g30  47.051315
EdgePreGprompt | 158541363  18.6317.34 39901900 68.49:1001 63.3311458 19724508 21674210
GraphCL 9.7644.57 4784031 382741717 353311399 63.1lu70s  11.694930 1944405
SimGRACE 187341008 5.90+113 22654560 551540136 60.624924 17944536  13.141290
DGI 9941540 137411638 24214044 6832i955  60.71is350 145lii072 53714020
GraphMAE 50.19410.64 562211399 423811001 75.0741000 64.0811243 19254553 23384112
GPF-plus EdgePreGPPT | 19.5211774 153211912 40.6411793 64.8211161 64091970 24.561879  60.35417.73
EdgePreGprompt | 53.28111.46 48371925 40.02411518 71731924  58.5l4637 15581414 31371250
GraphCL 26.14121.11 189012401 33.64111.41 392511865 70.0811587  16.081305  15.7811.60
SimGRACE 143501965 152312093 23.7441256 525411212 68.0741086  11.834468  21.814106
DGI 44861511 551911642 45564725  63.661496 543111000 23434622 9.081n39
GraphMAE 42831519 444141004 445310081 76021917 652611300 27541726 15271007
MTG (Ours) EdgePreGPPT 44734341 309511296 42.0311102 64281995  65.1111193  19.881086  62.60+261
EdgePreGprompt | 44914376 41.0341551 47734547  66.38+719  71.3341375 18471176 11314149
GraphCL 55751545 464111657 38301583 38521845 6l4diror  23.92ig3s  24.831505
SimGRACE 40424471 54551897 363ligss 65381840 63361600 21774300 23221469
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Table 16: AUROC on 1-shot node classification.

Adaptation | Pre-training | Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised ‘ - ‘ 76714176 63.021400 620141806 61.5314096 6286110220 S51.164101 72481134
DGI 79331082 65164485 634711336 59724284 65.1649096 50131096 64224571
GraphMAE 78931067  63.92:346 66.7811667  60.831518 61.791963 51.014055 72864161
Fine-uning | EQECPeGPPT | 78441150 6074sson  Gd9iinms 5891caie 65055001 07900 77261275
EdgePreGprompt | 80.124005 65055165 60.8941556 61.08x5020 627741008 51471108  75.811006
GraphCL 86.34.11 24 68.321124 575641585 43.79+405 63.0911020 S51.19:063 63.3641.49
SimGRACE 76631167 71911047 58101913 57761212  65.0619714 50.81:066 56.3310.77
DGI 63971540  71.524515  S51.574586  59.89+095 57221990 50.71:0s6  50.0710.08
GraphMAE | 78201559 61.64:as1 641241541 55481640 53951370 517lir7a 59281930
GPPTPrompt |  EUSCPreGPPT | 65752001 5428500 S5.02emm 5459 S055mams  499%s05  T4381s
EdgePreGprompt | 62.601250 54.231614 614141142 57.584293  53.164675 50.3210920 63.714213
GraphCL 72091701 59.06s551 559511350 545lia0s 56591741 51765005 5445.10s
SIMGRACE | 64.834050 59.6lis10 51.8411205 56884430 53424667 50482077  50.7240.43
DGI 70704006 70931450 52964053 14124850 579341010 52.82i385 90.604108
GraphMAE 80.674524  70.724534  60.6641963 89.641551 595711181 52.87147s  94.044132
Gprompt EdgePreGPPT 84.0342926 67.95:i260 44.60+11308 88971538 60.6511295 53.55i361 96.4040.74
promp EdgePreGprompt | 81901404 74855068 583419051 91.99:550 62.0311444 50165175 943941 1
GraphCL 83.034416 78331598 582411376 87.80s551 583311063 5445.005 92724070
SimGRACE 76994317  84.091288 519141226 87531249  61.6041400 53.631460 91.931195
DGI 75294107 71.50+1.46 55694138 74351420 64751631 51051096 552linas
GraphMAE 73991563 49981307 531841341 78161496 62904367 50961197 50214101
All-in-one EdgePreGPPT 83261100 69.821130  73.631306 86.56:653 753841013 49.99:008 54224518
EdgePreGprompt | 73.844301  62.35.:6.11 61.26.47.66 86.031316 67991633 51484087 75.8l4283
GraphCL 84344435 72361252 68224635  63.001600  69.391256 47.631210 55.774a7s
SIMGRACE | 72301105 69.885055 52941950 7660005 70921719 48.182007 65431150
DGI 657411040 50.00£0.00 51901757 77181467 67.0li1083 58841316 644712093
GraphMAE 73691275 66161055 73351502  9698.0s0 S8143110os 55431358 80.5210s
GPE EdgePreGPPT | 62.031g87  57.99:605 68251700 95971175 78.79i070 55901620 92.371030
EdgePreGprompt | 70.831g542 71941331 71404527 90331463 71.851972 56.131433 83.644082
GraphCL T40Tws 06 6121armr 70394476 651221599 84281505 5442575  78.19%1 g5
SINGRACE | 69.6011051 62471570 50731561 843711001 79.6941405 60481075 61.041553
DGI 58.071825 551511160 557011101 85931624 792811150 57.02:g00 60.731311
GraphMAE 86.94.14.26 87434346 667411562 97984167 821641000 63324643  80.3245.00
GPF-plus EdgePreGPPT 68.27 11060 598511718 71.2741040  92.671231 841641073 61724516  93.5241.00
EdgePreGprompt | 86.3344.94  88.60+518 63.1211873 96271106 77714231 61971510 84361057
GraphCL 80.06.46.24 61.5841477 556341568 752641327 78784150 58.864380 70.3913.92
SimGRACE 64.3911105 641141053 547911068 85741667 85071921 55751451  69.094234
DGI 82304214 80391920 62.64i704 85681400 73.6211507 54.59:i510 74204084
GraphMAE 81.64 486 71841749 629511120 98241137 829041167 61.7014093 80.621262
MTG (Ours) | FA2ePreGPPT | 81324550 65290100 630651025 937420 T9.05ws0r  3047e0m 9704203
EdgePreGprompt | 80.681031 73.35:1105 692041385 90.19:57s  85.59:047 51.891208 76.91:305
GraphCL 89.024973 78.6111046 5443111925 75.824479 76981939 55561735 77304270
SIMGRACE | 78411542  80.86s570 57.6l2650 91062160 822421174 5399945 63132517
Table 17: Accuracy (%) on 3-shot node classification.
Adaptation ‘ Pre-training ‘ Cora Citeseer Pubmed ‘Wisconsin Texas Actor ogbn-arxiv
Supervised | - | 37.79+916 35184686 57331461 41.031640 407811255 18.62:346  19.031508
DGI 45844329 3491i1007 63001683 39431693 431319379 20271170 21851557
GraphMAE 45050477 28591641 65401300 41491519 409411391 19.031517  19.6317.61
Fine-tuning |  D9SePRGPPT | SL9Tios  3319s570 64381550  4240i777  3469u00r 2083001 20SLia
EdgePredGprompt | 4033466  33.39455 63491317 41371728 345311000 19294105 27.3416.01
GraphCL 49391915 38401306 62.79i321 41264626 403liy336  21.064197 17371734
SimGRACE 43611541 45084000 62661501 40.114s01 409441505 22114107 1606405
DGI 37464627 42341831 44364367 34291471 378045098 21421313 143441410
GraphMAE 30934364 20764264 67434096  33.601230 37.644588 21.651339 17.24413.05
GPPTPrompt EdgePreGPPT 35.0542.05 24264055 29374622 389041756 20.35:043 22461405
EdgePreGprompt | 27941507 23214295 33494549 36.0611201 19.851031 18731477
GraphCL 43841611 27.0944.57 23.894535 38901586 20.60+1.10 13.0416.44
SimGRACE 29.66+5.49  29.6311.87 31.6646.21 34.6516097 21.08+116 1413141389
DGI 37424700 41194540 715451015 182540168 266451145 50874551
GraphMAE 63784577 57154390 864847148  3699:4162 2921in0r  73.924075
Goromnt EdgePreGPPT | 51.29.707 347941407 89101400 374914501 26441535 64521116
promp EdgePreGprompt | 53371630  56.19.40.95 925215455 38.66:466r 21781185 6877137
GraphCL 56.611502  56.2815.80 85831455 36.1614362 29.671053 584817
SimGRACE 45224560  60.004618  43.581578 828441150  39.0044708 25071100 57424467
DGI 33801636  31.0812095  48.091281  74.71io3s 31944700 24231139 29.92115
GraphMAE 19254311 19.024519 64031470 76901208 659311742 19.561048  13.151463
All-in-one EdgePreGPPT 48.094483 3429:185 58361463  89.621438  88.691108  2091i33r  14.41i557
EdgePreGprompt | 29.54.625 24.631357  65.7945.7 84291930 738911692 20701055 12911008
GraphCL 278941834 43964669 S1.444446  67.064970  78.8614.06 22141257 31154905
SimGRACE 251641178 48.094818 47874353 76781198 82934504 21.99:117 15471405
DGI 251451907 259241230 3849:1450 643611275 591611447 25031166 31.601957
GraphMAE 33931501 2390i511 712008 9385171  93.664595 3744isas  38.70.11.10
GPF EdgePreGPPT | 23.05:905 188la4gs 65061000 92641097  92.150410 30472457 59.67412.60
EdgePreGprompt | 32571057 21751085 67.5751407 9l4liozs 95341450 25.641s55 35.1318.73
GraphCL 34841105 23024556 49154646 67.6511541 95474275 2195:1g51 36094 10
SimGRACE 27.80118.00 212041125 31.7541386 86.961527  94.831407 22.82:316 28.7045.08
DGI 20.80+13.69 244611723 S51.70+1120 77.55+1733 77.51:2266 23.99+69s 323411181
GraphMAE 56384547 72484503  7085i403 98151073 96501067 43.59is50  44.4digss
GPE-plus EdgePreGPPT | 32.6240501 220610101 67.201167 98151083 97494015 34381503 64.5111003
EdgePreGprompt | 52741705 71561503 6884433 96541157  97.661041 30.87r661 646311005
GraphCL 303419141 271720465 45.62119.04 62.7611468  97.5041.42  36.87:045 43.66017.48
SIMGRACE | 30.95:10.30 289740066 419611561 80.9241040 97.664141 34894603  33.741500
DGI 53531660 73.8ligss 60241733 746111340 66.5011418 32941450 33.8ligs
GraphMAE 52274815 54454507 65014940 98581093  93.664421 37.621472 37974754
MTG (Ours) EdgePreGPPT 51.874874 331511511 63.3241238  96.641219 93154402  33.651339  76.014539
EdgePreGprompt | 52.78.4680 58101480  71.384321  96.751353 98174140 31.061180 284541377
GraphCL 66.111637 60131449  55.874762  65.61ig65 93491307 32.321397  42.5346.06
SimGRACE 42914944  64.664720 513711041 784241390 94164370 27731297 38.0911367

44



Under review as a conference paper at ICLR 2026

Table 18: Fl-score on 3-shot node classification.

Adaptation |  Pre-training | Cora Citeseer Pubmed ‘Wisconsin Texas Actor ogbn-arxiv
Supervised | - | 37641632 28681500 53.04ig01  3490i503 29064777 13.691287 15214066
DGI 41764148 272341952 61.18410.18  35.014555 31.1245.67 16.0540.75 16.4541 .97

GraphMAE . 5 20.60+572  64.3313.42 34.08.44.01 28.2945.05 16.3042.37 14.2644 46

Fine.tuning |  EOZCPIEGPPT | 40765550 214 6362ias  3503u5e  2555ass 177900 16681065
EdgePredGprompt K 58 238ligse 62481402 35424602 26051695 12984202 19334046

GraphCL 47794936 34474344 63101293 22424661 29454886 19914108 7.4613.10

SimGRACE 41714400 42014156  63.141343 34284518  29.5547.96 17.9241 61 11.6841.37

DGI 33941756 36134565 44131380 30914241 34.81.47.00 19.3042.98 3504051

GraphMAE 25.3146.18 6.9119.93 67.6119.62 29.5143.03 33.87 1338 18.0341.97 6.0615.21

GPPTPrompt EdgePreGPPT 32.77+2.60 19541123 58071641 27204372  33.6545.16 19324053 17241162
EdgePreGprompt | 20.104436  20.6041.98  62.731496  29.194429  30.984736 18.99.40.70 15471205

GraphCL 41250450 25714495 50271665  15.65i5.40 34.61i665 19811102 5.96.382

SimGRACE 2719401 27091945 4279317  2679i455 32381573 19021050  4.0lipsg

DGl 32924652 37.7lasse 37904153  60.1241043 23.8942900 26.394424 46531246

GraphMAE 53.6043.06 61334481  79.0641148 30.5643745 29.024353  65.6341.42

Goromnt EdgePreGPPT 20814560 489411005 80.60i717  3274us00s 2473155 58.82i14s
promp! EdgePreGprompt 53884350 65.024080 91.034530 297743620 20404165  57.0841.62
GraphCL 52464508 49164573  65.0841112  30.89437.00 28214231 50551375

SimGRACE 40.831388 56251701 42.5945.51 76.68+365 379444621 25414135 52224438

DGI 22054415  253liga0 42821166 63222720 377111100 11.041046 15794087

GraphMAE 8104243 7361081 62241580 51.621263 58.9li1sor 11524097 9724320

Allin-one EdgePreGPPT | 41.541,5 27241555 56201502 8048:g06  82.89i250  9.5lisso  9.61yss
EdgePreGprompt 20.33.49.00 12.094336  63.1847.52 79.5941658 68.71411450 7.8949.38 9.96.41 .24

GraphCL 148541800 33384665 50521348  61.7941138  69.09.46.96 16.4041 47 14.33 941

SimGRACE 127141142 40224861 44794093  64.881435 79461510 13704229  10.0741.80

DGI 129321640 129241300 327611733 57.67e647 54601743 15681001 12831130

GraphMAE 19.5915.22 14484504 70151268 87.584751 864311119 31.561562 14.17 43.86

GPF EdgePreGPPT 9.9019.04 7.4043.59 63.041300 87.061600 81914967 22384876  45.75i533
EdgePreGprompt | 21.59.15095 11794350 62.0242160 86441715 864111056 22.04111.41 19344358

GraphCL 189042040 8101495  47.101536 44.5242045 81.7241188 14244536 21.8946.08

SimGRACE 132141051 10264885 253041706 6651a1115 861641016 15374706 13974597

DGI 10.87+13.03 143511057 432510047  75.321+1848 614740105 14704360  14.0513.80

GraphMAE 55764551 10451651 69781358  941lioge 8145:1047 45024447  20.13:9.50

GPF-plus EdgePreGPPT | 209040100 15300570 65431195 92.59:41s 86571006 32741614 52124851
S | EdgePreGprompt | 52131714 68791001 67981560 94331177 857811007 30.591743 44.071758
GraphCL 218419315 18.50s080s 594213435 2669414435 83371014  3093use 23494147

SimGRACE 201149226 184340495 275842115 61.0711466 84.6441024 30114673 15201024

DGI 465451060 72304071 59765701 67091811 58294706 30761001 17444145

GraphMAE 494855 49164750 64331010 94481400 8691i1055 34464685 14.5241 s

MTG (Ours) | FAECPreGPPT | 48251770 278751500 62605100 9220km0s 839:i0rs 329515 6384amn
EdgePreGprompt | 50761755  52.42:700 67.80s400 93.831443 87364555  29.641163  16.9010 30

GraphCL 65.93416.51 52.0545.093 54724726 444811168 850111001 29254515  31.7043.00

SimGRACE 37.1846.46 61.5911038 49481946 608611175 86.1311046 24.624201 16981664

Table 19: AUROC on 3-shot node classification.

Adaptation \ Pre-training \ Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised | B | 86204247 763li545 8024irs; 6644ig1s 598541205 51481074 59174106
DGI 84231975 743241401 82284543 67491350 552811097 51931120 61284140

GraphMAE 86.804235 75074245  84.701128 66581651 584811137 51781101 59.124166

Fine-tuning EdgePreGPPT 85.6241.41 72391360 83.031289 66.701404 544911208 52251089 60.551 73
EdgePredGprompt | 85.851¢.79 76.73.+2.96 83.4040.74 67271441 584311076 51241006 61.3041 07

GraphCL 87714150 75101005 81834015 61564785 571041053 52.031109 54664060

SimGRACE 80391581 76941130 79.561301 6734158  59.0211106 51.60o7r 56284114

DGI 70884254 73974546  61.071293  66.79i266 63591701 S51.341155 50341068

GraphMAE 80914038  69.11i346  83.101103 63771361 60954313 51.221138 51.844386

GPPTPrompt EdgePreGPPT 68. 714202  59.0l4073 74221490 57.604178 58204472 50.234031 58951129
EdgePreGprompt | 68291350  58.074040 81154481  61.931566 61914508 50274063 56.161047

GraphCL 75264386  60.584404 71431047 537942921 61734550 50.961066 50.69+1.68

SimGRACE 66901415 65724000 62584208 66871045 60354762  50.531057  50.071004

DGI 622415099 75871370 55461180 87724507 604411345 55.78:310  92.08i052

GraphMAE 80271561 74381535 84.371175  9634iss1  60.6711360 58524065 93.1710.44

Gprompt EdgePreGPPT 81414540 65991406 72.841048  98.59:i116 61.51i1467 56.861260 94314011
Prompt | EgocPreGprompt | 83.154591 82.01i17s 84451180 99321066 623411553 S1.33s042  95.60:0.06
GraphCL 83.254390 83204097 71.35:330 91201459 61.9211506 59784341 94764071

SimGRACE 79.021255 86571186 61.89:i664  94.09:300 623811557 56.131150 94.7110.39

DGI 7115433 6599:000 6683102 81.861052 46.05:56 52801203 55311033

GraphMAE 77891501 633lin0s 841311090 81571155 6649:506 50764117 55431007

Allin-one EdgePreGPPT | 8090407 68741325 76232081 96.171552 75391130 52984121 56371072
EdgePreGprompt | 77.504295 69.841180 85031173 91.35:044 72044605 49.89:1195 54.0810.15

GraphCL 651811180 77.644206  73.05:197 82741364  72.604120 S51.671131  53.0310.27

SimGRACE 594441908 78114147 64764062  84.99:i040 92994195 51641005  51.3540.00

DGI 60.20113.06 597911356 595211299  77.8410s1  63.8511027 54391039  73.91in0s

GraphMAE 82704000 72251000 8791i101 98454105 87471956 67241173 718.024053

GPE EdgePreGPPT | 65441007 67.131105 81072075  99.015:035 78.69:1s3 58431381 92.574;23
EdgePreGprompt | 83.184522  69.631701 85381675 98.35:2s5 83301510 56.19:i51s 83.95:073

GraphCL 73761075 683421091 75104001 574211500 80864138 56964460 77451501

SimGRACE 63961780 63.2611165 58.7liga0 95324350 86971921  55.064304 63.694520

DGI 553041320 55.8li1s74 665411531 91.041586 78851455  57.09:i347  72.14i5n

GraphMAE 87.2643.14 91.5341.55 87.1241.7m1 99.0340.13 82174407 7239418 82954111

GPFplus | E4ZCPreGPPT | T387.100; 560651050 82801100  9924s000  8647:r05 67155570 905417
EdgePreGprompt 85.81.43.03 91.47 +1.96 85134057  98.9940.19 84.004750 65.1741406 89.1642.12

GraphCL 80934655 61.66411501 80.004705 654211934 80574141 69404784 81.664930

SimGRACE 66.3641656 009141505 61.6641298  90.5746.03 82.68.4545 606441439 67351071

DGI 844248091 91924050 84104441  89.881435 673711167 59.804538  73.1041.13

GraphMAE 85.04.13.04 78.3515.16 87.65+3.13 99.1940.87 87514957 69.62:472 80.0141.66

MTG (Ours) | FO2ePreGPPT | 8273100 65.55:im1 8266505 9976:020 19082073 6407205  95.041r
EdgePreGprompt 83.39.44.54 81.041511 86.164320  99.2047 45 84194749 613441154 77304292

GraphCL 89.07 +3.69 83.12.46.58 77.041499  67.0649.98 80.3540.79  59.764377 78371286

SimGRACE 73.8715.96 899341191 681141104 87.0641266 86.821578 55804280 59.0447.05
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Table 20: Accuracy (%) on 5-shot node classification

Adaptation ‘ Pre-training ‘ Cora Citeseer Pubmed ‘Wisconsin Texas Actor ogbn-arxiv
Supervised ‘ - ‘ 502541837 41224630 67.884018 39431586  4391i6ar 21921186 22384305
DGI 48791551 3591is0s 61441705  40.00i63  47.19:737 2148417 1248115
GraphMAE 5409401  3275:635 T0.04issr  40.69.q7s  A34digas 22924195 240841 40
Fine-uning |  EOZePreGPPT | 5434iyr 3897ir5  1090uis 40697 #4530 2ld6iion  2884iin
EdgePredGprompt | 49.04:599  32.08:801 70441500 41031055 45781807 22465199 2594163
GraphCL 62.66.13.55 39.54 1354 66.841575 42971899 46414547 21991161 13424373
SimGRACE 45131781  3890:g0s 62651620 Ald94srr  46.09ie71 22771156 945:160
DGI 43.684712  4577:741  47.39:1022 36291397  48.821515 20911136 8.85i6.21
GraphMAE 315011189 19931660 66971370  37.004319  42.684601 22.10:086  8.90+6.25
GPPTPrompt EdgePreGPPT 32941082 26931156 63451363 34001560 368513214 20421081 28.9011.64
EdgePreGprompt | 30.554459 284644025 63331415 32574331 392lieo9  20.071045  4.0li06
GraphCL 51.98.43.43 26.68.12.95 57.5942.80 30434583 45204200 21.254078 14154596
SimGRACE 34934955 29.514060 42871157 33.004527 41424650 21.58410.84 9.114350
DGI 2781i10.28 52841936 37834571 572440727 344714105 26075420 56.59:405
GraphMAE 66.821505 60071395 66.661005 148913553 367314305 30.7lio1s  76.9845.ss
Gprompt EdgePreGPPT | 53.15:055  36.15:500 62184488 782224753 375944505 28765395 85405079
EdgePreGprompt | 62.631526 65341460 67871205 7801is74s 3845i505 21.861013 81.85:516
GraphCL 69.031561 61271537 572liams  6572is180 36.381a347 34671128 5752410
SimGRACE 51271505 66.131160 44781652 6834isp 142 393244708 30.061335 5736368
DGI 30450010 21822173  43.601501  7995:101 625011230 19831314 2.652000
GraphMAE 25024755 19381135 46.161155 82434051 6647s1r9s 15032513 0244000
All-in-one EdgePreGPPT 30.36+13.48 25.831932 37.6li2058 88.55i350  47.9810778 21491302 1.5941 .30
EdgePreGprompt | 21591750 18754185 393621145 87.161502 4632:5080 21231561 13.0lsg00
GraphCL 25.63117.68 279311059 42861721 84751886  73.2840991 20831504 6.7046.01
SimGRACE 15202051 250921205 21594058 78904026 646310550 21261621  4.80.517
DGI 295749089 24.55:1061 52431604  832li519  89.304158 35401878 20.7240.26
GraphMAE 35.43.41.02 25.1243.01 68.96.13.99 96.30.45.12 924441304 44.0743091 45204203
GPF EdgePreGPPT 15.3945.19 18114078  58.671321 98264119 89471191 30.99:i468 71.831937
EdgePreGprompt | 31.5811816 24.551828  66.254853 96301512  90.184157 31924575  28.604311
GraphCL 28.60+11.19  17.69+135 52471673 69.1510144 98424036 29134063 23901012
SimGRACE 189411260 22451345 40354171 92294336 91734381 30281064  33.77ig4s
DGI 272311461 2631i114s  47.0211451 838611724 96.181412  36.031749  16.86+330
GraphMAE 63281460 75732909 69.59:s43 99.01i1as  99.124005 44581505 4779109
—— EdgePreGPPT | 224410558  13.631507 66434508 98521007 96.181412 37.15:845 66.882614
EdgePreGprompt | 66221620 644911415 68.10145 98.644014 97741547 41.98.470 5125414
GraphCL 4770 aomas 291621605 64534415 709811007 99124005 3699:g50  25.74%170
SINGRACE | 277920151 283710550 502511001 89.572490 95831340 38231001 44701060
DGI 534711179 76341615 61521474 82.691s567 89774304 35424302 1338u7ss
GraphMAE 57164868 61374773  65.7lig0s 99231062  93.61is501 45091326 42.98410.64
MTG (Ours) EdgePreGPPT 56.961684 44491780 63344620 98481070 97171608 35361185 85944103
EdgePreGprompt | 53.611757 61264976  70.844328 97511388 98.764236 35.061202 38.0440.04
GraphCL 71.814350 66591539 581843314  72.021621 94.65:467 33.941377  50.044784
SimGRACE 48981601 68334560 52741195 87244585  94.8lisos 32761003 38.67+3.86
Table 21: F1-score on 5-shot node classification.
Adaptation \ Pre-training \ Cora Citeseer Pubmed ‘Wisconsin Texas Actor ogbn-arxiv
Supervised | - | 51.42:570 34201612 6745:905 343liam 35024810  16.891120 147641103
DGI 41530001 28714076 593321005 3471is0s 38801701 1649110 4784053
GraphMAE 551071597 2967601 69582403  3469ings 3457400 16924175 1297040
Fine-uning |  EOZCPRGPPT | 5550156  313Lisss  7031ises  3486usy  3663i7a 1942000 201900
EdgePredGprompt | 49.184550  27.041683  69.4614.79 34904577  36.3847.04 18281101 18.5141.18
GraphCL 61.324343 35954318  60.161543 26661578 33814328 20444445 6.9611.07
SimGRACE 45334488 34744740 62601639 35864486 36.864772  20.6341.13 4744048
DGI 40.791728  39.8617.91 44.6711225 32.761366 39.8614.07 19281085 0.3940.27
GraphMAE 24.5517.97 7.4914.08 66.551362  33.861388  36.6042.42 19.92.40.84 0.4210.29
GPPTPrompt EdgePreGPPT 32.5042.42 19954108 62424478 30571450 33931276 19891056  18.1141.03
EdgePreGprompt | 22204324 25964433 61224546  30.394077  35.844335 19224033 2.56.41.55
GraphCL 50.6012.51 25.0042.05 57274284 18.78.45.00 35.8311.96 20.3410.74 3.0311.03
SimGRACE 31561075 28274165 408710090 27061581  36.11ins 2045105  1.63:040
DGI 199641968 47.844239 37.264545 48.8612399 29.5013620 24.021465 49.694168
GraphMAE 61.574538  56.394360 65311936 701843472 36.0514375 30.084188  66.821968
Gprompt EdgePreGPPT 51.0343.08 31154386  60.744430 73.65+36.66 34.07+4183 27294343  79.7341.29
promp! EdgePreGprompt 60.77 £330  63.424511 66464930 77.08137.97 3445141090 21.034904  79.2041.95
GraphCL 64221105 57651574 56.661035 518210562 31.38ias02 32991100 49.824ps:
SimGRACE 4598150 6384117 42201501  62.124m005 3847is070 29.63:3s9  S3.4lis0s
DGI 6672005 10684751  268li0g 60732631 315941507 10661585 0212001
GraphMAE 6774303 8665195 339711040 58.02in01 49271003  83lisso  0.01w000
All-in-one EdgePreGPPT 151941625 134641023 314742440 789741106 29.9542092  10.104363  0.5340463
EdgePreGprompt 4.9941.38 5284047 274911502  68.691320 254441747 8.0812.12 0.5610.27
GraphCL 148811886 149811203 31.7111356 743341149 49.7012187  10.1016.01 0.754+1.07
SimGRACE 7214714 137101405 13424306 66.261665 454740183 11424514 0.5210.70
DGI 184441583 132541101 47234925 757841408 77.0li1057 285811486  11.0240.99
GraphMAE 23174253 12784123  67.881407 877511324 82.81t1055 43.091407 16761276
GPF EdgePreGPPT 3.69+1.67 5.09+0.66 53914741 94371831 80864983  23.044920  55.014g505
EdgePreGprompt | 20.17+1379 12794688 624741125 89.1011152  79.8811050 30441957  18.771329
GraphCL 11.74 46,74 5994919 464641428 51.0142081  86.6419.05 22.59.45.87 18.7440.78
SimGRACE 10.17 41235 9914956 29364875 71384097 8l14i1749 22304560 12314413
DGI 139241465 124141545 4073416583 712241360 84.8541028 32054940 6424247
GraphMAE 61.5514090 74864227 68341405 94484579 869311070 4428i646 24144516
GPRplus | EOZePreGPPT | 1S91uogs0 4265101 61795 93181008 821002 35.0lugm  56.15:s0s
: EdgePreGprompt 65964507 5716418091  66.1141485 934641079 85564953  39.844602  32.0742.05
GraphCL 388419082 185340170 63064355 651341796 86.5941100 33234780 194641 47
SimGRACE 19600300 182720681 369321665 69272083 846311025 35784300 24.024900
DGL 519141108 73991561 60731422 69162701  73.ldirze  33.52i507  12.71:055
GraphMAE 53104570 57301695  6465:460 95641465 906511005 45.184935  25.0819.90
MTG (Oursy | EOZePIeGPPT | 53200775 3709701 62225550 937650 N038piam 3200007 7602506
EdgePreGprompt | 56541755 555551140 69941500 O918lirg 924911519 33.62i050 3491.isr
GraphCL 67.851139 59664800 56941003 565641347 912411050 30424541  29.3913.06
SimGRACE 41641450 64901641 50.141385  65.1511007 904411087  27.201337  17.0042.72
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Table 22: AUROC on 5-shot node classification.

Adaptation |  Pre-training | Cora Citeseer Pubmed Wisconsin Texas Actor ogbn-arxiv
Supervised | - | 88392056 78.064205 84931577 65961305 66321550 Slddiog  78.8311sr
DGI 84.601540 74294378 81.264374 67404497 66.621512 51.78.1045 62.861435
GraphMAE 90301162  77.041375  86.094054 65324596 63951963 51731046  75.6510.78
Fine-uning |  POSSPRGPPT | 86881100 75175070 8623:am  6771uass  6936swm  S134i0e 8386113
EdgePredGprompt | 87414215 73794507  85.661326 66041512 66.70ss0n 52.40:00: 82.3411 45
GraphCL 90491149 76541156  83.074373  57.7lis1s 65574778 52.681069 66.7010.95
SimGRACE 85454009 76954079 80.861317 67732447  66.11i760 52524092 60.36107
DGI 76.3846.02  76.59431s 637641000 69274149  66.524333  51.274104  50.0940.25
GraphMAE 84774318  69.694162 82564184 66531444 63431299 50921044 63.551003
GPPTPrompt | EUZSPIGPPT | 69441015 601dsisr  77.28sa5 62047 6120015 S085s03  8567s007
EdgePreGprompt | 69.6010.83 62444517 819841411  63.831290 65864234 50324054 71.014538
GraphCL 82.064201 61541042 7626115 55231051 6283102 50871009 58531153
SimGRACE 70541007 64494150  60.671180 66382045 62.69:100 S51.005054 51465006
DGI 70761467 80.014220 54504251 845311737 65.41i924 54021061 92.6640.73
GraphMAE 72594756 76.0415923  82.881015 894011962 603411038 56231046 96.4510.14
Goromnt EdgePreGPPT | 85574049 68974456 76574105 89.57410m1 664851055 58851005 9840100
promp! EdgePreGprompt | 88491053 84.821089 83584120 89.71i1978 6652411061 52514239  97.7940.15
GraphCL 88701205  81.0016.61 74924253 83.6441683 00.3311037 63.031307 94541047
SimGRACE 78281300 89065056 59221576 8622i1817 666851070 58.881515 95271008
DGI 42654041 57451701 57384887 85534093  68.87i632 S51.244030 54764075
GraphMAE 80751061 57951108 81324005 83911514 72301321 53431071 53461541
Allinone | FdgePreGPPT | 62420115  6225.75  6345:150s  9530:4s 786811000 5190001 54224157
EdgePreGprompt | 77241351 64141101 75974333 91724162 80.1041086 50404316 75814083
GraphCL 659911083 652741157 69761401 88.871431 76.09:605 5421ins5 55771478
SimGRACE 50531455 64554707 4771ssss 86551081 83.0liigss 52444108 5356786
DGI 622041500 623211775 671441186  89.864s25 78394166 65971726 74591007
GraphMAE 80344003 67334516 8664002 97724145  8925i510 73064021 T439:076
GPF EdgePreGPPT 49954010 52764692 74911550  99.9810.03 83.654764 5931is501 909641 32
EdgePreGprompt | 73.564545  76.824425 8550195 97.15510s 86.8lisas 60431630 75365261
GraphCL 79041541 64254715 71090651 738411506 83.62:475 5739i500 75191004
SimGRACE 60981005 64931550 5821309  90.3811s0  9043iggy 61684005 60.8943 06
DGI 60.3011439 544011109 73471902 95861395  89.081543  68.061270  67.3743.03
GraphMAE 89.991150 9209411 85.69:312 99.93:01s 87294792 73104008 81.99:056
GPFoplus | BIZCPreGPPT | 6526115 55.00.005 8204055 9996u00s  8689sum 70170450 93734105
EdgePreGprompt | 91094105 822241910 83841301  99.9610.08 83884787 72254145 81.541105
GraphCL 84114790 615541505 81384375 91954063 86244770  69.74srgr 77424014
SimGRACE 66.55414.49 631141451 65.07410.97 88174754 89584903 68.8li160 69.604937
DGI 79101606  91.104330 822643091 92824580 75.084759 65.51i126 71.531245
GraphMAE 84.041950 79504501 81291585 97384005  8327i7s9 72524150 88911049
MTG (Ours) EdgePreGPPT 86.804058  73.624531 84551301 99964004  79.55i064 63351082 97.59i0.21
EdgePreGprompt 88.071230 83984325  87.8li254 99314075 85441487 63891170 92.11i184
GraphCL 91334590 87104375 79.184211 7890452  8032:080 60141410 84054000
SimGRACE 78.674311 90214224 70491682  86.531952 82971607  63.821080 64.57i5.00
Table 23: Accuracy (%) on 1-shot graph classification.
Adaptation ‘ Pre-training ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES COox2 BZR D&D
Supervised | B | 57301005 47232001 5636707 65201070 20581200 270811101 2580s055 5533102
DGI 57324000 42.2240.73 60.00-+4.48 64.1347.90 17831188 29441968 26481761 57151432
GraphMAE | 57701113  48.001025  6240:19: 65201500 2221in79 284721472 25.80i053  53.59:i60
Fine-tuning EdgePreGPPT | 57.2010.85  47.141055 582741006 64271473 1979007 278341341 34694850 52824935
EdgePreGprompt | 57351002 47204055 61841050  62.671067  1975:933 271321205 294411120 56164510
GraphCL 57751102 39621063 63441561 65.07183s 21214087 530440132 29074700 55501583
SimGRACE 57331006  46.89410.42 60.07.+3.21 65.47 1589 19714176 76191541 28461640 53231971
DGI 49.0711036 39341911 60811155  S1.3311587 20294140 78234138 44.0719242  53.65410.00
GraphMAE | 50155075 2946:1565 60722170 4480s1552 20374105 686342051 559911905 57691680
GPPTPrompt EdgePreGPPT | 493811029 36474783 60921047 428011298 20874042 73994979  49.8lyzga7  53.694i6.s8
EdgePreGprompt | 50.1510.75  40.2219.56 57.03+455 378711043 22081342 722815322 50.0641897 55331851
GraphCL 45701800 471845095 59241101 604011545 2129 579 683642105 593241100 56264890
SimGRACE 46.0311020 4l.1lggar 55421881 526711712 20834347 623141942 592041506 55.88i7.s1
DGI 504711000 47294778 56.6li793  63.3311436 20504179 455241608 554311360 56.1816.3
GraphMAE | 547551545 36392772 576611506 68802406  1954s100 43914651  47.1600r 55225640
Goromnt EdgePreGPPT | 511841111 46701571 591711126 52031580 19711445 50.084500 45.0611505 51.044ss5
promp EdgePreGprompt | 51.57+1157  40.53212.02  55.55:817  73.60476  19.67150s  54.64ig9s 513611555 57.201551
GraphCL 505041040 45545005  55.5lp1075  5600i1570 19.83:a1e 44404574 464245067 52651917
SimGRACE 504011054 482541364 575311105 64.674792 22294350  47.024550 529011176 57.8lisges
DGI 60070051 39561500 62585707 73871615 23964145 50724003 64381932 5597165
GraphMAE 52.621301 40.8211463 06491626 69.671913 2321172 56684738 58.6411950  58.77x1.05
Allinone | EdeePreGPPT | 5012507 427duigs  65.71uss0  7520a635  2092i205 602711007 59695000 5624124
EdgePreGprompt | 53.781582  42.8716.19  61.821753 68274388 21884056  49.064553 32.65110.08 57.601437
GraphCL 58751080 51.661025 64361730 6600579 19464985 525541051 426541443 5972415
SimGRACE 58.8340.85  47.6040.39 61174173 66.67 1573 22.5041.56 7614455  59.01412.314 58264118
DGI 52.8548.01 42.7547.10 59.1743.63 63.0747.22 22.0041.05 279444365 705641546 59.3641.18
GraphMAE 49.27 4777 372341795  58.65is49 65734691 20.71i192 404341043 67.8440028  55.8016.34
GPF EdgcPreGPPT | 59351105 37534510  6254s955 66401595 22045145 274011265 24750501 43865547
EdgePreGprompt | 59.651505 41441052  61.82:001  6840:500 22074145 657911772 604910420 55565507
GraphCL 57734070 47424122 63.91.+3.6 59.2047.01 21134011 37.0549.30  71.6741471 58431147
SIMGRACE | 58301077 41041001 6335:500 66931505 21.79:i040 3399:1105 27471500  58.031163
DGI 57874619 43984717 61261306 62531686  18.7li119 267011119 67.9041460  48.7949.14
GraphMAE | 55001551 40321940 62491505 62131871 22921101 3378:1101 684015002 56.31.403
GPF-plus EdgePreGPPT 56.65+4.08 41414073 63.06+2 55 65.07+4.41 21.5049.37  27.8341154  29.57:760  57.6210.42
EdgePreGprompt | 55351301  40.084205 61331051 65201605 19421188  28.85:1545 572211817 55904550
GraphCL 57104131 46891024 59.75:795 64001789 18791146 25904958 711711492 57.564254
SIMGRACE | 57931152 47241020 6292:57s 61331381 20294160  27.08s7s 28461640  S57.11i54
DGI 59154544 43461683  62.78in36  65.60i729  24.7li1ss 517411300 74.8liises 56.39i307
GraphMAE | 58.101570 48241055  59.621641 66931703 2271in5s 589311205 540711531 58.01.5ss
MTG (Ours) EdgePreGPPT 6225572 45151600  62.7linz0 67201636 26.081431  60.16110.63 622811013 56.37i8.33
S) | EdgePreGprompt | 59.45:545 47724845 65662155 7580540 22294101 577511076 49941908 60.685s 12
GraphCL 57654705  47.81is75 63701087 6620475 20961197 503611207 51.05i1550 55465477
SimGRACE 61.821349  52.2540.56 66.98.15 17 68.8715.01 213341092 78271001 65.6841641 57.261001
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Table 24: F1-score on 1-shot graph classification.

Adaptation ‘ Pre-training ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES COXx2 BZR D&D

Supervised | - | 54621112 41101039  46.69:1082 63471636 1525:306 227811060  23.71igos 44741403
DGI 54.601100 38531034  54.821331 619741776 10.76£4.28  27.09411.48 24341921 46.154541

GraphMAE 55204124 41711047 52.05+7.26 63.41.414.44 19.1743.42  23.6311240 23714523  46.25:784

Fine-uning | EO2CPeGPPT | 54394005 4110505  5582:100  6094spu 12895 2308ina0 Bl2rs  363Lim
EdgePreGprompt | 54.62410; 4l.14s041 59733141  59.05:135 13725415 229141005 27.09:1951 45494455

GraphCL 55244107 36271063 56.25+7.55 63.37 +8.64 16.78.+1.01 39.1144.09 27.674870  48.68.16.42

SimGRACE 54.6941.00 40921037 52674714  63.7045.32 14154049  45.0641.93  27.051820 37.844714

DGI 410711271 27.05413.23 460551061 417611585 17261230 44.684107 339341406 43.6li555

GraphMAE | 334040435 14.6li550 466411150 394441840 17.61sg0s 40481720 44381091  50.3415x0

GPPTPrompt | EOECPreGPPT | 44165670 2035:000  4707:m00 3803mem 17020000  4367:0m 407300 5150s05
EdgePreGprompt | 33.4010.33 189243 19 43341800 314211360 19871099 43734075  41.78110.08  45.121756

GraphCL 39.08+1025 42.871770  4l.05i750 531511682 196213092 40.11i797 45581338 50.024i857

SIMGRACE | 43.18:1505 338811505 40871711 46.5411815 18875547 41861055 4940154  46.82:gs0

DGI 48681975 42801919  5595:77s 610541305 18.6820.01 383011250 4461i571 4981101

GraphMAE 521011361 17.641056 552411201  64.581396 18.3642.20 42684598 43.384373 50471341

Gprompt EdgePreGPPT | 493311058 43.20:814 583011088  50.70+6.00 18.204507 44541328  39.061923  50.78+5.00
Prompt | B o cbreGprompt | 504311105 36.6241955 54291752 71381564 17171405 46261514 43731027 48181455
GraphCL 489141012 40.78410.00  53.9849.93  53.3941436 18264277 42264415 385811152 50.85is14

SimGRACE 48.78+110.20 433541075  55.51:10.10  60.58.16.08 19.52.4 336 44.68 1401 448141673  52.8013.60

DGI 56.8216.07 35401555 60.66-16.94 67.26.16.79 144813 58 44461445 54861667  48.2817.99

GraphMAE | 458345455 18761047 64274475 69075055 1966251 49401595 40114625 5670410

Allinone | EdsePreGPPT | 5720307 3707455 6468155 7035000  1295:51s  49.624m000 496740 5510414
EdgePreGprompt | 48.44.4451 34.64.15.55 60.04.15 57 63.74.16.21 12.5043.12 45574570  30.6911120 48131431

GraphCL 56.831076 47781010 62991719  60.0711225 12.01i516  46.65i650 39.12110.00  43.55i891

SIMGRACE | 56.882050 41.642015 53181757 59.95:1121 12232942 4503114 46981501  39.55:505

DGI 50501755 34565600 492711007 62022087 15081141 234211100 4774a57 39532501

GraphMAE 42981829  17.194681 52621940  59.1441041  13.104308 377511047 41844765 48524711

GPF EdgePreGPPT 55.674+0.81  34.09+532 57.0145.79 58.18.13.05 16571164 22.6811050 21774016  34.22410.00
EdgePreGprompt | 56.2246.17  38.14.40.44 56.91.46.21 63.90.14.05 17341545  43.084488 39.8641154 47444453

GraphCL 55231077  3804i045 56081740 579906  1597.s75 358940097 48.834540  40.86.4 g0

SIMGRACE | 56.19106s 37.691021 55501914 58384041 14391545 31.8241008 26021756  39.131420

DGI 531311040 37.39:142  5474iror 6109163 13.03:121 226941050 46571462 3321cssr

GraphMAE 48.2311050 18944314 52884650  61.01igsg 18394076 309041156 44871910  46.244486

GPE-plus EdgePreGPPT | 50.881755 37295007 57581725 62031095 17401045 241741035 28065005  40.065600
EdgePreGprompt | 50.0746.94 37434184 54794274 63.2045.31 1444 44 246011435 427741125 45591464

GraphCL 54241169  38.5310.20 57.54 1694 62.31.17.93 13.664070 22.6411042 48714551 39.37 1468

SIMGRACE | 555542035 4124105  5480igss 59381261 14741001 24791045 27051520  39.51.406

DGI 55054942  37.6lig0s  59.7liszas 62601485  17.661150 45381755 553511083 46.44u677

GraphMAE 50.8948.77 23244316 53.89.45.92 64.4945 74 16.3242.69 52254637 471941200 48404640

MTG (Ours) EdgePreGPPT 59174224 36301545  58.001343  65.60+5814 21491590 51431426 52994350 522011061
EdgePreGprompt | 57.084185  35.1315.06 59.6310.53  71.0646.36 15134172 49334603 45041512 55424662

GraphCL 52244519 38904352 60.53.41.86 63.70.47.49 13304186 42.60410.31 45.1445005 50.0743.75

SimGRACE 55504479  45.1240.20 64124577 61.23 4371 12.0341.20 55164714  50.631577 45364502

Table 25: AUROC on 1-shot graph classification.
Adaptation ‘ Pre-training ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES [60).¢) BZR D&D

Supervised | - | 67051101 54231034 57.8841.72 71.684125 53491141 48391180  S51.034138  49.6040.94
DGI 67.0641.00 74131197 56.874074 71454155 51761218 52354749 53794112 49321305

GraphMAE | 66914115 55165020 59871075  69.8l:149 53431008 49461105 S1O0lioss  50.66+400

Fine-uning | EQSCPRGPPT | 6750010,  Sbdlion 82w 24200 36200 468Biiae  4B3wia 227:0m
EdgePreGprompt | 66.9241095  54.3640.30 58244197 71.58.10.75 53.3041.75 49.6240.75 55484200 49971316

GraphCL 67114109 68954148 59.68+1.80  71.074187 54351002  S51.844004 53344075 53144570

SINMGRACE | 66954000 53792047 59801105 7149%1 80 54205135 49384104 5401914 49204081
DGI 485821002 58792101 7l.ld1s06  Sllligioo  53.09:145  5340s081  4898:761 53824118

GraphMAE | 50271071 51392456  7025:345 36.15i0767 52.894121 5391116 545311166  58.3615.51

GPPTPrompt EdgePreGPPT | 488111141  56.39:058 70364379 335410451 52984123 50314534 51484683  54.801830
EdgePreGprompt | 50.274074 54481105 650311005 244940355 53832215  SL5liogs 53384022 562641088

GraphCL 45421563 67971602  69.821605  65.58i2289 53364283  54.6lizor  51.681325  56.31igsg

SimGRACE 455811007 61784734 624811587 488642041 53.2310.42 55274783 586541619  56.151967

DGI 537411912 73.041502 60.3619.11  69.6411388  55.681250 49631056 49.081310  52.16+4.08

GraphMAE | 51481940 44862014 55650741 70272410 55281535 56971376 51241549 52471600

Goromnt EdgePreGPPT | 55.21:1001 698511050 6031i1a12 595011005 5375067 5386166  49.52inss 52731044
promp EdgePreGprompt | 53.58:1920 73.09:520 57724786 79171915 55531327 48741054  50.81i7s0 54961591
GraphCL 535411802 66.5941121  57.8011267  71.024335 55061300  54.084437 47734612 52921667

SimGRACE 5321i1800 66.59:884  5942:+1320  66.201491 55231564 53951370 49341363 5215651

DGI 69120101 662751151 75071076 834di07s  5742:115  5020i1er 603251619 6056001

GraphMAE | 65.651120  50.001000 7397080  8395:075 54661000 57091645 44.91i1s03  59.651274

All-in-one EdgePreGPPT 654410090 64211984 75.51 1071 83.6710.86 55.67+1.65 61.5041.13 57.89111.17 57441050
EdgePreGprompt | 68484111  51.3540.30 73.73.4£0.04 77.05.40.84 55154059  57.02110.92 51534113  56.9514.40

GraphCL 65201105 63825006 71765074  76.57i15s 53582188  664340ss 49204785 5504411

SINGRACE | 66334099 53092021 57324126 7389092 54751001 45811071  56.09:10.90  50.64+142

DGI 559641277 50914105 59.34.40.55 71.4041 24 53.1341.3 48.97 1073 478440093 49471063

GraphMAE 61.68+1466  50.00+0.00 59214109 73954006 51731130 52214149  46.871180 49361414

GPF EdgePreGPPT 69.731303 64.68111.19 61.6310.4 68.41.41.95 54484110 48.80.12.39 51.3042.60  49.08.43.56
EdgePreGprompt | 69.0641.31  71.37+1.86 58.36.+1.20 74514118 54.0140.86 50424062 58341087 52144973

GraphCL 67.6041.020 54301039 59.1541.73 68.5042.13 53.7641.38 59214187 56574165  49.30+163

SimGRACE 66.9541.01 73551037  60.001143  6825i128 55251153  55.804069 52304101 46171078

DGI 68.77 4150  72.0644.49 58.3742.32 70.12.41.06 53.8340.61 48.7140.50 51494131  48.7641 56

GraphMAE 68984149  50.0040.00 59.58.41.13 72.0342.16 52.6841.28 47214167 53.26141.01 494249 13

GPF-plus EdgePreGPPT 69.571053 69921165 63.58.13.31 72.02+0.86 55.66+1.62 45114080  55.064420  44.29:343
EdgePreGprompt | 68.3941 07  69.85:136  57.574165  73.374178 52191118 Slldioor 56224510 49.74113

GraphCL 67.0141.22 54.03.40.40 59.7841.47 712541 88 52.5942.06 51254294 56.7041.44 489449 96

SimGRACE 671941514 53.0440.17 59.66.4+1.32 68.33.40.76 52474176 51794173  53.3940.81 49.75+1 52

DGI 69974105 61261280 61954100  73.701107 59371050 57524230  68.76477s  52.231111

GraphMAE 69.2141.04  50.00+0.00 60.01.12.22 72.0342.16 55.0942.51 63.014202 53.68:11.92 53.041388

MTG Ours) | FUEPreGPPT | 71260105 60935155 6348s0sr  7561uin  20Tsoms 594207 6484ussr 54390
$) | EdgePreGprompt | 70.0141 05 61.59:1 56 6534107 83724130  5459:115 52651061  53.32a745 60341066

GraphCL 64.5514.07  54.07+3.48 63.2241.10 75.16.41.93 54424174 52514530 51.5611043 534241508

SimGRACE 68.504300 72181016 64541441 69.651112 523610090 65391250 55744961  51.5314u8
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Table 26: Accuracy (%) on 3-shot graph classification.

Adaptation ‘ Pre-training ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES Cox2 BZR D&D
Supervised ‘ - ‘ 53334661 50.7742.44 61.3345 89 59.47 18,34 15964164  65.1541861 52354812 59.77+1.10
DGI 53331661 56.101346 61331075  59.87ig78  21.71ios1 519611300 522211064  59.70+0.08
GraphMAE 53334661 49.11i1681 61191157  44.0011356 15044186  60.1141873 385241715 57.9042.69
Fine-tuning EdgePreGPPT 63431565 474011557 62724059 434719544 21964245 498ligas 437011780 58.9440.66
EdgePreGprompt | 53.331661  54.6741.34 60.67 12 32 59.20.47.05 17584145 358241438  29.074983 59454910
GraphCL 62224138 55274061 62.07 12,39 54.80.45.97 22.0041.71 31904897 512341167  55.5446.26
SimGRACE 66.1040.70  55.3813.58 60.09+0.63 54.00+7.03 22714086 6997411389 36.67+180 58174279
DGI 50331007 38401515 60361500 641311551 17.671005  56.84i3s0n  69.5711007 561175
GraphMAE | 50231095 3637:7s9 5694166 478711755 17631197 693851951 65.19:1709 56.5018 45
GPPTPrompt EdgePreGPPT | 5948154  3845:913 64741199 520011603 19124043 698711534 709311635 52141603
EdgePreGprompt | 51.854210  36.1147.73 60.764150  62.0011860 18711510 521711558 674711095 57944747
GraphCL 504311180  50.8846.31 60311057 489311886 17254119 719011428 53.3311688 56.2847.21
SimGRACE 50.1241286 41.8718.73 55934616 578712052 15621932 582819018 48.6411103 59.0046.34
DGI 58951988 5527556 62431100 549311715 20501236 50291771 49.691670 53841572
GraphMAE 5917 £10.00 36114773 61981445 644011646 214241071 44831916 48154500  52.894507
Gprompt EdgePreGPPT 64.351191  53.2017.90 64941992  53.6011441 18501360 45471703 54631295 53.61i031
EdgePreGprompt | 59.30110.17  54.9519.47 62.024315 665311484 21421301 50.564927 498811232 52.55i6.16
GraphCL 59.851950  52.5249.71 58491920 524012058 21421077 48154942 54261910 55.61i32:
SimGRACE 60.00.49.95  53.4547.18 60.27 4444 564041337 22.084357  51.5341308 432ligss 55994753
DGI 64.28.075  52.6315.14 69.84 1602 75734605 22871093 521711281 598li1562 54951652
GraphMAE 63881073 52.09:0.33 65.69+3.31 72.00+9.11 2104455, 53834702 619841132 56.561454
All-in-one EdgePreGPPT 63.8041.07 55734350 65.62.47.36 80.0045.67 22174217 501941089 542641330 52194617
EdgePreGprompt | 63.9011 57  51.691530 61301047 76401105 23250141  6021isss 54441707  58.961503
GraphCL 65.67+0.58  57.1241.99 65.574224 592041295 23964062 521741465 58644486 52.654587
SimGRACE 64204129 55484348 62364186  55.20+11.93 22584118  66.0641823 613011621 53.2346.05
DGI 63.5349.47  49.8447 .45 61394063 48.6711553 16634349 6531i1945 61.79:90109 59.071065
GraphMAE 62.8042.90 37.01+13.81 62.7243.07  55.87+1248 18294039 535141300 S51.91ig73  57.154568
GPF EdgePreGPPT 65.251965 51.914g513 63.3542.45 74271155 199245 19 44504446 54.6311050 51.594562
EdgePreGprompt | 64.051103  50.374725 62491018  55.60+1342  23.08:311  61.72:1167 743811162 56.3716.77
GraphCL 63254056 5387141 62901050 540011202 22382105 493351140 50191445 52344689
SimGRACE 65.97 1060  53.231459 60.924165 501311388 23871345  6231igs7 256248925 57541465
DGI 62451950 52141767 62.1642.14 75.2043.64 21924074 652511507 608611647 59434052
GraphMAE 61.971288 36.87113090 63.551185 59.33 1766 17.081168 482011915 409911064 5718153
GPFiplus | FUEePreGPPT | 6438.000  S463ur1i 62901  40iae  B620m  Odbiim 588541 13
) EdgePreGprompt | 64.004351  50.7719.01 60381047 502711809 24461227 528711200 50.0611636 58.5442.38
GraphCL 63254263  56.5043.71 60.56.41.94 7427 14,59 19.0012.42  51.5841178  71.6711487  53.9946.3s
SIMGRACE | 63.551095 52724639 60071097 50.67a1757 22171030 638651000 25.624825 59.51+0.62
DGIL 637042584  52.8ly735  628liy99 71874779  28.674172  46.6811061 746511204 55.171635
GraphMAE 63981071 45424071 63.57 42,03 64.27 +8.79 24924155 511041687 551241559 58.0941.73
MTG (Ours) EdgePreGPPT 65881356 48.77+789  61.081249 729311024 29711006 48361665 624711450 57.50+4.03
EdgePreGprompt | 64.051545  50.861515 7049:06s 78131656 2471121 63271ss5  49.5711007 60.8516.30
GraphCL 64.0542.63 57494252 63.2142.66 64.13.+5.00 21.00+1.75 73864974 509911550 557446190
SimGRACE 66.951050  53.4717.07 65.2543.49 58.87+7.66 20.7140.090 66.85+1553 60.31417.80 58.0945.01

Table 27: F1-score on 3-shot graph classification.

Adaptation ‘ Pre-training ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES [60).¢) BZR D&D
Supervised ‘ - ‘ 39.88+13.07  40.7311.00 51.014518 57.79+8.44 11.97 £0.92 42574580 47714527  41.051770
DGI 39.88113.07  56.1043.90 50.8945.01 58.19.45.98 14.684046 47304888 46391560 41.31ig0;
GraphMAE 39.88413.08 477141943 51904798 379841620 10.194954 43744672 338511441 40244608
Finc-tuning | EQ2cPeGPPT | 6066505 352811510 5453uum  3Wuier  147e0 454308 390Linsr 4078
EdgePreGprompt | 39.88.1307  35.6917.57 49314752 57.28.16.35 12994908 33.0241402 26.6611136 48.50110.32
GraphCL 60.7241.89 54454400 52.7546.77 53.1345.12 17.0043.88 30.1747.80 45334728 51941443
SimGRACE 65.91.40.61 54.77 1376 48.8546.10 52.10+6.02 16.1345 258 45754210  36.0741.29  50.5446.18
DGI 33474041 257241150 56.8ligsr  56.46418.74 7.2644.08 339741273 53.004662  52.7646.80
GraphMAE 33.4310.42 17.63+2.61 44104825  41.20419.70 7.70+5.86 414741535 54541350 53.6417.95
GPPTPrompt EdgePreGPPT 541541201 286041618 61461110 497341765 12261637 41.874454 54171430  50.031595
EdgePreGprompt | 3601145 1754105 51334717 611551505  11d6igor 41891555 54831576 53541770
GraphCL 46.7311415  49.621677  41.874855 4146420014 9.5315.03 43941050 48824573  53.74i6.42
SimGRACE 47.67+1500 385141060 54024408  55.79+19.08 64419 25 42494550  53.6046.91  56.28.1560
DGI 58.08+10.23 55.3218.74 58.0543.97 525411700  1881i144 44131440 45804778 50.9715.00
GraphMAE 58.01410.10 17.544557 56.274510 602641518 19.3941.66 42424700 43144447  49.674097
Goromnt EdgePreGPPT | 63.80111  535lirgr 61581500 497241555 16841575  42.05i550 47.32i05 52831 ss
PIOMPL | EdgePreGprompt | 58.51:10.62  55.39:856 56271208 04641138 18561511 43874405 4457i037  4971i7as
GraphCL 58.8311022 52.0441020  57.084s81  51.26419096  19.601134 44294550  47.691402 54821966
SIMGRACE | 592111045 52.82:851 55531747 520581107 21632319 43904743  40.90sg05  53.39:g72
DGI 63994086  50.4349.08 68.85.45.72 73.80-44.55 14.63.41 .31 43214733 535641074 43354505
GraphMAE 62941151  22.8310.10 624811 62 69.80-17.77 15614128 46341582 55204512 54231413
All-in-one EdgePreGPPT 62991230  55.56+4.18 64.50.16.98 76.24 1431 17114324 42.104616 44014411 49.6916.19
EdgePreGprompt | 62.884331 49.8311002 52.054559 71.9042 65 177041 81 50.664405 47.081547 55211404
GraphCL 65.604057  56.5541.88 62.624377  56.8641565 22.3741.31 45274963 49.391i068 5028445
SimGRACE 63.5040.41 55341389 60364111 52.08414923 18204104 41931518  49.004910 49.0616.95
DGI 62.8042.95  47.97+9.36 51.684767 448211944  11.7044.44 41604658  40.7044.95  40.291561
GraphMAE 61.8315.65 17494513 55214750 529941480 15771171 45774777 47244579 54791460
GPE EdgePreGPPT | 63.82:40s 502811000 56.681542 68471151 18771043 42924530 486liaes 49225602
EdgePreGprompt | 63.5910.99  48.60+9.17 53754547  51.6341457 16624175 53.47 47.31 48424350  53.8647.88
GraphCL 62471281 53421386 55244826 509311425 15404055 45371980  47.004224  48.531550
SIMGRACE | 65854061 52541550 49671621 47.5841308 18361405 515941450 22841955 55120497
DGI 60901322 50491905 53284540 731743106 17.5liizs 43074533 46.21h560  40.9817ss
GraphMAE 60.30.3.23 17434519 59.82.44.60 57.1047.36 12.5540.72 37.2049.80 38174853 52724375
GPF-plus EdgePreGPPT 63354333  53.82:8414 59394165  65.964103 18.73 4085  46.05+1035 314411700 41.2646.70
EdgePreGprompt | 63.651351 484611027 49.63167¢ 482441745 19.8044120  47.824903 433111200 44.08178;
GraphCL 62494311 56.3843.66 49.25.17.67 72214378 15.66.42 56 47784988 43524130 43724672
SimGRACE 62911978 51401533 48381637 484241633 16251330 50.5313093 22824932  40.6316.86
DGI 62.694356 51191935 55884505  60.641717  22.081256 392741467 539611001 47741947
GraphMAE 63.104336  23.97+3.21 56.93 1418 60.7514.47 17.004258  43.2511360 47.56+1155 52.0647.45
MTG (Ours) EdgePreGPPT 64924554 47414979 53.4446.46 69.05.42.04 27.0942.83 44971460 4858:1151 52971461
° EdgePreGprompt | 63.144595  48.89.957 68.63+1.12 76.7245 47 211241 42 50.034119 44131470  56.041570
GraphCL 63.161326 57431082 59.1244.32 62.01.19.97 171549014 53944080 45211986  49.254507
SimGRACE 66.841053 52581890 64.001568  60.031732 15174335 435141340 45331584  56.024407
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Table 28: AUROC on 3-shot graph classification.

Adaptation ‘ Pre-training ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES COx2 BZR D&D
Supervised | B | 53854770 54291068  5883is00 73361052  Sl34ui1sr  53.03.065 5536105 5097410
DGI 53.854771 79164120 592li1s7 72491060  55.064072  59.34i368 55524389 50.91i1s5
GraphMAE 53.864771 725841144 59124177 73701239 51641115 56.52i257 57301271 50.874175
Fine-tuning EdgePreGPPT 68901100 53701276 5961105 637811140 56.6311ss  58.621495 53.244106 50.871174
EdgePreGprompt | 53.88+776  54.661120 574311926  72.6710m1 528141923 56431054 52851305 55711336
GraphCL 66911096  77.2445.07 59.63+1.25 71.9441 69 55224062 55.65+139 52364470 56274363
SimGRACE 69.0710.72 78724081 54.56.+4.50 71534153 57454195 54904147 53794586 58.1443.45
DGI 50.7040.98 59064542 632141302 69.6412431 51971101 51054338 53464477  S8.1647.s6
GraphMAE 50.0241.20 55374165 64.79:1201  36.6413088 S51.884085 51901351 57334020 57.48ig59
GPPTPrompt | EUZePePPT | 60135545 $932icen 68261000  5305:ianes  297wis0 5430iiss 5375;as 547lsens
EdgePreGprompt | 51.094303 55184181 68.921946  66.15419360 S51.814318  50.124064 56.671107  59.8047.01
GraphCL 50.36413.14 703743508 71441356  41.3943090  51.661070 54.79:246 55.631151  58.0245.00
SimGRACE 50.3041372  63.0147.00 57.69+030  59.52426.16 49.661226 53901439 53941310 60311686
DGI 61281602 72351643 60001415  59.82i505  53.05i314 49.01i170  50.691s21 5210406
GraphMAE 56224741 44901012  53.631355 644311505 52294502 55.66:533 5042415 55224163
Goromnt EdgePreGPPT | 63.0l40gs 74041657 65821400 562411555 51971380 49.661731 50374065 57.1241.01
PIOMPL | g jocPreGprompt | 61761692 74201715 632014051 683611560 54304555 5146:38s 5201443  55.65:485
GraphCL 62.104710 72584885 55524016 542111003 52154003 57.07an4s 52274049 57244441
SINGRACE | 6349.755 73.85i574 58071727 560611855 53724410 5397165 49.80 705 56.78.610
DGI 68.291065  81.0240.32 78.7810.80 79.2946.57 55504041 50111443 64104180  47.7241.00
GraphMAE 67.6910.61 50.00+0.00 71.38.+4.27 78414112 54064038 513150 62341145  59.054375
All-in-one EdgePreGPPT 67.3940.61 80.54 4113 71.08.15.07 81.4040.45 55764118 47761124 48351393 54964053
EdgePreGprompt | 68.011966  77.3743.3s 59.05+£4.06 80.8912.30 57144079 56461104 64231173 60.924; g9
GraphCL 68551068 81564131  68.661313 75024015 54684082 58331445 54201483 55301345
SIMGRACE | 6771063 79474046 62541080 73984046 54941055 47.164060 S4llirag  58.194080
DGI 68.1711.10  76.9843.82 60.16+4120 49.3849009 47.071184 48.084:239 57.224300 48.8511.22
GraphMAE 68.641080  50.0040.00 60.27 1158 75231986 52794196 52961514  59.084250 57.0715.92
GPF EdgePreGPPT 72394143  78.684314 59.70+1.16 T1.741136 53234050 55954353 57164115 55124137
EdgePreGprompt | 64.811448 769913095 59.6511.05 75.6441 .21 55954104 61224330 57.144383 60.9913.40
GraphCL 68.5010.80  79.3640.64 58.2049 58 75424940 55174118 57.661349 56264072 54.381999
SimGRACE 68.8810.73  79.1840.70 59.0311.13 543441105 56491052 59264432 53331003  58.7840.01
DGI 67301001 78764305 59984103 78674321 55764090 580li151 55601401 53172041
GraphMAE 66.864131  50.002000 61201157 7294085 49961080 47.184061 541241001 59324511
GPE-plus EdgePreGPPT | 68324140 79721357 613lio41  68.831305 55991045 61.665140 51944105 49.5010.07
S | EdgePreGprompt | 66.080410 783linss 58731217 517311701 57284201 59.884504 52.691571 55.53104s
GraphCL 67761167 78531070 57901040 77864273 53244185 6130087 50971101 52801056
SimGRACE 67.381208  79.4140.77 53.054506 49.0411566 55301121 59924303 52.681100 51351270
DGI 68951076  8049i501 62321310 72024527 59584131 46071173 68.811a0s 5448141,
GraphMAE 6855008  50.004000 61391150 75051080  546lsom  5334sies 58054501 5726405
MTG (Ours) | FOZePreGPPT | T28To0sg  T124kom  57190kem 279 6307w 285m0 6610510 5670500
EdgePreGprompt | 68.9010.50  78.3842.51 69.61.40.42 81.0713.97 57514167 52761284 51.804414 62711447
GraphCL 68581060 81551042  59.80:10s 76231035 53274085 58851687 57231770 54201133
SIMGRACE | 69.001055 784445 65164085 67174896 51301101 5405450 56494750 59784085

Table 29: Accuracy (%) on 5-shot graph classification.

Adaptation ‘ Pre-training ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES COXx2 BZR D&D
Supervised | B | 62600001 55232426 62901505 T347in0s 2567045 649911042 51481220  63.59:5ss
DGI 50.80105s  60.72:000 62471125 74531371 25071167 6836.11s3 24941750 58941966
GraphMAE 55754548 54401515 61214692 67331561  26.131509 684211171 382711811 64.71i300
Fine-tuning EdgePreGPPT 609711007 57441375 62.85.+4.63 70.80-3.05 27.041175  69.38110.01 58.40+1279 64.521997
EdgePreGprompt | 62.88.1402 58.114376 60.25 14,96 73204244 27464129  73.194953 342041657 62.7013.37
GraphCL 65404595 48281640 63334413 75334180 24634150 55441551 729641105  63.841006
SimGRACE 60.654+4.51  48.40+5.90 63.08.14.66 T1.7342.33 24794183 61.50416.06 70.80+1620 62.251303
DGI 49.904051 48541920 54491945 70534390 19544317 47.0810571 547541907 52.6519.39
GraphMAE 49.60410.75 33.6111635 58274463  69.204330 22174234 561419593 69.6311496 57.0715.16
GPPTPrompt | EUZePreGPPT | 66370550 50061025  57.37eaws  6533s3gp 20330 6005s1510 45370a012 51364420
EdgePreGprompt | 49.6040.75 37.57:1007 46924118 40.6741407 21961910 67.8841751 48.0211075  60.0245 04
GraphCL 59.58.19.19  55.21:121 58254313 70404410 20924040 645011935 56.11:016s  57.0513.15
SimGRACE 60.351828  54.05i458 56.85i1085 68.67i508 209611923  60.8011390 60.801571  56.71i410
DGI 53.05+£1049 60.62:231 61304346 629311566 21381197 46544706 593811443 5412455
GraphMAE 55055710 32.55:042  58.00i716 65871850 19871001 52234540 53774674  50.682543
Goromnt EdgePreGPPT 66.704+3.87  57.2349.43 62941138 638711045 17.79+127 53354442 51984517 52461448
promp! EdgePreGprompt | 52.75110.06 57.7141.56 55.5546.18 73.07+2.13 20.79+2.66 52124701 543241118 562413690
GraphCL 61.38410.05  60.711454 60.54 .19 92 64.40.15 95 20334507 532415024 56734750 58284518
SiMGRACE | 54.85:10m1 60761508  61.624085 63474790 21464007 53354705 51364014 54331401
DGI 60471758  57.59:573 71371480 78534136 26461924 4815443 61734504 5459105
GraphMAE 59.3749.45 36.86113096 68.7213.08 77.4042 88 24.0040.87 48794742 571011782 63444135
Allinone | EdZePreGPPT | 63620550  5786sns  70.561a5 8093110  2392i01s  S217iss  6278ii01s 53931410
EdgePreGprompt | 60.181766  57.63+7.77 63.33.42.08 72.67 +3.45 25.0041.56 51.0547.26 49.69:1379  62.78.40.65
GraphCL 61.8044.90  57.04+4.46 69.69.46.19 69.3314.26 26.714+2.17 56411650 51.6719.26  60.621384
SimGRACE 63.054301  54.01+0s3 68.724+4.07 74.27 +2.62 26.671+0.99 62951857  53.6415097 59321034
DGI 59901005 59.65:025  60.99iri00  7293ig11 2475100 529841500 6105:1151 5870180
GraphMAE | 66.021305 29.6841557 6337437 70131255 23921016 558741572 54631943  60.57.574
GPE EdgePreGPPT | 67.801555 58.07:60s 63284435 6840344 24131156 662741557 325321035 55732364
EdgePreGprompt | 62.6214.73  56.6245.44 62.34.13.36 74.00-13.65 24.294 146 64.77 4722 509911641 61.061963
GraphCL 60.174946  56.651244 62341437  70.671380  27.001078 58284907 53.7011084  59.0710.65
SIMGRACE | 62334455 55671745 60741346 72274151 2621006  29.81i1s5s  27.104450  43.524571
DGI 63501508 5491i70s  635lingy 71874555  2567a175 60161501 62841918 6276140
GraphMAE 63724543 372341802 63154475 72671189 24794180 673541304 49.5lige2 59211653
GPF-plus EdgePreGPPT 68.134331  60.68:467  61.891450 70931300 23.041113 682041065 24014597 64461357
S | EdgePreGprompt | 63.85.55s 57761655 58834028  72.67i101 2687i1s0 728711017 2235ia72 64805545
GraphCL 601821005 57434507  63.084405 73871351 2579176 60701173 57594580  52.7841081
SIMGRACE | 60431957 5899:130 63100406 7280330 24.582168 617741667 71.5421481 61972307
DGI 62.881550 59501050 63981153 75271379 28924312 51691082 76374511 591241570
GraphMAE 63724543 322241705 63481541  72.801n08 28084350 544811505 55991001  57.824403
MTG (Ours) | F4ZePreGPPT | 69152009 5822e505 61574300 7607s007 35081355 57371505 6753k7m0 56201550
EdgePreGprompt | 63.8817.79  55.35+g8.37 67.2244.38 81.6014.53 25214333 574547923 55124327  66.07+239
GraphCL 6245:681  57.601354 62.7043.70 71.87 +5.60 22.79+2.59 48.534677 61304675  60.49136
SiMGRACE | 65874475 63.11a18s 70100110 74274960 21174110 71844075 684041000 58.824491
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Table 30: F1-score on 5-shot graph classification.

Adaptation ‘ Pre-training ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES COx2 BZR D&D
Supervised | - | 61531380 46721781  60.12:9097  68.77:45 21361302 50401410 49851902 6116190
DGI 37274749 60771197 59481951 69.601501 23931309  46.29:339 21924907 53.50113.04
GraphMAE 485211268 479311031  58.7645.50 61.1945.53 21.1042.81 46.304329 34.6411614 60.6219 5
Finc-uning | FOSePreGPPT | 5095 1005 S50Tiras  5897:im  6640usss  2.03iiz  460iim 4I3iass 6032
EdgePreGprompt | 61.874357  58.08.4374 57724383 67.43 .45 46 24.234311 45224984 2992415690 55914968
GraphCL 644815090 46251510  60.164191 72184214 20231990  50.694230 44564091  61.7241.92
SimGRACE 58804471 46941645 60314261 67.5543.52 19514360  50.7941000 426412095 54104153
DGI 33294037 442641453 511711132 62761957 1591i376  31.8041162  40.5711266  49.1015.60
GraphMAE | 33155035 160lig20  56.631545 61.6d:sss 18701065 360041212 45031450 48971970
GPPTPrompt | FUSCPreGPPT | 6592u000 #4905 3947001 6033u5u  1740mi5  4539:500 3l6iios  S083nimg
EdgePreGprompt | 33151033 19751676 441011145  33.67417.05 19461055 42061474 41951701 5563104
GraphCL 551611472 55241126 40334581 65161600  19.051173  46.021104s 39321504 54101294
SimGRACE | 59.661014 54051351 544851012 62481575 19624157 4941i6s0  S0.14u371 5401y
DGI 504711000 60361105 58821408 598611150 19682010 43071405 527621103 52641108
GraphMAE 512641062 16.3710.04 56.08.6.65 61.49.17 64 18484903 46441342 48921467  49.8lig7s
Gorompt | BASePreGPPT | 6649131y 5750054 6189:im 6180115 1631iies 480815 A6T9.5m 5183
Prompt | B qocbreGprompt | 50.18:1172 58024157  538luger 70824149  1842is05  46.63.497 478ligrs  5547in7s
GraphCL 60.6411130 59831400 57861100 604911088 19294026 47444708 50301488 57.0lioos
SIMGRACE | 53.16410.01 60092157 59491571 59621615 20751049 49124471 47731710  52.97i17
DGI 59531552  57.32i581  70.601158 76431137 17664050 447lings 52914730 52631153
GraphMAE 58.7211043 17431521 66841316 76591086 15281061 45021530 502511439 57481116
Allinone | FdZePreGPPT | 6343155,  5744:505  0985:007  7829:100  1820i507 4722450 4661esar  5327i5s
EdgePreGprompt | 58911907  56.524g578 61.7241.75 69.01.14.36 19.9541.44 48651508 44031876  59.90+1.32
GraphCL 61471555 56685100 6830s50n 67424580 22301009 4714105  45.65:s10 53881480
SIMGRACE | 62851099 55225057 67221447 71754006 21062077  5170iges 48741575  40.65:6s2
DGI 58.67+10.64 59.1846.42 58.89.42.08 67.69.+4.30 18.4142.04 43.64.45.83 56.38458.64 439441816
GraphMAE 65.59+4.08 14.71 4594 60.67+2.38 65.88.+1.64 19.47 45 56 45454877 49371661 57.0419.96
GPF EdgePreGPPT 67. 731558  57.75+6.17 61.14.14.21 63.56.14.73 19.89.15 46 43.97 12,80 30.0645848 55241351
EdgePreGprompt | 61.77445  56.124523  60.544200  72.0543.02 19314250 50994391  39.074452  58.144307
GraphCL 585841031 54424490 58.69.42.31 67.61.43.08 21.3643.31 50584457  47.551450  40.8647.94
SimGRACE 61274449 5422153092 594419 34 67.5616.57 23554305 251419415 261445614  33.65:9.49
DGI 63.0315.00 53581850 59691241 70161183 21.63104s 52701244 S573ligie 5795357
GraphMAE | 62.85.sg 17184057  60.52407s  6774ssss 21755183 45301035 45364765 56394720
GPFipls | FOZePreGPPT | 6766250  6045iim  S878sac  6826s05 2046512  45B0iion  20107ira0  60.10:06
EdgePreGprompt | 63381630 56.8717.0s 55281200 69.63:306 23.581305 44791197 19351595  60.6d1015
GraphCL 5881c1082  57.01xa43 60024901 6979097 22031005 47741403 53.041ia7 475241356
SIMGRACE | 591051057  58.565561  60.301001 69161005 22604236 511201109 43155105  53.9821 15
DGI 58.80r1080 S8.88167s 59784339 72244373 23.051333  46.731446  62.0lp4ss 53781413
GraphMAE | 64.07155  17.541050 65491400 69381575 21241503  444li7os 52731000  56.561540
MTG (Ours) EdgePreGPPT 69.0614.00  59.90+6.04 59.4141.33 74.08.14.85 33.661053 48741548  59.704406  56.9213.19
EdgePreGprompt | 63984656 53861050 66561342 78104415 22531905  43.02040r 4800457 59271415
GraphCL 6124105 56931541 64434009 69404510 1740101, 43124575 55884605  56.501ss
SIMGRACE | 65402465 62265115 69701097 70641575  17.82e143 50.79i580 60.50i5024  55.08:250
Table 31: AUROC on 5-shot graph classification.
Adaptation ‘ Pre-training ‘ IMDB-B COLLAB PROTEINS MUTAG ENZYMES COx2 BZR D&D
Supervised | B | 66661100 659851145 60550107 6880153 59061000 53164185 63165101 6475450
DGI 50021001  81.661001 6091177 68.55:583  589311s7 5176401  528linys  63.6lia4s
GraphMAE | 57.68:s7r 69.0lii002 59924011 7433422 5839082 51254091 57134705 6445557
Fine-uning | EQ2CPreGPPT | 6163 16 76710 60882150 72845 964z dBagos  05Beqns  6382u0s
EdgePreGprompt | 66.7814.49 814210065 56932401 72621105  59.65:10s 51341009 50751131  62.824514
GraphCL 69.681515  76.7112.70 61.80-+2.09 70.63+4.24 57.49+0.69 55911467 50.864172 64374344
SINGRACE | 64694745 7281455 61494001 71484503 55984005 61954047 48924015 57.39400s
DGI 50481070  70.621722 559211432 79.971466 52.2042.06 51221996 47751982  53.8ligs2
GraphMAE 50.634056  50.564378  60.561696 77764500  53.631106  50.6046s3  53.55i6.08  58.604556
GPPTPrompy | FIECPIeGPPT | 69.02.50 6878045  680s00 T2diosr  Hddiim  B02em  #79use 5176
EdgePreGprompt | 50.631056  56.8511.07 459541820 2475195814  53.661173  52.564329 49311504 61014367
GraphCL 59.75+11088  76.7311.15 69.17 1503 77804527 53371120  56.224512 50451637  57.8913.01
SimGRACE 613541005 70934401 597641358 77274767 53.6341.06 57.7846.95 59494613 57494402
DGI 539141303  70.524509 57554736  64.03119095  53.874202  50.061293  56.361692  54.21i403
GraphMAE 55461798 44834015  54.75i717 63371948 52821111 49401697 54.99i58s 51724554
Goromnt EdgePreGPPT | 70261440 73550401  67.0710s0 660411055 53324071 52474025 52164083 53261400
PrOmpL | EdocPreGprompt | 56.664s4s 75594542 56241710  T443isg9 54571069 50.601501  53.904ges 56364542
GraphCL 5262401092 7545455  61.03457r 644311005 S404iog1  50.6447gs  537laon 56221497
SIMGRACE | 572411001 73411561 60581551 64671508 5502157 56791565 56831640 53.991g27
DGI 616611201 80.994105 79394176 83381105  5871i0ss 49331156 529711145 52924148
GraphMAE 604411336  50.0040.00 73824189 84451178 5375413 542441001 557311176 64.5511.63
All-in-one EdgePreGPPT 69.53 4308  81.5041.45 77.60+0.81 85.4640.74 54.18+3.00 52224514 39.694287 58414060
EdgePreGprompt | 61.7811131 81931128 66261184 82074161  55.09+215  61.861218  50.641457  64.9510.02
GraphCL 65.551557 77861410  T3.65i167  T7.59i102  59.50i110 49774151 526342091 59.95+437
SIMGRACE | 66521015 75841040 77131044  79.681425 55765082 62424180 54601087 55431006
DGI 61.2811433 8091t135 59361107 68294400 57.38:069  55.654289  69.564843 52.10411s
GraphMAE 71.364485  50.0040.00 60.79+1.35 73.7546.18 57.5141.83 55.804340 57.8746.08 59.7846.01
GPF EdgePreGPPT 72.0946.35  81.6041.83 63.3346.33 T1.144408  57.094147 4544135 40304241  57.564155
EdgePreGprompt | 66.5614093 821141058  59.324146  78.724944  56.881088  57.11i321  38.864308 59.75i573
GraphCL 617741480 76324261 58.7042.03 75.54 14 82 57.2341.32 50874124 54744541  51.024003
SimGRACE 66.69.14.51 78.63.£3.50 60.84.10.83 73.60.14.98 57.64.40.64 5574 412.01 44524078  48.1441 17
DGl 67761765  80.0611.04 60561101 75934550 57994137 56.061235  67.92:456  62.751350
GraphMAE 68.56.17.52 50.00.£0.00 60.88.41.41 74.54 16,62 56.784+1.51 48931041 54114851 62.564354
GPF-plus EdgePreGPPT 71.71 43.80 82.5140.50 59.304+1.96 77.03.£2.00 56.17 +0.68 49531457 49784043 63491400
EdgePreGprompt | 67.3647.32 81.6840.93 54.634+1.53 75314284 60.04.+0.95 50954100 48.604050 64204347
GraphCL 61.80+£1482  80.5710.08 61.2341.64 69.47 13 56 57.95+1.27 51874180 64974346 61.941401
SimGRACE 618511476  77.7lgs2s 61074157 70131257 57.304070  63.154208  49.11u17s 57214004
DGI 642411154 81701183 62281140  79.881408  60.121980  46.65:445 7058432
GraphMAE | 65.6141049 50.001000 61231151 76701549  58.65:163 52081545  59.6610.5
MTG (Ours) EdgePreGPPT 72.824550 81.5711.80 63414201 79.87+5.60 654215 00 59494574 65.2214.05
EdgePreGprompt | 63.174+1242  81.9240.63 67.57 £0.51 85.9942.00 59.08417s 47324550 50154287
GraphCL 67290411 79701070 63871109  75.64im17r  5241i1s0  4545i5er 618910 es
SIMGRACE | 67.021435 80981046 67311105 71301190 51894151 39904500 69344312  55.561176
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Table 32: 1-shot node classification accuracy (%) on Wisconsin for various backbone models. Supervised
learning baselines: GCN: 41.60i3‘10, GAT: 34-51:t18.027 GraphSAGE: 25-37:t5.617 GIN: 28.91111,51, GT:
20.9147.07.

Fine-tuning

Model DGI GraphMAE  EdgePreGPPT  EdgePreGprompt ~ GraphCL ~ SimGRACE
GCN 37494513 36.8047.17 35.3149.31 40.69 413 33.94 1774 37.37+3.68
GAT 16.0046.24 37.60410 69 20.0043 g2 33.37+4.76 18.8641.88 28.0049.40
GraphSAGE | 40.6919.46 43.77+12.43 26.06.5 38 29.94 3 75 36.57 +4.88 9.37419.72
GIN 34291040 26.294781 25.14 1770 33.4917 69 22.6345.62 16.4644 53
GT 25714307 39774540 23.2042.65 28.2316.64 11.77 11,06 14.51 4508
GPPT
Model DGI GraphMAE  EdgePreGPPT  EdgePreGprompt ~ GraphCL ~ SimGRACE
GCN 29.94 1040 29.8319.34 23.8945.40 30.4046.51 25.0345.37 29.8316.44
GAT 22174613  33.9447.7 23.43 14 46 3794, 711 26.8616.12 29.8315.04
GraphSAGE 2651:&8,00 30.5115_40 21.4915_17 24.23;&@55 20.9117_11 25.37;&7_22
GIN 27204534  24.0043.99 21.1441 84 20.4645 79 19.0911419 19.54415.55
GT 272041048 29.8315.50 28.00-6.01 23.3143.01 27.66+9.69 25.0315.43
Gprompt
Model DGI GraphMAE  EdgePreGPPT  EdgePreGprompt ~ GraphCL ~ SimGRACE
GCN 67714992 67.6211806  67.37+12.32 74.38113.15 77071593  65.38+13.70
GAT 5825411383 67.77+15.01 94.17 12,26 84.28.1363 80.111+16.65 57.18112.60
GraphSAGE 66.48i1283 83.49i15‘93 87-521379 82.16i264 65~50i6A48 72.61 +5.97
GIN 45471962 377211500  58.36+15.10 59.29412.72 59.03119.08 71.80+11.66
GT 56.0317.33  73.50419.72 76.97 113.39 80.07 15 54 59.31410.17  69.30410.57
All-in-one
Model | DGI GraphMAE  EdgePreGPPT  EdgePreGprompt ~ GraphCL ~ SimGRACE
GCN 56.0241312  57.54110.66 66.29 19 11 59.18112.30 39144117  55.56414.70
GAT 69.441519 36.25410.63 91.254 433 92.653 75 428541916 36.6111456
GraphSAGE 74.88:‘:19'77 87~55j:3478 98.60i0,87 99-12i0464 67.28i20‘14 86.18i9‘68
GIN 54.02+15.90 35.3lt1s5.60  58.77+13.43 57.07+12.51 459441952 25.30114.83
GT 60.22411.02 97421213 94.6111.73 97.88.12.24 513311556  83.26+16.20
GPF
Model \ DGI GraphMAE EdgePreGPPT EdgePreGprompt  GraphCL  SimGRACE
GAT 65.14111.94  74.39116.46 94.961 17 76.60+10.48 749711706 60.57+14.43
GraphSAGE 68.12:&13,96 67.66113437 74.06114,59 72.45110,14 59.69121437 78.37114,84
GIN 471111128 494711404 66.99117.76 54.96+12.35 287742276 23.55+14.37
GT 39.851483 712641443  72.67113.36 81.33.3.41 78194219  67.90110.53
GPF-plus
Model ‘ DGI GraphMAE  EdgePreGPPT  EdgePreGprompt ~ GraphCL ~ SimGRACE
GCN 74.68+111.81 821111395  72.66112.05 78.76113.63 523511060 734911417
GAT 93.34.613 83.28412.90 95.24 1 55 92.0314.64 87491717 63.06418.45
GraphSAGE 71~83i17A50 85-47i1A45 97'30i1A68 80.35i14_37 50-35i&91 7195i94d
GIN 57.55+16.90 66.8811455 827911037 74.404113.11 29.941 22005 243011729
GT 724141137 95091404 87.76115.73 80.58+11.56 577541980 63.79+17.44
MTG (Ours)
Model | DGI GraphMAE  EdgePreGPPT EdgePreGprompt  GraphCL ~ SimGRACE
GCN 67.72110.10 83.32112.46 73.80+9.56 72.75+11.21 48.41116.10 72981975
GAT 59871977 82.164171.33 95.84.1 15 81.99 1278 77.01412.03 61.75413.00
GraphSAGE 7690i936 99-29i1441 87.23i4“()1 72~63i10416 62.44:‘:19‘82 63~50i17.62
GIN 59.9311384 699611000  78.87+16.32 83.57110.78 373411508 344811547
GT 583541012 98.854:1 00 84.4545 03 72.99410.45 93.45.4.15 89.24 15 66

52



Under review as a conference paper at ICLR 2026

Table 33: 1-shot graph classification accuracy (%) on PROTEINS for various backbone models. Supervised
learning baselines: GCN: 56.36+7.97, GAT: 48.3419.96, GraphSAGE: 60.54+2 .95, GIN: 59.6641.12, GT:
61.444 5 48.

Fine-tuning

Model | DGI GraphMAE  EdgePreGPPT  EdgePreGprompt ~ GraphCL ~ SimGRACE
GCN 60.004448 624047 494 58.27 110.66 61.8415 59 63.44 364 60.07 £3.21
GAT 5834650 61.061413 63.7513.71 54.0914.03 60.04 13 06 58.651¢.71
GraphSAGE 60.7014'08 60.5615,12 61 .6011,78 63.21:&1‘80 61 .8013,77 58.56:&1‘84
GIN 59714116 59.75471.22 64.83 1356 65.355 36 58.5210.77 58.49.19.80
GT 53.8714,81 60.00i3‘99 64-92i3.19 56.58i3‘28 62.88i1<32 6O~00i1460
GPPT
Model ‘ DGI GraphMAE  EdgePreGPPT  EdgePreGprompt ~ GraphCL ~ SimGRACE
GCN 60.811155 60.7241.70 60.92_ 5 47 57.03 1455 59.24 11 01 55.42 g 81
GAT 577141898 57.80110.55 58.04_ 9 9o 54.97 17 45 52.2917 83 55.1549.84
GraphSAGE 56.5616,73 57.7317_95 58.63111_78 56-94:k5.67 58.0017_80 54-74:t6.59
GIN 62271954 52.13111.00 52.52 1 4.97 55.5318.92 55.78 1720 55.78 4720
GT 53.084756  57.35i8.5s 60.27 13 92 55514768 56.1845.79 55.87 1769
Gprompt
Model ‘ DGI GraphMAE  EdgePreGPPT  EdgePreGprompt ~ GraphCL ~ SimGRACE
GCN 56.611793 57.6611256  59.17+11.26 55.55+8.17 55.51+10.73  57.53111.05
GAT 61.081619 63.031961 64.47 4 30 61.4813 34 59.12 1684 58.13 1707
GraphSAGE 61.35i2'21 59.48igA19 6O~92i3A16 63-30i1A43 55~26i261 63~21i2466
GIN 54364518 469711145 55.8245.35 57.84.10.75 569211177 46.16410.78
GT 56.6515 81 60.9911 62 61.8715 60 55.3313.69 54.81 1762 58971116
All-in-one
Model | DGI GraphMAE  EdgePreGPPT  EdgePreGprompt ~ GraphCL ~ SimGRACE
GCN 62.581707  66.49_6.26 65.71 15 49 61.8217 53 64.3617 30 61.1711.73
GAT 60.041384  60.0046.04 62.1142 .85 63.2115 90 58.3614.93 59.3715.59
GraphSAGE 59-53i4.94 60~70i4489 63.12i1,59 59~98i8446 62-22j:3481 62.043:2‘()7
GIN 61.551302 60.721432 59.7813.08 58.29412.13 40814104 59.1941.04
GT 57.394366 58.9216.61 62.61.14.08 60.20+7 55 62.811163  50.5216.17
GPF
Model \ DGI GraphMAE EdgePreGPPT EdgePreGprompt  GraphCL  SimGRACE
GCN 59171363  58.6515.49 62.54 15 55 61.8215 41 63.91 3 96 63.3513.69
GAT 63.0111,22 59.62i5‘3g 47.53i9.42 47~71i7414 56.65i5<15 57~91i3410
GraphSAGE 52-7216.43 59.1712,22 61.7312,59 64.54:&3,73 62.2712,60 58.00:&3481
GIN 61.19.339 5434.561 60.58_16.50 62.3411 19 59.1941.04 59.1941.04
GT 6580742 60.161581 64.54 1718 61.2112.91 58.74 1551 59.57 1293
GPF-plus
Model ‘ DGI GraphMAE  EdgePreGPPT  EdgePreGprompt ~ GraphCL ~ SimGRACE
GCN 61.261306 62.491505 63.065 55 61.33 1581 59.7517.95 62.92_15 78
GAT 56.20412.87 57.35411.98 56.2515.61 53.24 1479 5748411174 574819563
GraphSAGE 56~22i9,08 57~55i1()‘56 56~31i926 57'71i9A60 53-891947 55~89i4A30
GIN 62221949 61.75135s 57331924 64.99_ 5o 59.1941.04 59.1941.04
GT 533945023 573711005 57.39411.88 52.6145.30 57.62112927 56.164507
MTG (Ours)
Model | DGI GraphMAE  EdgePreGPPT EdgePreGprompt  GraphCL ~ SimGRACE
GCN 62781236  59.621¢6.41 62.71 1230 65.661 56 63.7012 87 66.98 15 17
GAT 61481214  60.3814381 53.4617.50 63.53.1 25 49.12 1649 52.6314.14
GraphSAGE 61.98i2'03 58~85i1466 65~24i1A83 65.88i0‘58 62.20i3‘35 60.943:9‘92
GIN 61551147  60.5243.97 65.64 1634 63.10+9.39 60.1941 04 59.6913 01
GT 61.831686 57.191g.75 63.64 15 55 59914585 66.08_5 79 61.721¢.83
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