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ABSTRACT

Mainstream test-time adaptation (TTA) techniques endeavor to mitigate distri-
bution shifts via entropy minimization for multi-class classification, inherently
increasing the probability of the most confident class. However, when encoun-
tering multi-label instances, the primary challenge stems from the varying num-
ber of labels per image, and prioritizing only the highest probability class in-
evitably undermines the adaptation of other positive labels. To address this issue,
we investigate TTA within multi-label scenario (ML–TTA), developing Bound
Entropy Minimization (BEM) objective to simultaneously increase the confi-
dence of multiple top predicted labels. Specifically, to determine the number of
labels for each augmented view, we retrieve a paired caption with yielded tex-
tual labels for that view. These labels are allocated to both the view and cap-
tion, called weak label set and strong label set with the same size k. Follow-
ing this, the proposed BEM considers the highest top-k predicted labels from
view and caption as a single entity, respectively, learning both view and cap-
tion prompts concurrently. By binding top-k predicted labels, BEM overcomes
the limitation of vanilla entropy minimization, which exclusively optimizes the
most confident class. Across the MSCOCO, VOC, and NUSWIDE multi-label
datasets, our ML–TTA framework equipped with BEM exhibits superior perfor-
mance compared to the latest SOTA methods, across various model architec-
tures, prompt initialization, and varying label scenarios. The code is available
at https://anonymous.4open.science/r/ML-TTA-10BE.

1 INTRODUCTION

The advent of vision-language models (VLMs) (Radford et al., 2021; Li et al., 2021; 2023; Zeng
et al., 2024) has facilitated remarkable generalization capabilities by pretraining on massive datasets.
Nonetheless, VLMs such as CLIP (Radford et al., 2021), still require sophisticated prompt learning
techniques when confronted with considerable discrepancies between training and testing domains,
to prevent performance degradation due to distribution shifts occurring during testing time.

Fortunately, recent advancements (Shu et al., 2022; Feng et al., 2023; Ma et al., 2023; Liu et al.,
2024b; Zhang et al., 2024b; Zhao et al., 2024a; Karmanov et al., 2024; Yoon et al., 2024; Gao
et al., 2024) allow for immediate adaptation to any distribution of test instance during testing time,
which is known as Test-Time Adaptation (TTA). As pioneering works, TPT (Shu et al., 2022) and
its enhancement, DiffTPT (Feng et al., 2023), select a set of confident augmented views, learning
instance-level prompt for each test instance. DART (Liu et al., 2024b) and DMN (Zhang et al.,
2024b), to fully utilize the encountered knowledge from past samples, design dual-modal knowl-
edge retention prompts and dynamic dual-memory networks, respectively, to adaptively incorporate
historical knowledge. The central premise of these methods is entropy minimization, which aims to
minimize inconsistency and uncertainty over the model predictions, and further increase the predic-
tion probability of the highest confidence class, a theory that is readily demonstrable.

Although entropy loss is advantageous for TTA as an uncertainty metric, a natural question arises:
Can it be reliably applied to instances with multiple positive labels? As illustrated in Figure 1 (a),
for the positive label set {keyboard, phone, remote, mouse, book}, compared to CLIP, all methods
consistently boost the probability of the most confident class, keyboard. Nonetheless, TPT (Shu
et al., 2022) and RLCF (Zhao et al., 2024a) adversely impair the remaining positive labels. This
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(a). Changes of output logits compared to CLIP (b). Results on varying number of labels

Figure 1: (a). Compared to CLIP (Radford et al., 2021), ML–TTA increases all positive label logits simulta-
neously, while others focus only on top-1 class. (b). Comparison of various methods on images with varying
numbers. Compared to CLIP, as the number of labels per image rises, the adaptability of TPT (Shu et al., 2022)
and RLCF (Zhao et al., 2024a) in handling multi-label images shows a marked decrease.

indicates that existing TTA methods primarily focus on increasing the confidence of top-1 label,
leading to insufficient adaptation for other positive labels. Given this, we expect to treat the highest
top-k positive labels as a single label, aiming to simultaneously increase the predicted confidence of
multiple top-k labels. However, positive label sets are not known in advance in real applications.

Based on the preceding discussion, we investigate the TTA within multi-label scenario (ML–TTA)
and propose a novel theoretical optimization objective named Bound Entropy Minimization (BEM),
which posits that when the highest top-k predicted labels (k being the size of positive label set) share
identical probabilities, the entropy loss will uniformly increase the probabilities of all top-k classes.
Consider a multi-label test image with a set of augmented views, to determine the number of positive
labels for each view, we retrieve a paired caption with derived textual labels for each view, which
then serves as weak label set of size k for the corresponding view. Furthermore, owing to the aligned
visual-language space of CLIP (Radford et al., 2021), texts can be treated as pseudo-images with
known positive labels, a premise corroborated by recent academic research (Guo et al., 2023; Zhao
et al., 2024b; Li et al., 2024a; Xiangyu et al., 2024). Drawing inspiration from these findings, we
conceptualize each paired caption as a pseudo-view possessing a known label set, termed strong
label set, of the same size k, since the textual labels are directly derived from captions.

Upon determining the weak label set for each view and the strong label set for each paired caption,
the proposed BEM objective binds the highest top-k predicted labels as a single label for both view
and caption. By optimizing the view prompt and caption prompt, the model is encouraged to concur-
rently increase the confidence of the top-k classes. Additionally, since some augmented views and
paired captions may fail to capture the target label area, leading to misleading predictions, we adopt
confidence selection utilized in TPT (Shu et al., 2022) to filter out “noisy” views and captions with
high entropy (i.e., low confidence). Consequently, in this paper, starting from TPT, the developed
ML–TTA framework equipped with BEM endows the CLIP’s adaptability of multi-label instances
during testing. Our contributions are summarized as follows:

• We examine the Multi-Label Test-Time Adaptation (ML–TTA) and propose Bound Entropy
Minimization (BEM), which simultaneously increase the probabilities of all highest top labels.

• BEM binds weak label set of view and strong label set of the caption as a single label, respectively,
learning instance-level view and caption prompts for adapting multi-label test instances.

• On the MSCOCO, VOC, and NUSWIDE datasets, ML–TTA outperforms the original CLIP model
as well as other state-of-the-art TTA methods designed for multi-class classification, across vari-
ous model architectures, prompt initialization, and varying label scenarios.

2 RELATED WORK

2.1 TEST-TIME ADAPTION

Test-time adaptation (TTA) (Zhang et al., 2022; Shu et al., 2022; Ma et al., 2023; Karmanov et al.,
2024; Zhao et al., 2024a; Lee et al., 2024; Chi et al., 2024; Ma et al., 2024) enables models to adapt
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changing distributions during testing time without accessing to the source domain data or extensive
target domain data. Within the spectrum of TTA settings, e.g., “fully” TTA (Wang et al., 2021;
Zhao et al., 2023), “online” TTA (Lee & Chang, 2024; Lee et al., 2024), “continuous” TTA (Liu
et al., 2024a; Song et al., 2023), and “prior” TTA (Wei et al., 2023; 2024), “online” TTA (Shu et al.,
2022; Karmanov et al., 2024; Zhao et al., 2024a) focuses on adapting to individual samples and is
particularly valuable in many application domains, such as autonomous driving, where weather con-
ditions are constantly changing, and road monitoring, where traffic patterns are continually evolving.
MEMO (Zhang et al., 2022) is the pioneering work that proposes consistent predictions across di-
verse augmented views. Following this, TPT (Shu et al., 2022) notably enhances the generalization
capabilities of the CLIP (Radford et al., 2021) model to unseen test data by entropy minimization.
SwapPrompt (Ma et al., 2023) utilizes online and target prompts, enhancing the CLIP’s adaptability
by preserving historical information and alternating prediction. In contrast, TDA (Karmanov et al.,
2024) adapts to streaming input data by constructing a dynamic key-value cache from historical
data. RLCF (Zhao et al., 2024a) incorporates reinforcement learning to distill knowledge into more
compact models. Among these works, MEMO (Zhang et al., 2022), TPT (Shu et al., 2022), and
RLCF (Zhao et al., 2024a) are particularly challenging, as the model is reset after adapting a test
instance, obviating the need to retain historical knowledge, and thereby accommodating continu-
ously shifting test distributions. Nonetheless, these methods are primarily designed for multi-class
classification and may not be as effective in the more common multi-label scenario.

2.2 PROMPT LEARNING IN VLMS

Visual-language models (VLMs) (Li et al., 2021; Zhong et al., 2022; Radford et al., 2021; Li et al.,
2023; Zeng et al., 2024), trained on massive image-text pairs (Sharma et al., 2018; Schuhmann et al.,
2022), have demonstrated remarkable proficiency in cross-task learning. To further enhance the
transfer abilities of CLIP (Radford et al., 2021), researchers have developed various prompt learning
techniques (Zhou et al., 2022b;a; Khattak et al., 2023; Li et al., 2024b; Yao et al., 2024; Guo et al.,
2023; Xiangyu et al., 2024). For instance, the groundbreaking work CoOp (Zhou et al., 2022b),
and its advancement CoCoOp (Zhou et al., 2022a), are the first to propose optimizing context vec-
tors to improve the generalization capabilities of CLIP. Maple (Khattak et al., 2023) introduces a
multimodal prompt learning method, designed to recalibrate both visual and language modalities.
Dept (Zhang et al., 2024a) and PromptKD (Li et al., 2024b) take on the challenge from the perspec-
tives of knowledge retention and distillation, respectively, to promote robust generalization on novel
tasks. Exploiting the aligned visual-language space of CLIP (Radford et al., 2021), TAI-DPT (Guo
et al., 2023), PVP (Xiangyu et al., 2024) and RC-TPL (Zhao et al., 2024b) propose to regard texts
as images for prompt tuning in zero-shot multi-label image classification. Investigations like Du-
alCoOp (Sun et al., 2022), DualCoOp++ (Hu et al., 2023), and VLPL (Xing et al., 2024) consider
more intricate tasks, enhancing multi-label classification capabilities in the partial-label scenario.
In contrast, our study focuses on a training-free paradigm, termed multi-label test-time adaptation,
which obviates the need for the source training data and is exclusively at the testing instance level.

3 METHOD

In Sec. 3.1, we review the entropy minimization widely used in TTA. In Sec. 3.2, we highlight the
issue that vanilla entropy minimization predominantly increases the probability of top-1 predicted
label and propose a new proposition Bound Entropy Minimization (BEM). In Sec. 3.3, we present
a Multi-Label Test-Time Adaptation (ML–TTA) framework, incorporating BEM, which binds the
highest top predicted labels of both augmented views and paired captions as an individual single
label. ML–TTA consists of view-caption constructing (Sec. 3.3.1) and label binding (Sec. 3.3.2).

3.1 PRELIMINARIES

The purpose of Test-Time Adaptation is to utilize each test instance once for immediate adaptation
before inference, without any prior assumptions about the test data distribution. For the TTA of
VLMs, let Mθ denote the CLIP model trained on the training dataset Dtrain = {(xtrain

i ,ytrain
i ) | xtrain

i ∈
X train,ytrain

i ∈ Y train}M train

i=1 . The TTA approach, TPT (Shu et al., 2022), incorporates the Marginal
Entropy Minimization (MEM) objective to adapt Mθ using a solitary instance xtest from the testing
dataset Dtest = {(xtest

i ,ytest
i ) | xtest

i ∈X test,ytest
i ∈Y test}M test

i=1 .
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Given a test instance xtest and a set A of N random augmentation functions, xtest is first augmented
N times to generate a set of different views, represented as Xtest = {xtest

j | xtest
j = Aj(x

test)}Nj=1.
TTA aims to minimize the marginal entropy of these augmented views, encouraging the model to
perform consistent and confident predictions. The entropy of an augmented view is defined as:

H(p(·|xtest
j )) = −

L∑
l=1

p(y = l|xtest
j ) log(p(y = l|xtest

j ), (1)

where l ∈ Y test and L is the number of labels in Y test. The core principle of TPT is to minimize the
marginal entropy of the prediction probability distributions of selected confident augmented views
by a ratio τ , thereby encouraging the model to make consistent predictions. After obtaining the
average entropy of these confident views, denoted as H̃ , TPT updates the prompt using a single
gradient descent step based on H̃ and performs immediate inference on this test instance. Once
inference is done, the model’s prompt and optimizer are reset promptly for adaptation to the next
test instance. Owing to its simplicity and effectiveness, Marginal Entropy Minimization has emerged
as a de facto standard in modern TTA.

3.2 BOUND ENTROPY MINIMIZATION

It can be observed that the TPT method selects a subset of confident augmented views with lower
entropy (i.e., high confidence) from Xtest, continually minimizing the average entropy of these con-
fident views to maintain consistent model predictions across these views. With respect to vanilla
entropy minimization within TTA, the following proposition holds.
Proposition 1. Consider the output logits of a confident view x, denoted as s = (s1, s2, . . . , sL),
where, without loss of generality, we assume s1 > s2 > · · · > sL. It can be deduced that the entropy
loss H = H(p(·|x)) decreases as s1 increases, and H increases as the sum of the remaining logits,
Srest =

∑L
i=2 si, decreases. Formally, this relationship can be expressed as:

∇s1H =
∂H

∂s1
< 0 and ∇srestH =

∂H

∂Srest
> 0. (2)

A detailed proof is provided in the Appendix. Following a single gradient descent update step, we
can derive s

(t+1)
1 = s

(t)
1 − α∇s1H and S

(t+1)
rest = S

(t)
rest − α∇SrestH , where α denotes the learning

rate. Therefore, Proposition 1 indicates that the nature of entropy loss is to increase the probability
of the most confident class while diminishing the cumulative probability of the rest classes. Hence,
when adapting to single-label test instances, the goal of vanilla entropy minimization is to solely
maximize the probability of the top-1 predicted label, disregarding changes in the probabilities of
the remaining labels.

In contrast, in the context of multi-label test-time adaptation, where the test instance may include
a set of positive labels Lp = {lp1, lp2, ..., lpk}. In this case, regardless of whether the top-1 pre-
dicted label is the element of the positive label set Lp, the entropy loss will inevitably decrease the
prediction probabilities of the other positive labels within Lp while increasing the probability of the
most confident class. This may lead to the model overemphasizing the top-1 predicted label and
inadequately adapting to the other positive labels. Therefore, for test-time adaptation in multi-label
data, we propose the following proposition, termed Bound Entropy Minimization.
Proposition 2. Consider the output logits of a confident view x, denoted as s = (s1, s2, . . . , sL),
where, without loss of generality, we assume s1 > s2 > · · · > sL. We define the modified logits as
s′ = (s′1, s

′
2, . . . , s

′
L), where s′i = ai+si for i ≤ k with ai = s1−si and s′i = si for i > k. Here, ai

is a constant value that does not participate in differentiation, resulting in s′i = s1 for all i ≤ k. Let
Srest =

∑L
i=k+1 si. For the modified logits s′, we define the modified probability p′ = Softmax(s′),

and the modified entropy as H ′ = −
∑L

i=1 p
′
i log p

′
i. It follows that:

∇siH
′ =

∂H ′

∂si
< 0, ∀i ≤ k and ∇srestH

′ =
∂H ′

∂Srest
> 0. (3)

A detailed proof is provided in Appendix. Likewise, after one step of gradient descent optimization,
the prediction probabilities of all top-k predicted labels will further increase due to ∇siH

′ < 0 for all
i <= k and ∇srestH

′ > 0. Therefore, from Proposition 2, to be robust against distribution shifts with
multiple labels, it is crucial to determine the number of positive labels for adapting multi-label test
instances. In the following subsection, we will introduce a novel Multi-Label Test-Time Adaptation
framework by employing proposition 2 and incorporating text captions into the adaptation system.

4
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Figure 2: Overview of proposed multi-label test-time adaption.

3.3 MULTI-LABEL TEST-TIME ADAPTATION

3.3.1 VIEW-CAPTION CONSTRUCTING

Benefiting from the aligned space of CLIP, any image can be assigned a most similar caption from
an offline text description base based on similarity retrieval. As depicted in Figure 2, given a test
image xtest and a collection of random augmentation functions A = {A1,A2, ...,AN}, xtest is first
augmented N times to generate a set of different augmented views. For each augmented view,
we retrieve the most similar caption from an offline text description database to serve as its paired
caption. The views generating and caption allocating can be expressed as:

X test = {xtest
i | xtest

i = Ai(x
test)}Ni=1, T

test = {ttest
i | ttest

i = Ri(x
test
i )}Ni=1, (4)

where Ai and Ri represents augmentation and retrieval by computing similarity. To streamline the
retrieval process, we directly utilize the method proposed in PVP (Xiangyu et al., 2024), which
employs LLama-2-7B (Touvron et al., 2023) to construct the text description base, each text is a
description of a natural scene containing several categories. Then, CLIP is used to extract text
embeddings and construct an offline database of size B × d, where B denotes the number of test
descriptions and d denotes the embedding dimension. More details of the text description base
construction are provided in the appendix.

The goal of TTA is to calibrate the model for a single unlabeled test instance. Clearly, a single
instance is insufficient for tuning the entire CLIP model to learn domain-specific knowledge. Con-
sequently, as shown in Figure 2, akin to prompt tuning paradigm, we design two identical prompts,
referred to as view prompt and caption prompt, denoted by V and C, respectively. Treating prompt
tuning at test-time as a way to furnish customized context for individual test instances. Benefiting
from the aligned space of CLIP, the representations of images and texts share similar semantic in-
formation, therefore, the paired caption can be considered as a ”pseudo image” with accurate textual
labels, encouraging the model to learn visual-related knowledge and complementary information
from views and captions jointly. For L categories, we initialize the view and caption prompts with
template “a photo of a [CLS]j”, in which [CLS]j represents the j-th label name, e.g., dog or cat,
results in vj and cj . Once the paired views and captions are obtained, we compute the logits for
each view xtest

i on L view prompts and for each caption ttest
i on L caption prompts as below:

sx
test

ij = ⟨EncI(xtest
i ),EncT(vj)⟩, st

test

ij = ⟨EncT(ttest
i ),EncT(cj)⟩, (5)

where EncI and EncT represent the frozen image encoder and text encoder of CLIP, ⟨·, ·⟩ signi-
fies the dot product. As stated in proposition 2, the crux of adapting multi-label instance lies in
identifying the size of positive label set for each view xtest

i and caption ttest
i .

5
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Algorithm 1: Label Binding Algorithm
Input: Logits si before label binding and the size of weak label set kxi .
Output: Modified logits s̃i after label binding.

1 mi = maxj sij ;
2 for j = 1 to L do
3 aij = detach (mi − sij) ▷ Detach from gradient. ;
4 if Rank(sij ,si) ≤ kxi then
5 s̃ij = aij + sij ▷ Bind sij if j-th label is in highest top-kxi predicted labels. ;
6 end if
7 else
8 s̃ij = sij ;
9 end if

10 end for
11 s̃i = (s̃i0, s̃i1, · · · , s̃iL)

3.3.2 LABEL BINDING

Obviously, the positive label set for xtest
i is not feasible to obtain directly. Fortunately, the textual

labels for ttest
i , which we refer to as strong label set, can be readily derived through noun filtering,

e.g., A truck drives past a black car with a suitcase on top. with extracted strong label set being
truck, car, suitcase. Moreover, this set can also serve as a pseudo-positive label set, termed the weak
label set, for xtest

i . Consequently, we treat the size of strong label set as the top-k bound highest
logits of captions, akin to views. The binding operation for sx

test

ij and st
test

ij can be expressed as:

s̃x
test

ij =((mxtest

i −sx
test

ij )+sx
test

ij ) · I(Rank
(sx

test
ij ,sx

test
i )

≤kxtest
i )+sx

test

ij · I(Rank
(sx

test
ij ,sx

test
i )

>kxtest
i ),

s̃t
test

ij =((mttest

i −st
test

ij )+st
test

ij ) · I(Rank
(st

test
ij ,st

test
i )

≤kttest
i )+st

test

ij · I(Rank
(st

test
ij ,st

test
i )

>kttest
i ),

(6)

where ((mxtest

i − sx
test

ij ) + sx
test

ij ) employs stop-gradient operation follow VQ-VAE van den Oord
et al. (2017), sx

test

i = (sx
test

i1 , sx
test

i2 , ..., sx
test

iL ) and st
test

i = (st
test

i1 , st
test

i2 , ..., st
test

iL ) denotes the logits before
binding, mxtest

i and mttest

i denotes the maximum logit of sx
test

i and st
test

i , respectively, I(·) denotes the
indicator function, and Rank(s, s) indicates the descending rank of s within s, kx

test
i and kt

test
i denotes

the size of weak label set of i-th augmented view and strong label set of i-th paired caption. The
algorithm process of label binding is presented in algorithm 1. We provide a detailed label binding
process using a 3-class classification task in the Appendix.

To reduce the noise brought by random augmentation and the noise in the caption caused by noisy
views, we employ confidence selection to filter out noisy views and captions with higher entropy
(i.e., lower confidence). Such noisy views may, due to random cropping augmentation, exclude the
target label area, leaving only irrelevant background information. Similarly, the retrieved paired
captions for these noisy views will lack any pertinent textual labels. We selected views and captions
with lower predicted entropy by a ratio τ , yielding {x̌test

i }τNi=1 for views and {ťtest
i }τNi=1 for captions.

Taking views x̌test
i as an example, the probability of x̌test

i on L labels denoted as p = Softmax(s̃x̌
test
i

i ),
the average predicted entropy of the filtered low-entropy views can be expressed as:

H̃ x̌test

avg =
1

τN

τN∑
i=1

(
−

L∑
l=1

p(y = l|x̌test
i ) log(p(y = l|x̌test

i ))

)
. (7)

Subsequently, the bound entropy optimization objective of view prompt V is to minimize the pre-
dicted entropy through H̃ x̌test

avg . For the objective of caption prompt C, we replace x̌test
i in Eq.(7) with

confident captions ťtest
i to obtain H̃ ťtest

avg .

3.3.3 OVERALL OBJECTIVE OF ML–TTA

ML–TTA calculates the predicted bound entropy of confident augmented views and paired captions,
optimizing both view prompt and caption prompt with a single step of gradient descent, and simul-
taneously increasing the probability of highest top predicted labels. Then, the overall bound entropy

6
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loss is given by:

H̃BEM = H̃ x̌test

avg + H̃ ťtest

avg . (8)

After optimizing the prompts, ML–TTA immediately infers the test instance xtest and resets the
parameters of the prompts (V and C) and the state of optimizer to adapt to the next test instance.
During the inference phase, we separately compute the similarity between the view prompt V and
the test instance xtest, as well as the similarity between the caption prompt C and the test instance
xtest, and directly add these two similarities to obtain the final prediction result.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Benchmarks. We utilize the widely employed CLIP (Radford et al., 2021) model as source model
and select the multi-label datasets VOC (Everingham et al., 2010), MSCOCO (Lin et al., 2014), and
NUSWIDE (Chua et al., 2009) as target domains. The VOC dataset includes 20 categories, covering
both VOC2007 and VOC2012 versions, which contain 4,952 and 5,823 test images, respectively.
The MSCOCO dataset extends the category range to 80, and for testing purposes, we employ the
validation sets of COCO2014 with 40,504 images and COCO2017 with 5,000 images, as the test set
labels are not accessible. The NUSWIDE dataset includes 81 categories with a total of 83,898 test
images of lower resolution, which presents a broader category spectrum than MSCOCO.

Implementation details. All experiments are based on the CLIP model, encompassing RN50,
RN101, ViT-B/32, and ViT-B/16 architectures, each consisting of an image encoder and a corre-
sponding text encoder. For the initialization of the view and caption prompts, we employ the token
embedding of the “a photo of a” hard prompt as initialization weights and another using learned
prompts from CoOp (Zhou et al., 2022b) and MaPLE (Khattak et al., 2023). The learning rate for
the view prompt is 1e-2, while for the caption prompt is 1e-3. For all settings, multi-label test-
time adaptation is performed on a single instance, i.e., the batch size is 1. The ratio for filtering
confident views and captions is 0.1. The optimizer is AdamW (Loshchilov & Hutter, 2019) with a
single update step, followed by immediate inference on the test instance. Following PVP (Xiangyu
et al., 2024), we collect 100k text descriptions for each dataset, resulting in a total size of 300k
text description base. All experiments are evaluated by the mean Average Precision (mAP) metric,
defined as mAP = 1

L

∑L
i=1 APi, where L is the number of categories, and APi is the area under

the Precision-Recall curve for the i-th category.

4.2 COMPARISONS WITH STATE-OF-THE-ART

To our knowledge, our work is the first to investigate the feasibility of traditional entropy minimiza-
tion in the multi-label setting. Therefore, in this section, we select the original CLIP model and other
SOTA methods for multi-class scenarios as baselines, including online methods that do not require
retaining historical knowledge (TPT Shu et al. (2022), DiffTPT Feng et al. (2023), RCLF Zhao et al.
(2024a)) and episdoic methods that do (DMN Zhang et al. (2024b), TDA Karmanov et al. (2024)).

Results on different architectures. Table 1 compares ML–TTA with both online and episdoic
TTA methods on different CLIP (Radford et al., 2021) architectures, demonstrating the superior
performance across various multi-label datasets. Specifically, for the RN50 and RN101 architectures
on COCO2014/2017 (Lin et al., 2014) datasets, ML–TTA achieves 4∼5% improvement in mAP over
the original CLIP (Radford et al., 2021) model, whereas TPT (Shu et al., 2022) and DiffTPT (Feng
et al., 2023) yield only 1% enhancement. Despite introducing dual-memory network knowledge
from historical samples, DMN (Zhang et al., 2024b) and TDA Karmanov et al. (2024) present a
slight performance decline, due to intensifying the optimization bias towards top-1 label. Notably,
RLCF (Zhao et al., 2024a) employs a reinforcement learning-based knowledge distillation and more
adaptation steps, resulting in a catastrophic degradation in the multi-label adaptation performance for
smaller models due to excessive optimizations of top-1 label. On the VOC2012/2017 (Everingham
et al., 2010) datasets, TPT and DiffTPT also show 1∼2% decrease in performance compared to
CLIP, whereas ML–TTA still maintains 2∼3% performance improvement, indicating the robustness
of ML–TTA in multi-label adaptation across various model architectures and datasets.
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Table 1: Comparison with CLIP and SOTAs on adapting multi-label instances with different architectures.

Methods Epsdoic COCO2014 COCO2017 VOC2007 VOC2012 NUSWIDE Average

R
N

-5
0

CLIP [ICML 2022] ✓ 47.53 47.32 75.91 74.25 41.53 57.31

DMN [CVPR 2024] × 44.54 44.18 74.87 74.13 41.32 55.81
TDA [CVPR 2024] × 48.91 49.11 76.64 75.12 42.34 58.42

TPT [NeurIPS 2022] ✓ 48.52 48.51 75.54 73.92 41.97 57.69
DIffTPT [ICCV 2023] ✓ 48.56 48.67 75.89 74.13 41.33 57.72
RLCF [ICLR 2024] ✓ 36.87 36.73 65.75 64.73 29.83 46.78
ML–TTA (Ours) ✓ 51.58 51.39 78.62 76.63 42.53 60.15

R
N

-1
01

CLIP [ICML 2022] ✓ 48.83 48.15 76.72 74.21 41.93 57.97

DMN [CVPR 2024] × 46.28 45.44 76.82 75.32 42.71 57.31
TDA [CVPR 2024] × 50.19 49.78 78.12 77.13 43.13 59.67

TPT [NeurIPS 2022] ✓ 49.71 48.89 74.82 73.39 43.10 57.98
DIffTPT [ICCV 2023] ✓ 49.45 49.19 74.98 74.31 42.93 58.17
RLCF [ICLR 2024] ✓ 40.53 39.79 71.21 69.63 31.77 50.59
ML–TTA (Ours) ✓ 52.92 52.24 78.72 78.13 43.62 61.13

V
iT

-B
/3

2

CLIP [ICML 2022] ✓ 50.31 50.15 77.18 76.85 42.90 59.48

DMN [CVPR 2024] × 49.32 48.13 77.42 76.60 43.41 58.98
TDA [CVPR 2024] × 51.23 51.49 77.62 77.12 44.13 60.32

TPT [NeurIPS 2022] ✓ 48.12 48.63 74.21 71.93 43.63 57.30
DIffTPT [ICCV 2023] ✓ 48.73 49.19 74.50 72.98 43.42 57.76
RLCF [ICLR 2024] ✓ 50.28 49.59 77.12 76.83 43.29 59.42
ML–TTA (Ours) ✓ 52.83 52.99 78.70 77.97 44.12 61.32

V
iT

-B
/1

6

CLIP [ICML 2022] ✓ 54.42 54.13 79.58 79.25 45.65 62.61

DMN [CVPR 2024] × 52.52 52.37 79.83 79.67 46.27 62.13
DART [AAAI 2024] × 54.73 54.68 79.91 78.56 45.91 62.76
TDA [CVPR 2024] × 55.21 55.46 80.12 79.92 46.72 63.49

TPT [NeurIPS 2022] ✓ 53.32 54.20 77.54 77.39 46.15 61.72
DIffTPT [ICCV 2023] ✓ 53.91 54.15 77.93 77.24 46.13 61.87
RLCF [ICLR 2024] ✓ 54.21 54.43 79.29 79.26 43.18 62.07
ML–TTA (Ours) ✓ 57.52 57.49 81.28 81.13 46.55 64.80

For the vision transformer series architectures, compared to CLIP (Radford et al., 2021), ML–TTA
consistently achieves 2∼ 4% mAP improvement on the COCO2014/2017 (Lin et al., 2014) and
VOC2007/2012 (Everingham et al., 2010) datasets. However, most TTA methods, except TDA (Kar-
manov et al., 2024) and DART (Liu et al., 2024b), exhibit a slight performance decrement, par-
ticularly among episodic methods. Additionally, we observed an intriguing observation: all TTA
methods, excluding RLCF (Zhao et al., 2024a), fail to substantially enhance the mAP performance
of CLIP (Radford et al., 2021) on the NUSWIDE (Chua et al., 2009) dataset, with an improvement
of merely about 1%. This may be attributed to the low image resolution of NUSWIDE dataset,
where random data augmentation struggles to preserve sufficient visual information. Consequently,
adapting to multi-labels for small targets may become a research topic in the future.

Results on different prompt initialization. For this comparison, we adopt the learned prompt from
CoOp (Zhou et al., 2022b) and Maple (Khattak et al., 2023) to initialize the prompt weights, replac-
ing the template “a photo of a [CLS]” employed in the original CLIP model. As shown in Table 2,
the application of both CoOp and Maple prompt weights in our ML–TTA framework results in a sig-
nificant enhancement of over 4% in mAP on the COCO2014/2017 datasets. For instance, the mAP
increases from 47.53% to 51.58% and from 47.32% to 51.39% on COCO2014/2017 with CoOp
prompt initialization, whereas other episdoic methods, TPT (Shu et al., 2022) and DiffTPT (Feng
et al., 2023), yield improvements of no more than 1.5%. Moreover, ML–TTA also surpasses

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparison with SOTAs on adapting multi-label instances with different prompt initialization.

Methods Epsdoic COCO2014 COCO2017 VOC2007 VOC2012 NUSWIDE Average

C
oO

p
CoOp [IJCV2022] ✓ 47.53 47.32 75.91 74.25 41.53 57.31

TDA [CVPR 2024] × 48.91 49.11 76.64 75.12 42.34 58.42

TPT [NeurIPS 2022] ✓ 48.52 48.51 75.54 73.92 41.97 57.69
DIffTPT [ICCV 2023] ✓ 48.56 48.67 75.89 74.13 41.33 57.72
RLCF [ICLR 2024] ✓ 36.87 36.73 65.75 64.73 29.83 46.78
ML–TTA (Ours) ✓ 51.58 51.39 78.62 76.63 42.53 60.15

M
ap

le

Maple [CVPR2023] ✓ 48.83 48.15 76.72 74.21 41.93 57.97

TDA [CVPR 2024] × 50.19 49.78 78.12 77.13 43.13 59.67

TPT [NeurIPS 2022] ✓ 49.71 48.89 74.82 73.39 43.10 57.98
DIffTPT [ICCV 2023] ✓ 49.45 49.19 74.82 74.31 42.93 58.14
RLCF [ICLR 2024] ✓ 40.53 39.79 71.21 69.63 31.77 50.59
ML–TTA (Ours) ✓ 52.92 52.24 78.72 78.13 43.62 61.13

TDA (Karmanov et al., 2024), which is designed by dynamically employing the historical sample
knowledge, on both CoOp and Maple prompt initialization across all datasets.

Table 3: Results on different label counts.

Methods {1,2} {3,4} {5,6,7} {>=8}

CLIP [ICML 2022] 62.76 55.41 49.89 41.07
TPT [NeurIPS 2022] 62.88 53.05 45.57 37.43
DiffTPT [ICCV 2023] 61.97 52.67 44.32 36.89
RLCF [ICLR 2024] 66.01 51.65 43.32 35.08
ML–TTA (Ours) 67.14 57.59 51.68 41.32

Results on different label counts. Apart
from the analysis of architecture and prompt
initialization weights, we explore a more
challenging scenario in Table 3, where the
COCO2014 dataset is divided into subsets
with incrementally increasing numbers of im-
age labels per part, e.g., {1,2} represents the
number of labels L per image is either 1 or 2.
When L ∈ {1, 2}, TPT achieves only a neg-
ligible improvement compared to CLIP and shows large considerable performance degradation in
other situations as well as DiffTPT. RLCF improves significantly when L ∈ {1, 2}, but its perfor-
mance sharply declines as L increases. In contrast, our ML–TTA framework outperforms CLIP
across all situations, demonstrating that ML–TTA not only can address the distribution shifts during
testing but also effectively handle varying numbers of labels in testing instances.

Table 4: Results on adaptation complexity.

Methods TPT DiffTPT RLCF ML-TTA

Adapting Time 0.21s 0.41s 0.45s 0.24s
mAP 48.52 48.56 36.87 51.58

Results on adaptation complexity. Furthermore,
we analyze adapting time per test instance with
methods that also do not require retaining historical
knowledge. Table 4 shows that ML-TTA presents a
significant advantage compared to DiffTPT, which
involves generating multiple pseudo-images via a diffusion model, and RLCF, which requires dis-
tillation from a teacher model along with more gradient update steps. Compared to the benchmark
TPT, ML-TTA increases adapting time due to simultaneous optimizing view and caption prompts.

4.3 ABLTION STUDIES. Table 5: Ablation studies of different components.

Methods RN50 ViT-B/16
COCO2014 VOC2007 COCO2014 VOC2007

VP (i.e., TPT) 48.51 75.52 53.32 77.57
VP+BEM 48.96 76.31 53.58 77.89

CP 49.12 76.16 55.14 78.93
CP+BEM 49.54 76.75 55.64 79.58

VP+CP 51.22 77.98 57.14 80.85
VP+CP+BEM 51.58 78.62 57.52 81.28

Different components. In Table 5, we dis-
cuss the effectiveness of different compo-
nents within our proposed ML–TTA frame-
work on the COCO2014 and VOC2007
datasets, including view prompt (VP,
i.e., TPT (Shu et al., 2022)), caption
prompt (CP), and Bound Entropy Mini-
mization (BEM). Across both RN50 and
ViT-B/16 architectures, BEM consistently
enhances the mAP performance of VP, CP, and VP+CP, which indicates the reasonable effective-
ness of our proposed Bound Entropy Minimization objective. Furthermore, we observe that CP and

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

CP+BEM always achieve superior performance compared to VP and VP+BEM in all settings. Such
phenomenon shows treating text as a pseudo-image with a known label set to adapt multi-label test
instance is more reliable than augmented views, as the positive label set of views is pseudo.

4.4 FURTHER ANALYSIS

Table 6: Comparison with binary cross-entropy loss.

Methods
RN50 ViT-B/16

COCO2014 VOC2007 COCO2014 VOC2007

CLIP 47.53 75.91 54.42 79.58

VP+CP+BCE 48.39 75.75 54.51 78.59
VP+CP+BEM 51.58 78.62 57.52 81.28

1

m
A

P

52

53

54

55

56

57

8 16 32 64 128

58

Number of augmented views

TPT
RLCF
ML-TTA

TPT
RLCF
ML-TTA

Figure 3: Results on different number of views.

Loss functions. Here, we conduct a comparison between Bound Entropy Minimization (BEM)
and the conventional binary cross-entropy (BCE) loss function in multi-label classification tasks.
Specifically, we regarded the weak label set of confident views as hard labels for those views and
the strong label set of confident captions as hard labels for those captions, then using BCE loss
to optimize the view and caption prompts. The results are shown in Table 6. Compared to CLIP,
the mAP improvement using BCE loss on the COCO2014 is less than 1%. In contrast, our BEM
objective surpasses BCE loss by 3∼4% in mAP across all benchmarks, which demonstrates BEM is
not only more effective than vanilla entropy minimization but also more robust compared to binary
cross-entropy loss. BCE loss is not suitable for optimizing a single test instance.

Number of augmented views. Following TPT (Shu et al., 2022), we conduct parameter experiments
of different numbers of augmented views on the COCO2014 dataset using ViT-B/16 architecture.
As depicted in Figure 3, as the number of views increases from 1 to 128, the mAP performance of
RLCF and ML–TTA both show an upward trend and begin to stabilize at 64 views. Surprisingly,
the performance curve of TPT does not have any regularity, which implies that vanilla entropy
minimization, by focusing only on the label with the highest probability, leads to unstable adaptation
for multi-label instances.

Table 7: Results on different numbers of retrieved captions.

Datasets CLIP TPT 1 2 4 8 16 32 64 128

RN50 COCO2014 47.53 48.52 51.35 51.37 51.41 51.49 51.58 51.59 51.55 51.48
VOC2007 75.91 75.54 78.29 78.33 78.48 78.54 78.61 78.59 78.53 78.42

ViT-B
/16 COCO2014 54.42 53.32 57.23 57.33 57.41 57.48 57.49 57.52 57.55 57.58

VOC2007 79.58 77.54 81.06 81.12 81.21 81.24 81.28 81.19 81.15 80.98

Number of retrieved cap-
tions. We also investigate
the impact of allocating dif-
ferent numbers of retrieved
captions for each augmented
view on the performance of
ML–TTA. As shown in Ta-
ble 7, when only one caption is allocated to each view, ML–TTA outperforms CLIP or TPT by
3∼4%. As the number of captions increases, the performance of ML–TTA gradually improves until
it stabilizes. For the VOC2007 dataset, too many captions can lead to a slight decrease in perfor-
mance, as captions that are not highly similar to the view may introduce noisy positive labels that
do not exist in the corresponding view.

5 CONCLUSION

In this paper, we investigate a test-time adaptation framework (ML–TTA) designed for multi-label
data without making any presumptions about the distribution of the test instances. The proposed
Bound Entropy Minimization (BEM) objective overcomes the limitation of the vanilla entropy loss,
which only optimizes the most confident class. By conceptualizing paired captions as pseudo-views
with a known label set, ML–TTA employs BEM to adapt to multi-label test instances by allocating
weak label set to each augmented view and strong label set to each paired caption, binding the top-
k predicted labels with the highest probabilities. Extensive experiments on the MSCOCO, VOC,
and NUSWIDE datasets demonstrate that ML–TTA framework outperforms the source model CLIP
and other state-of-the-art test-time adaptation methods, across various model architectures, prompt
initialization, and varying label scenarios.
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Appendix for Multi-Label Test-Time Adaptation with
Bound Entropy Minimization

A PROOF

A.1 PROOF OF PROPOSITION 1

Proposition 1. Consider a model’s output logits of a selected view x, denoted as s =
(s1, s2, . . . , sL), where without loss of generality, we assume s1 > s2 > · · · > sL. It follows
that the entropy loss H = H(p(·|x)) decreases as s1 increases, and H increases as the sum of the
remaining logits, Srest =

∑L
i=2 si, decreases. Formally, this can be written as:

∂H

∂s1
< 0 and

∂H

∂Srest
> 0. (9)

Proof. We denote the predicted probability p(y = l|x) = exp sl∑L
i=1 exp si

as pl for simplicity, where si

is the logit of the i-th category. We first calculate the partial derivative of si with respect to pl:

∂pl
∂si

=
∂

∂si

(
exp sl∑L
j=1 exp sj

)

=
δl,i exp sl∑L
j=1 exp sj

− exp sl
exp si(∑L

j=1 exp sj

)2
= δl,ipl − plpi

(10)

where δi,j = 1 only if i = j, else is δi,j = 0. We can now directly calculate the partial derivative of
H for si.

∂H

∂si
=

∂

∂si

(
−

L∑
l=1

pl log pl

)

= −
L∑

l=1

(
∂pl
∂si

log pl + pl
1

pl

∂pl
∂si

)

= −
L∑

l=1

(δl,ipl log pl − plpi log pl + δl,ipl − plpi)

= pi log pi + pi −
L∑

l=1

(−plpi log pl − plpi)

= (pi log pi + pi)

(
L∑

l=1

pl

)
−

L∑
l=1

(−plpi log pl − plpi)

= −
L∑

l=1

(plpi log pi − plpi log pl + plpi − plpi)

= −
L∑

l=1

plpi log
pi
pl

(11)

where the fourth equivalent uses the property of δi,j and fifth equivalent uses
∑L

l=1 pl = 1. Since
we assume s1 > s2 > · · · > sL, then the probabilities have the same order p1 > p2 > · · · > pL,
therefor:

∂H

∂s1
= −

L∑
l=1

plp1 log
p1
pl

= −
L∑

l=2

plp1 log
p1
pl

< 0 (12)
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as log p1

pl
> 0 for all l > 1, therefor we proof the first inequality in proposition 1. To prove the

second inequality, we first calculate the sum of the partial derivative of H for all logits.

L∑
i=1

∂H

∂si
=

L∑
i=1

(
−

L∑
l=1

plpi log
pi
pl

)

= −
L∑

i=1

L∑
l=1

(plpi log pi − plpi log pl)

= −
L∑

i=1

L∑
l=1

(plpi log pi − pipl log pi)

= 0

(13)

where we change the position of index i and l for the second term in the double summation to get
the third equivalent. Now the second inequality is easy to get:

∂H

∂Srest
=

L∑
i=2

∂H

∂si

/
∂Srest

∂si

=

L∑
i=2

∂H

∂si

/
1

=

L∑
i=1

∂H

∂si
− ∂H

∂s1

= −∂H

∂s1
> 0

(14)

A.2 PROOF OF PROPOSITION 2

proposition 2. Consider a model’s output logits of a selected view x, denoted as s = (s1, s2, . . . , sL),
where without loss of generality, we assume s1 > s2 > · · · > sL. We define the modified logits as
s′ = (s′1, s

′
2, . . . , s

′
L), where s′i = ai + si for i ≤ k with ai = s1 − si and s′i = si for i > k. Here,

ai is a constant that does not participate in differentiation, resulting in s′i = s1 for all i ≤ k. Let
Srest =

∑L
i=k+1 si. For the modified logits s′, we define the modified probability p′ = Softmax(s′),

and the modified entropy as H ′ = −
∑L

i=1 p
′
i log p

′
i. It follows that:

∂H ′

∂si
< 0, ∀i ≤ k and

∂H ′

∂Srest
> 0. (15)

Proof. With the assumption s1 > s2 > · · · > sL and the definition of s′, we have s′1 = s′2 = · · · =
s′k > · · · > s′L. Use the conclusion in proposition 1, for i ≤ k, we have:

∂H ′

∂si
=

∂H ′

∂s′i

ds′i
dsi

=
∂H ′

∂s′i
× 1 = −

L∑
l=1

p′lp
′
i log

p′i
p′l

= −
L∑

l=k+1

p′lp
′
i log

p′i
p′l

< 0

, ∀i ≤ k

(16)

where p′i > p′l for i ≤ k and l > k as s′1 = s′2 = · · · = s′k > · · · > s′L. Similar to the proof of
proposition 1, we use the conclusion of

∑L
i=1

∂H
∂s′i

= 0, which has been proved in Equation. 13 to
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prove the second inequality.

∂H ′

∂Srest
=

L∑
i=k+1

∂H

∂si

/
∂Srest

∂si

=

L∑
i=k+1

∂H

∂si

/
1

=

L∑
i=1

∂H

∂si
−

k∑
i=1

∂H

∂si

= −
k∑

i=1

∂H

∂si
> 0

(17)

B DETAILED LABEL BINDING PROCESS.

In this section, we present a certain example to showcase the calculation of Label Binding 3.3.2.
Label binding refers to making the top-k predicted logits equal, as expressed below:

s̃x
test

ij = ((mxtest

i −sx
test

ij )+sx
test

ij )×I(Rank (sx
test

ij , sx
test

i ) ≤ kxtest
i )+sx

test

ij ×I(Rank (sx
test

ij , sx
test

i ) > kxtest
i ), (18)

Since label binding (making ... equal) is non-differentiable, we employ the stop-gradient operation
in VQ-VAE van den Oord et al. (2017) for backpropagation, i.e. ((mxtest

i − sx
test

ij ) + sx
test

ij ) to perform
label binding.

Taking a 3-class classification task as an example with class labels of (1, 2, 3), assuming kx
test
i is 2,

and the label binding process is s = [0.9,0.7, 0.3] → s
′
= [0.9,0.9, 0.3]. s̃x

test

ij represents the logit
of the j-th class in the i-th augmented view after label binding, e.g., s̃x

test

i2 changes from 0.7 → 0.9.
mxtest

i denotes the maximum value of s, which is 0.9. I(·) is the indicator function. Rank (a,b)
indicates the descending rank of a within b, e.g., Rank (0.7, s) = 2. The process for computing
the bound logit for each class is as follows:

s̃x
test

i1 = ((0.9− 0.9) + 0.9)× I(Rank (0.9, s) ≤ 2) + 0.9× I(Rank (0.9, s) > 2)

= 0.9× I(1 ≤ 2) + 0.9× I(1 > 2)

= 0.9,

s̃x
test

i2 = ((0.9− 0.7) + 0.7)× I(Rank (0.7, s) ≤ 2) + 0.7× I(Rank (0.7, s) > 2)

= 0.9× I(2 ≤ 2) + 0.7× I(2 > 2)

= 0.9,

s̃x
test

i3 = ((0.9− 0.3) + 0.3)× I(Rank (0.3, s) ≤ 2) + 0.3× I(Rank (0.3, s) > 2)

= 0.9× I(3 ≤ 2) + 0.3× I(3 > 2)

= 0.3,

(19)

label binding process changes the logits from [0.9,0.7, 0.3] → [0.9,0.9, 0.3].

C TEXT DESCRIPTION BASE CONSTRUCTION

Here, we present the construction of the text description base using Large language models (LLMs).
Initially, for a set of labels, denoted as L = {l1, l2, ..., lL}, where L represents the total number of
labels across all multi-label datasets. Following PVP (Xiangyu et al., 2024), we define a prompt
template to instruct LLama-2-7B (Touvron et al., 2023), generating descriptions that describe a
nature scene, which is as follows:

PROMPT: Make a sentence to describe a photo. Requirements: Each sentence should be less than
15 words and include keywords: {li1 , li2 , . . . , lij},

where {li1 , li2 , . . . , lij} is a subset of L with i ≤ 5. We randomly sample j categories from L
and input these categories along with the prompt template into LLMs to automatically generate text
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descriptions. After obtaining generated descriptions, we employ the nouns filtering strategy used in
PVP to extract textual labels for each description. Some examples are illustrated below:

1. A hot dog toaster is positioned next to a stop sign.

2. A group of girls enjoying a game of frisbee while sitting on chairs.

3. The little boy dreams of becoming a pilot as he falls asleep with his aeroplane.

4. Remotes control the TV, allowing people to enjoy their favorite shows.

5. A motorbike speeds past a man wearing a tie, as he holds a wine glass in one hand.

where the underlined words indicate the textual labels extracted from the corresponding description.
However, due to the uncontrollable quality and relevance of the paired captions generated by LLMs,
these captions may not always accurately represent the image contents. In real-world scenarios, be-
sides adopting a confident-based filtering strategy to filter out views and captions with high entropy
(e.g., low confidence), we can also explore more robust strategies to retrieve paired captions, such
as, constructing high-quality and content-rich text description databases, ensembling label sets from
multiple captions, or improving the similarity retrieval strategy, thereby reducing the impact of noise
on the model’s adaptation.
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