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Abstract

Machine learning models typically assume that
training and testing data follow the same indepen-
dent and identically distributed (i.i.d.) distribution.
However, in real-world deployment, data often
evolves over time. Addressing this challenge re-
quires models that can efficiently adapt at test
time without retraining. This paper introduces a
prompting-based test-time adaptation framework
for temporal domain generalization that enables
pre-trained models to efficiently adapt to evolv-
ing distributions without re-training. Our method
is both parameter- and time-efficient, leveraging
global prompts, domain-specific prompts, and
drift-aware prompts to model and forecast tempo-
ral shifts in data distributions. By extrapolating
these learned adaptations, our approach enables
pre-trained models being adaptive to dynamic en-
vironments. We demonstrate the adaptability, scal-
ability and generality of our framework across
classification, regression, time-series forecasting,
and NLP tasks, highlighting its effectiveness in
adapting foundation models to real-world tempo-
ral shifts.

1. Introduction
Most machine learning algorithms rely on the assumption
that the training and testing data are independently and
identically distributed (i.i.d.). However, in many in-the-
wild deployment settings, the testing data can fall outside
the training distribution. This discrepancy is particularly
pronounced in the deployment of pre-trained foundation
models, where distribution shifts and concept drifts over
time. This results in significant performance degradation at
test time, highlighting the urgent need for models that can
efficiently adapt to dynamic, non-stationary environments
without retraining.
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While prior research in domain generalization (DG) has
explored strategies for handling distribution shifts by im-
proving generalization to unseen domains (Yue et al., 2019;
Prakash et al., 2019; Shankar et al., 2018; Volpi et al., 2018;
Hu et al., 2023; Triantafillou et al., 2021; Kim et al., 2021;
Wang et al., 2021), these approaches often overlook the
critical setting of test-time adaptation (TTA) - they often
do not account for temporal evolution in the data, limiting
their ability to handle dynamic, real-world settings where
domain shifts are driven by time-dependent factors. More
discussion on related work is in Appendix A.1.

In this paper, we introduce a novel algorithm for temporal
domain generalization (Bai et al., 2023; Nasery et al., 2021)
that enables pre-trained models to generalize and adapt to
evolving data distributions at test-time. Our approach is
both parameter- and time-efficient, leveraging prompt-based
adaptation to dynamically condition a pre-trained model
for future domain shifts. Specifically, we propose a mecha-
nism that learns three types of prompts: (1) Global prompts,
capturing general knowledge shared across domains; (2)
Domain-specific prompts, adapting the model to particular
domain characteristics; and (3) Drift-aware prompts, which
model temporal shifts in domain-specific prompts and ex-
trapolate future adaptations. By forecasting the temporal
evolution of these prompts, our method equips foundation
models with the capability to anticipate and adapt to distribu-
tional shifts. Moreover, our approach optimizes adaptation
through lightweight, real-valued prompts, making it highly
scalable and adaptive for real-world applications. The key
benefits of our prompting-based temporal DG include:

• Scalability and efficiency. Only a small number of
parameters shared across all domains are needed for
prompt generation and no retraining on future-domain
data is required, ensuring efficient adaptation.

• Adaptability. By explicitly modeling temporal drift,
our method enhances the reliability of foundation mod-
els in dynamic environments, making them robust
against real-world distributional changes at test time.

• Generality. The approach seamlessly integrates with
various architectures and tasks, including classifica-
tion, regression, time-series forecasting, and natural
language processing (NLP), as demonstrated in our
experiments.
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Figure 1: Illustration of the proposed method with a set of source domains D1, D2, and D3 given during training and a
target (unobserved future) domain D4 used only during testing. The goal is to adapt the frozen backbone network, which has
been pre-trained on the combined source domains. First, domain-specific prompts PS1, PS2, PS3 are learned independently
on each source domain to learn the characteristics of each indexed domain separately. Next, a temporal prompt generator is
trained to transform the domain-specific prompts to temporal prompts (PT2, PT3, PT4) which can capture the temporal
dynamics and concept drifts within the sequence of domains. Finally, to capture the general knowledge across all domains,
the general prompts PG are learned. During inference, the combination [PT4;PG, X4] is fed to the frozen backbone to
perform the task on the target domain D4.

2. Method
We address the problem of adapting a pre-trained model
to future time periods under the realistic setting where the
data distribution evolves over time. Prompt tuning is a
well-known mechanism for adapting a pre-trained model to
downstream tasks efficiently (see Appendix A.1). Prompt
tuning comprises two main components: prompts and a
frozen backbone transformer network. The prompts are
prepended to the inputs, guiding the frozen backbone trans-
former in adapting to different downstream tasks. In this
section, we present our novel prompting-based method that
efficiently makes pre-trained models adaptable to unseen
future domains.

2.1. Frozen Backbone Network

The model to be adapted could be a pre-trained LLM for
NLP tasks, or a backbone network pre-trained on the data
combining all source domains for general tasks.

Denote a set of temporal domains by {Dt = (Xt, Yt)},
where {Dt|1 ≤ t ≤ τ} represents the source domains,
{Dt|t > τ} represents the target (unseen future) domains,
and Xt and Yt are the inputs and outputs for domain t,
respectively. fθ is the transformer-based backbone model.

2.2. Domain-Specific Prompt Learning

We first learn prompts to capture domain-specific informa-
tion. For each domain Dt, we prepend the input Xt with a
prompt PS(t) ∈ Rn, which are learnable parameters. The
combined result, represented as [PS(t);Xt], is then pro-
cessed by the frozen backbone network fθ. To learn prompt

PS(t), the model is trained to maximize the likelihood
Pθ(Yt|[PS(t);Xt]) while freezing the pre-trained model pa-
rameters θ. Learning on each domain independently, we
derive domain-specific prompts PS1, PS2, ..., PS(τ), effec-
tively condensing domain knowledge into a concise set of
parameters.

2.3. Temporal Prompt Learning

To capture concept drift over time, we employ a tempo-
ral prompt generator gω to encode the temporal dynamics
into temporal prompts. Starting from t = 2, for each do-
main Dt the temporal prompt generator gω receives domain-
specific prompts, PS1, PS2, . . . , PS(t−1), as input tokens. It
then uses those prompts to generate the temporal prompts
PT2, PT3, . . . , PT (t). Specifically, as shown in Equation 1,
it generates the temporal prompt PT (t) ∈ Rn for domain
Dt from previous domain-specific prompts.

PT (t) = gω(PS1:(t−1)), t = 2, . . . , τ (1)

Moreover, to help capture generic information across all
domains, we incorporate a learnable general prompt PG ∈
Rn. The input Xt is prepended by the generic prompt PG

and the temporal prompt PT (t). The result, represented as
[PT (t);PG;Xt], is fed into the frozen backbone network fθ.
Both PG and the temporal prompt generator gω are trained
to maximize the likelihood Pθ(Yt|[PT (t);PG;Xt]), while
keeping the backbone network fθ frozen. Temporal prompts
PT2, PT3, . . . , PT (τ) effectively capture temporal drift and
help the pre-trained network to adapt to changes in the data
distribution over time, and to anticipate future changes by
capturing temporal trends.
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2.4. Inference

During inference, the model utilizes the domain-specific
prompts PS1, PS2, . . . , PS(τ) and generates temporal
prompts PT2, PT3, . . . , PT (τ+1). To perform the target
domain task, the frozen backbone receives the input
[PT (τ+1);PG;X(τ+1)] and predicts the output.

3. Experiments
We demonstrate the generality of prompting-based temporal
generalization using public datasets covering classification
(Rotated Moons (2-Moons) (Nasery et al., 2021), Online
News Popularity (ONP) (Ben-David et al., 2010), Electrical
Demand (Elec2) (Nasery et al., 2021)), regression (House
prices (House) (Nasery et al., 2021), Appliances energy pre-
diction (Appliance) (Bai et al., 2023)), time series forecast-
ing tasks (Crypto (Arik et al., 2022)), and NLP sentiment
prediction tasks (AmazPantry (Ni et al., 2019)).

Baseline Methods. We compare our model with sev-
eral state-of-the-art methods, including temporal domain
generalization methods DRAIN (Bai et al., 2023) and
GI (Nasery et al., 2021), continuous domain adaption meth-
ods CDOT (Jimenez et al., 2019) and CIDA (Wang et al.,
2020), and prompting method ATTEMPT (Asai et al.,
2022), and 2 baseline methods Vanilla-MLP and Vanilla-
Transformer. More details of the baseline methods can be
found in Appendix A.2.

Implementation Details. We utilize the Adam opti-
mizer (Kingma & Ba, 2014) and consistently set the learning
rate to 1e−4 across all datasets. Our system is implemented
in PyTorch and runs on a workstation powered by a 2.10GHz
Intel Xeon(R) Gold 6230 CPU with 20 cores, paired with
an NVIDIA RTX 5000 GPU. For each dataset, we tune
the hyperparameters based on the suggestions from (Bai
et al., 2023). Additional experiment settings and results
(e.g., network architectures and additional ablation results)
are provided in Appendix A.2.

3.1. Experimental Results

Synthetic data. To evaluate the proposed method under a
controlled setting, we constructed synthetic datasets derived
from the Mackey-Glass equations (Mackey & Glass, 1977)
and sums of cosines. Due to the page limit, these results are
included in Appendix A.4.

Classification and regression tasks. Table 1 summarizes
the classification and regression results. For the classifi-
cation and regression datasets, we followed the procedure
outlined in (Bai et al., 2023) to partition the dataset into
distinct temporal domains. It is observed that our method
shows superior results on almost all datasets compared with
SOTA methods, except for the 2-Moons dataset. It may due

to the low dimensionality of the 2-Moons dataset (only 2
dimensions).

Time series forecasting tasks. Table 2 shows the time series
forecasting results on the Crypto dataset. For Crypto dataset,
we used 90% of entries from each month in 2018, 2019, and
2020 for training (across 36 domains), the remaining 10%
of entries for in-domain testing, the first month of 2021 for
validation, and the subsequent three months of 2021 for
actual testing.

Experimental results show that our approach enables time
and parameter efficient adaptation of the pre-trained model.
The state-of-the-art temporal domain generalization method
DRAIN (Bai et al., 2023) is a hypernet-like approach, where
all the weights of the pre-trained model are predicted for
the unseen future domain. DRAIN’s parameter count grows
quickly, while our method requires three orders of magni-
tude fewer parameters for training and takes less than half
the time to train, without loss in generalization performance.

NLP tasks. We demonstrate our method on an NLP dataset
AmazPantry (Ni et al., 2019), and our method is applied
to the pre-trained BERT (Devlin et al., 2018). Note that
DRAIN (Bai et al., 2023) is not applicable to this experiment
since generating BERT using a hypernetwork is not feasible.
Table 3 show that our method can well capture concept
drifting and generalize well to unseen future.

3.2. Ablation Studies and Additional Experiments

We conducted ablation studies on the Crypto and Elec2
datasets to see the impact of the different types of proposed
prompts. Table 4 shows that both prompting mechanisms
PT and PG contribute to better performance.

As an additional experiment, we further evaluate our pro-
posed method with a state-of-the-art multi-scale transformer
architecture, Scaleformer (Shabani et al., 2023), on Mackey-
Glass synthetic data. Table 5 shows the results, where
Scaleformer has been applied on Informer (Zhou et al.,
2021). The results confirm that our method generalizes
to the state-of-the-art transformers and can support further
improvements by incorporating complementary advances in
network design.

Further ablation studies on the number of training domains,
sequential versus non-sequential training paradigms, and hy-
perparameter configurations can be found in Appendix A.3.

4. Conclusion
In this paper, we introduced a prompting-based approach to
temporal domain generalization, enabling pre-trained mod-
els to efficiently adapt to evolving data distributions without
requiring access to future-domain data. Leveraging global
prompts, domain-specific prompts, and drift-aware prompts
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Table 1: Performance comparison of all methods in terms of classification error (in %) for classification tasks and mean
absolute error (MAE) for regression tasks (both smaller the better.) Results of comparison methods on all datasets are
reported from (Bai et al., 2023). “-” denotes that the method could not converge on the specific dataset.

Method Classification [% error ↓] Regression [MAE ↓]
2-Moons ONP Elec2 House Appliance

Vanilla-MLP 22.4 ± 4.6 33.8 ± 0.6 23.0 ± 3.1 11.0 ± 0.36 10.2 ± 1.1
CDOT (Jimenez et al., 2019) 9.3 ± 1.0 34.1 ± 0.0 17.8 ± 0.6 - -

CIDA (Wang et al., 2020) 10.8 ± 1.6 34.7 ± 0.6 14.1 ± 0.2 9.7 ± 0.06 8.7 ± 0.2
GI (Nasery et al., 2021) 3.5 ± 1.4 36.4 ± 0.8 16.9 ± 0.7 9.6 ± 0.02 8.2 ±0.6

DRAIN (Bai et al., 2023) 3.2 ± 1.2 38.3 ± 1.2 12.7 ± 0.8 9.3 ± 0.14 6.4 ± 0.4
Vanilla-Transformer 25.2 ± 0.9 33.6 ± 0.5 22.5 ± 0.6 11.8± 0.3 5.6 ± 0.4

Attempt (Asai et al., 2022) 21.1 ± 1.1 34.1 ±0.6 12.3 ±0.8 9.0 ±0.4 4.9 ±0.5
Ours 8.1 ± 1.0 32.7 ± 0.7 10.6± 0.9 8.9± 0.20 4.7 ± 0.3

Table 2: Performance comparison of our method with DRAIN (Bai et al., 2023) and ATTEMPT (Asai et al., 2022) on Crypto
dataset in terms of root mean square error ×103.

Method #params time (s) In domain Dt1 Dt2 Dt3

DRAIN-2FC 8M 1634 4.97± 0.08 5.22± 0.08 7.78± 0.12 7.98 ± 0.11
DRAIN-3FC 239M 2520 4.61 ± 0.09 4.95 ±0.07 7.38 ± 0.09 7.47 ± 0.13
DRAIN-4FC 254M 2827 3.66± 0.08 3.74± 0.08 6.82 ± 0.10 7.03 ± 0.15

Vanilla-Trans. 69k 239 4.08 ± 0.08 4.44± 0.07 7.28 ± 0.09 7.55 ± 0.08
Attempt 93K 684 3.85±0.10 4.29± 0.11 7.51 ± 0.12 7.75 ±0.13
Attempt-m 93K 684 3.79± 0.12 4.12± 0.10 7.16± 0.17 7.43 ± 0.15

Ours 94K 717 3.53± 0.06 3.57± 0.07 6.66 ±0.10 6.89 ± 0.09

Table 3: Experimental results on AmazPantry Dataset.

AmazPantry Dataset precision recall f1 score

BERT
Dt1 0.69 0.46 0.56
Dt2 0.52 0.35 0.42
Dt3 0.52 0.77 0.62

Ours
Dt1 0.68 0.50 0.58
Dt2 0.55 0.43 0.49
Dt3 0.56 0.76 0.64

Table 4: Ablation of effect of PG, PT using Crypto and
Elec2 datasets. ✓indicates the prompt is used.

Crypto [RMSE ×103 ↓] Elec2 [MAE ↓]
PG PT Dt1 Dt2 Dt3 Dt

✓ 3.57 6.66 6.84 14.9
✓ 3.53 6.71 6.80 14.7

✓ ✓ 3.53 6.61 6.74 10.6

enables effective modeling and anticipating temporal shifts,
and enhances model robustness in dynamic environments.
Our approach is both parameter- and time-efficient, making
it well-suited for real-world deployment scenarios where
data distributions evolve over time. Through extensive ex-

Table 5: Additional experimental results on Mackey-Glass
with state-of-the-art transformers Scaleformer (Shabani
et al., 2023) and Informer (Zhou et al., 2021).

Method
RMSE ×101 ↓

Mackey-Glass Mackey-Glass
with σ-modification with variable cosine

Vanilla-Trans. (VT) 1.315 ±0.07 2.511±0.09
Informer 1.127 ±0.05 2.074 ±0.08

Ours (on VT) 0.982 ±0.06 1.975±0.06
Scaleformer 0.934 ±0.00 1.967 ±0.01

Ours (on Scaleformer) 0.802 ±0.01 1.852 ±0.04

periments on classification, regression, time-series forecast-
ing, and NLP tasks, we demonstrated the scalability, gen-
erality, and effectiveness of our framework across diverse
applications.

Impact Statements
Our research addresses the problem of adapting pre-trained
models to data distribution changes over time. To our knowl-
edge, it does not introduce new ethical or societal risks that
need to be specifically highlighted here.
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A. Appendix
A.1. Related Work

Domain generalization and adaptation. Domain adaptation (DA) aims at tailoring models to specific target domains,
using the similarities that exist between these domains (Ben-David et al., 2010; Wang & Deng, 2018; Hoffman et al., 2014;
Jimenez et al., 2019; Lao et al., 2020; Wang et al., 2020; Yang & Hospedales, 2016; Courty et al., 2016; Gong et al., 2012;
Mancini et al., 2019; Shabani et al., 2023; Wang et al., 2020; Ganin et al., 2016). Domain generalization (DG) methods
build upon the insights from domain adaptation and aim to enhance the generalization capability of models to unseen target
domains, mostly by data augmentation or discovering domain-invariant features (Yue et al., 2019; Prakash et al., 2019;
Shankar et al., 2018; Volpi et al., 2018; Nazari & Kovashka, 2020; Khirodkar et al., 2019; Qiao et al., 2020; Liu et al., 2018;
Zhao et al., 2021; Garg et al., 2021; Qi et al., 2021; Fan et al., 2021; Mitrovic et al., 2021; Hu et al., 2023; Triantafillou et al.,
2021; Nam et al., 2021; Sun et al., 2021; Wu & Gong, 2021; Dubey et al., 2021; Kim et al., 2021; Wang et al., 2021; Tian
et al., 2022; Rame et al., 2022).

Temporal domain generalization. Temporal DG, compard with standard DG, remains an under-explored area with
relatively little research dedicated to addressing its challenges. Unlike standard DG, which aims for domain-invariant
representations across different domains, temporal DG focuses on capturing the temporal dynamics of the data, enabling
generalization to unseen future temporal domains. The Gradient Interpolation (GI) (Nasery et al., 2021) method uses
adversarial training to generalize over time, altering the leaky ReLU activation for time dependence. LSSAE (Qin et al.,
2022) proposed a probabilistic framework modeling the underlying continuous characteristics in the latent space of deep
neural networks. TKNets (Zeng et al., 2024) leverages Koopman operator theory to model temporal domain shifts by
establishing linear transition relations between evolving domains. Koodos (Cai et al., 2024) learns three flows including Data
Flow, the Model Flow, and the Koopman Representation Flow, and encourages consistent characteristics among the three
flows. DRAIN (Bai et al., 2023) models model temporal dynamics by predicting network weights evolving over time. Most
existing methods are not ideal for scalable and efficient temporal adaptation, either due to architectural constraints (such
as LSSAE) or high computational and memory costs (such as DRAIN, TKNets, and Koodos). In contrast, our approach
leverages lightweight prompting mechanisms to dynamically adapt to temporal shifts without excessive parameter overhead,
achieving efficient generalization while remaining compatible with large-scale foundation models.

Prompting Mechanism: The concept of prompt-based learning has gained significant traction in the field of natural
language processing (NLP) for adapting pre-trained language models (PLMs) to various downstream tasks. This framework
involves conditioning the model with additional instructions to perform specific tasks (Peters et al., 2018; Devlin et al., 2018;
Brown et al., 2020; Lester et al., 2021; Vu et al., 2021; Gu et al., 2022; Gao et al., 2021; Liu et al., 2023b;a; Li & Liang,
2021).

A.2. Network architectures and experimentation details

Below, we detail the architecture and other specific experiment details for each dataset.

Architecture of frozen backbone network:

We choose backbones for each dataset to enable a fair comparison with state-of-the-art methods.

For the time series dataset Crypto, the initial inputs are passed through a linear layer, resulting in 64-dimensional embeddings.
These embeddings are then processed by a transformer encoder layer. The transformer comprises a single encoder layer
with four heads, and the hidden layers with dimensionality of 128. Finally, the output is passed through another linear layer
to achieve the desired output size. We utilize the mean squared error (MSE) loss for Crypto dataset.

For the datasets that are reported in DRAIN (Bai et al., 2023), the initial inputs for Elec2, 2Moons, House, and Appliance
are transformed through a linear layer to produce 128-dimensional embeddings, whereas for ONP it is a 32-dimensional
embedding. These embeddings are subsequently processed by a transformer encoder layer. Notably, to align closely with the
DRAIN paper’s structure, our transformer encoder employs just one linear layer in the feed-forward segment, as opposed to
the conventional two. The transformer setup involves a single encoder layer with one head. The hidden layers maintain
a 128-dimensional structure for all datasets, with the exception of ONP, which is set at 64. Outputs are then channeled
through another linear layer to derive the desired size. For regression datasets, we adopt the mean squared error (MSE) loss,
and for classification datasets, we use binary cross-entropy loss.
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Algorithm 1 Prompt Learning and Inference

Require: Source domains, target domains, pre-trained model fθ, temporal prompt generator gω
Ensure: Domain-specific prompts PS1, PS2, . . . , PSτ , temporal prompts PT2, PT3, . . . , PT (τ+1), generic prompt PG

1: function DomainSpecificPromptLearning
2: for each domain Dt in source domains (1 ≤ t ≤ τ ) do
3: Prepend Xt with PS(t)

4: Process [PS(t);Xt] using frozen backbone fθ
5: Train to maximize likelihood Pθ(Yt|[PS(t);Xt]) with θ fixed
6: end for
7: Return prompts PS1, PS2, . . . , PSτ

8: end function
9: function TemporalPromptLearning

10: Initialize temporal prompt generator gω
11: for each domain Dt with 2 ≤ t ≤ τ do
12: Provide PS1, . . . , PS(t−1) to gω
13: Generate PT (t)

14: Prepend Xt with PG and PT (t)

15: Process [PT (t);PG;Xt] with fθ
16: Train to maximize Pθ(Y |[PT (t);PG;Xt]) with θ fixed
17: end for
18: end function
19: function Inference
20: Forecast PT (τ+1) given PS1, . . . , PSτ and PG

21: Predict Y(τ+1) using fθ and [PT (τ+1);PG;X(τ+1)]
22: end function=0

Domain-specific prompts: Domain-specific prompts are learnable parameters, whose sizes match the embedding dimensions
for each dataset.

Temporal prompt generator: We employ a transformer with a single encoder layer and 1 heads as our temporal prompt
generator. The transformer’s hidden layers have a consistent 128-dimensional configuration.

Baseline Methods:

• DRAIN-2FC, DRAIN-3FC, DRAIN-4FC. The original DRAIN paper employed two fully connected layers (DRAIN-
2FC) in both encoding and decoding functions to transform the latent representations between LSTM units. To
potentially boost DRAIN’s performance, we also explored using three and four linear layers in both encoding and
decoding functions. We denote these models DRAIN-3FC and DRAIN-4FC, respectively. DRAIN-Best refers to the
model achieving the highest performance using these configurations for the encoding/decoding functions.

• Vanilla-MLP, the MLP-based backbone network from DRAIN (Bai et al., 2023), which is trained on the combined
source domains.

• Vanilla-Transformer, our method’s transformer-based backbone network, which is trained on the combined source
domains.

A.3. Ablation Study

The number of training domains.: To study the impact of the number of training domains on method performance, we
conducted an ablation study on Mackey-Glass synthetic data with varying numbers of training domains. Table 6 shows that
the performance of our method improves as the number of source domains increases, which is expected as a greater number
of observed source domains make temporal patterns more evident.

Non-sequential temporal prompt learning: In the main paper, temporal prompts are generated sequentially. An alternative
option is to generate them non-sequentially. In this experiment, we opt for a non-sequential training paradigm, wherein
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Table 6: Impact of number of training domains on vanilla transformer and our method.

MSE ×101 ↓
# Training Mackey-Glass Mackey-Glass
domains with σ-modification with variable cosine

Vanilla- Ours Vanilla- Ours
Trans. Trans.

4 1.818 1.305 3.007 2.581
9 1.315 0.982 2.511 1.975
19 0.877 0.787 3.326 2.547
49 0.930 0.739 1.645 1.440

the model is exposed to all source domains simultaneously during the training process. To be precise, the temporal
prompt generator, denoted as gω, takes all domain-specific prompts PS1, PS2, . . . , PS(τ), and generates temporal prompts
PT2, PT3, . . . , PT (τ+1). Table 7 compares performance of sequential temporal prompt generation vs non-sequential prompt
generation, and it can be seen that performance is on par with the main method.

Table 7: Comparing sequential temporal prompt generation vs non-sequential one.

Method Classification error [in % ↓ ] Regression [MSE ↓]
2-Moons ONP Elec2 House Appliance

Vanilla-Transformer 25.2 ± 0.9 33.6 ± 0.5 22.5 ± 0.6 11.8± 0.3 5.6 ± 0.4
Attempt (Asai et al., 2022) 21.15 ± 1.1 34.10 ±0.6 12.26 ±0.8 9.0 ±0.4 4.9 ±0.5

Ours 8.1 ± 1.0 32.7 ± 0.7 10.6± 0.9 8.9± 0.20 4.7 ± 0.3
Ours (not sequential) 8.4 ± 0.9 31.8 ± 0.7 11.2± 0.8 8.6± 0.14 4.9 ± 0.4

Impact of embedding and prompt size on model performance : Table 8 shows ablations on embedding and prompt
size. It is observed that for Crypto dataset, embedding/prompting size 64 and 128 provide similar better performance, and
smaller embedding/prompting size results in a more parameter-efficient network; 64 is selected for better model size and
performance tradeoff.

Table 8: Impact of prompt size and embedding size using Crypto dataset, in terms of root mean square error ×10.

Prompt size & Vanilla Transformer Temporal prompting
Embedding size Dt1 Dt2 Dt3 Dt1 Dt2 Dt3

32 4.20 7.20 7.45 3.57 6.64 6.85
64 4.42 7.19 7.43 3.53 6.61 6.74

128 4.52 7.59 7.79 3.45 6.58 6.79
256 4.45 7.25 7.39 3.45 6.64 6.79

Impact of temporal prompting module layers on model performance : Table 9 presents an additional study on the effect
of the number of layers in the temporal prompt generation module using the Mackey-Glass data.

A.4. Results on Synthetic Data

To evaluate the proposed method under a controlled setting, we constructed synthetic datasets derived from the Mackey-Glass
equations (Mackey & Glass, 1977) and sums of cosines. For the former, we used

x(t+ 1) = x(t) + β
x(t− σ)

1 + x(t− σ)n
− γx(t) (2)

where β = 0.2, γ = 0.1, n = 15, σ = 18, tmax = 2600, and x(t) = 0.1 if t < 18. For the latter, we used
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Table 9: Impact of temporal prompting module layers on model performance in terms of MSE.

Number of Layers Mackey-Glass Mackey-Glass
with σ-modification with variable cosine

Vanilla Transformer (0) 0.1315 0.2511
1 0.0982 0.1975
2 0.0950 0.2053
3 0.1022 0.2119

Vanilla Transformer DRAIN Attempt Ours

Figure 2: Qualitative results on Sum of Cosines synthetic dataset generated with phase-frequency modification and addition
of a variable cosine wave.

Figure 3: Pairwise comparisons of learned temporal prompts (PT s) across domains in the Sum of Cosines synthetic dataset
with both types of synthetic drift. The values shown are cosine similarities.

x(t) = cos

(
a+

πh

α
t

)
+ cos

(
b+

π

β
t

)
(3)
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Table 10: Comparison of proposed method, vanilla transformer, and state-of-the-art approaches on synthetic datasets
generated based on Mackey-Glass equations and Sum of Cosines, in mean square error ×101.

Method

MSE ↓
Mackey-Glass Sum of Cosines

with σ-modification with variable cosine
with phase-frequency with phase-frequency

modification modification + var. cosine

DRAIN-Best 1.140 ±0.08 2.164 ± 0.08 0.085 ±0.01 2.93 ±0.07
Vanilla Transformer 1.315 ±0.07 2.511 ±0.09 0.1191 ±0.19 3.708 ±0.07

Attempt 1.278 ±0.10 2.199 ±0.12 0.091 ±0.02 2.974 ±0.10
Ours 0.982 ±0.06 1.975 ±0.05 0.068±0.00 2.489±0.07

where α = 100, β = 13, a = 40, b = 10, h = 1, and 0 < t < 2600.

We employed two strategies to induce temporal drift: parameter modification, and addition of a cosine wave with variable
phases and frequencies across domains, given by

0.5× cos

(
100i+

π(i+ 1)

300
t

)
(4)

for domain i. For Mackey-Glass, we generated two datasets: one dataset modifying σ = 8+ i×2 for each domain i, and one
dataset adding Equation (4) to Equation (2). For Sum of Cosines, we generated two datasets: one dataset modifying a = i
and h = i+ 1 for each domain i, and one dataset adding Equation (4) to the parameter-modified dataset. Visualizations of
the synthetic datasets are shown in the appendix.

Results on the synthetic datasets are summarized in Table 10. We also qualitatively visualize the results on Sum of Cosines
in Figure 2. The proposed method consistently outperformed the Vanilla Transformer, DRAIN, and Attempt models on the
synthetic data. Quantitatively, our model achieved the lowest MSE across both Mackey-Glass and Sum of Cosines datasets
with either type of the temporal drifts. Qualitatively, it also demonstrated superior adaptability and accuracy. Figure 3
visualizes the pairwise cosine similarities among the learned temporal prompts across different domains for the Sum of
Cosines dataset with both types of synthetic drift. It is observed that temporal prompts from neighboring domains have
higher similarity than other domains.

Below we provide visualizations of the synthetic data.

domain = 0 domain = 1 domain = 2

domain = 6 domain = 8domain = 7domain = 5

domain = 4domain = 3

domain = 9 (test)

Figure 4: Applying temporal shift to Mackey-Glass time series by modifying σ.
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domain = 0 domain = 1 domain = 2

domain = 6 domain = 8domain = 7domain = 5

domain = 4domain = 3

domain = 9 (test)

Figure 5: Applying temporal shift to Mackey-Glass time series by adding variable cosine wave.

domain = 0 domain = 1 domain = 2

domain = 6 domain = 8domain = 7domain = 5

domain = 4domain = 3

domain = 9 (test)

Figure 6: Applying temporal shift to Sum of Cosines time series by modifying phase and frequency.

domain = 0 domain = 1 domain = 2

domain = 6 domain = 8domain = 7domain = 5

domain = 4domain = 3

domain = 9 (test)

Figure 7: Applying temporal shift to Sum of Cosines time series by modifying phase and frequency, and adding another
variable cosine wave.
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