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ABSTRACT
The problem of two-sided matching markets is well-studied in so-

cial science and economics. Some recent works study how to match

while learning the unknown preferences of agents in one-to-one

matching markets. However, in many cases like the online recruit-

ment platform for short-term workers, a company can select more

than one agent while an agent can only select one company at a

time. These short-term workers try many times in different compa-

nies to find themost suitable jobs for them. Thus we consider amore

general bandit learning problem in many-to-one matching markets

where each arm has a fixed capacity and agents make choices with

multiple rounds of iterations. We develop algorithms in both cen-

tralized and decentralized settings and prove regret bounds of order

𝑂 (log𝑇 ) and 𝑂 (log
2𝑇 ) respectively. Extensive experiments show

the convergence and effectiveness of our algorithms.

CCS CONCEPTS
• Theory of computation→ Regret bounds; Online learning
algorithms; • Applied computing→ Economics.
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1 INTRODUCTION
Recent growth of online communication has resulted in an expan-

sion of opportunities for companies to participate in personalized

decision-making. Companies like Thumbtack and Taskrabbit and
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Upwork platforms use online platforms to address short-term needs

or seasonal spikes in production demands, accommodate workers

who are voluntarily looking for more flexible work arrangements,

or as an extensive probation period before moving workers into

permanent employment. The rise of matching for supply and de-

mand in bilateral markets makes policy-making be customized on

the basis of diversified needs for both sides of the market. A basic

framework of the two-sided matching market is that there are two

sides, and each side has a preference profile over the agents on the

opposite side. A key feature in the design of matching markets is

obtaining stable outcomes [30, 33] since any unstable matching

result might do damage to the whole system. We say a matching is

𝑠𝑡𝑎𝑏𝑙𝑒 if there exists no blocking agents pair, who would mutually

prefer each other to their current matched pair. It is worth mention-

ing that the stable matching is typically not unique. Gale–Shapley

algorithm [11] is a common method to find a stable outcome that

is optimal for one side.

Motivated by online short-term labor markets where the prefer-

ences from one side may be unknown in advance, we study how to

match while learning the preferences. The goal of this problem is to

find an adaptive policy for choosing arms with unknown reward dis-

tributions due to the uncertainty of preferences. As a known learn-

ing framework, the multi-armed bandit (MAB) model [39] has been

widely studied in many problems recently [9, 19, 20, 23, 40], and it is

one of the important tools for matching market. The combination of

the bandit algorithm with two-sided matching markets, originally

proposed by Das and Kamenica [8], can be typically viewed as a

stylized abstraction of a platform where 𝑁 agents are matched to

𝐾 arms with limited resources and unknown reward distributions.

Agents learn the distribution iteratively through receiving rewards

in order to maximize their expected reward or minimize their regret.

The one-to-one matching market with bandits has been studied for

a period of time, which describes a market where each agent can

choose one arm to pull, and each arm can select only one agent. In

the one-to-one matching, two common settings divided by whether

there is a central platform to arrange matchings are centralized and

decentralized markets, and previous work develop bandit models

for these two respectively [3, 7, 19, 25, 26].

However, it is limited to consider only the one-to-one setting

since such a model is not applicable in many scenarios like online

labor market and Internet-based educational platforms [13, 14, 27].

In our work, we study many-to-one matching markets in which one

arm can match more than one agent. The maximum number that

one arm can accommodate is called its capacity. Among all agents
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who select arm 𝑎 𝑗 , the most preferred agents within its capacity can

successfully receive rewards and other agents are regarded as to

have collisions. In the short-term online recruitment platform with

numerous similar short-term tasks or internships, companies are

abstracted as arms, which can accept multiple workers, while work-

ers are regarded as agents, and each can only choose one company

to submit resumes at a time. Each company scores each recruited

employee according to the needs of the company and the score is

assumed to be known and fixed. Workers have no knowledge of the

preference of companies and the reward for them is a comprehen-

sive consideration of salary and company environment. Since the

work task is short-term, each worker can try many times in differ-

ent companies to choose the most suitable job and competes with

other candidates during application. This motivates us to study the

many-to-one matching market with multiple rounds of iterations.

As mentioned in [32], the many-to-one matching problem is not

equivalent to the stable one-to-one marriage problem and we will

discuss the difference in the later analysis.

Our work introduces a novel model for many-to-one matching

problems with bandit feedback in both centralized and decentral-

ized settings. The decentralized here assumes that agents can only

observe their reward and successfully matched pairs of other agents

each round. Our model has two salient features, namely, from one-

to-one to many-to-one, and the application of MAB in market

matching. First, there need more considerations from one-to-one

to many-to-one setting. As the capacity of each arm is more than

one, agents may not collide when selecting the same arm thus their

reward will be non-zero, which will hinder them to learn more

about the agents set each arm is more preferred to accept, hence

hinder to formulate better policies to reduce collisions in the later

rounds. Second, to demonstrate the versatility of our methodol-

ogy, we design three new algorithms: centralized ETC, centralized

UCB, and MOCA-UCB based on MAB policies respectively in cen-

tralized and decentralized settings. Both the agent-optimal regret

for the centralized ETC algorithm and the agent-pessimal regret

for the centralized UCB algorithm attain a 𝑂 (log(𝑇 )) regret up-
per bound, which are the same as the one-to-one setting, and our

MOCA-UCB achieves a 𝑂 (log
2 (𝑇 )) agent-pessimal regret. Exten-

sive experiments show that our algorithm achieves uniform good

performance.

2 RELATEDWORK
MAB has received a lot of attention since Thompson [39] puts

forward related concepts, and ETC, UCB are two typical bandit

algorithms [2, 12]. It is an important tool for the online match-

ing platform, which additionally adds the preference to the arms

side compared with the general bandit problem. Market matching

problems are often based on two main settings: centralized and

decentralized where the difference between them is whether there

is a medium to collect information and arrange agents’ actions.

Centralized. So far the literature on centralized matching [10, 34]

has a relatively complete theory where the platform can effectively

reduce the collision. Lee [22] studies the manipulability of central-

ized stable matching mechanisms for both one-to-one and many-to-

one settings with utilities. In the one-to-one setting, Liu et al. [25]

apply ETC and UCB algorithm to stable matching and receive a

𝑂 (log(𝑇 )) regret upper bound. In the many-to-one matching mar-

ket, Johari et al. [15] apply bandit algorithm in the dynamic market

with known rewards, while the reward is unknown in our work and

needs to be learned. Moreover, it aims to maximize the steady-state

rate of payoff accumulation without considering stability, while

our goal is to form stable matching and minimize the stable regret.

Decentralized. Under the decentralized assumption where there

is no platform for agents to formulate policies, collisions among

agents are inevitable and agents will receive zero rewards when

collisions happen [24, 38]. In the one-to-one matching market with

unknown preferences, constructing stable matchings is a key fea-

ture [8, 16, 29]. The work [4] then designs the first algorithm that

achieves a poly-logarithmic regret𝑂

(
log

2𝑇

)
in the fully distributed

setting without communication among agents. Following these,

two typical bandit algorithms, ETC and UCB, are combined with

matching respectively to make decisions for agents under one-to-

one decentralization setting [25, 26]. Thompson sampling (TS) is

another popular bandit algorithm due to its good empirical perfor-

mances, and it is also studied combined with one-to-one matching

[18]. Under uniqueness condition, Sankararaman et al. [36] devise a

phased UCB-D3 algorithm. Improving the previous works, a phased

UCB-D4 algorithm with arm elimination is proposed under some

more general uniqueness conditions [3]. The previous works mostly

focus on one-to-one setting, and formulating policies in many-to-

one is a natural extension. Nguyen et al. [30] develops an iterative

rounding algorithm that relaxes capacity constraints in order to

find a pairwise stable result in the many-to-one fractional matching

with general preferences. Both sides of the market may continue to

have new individuals join and Johari et al. [15] give a many-to-one

optimization strategy under dynamic matching.

Motivated by [25, 26], we consider a general bandit model for

many-to-one setting both in centralized and decentralized setting.

3 PROBLEM SETTING
3.1 Preliminaries
Suppose there are 𝑁 agents and 𝐾 arms. Like previous work [25],

each arm 𝑎 𝑗 is assumed to have a fixed known preference ranking

𝜋 𝑗 over agents, and 𝜋 𝑗 (𝑖) is the rank of agent 𝑝𝑖 in the arm 𝑎 𝑗 ’s

preference. For example, each short-time worker’s personal ability

is different, and the job fields that each candidate is good at are

also different. Each company will make a ranking for each worker

according to the company’s own needs, representing its preference

over workers. And this ranking will remain unchanged for a period

of time since the workers’ personal abilities and companies’ inter-

ests will not change too fast. Denote 𝑝𝑖 ≻𝑎 𝑗 𝑝𝑖′ if arm 𝑎 𝑗 prefers

agent 𝑝𝑖 over 𝑝𝑖′ , and similarly denote 𝑎 𝑗 ≻𝑝𝑖 𝑎 𝑗 ′ if agent 𝑝𝑖 prefers
arm 𝑎 𝑗 over 𝑎 𝑗 ′ . Here for the many-to-one setting, each arm 𝑎 𝑗 has a

fixed 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐 𝑗 ≥ 1. For simplicity, we assume that 𝑁 ≤ ∑𝐾
𝑗=1

𝑐 𝑗 ,

similar to previous work [3, 25, 36] in one-to-one setting.

Recall that a matching is stable in the one-to-one matching mar-

ket if there is no pair of an agent and an arm, or so-called blocking
pair, that prefer each other over the current matched partner [34].

Dislike one-to-one markets where stable matchings always exist

[11], empty sets might appear in the stable matching under many-

to-one setting [34]. We incorporate a reasonable assumption of
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individually rationality (IR) that can refrain from this unexpected

situation [34]. This assumption states that 𝑎 𝑗 ≻𝑝𝑖 ∅ and 𝑝𝑖 ≻𝑎 𝑗 ∅
for all 𝑖 ∈ [𝑁 ] and 𝑗 ∈ [𝐾], that is, every worker prefers to find a

job rather than do nothing, and every company also wants to recruit

workers rather than not recruit anyone. Under the IR condition, a

matching in the many-to-one setting is stable if there does not exist
a blocking pair of an agent and an arm that the agent prefers this

arm over the matched one and the arm prefers this agent over one

of its matched agents [35, 37].

Among all stable matchings, the one that is the most preferred by

all agents is called agent-optimal stable matching. Similarly, the one

that is the least preferred by all agents is called the agent-pessimal

stable matching. And the agent-pessimal stable matching is the

most preferred by arms among all stable matchings [28, 31, 34]. A

commonly adopted algorithm of student-applying deferred accep-

tance (SADA) could produce an agent-optimal stable matching for

many-to-one setting [11]
1
. Like the Gale-Shapley algorithm in the

one-to-one setting, all agents first select their favorite arms. An arm

with capacity 𝑐 accepts her favorite 𝑐 applicants, or all applicants

if there are less than 𝑐 , and rejects the rest agents. Rejected agents

then select their next favorite arms in the next round while arms

always keep their top choices and reject the rest. Accepted agents

remain their choices in the next round. Such a procedure terminates

when all agents are matched with their choices successfully.

3.2 Online Setting
Our goal is to learn stable matchings through online interactions

between agents and arms.

At each time 𝑡 , a random reward 𝑋𝑡,𝑖, 𝑗 ∈ [0, 1] is independently
drawn from a fixed distribution with mean 𝜇𝑖, 𝑗 for every agent

𝑝𝑖 and arm 𝑎 𝑗 . Note that this distribution is determined by the

features of agent 𝑝𝑖 and arm 𝑎 𝑗 , such as the payment of a job, thus

it is independent from other distribution and fixed. Each agent 𝑝𝑖
selects an arm𝑚𝑡 (𝑖) to match. If multiple agents select arm 𝑎 𝑗 at the

same time, only top 𝑐 𝑗 agents can successfully match. The matched

agent 𝑝𝑖 will observe the reward 𝑋𝑡,𝑖,𝑚𝑡 (𝑖) while the unmatched

agent will only receive the notification of collision. We use 𝐼𝑡 (𝑖) to
denote whether agent 𝑝𝑖 is successfully matched with her selected

arm. Then the reward obtained by agent 𝑝𝑖 is 𝑋𝑡,𝑖,𝑚𝑡 (𝑖) 𝐼𝑡 (𝑖).
We consider both centralized and decentralized matching mar-

kets similar to previous work [25, 26]. In the centralized setting,

there is a central platform to synchronize all agents such that col-

lisions can be avoided. In the decentralized setting, each agent

can only observe its own reward and the resulting matching of

all agents by the end of each time, while she cannot see others’

rewards. Collisions between agents would frequently occur as there

is no platform to arrange all agents.

We denote the agent-optimal stable matching by 𝑚̄, a func-

tion mapping from agents to arms; similarly we denote the agent-

pessimal stable matching by𝑚. Similar to previous work [25, 26],

we consider both agent-optimal stable regret and agent-pessimal

stable regret for every agent 𝑝𝑖 , that is the difference of expected

reward from the reward of the corresponding stable matching,

1
Note that we only focus on the deferred acceptance algorithm proposed by agents

even though proposal by the arm side can also produce agent-pessimal stable matching

[17].

𝑅𝑇,𝑖 := 𝑇 𝜇𝑖,𝑚̄ (𝑖) −
𝑇∑︁
𝑡=1

E[𝑋𝑡,𝑖,𝑚𝑡 (𝑖) 𝐼𝑡 (𝑖)] ,

𝑅𝑇,𝑖 := 𝑇 𝜇𝑖,𝑚 (𝑖) −
𝑇∑︁
𝑡=1

E[𝑋𝑡,𝑖,𝑚𝑡 (𝑖) 𝐼𝑡 (𝑖)] .

When the true preferences are known, the SADA algorithm [11]

could output an agent-optimal stable matching, which might not be

achieved [25, 26] in online setting. Thus we only provide guarantees

for the agent-pessimal stable regret for our online setting.

4 CENTRALIZED MARKET
This section focuses on the centralized market where there is a plat-

form to arrange the matching for all agents at each time. We apply

two commonly used methods of explore-then-commit algorithm

(ETC) and upper-confidence-bound algorithm (UCB) to this setting

and study their effectiveness.

4.1 Centralized ETC Algorithm
We first introduce the centralized ETC (cenETC) algorithm (Algo-

rithm 1). The platform first arranges an exploration phase where

matchings are arranged in a round-and-robin manner. Note that

each arm 𝑎 𝑗 has a capacity 𝑐 𝑗 , thus formulating

∑𝐾
𝑗=1

𝑐 𝑗 =: 𝐶 bud-

gets in total. For each index 𝑐 ∈ [𝐶], form 𝐶 budgets as 𝐶 seats in

a circle, let agent 𝑝1 take the 𝑐-th seat, and other agents follow to

take seat one-by-one (when some agent takes the 𝐶-th seat, next

one would take the 1-st seat). Thus every index 𝑐 will correspond

to a different matching and when 𝑐 traverses [𝐶], both agents and

arms would be matched with the other side uniformly. The platform

arranges ℎ𝐶 rounds for exploration (line 3 - 4) where each agent

is matched to 𝑎 𝑗 arm ℎ𝑐 𝑗 times. After exploration, the estimated

reward of agent 𝑝𝑖 for arm 𝑎 𝑗 can be computed as

𝜇𝑖, 𝑗 =
1

ℎ𝑐 𝑗

ℎ𝐶∑︁
𝑡=1

1{𝑚𝑡 (𝑖) = 𝑗} 𝑋𝑡,𝑖, 𝑗 . (1)

Note that with this central design, there is no collision, i.e. 𝐼𝑡 (𝑖) ≡
1. According to the estimated rewards, the empirical ranking 𝑟𝑖 for

each agent 𝑖 is the decreasing order based on {𝜇𝑖, 𝑗 : 𝑗 ∈ [𝐾]} among

arms, that is for any two different arms 𝑗 and 𝑗 ′,

𝑟𝑖 ( 𝑗) < 𝑟𝑖 ( 𝑗 ′) ⇔ 𝜇𝑖, 𝑗 > 𝜇𝑖, 𝑗 ′ . (2)

Then the platform sticks to this agent-optimal matching for these

empirical rankings (line 9), which can be computed by the SADA

algorithm (line 7).

To analyze the regret of the centralized ETC algorithm, we first

introduce two useful lemmas. Similar to previous work [25], we say

the empirical ranking 𝑟𝑖 of agent 𝑝𝑖 is valid if an arm 𝑎 𝑗 is ranked

higher than 𝑚̄(𝑖), i.e. 𝑟𝑖, 𝑗 < 𝑟𝑖,𝑚̄ (𝑖) , it follows that 𝜇𝑖, 𝑗 > 𝜇𝑖,𝑚̄ (𝑖) .
This valid ranking is a sufficient condition to ensure the matching

result is no worse than 𝑚̄ (and thus no incurred regret) under SADA

algorithm, which will be proved to happen with high probability.

Lemma 4.1. If rankings of all agents are valid, then the SADA
algorithm finds a matching𝑚 that performs at least as good as 𝑚̄
under the true rankings also, i.e., 𝜇𝑖,𝑚 (𝑖) ≥ 𝜇𝑖,𝑚̄ (𝑖) .
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Algorithm 1 Centralized ETC

1: Input: The preference ranking 𝜋 𝑗 and the capacity 𝑐 𝑗 for each

arm 𝑎 𝑗 , exploration parameter ℎ, and the horizon 𝑇 .

2: for 𝑡 = 1, 2, ...,𝑇 do
3: if 𝑡 ≤ ℎ𝐶 then
4: 𝑚𝑡 (𝑖) ← 𝑎 𝑗 where 𝑗 satisfies

𝑗−1∑︁
𝑗 ′=1

𝑐 𝑗 ′ < ((𝑡 + 𝑖 − 2) mod 𝐶) + 1 ≤
𝑗∑︁
𝑗 ′=1

𝑐 𝑗 ′ ;

5: else if 𝑡 = ℎ𝐶 + 1 then
6: Calculate the empirical reward 𝜇𝑖, 𝑗 by (1) and ranking 𝑟𝑖

by (2) for every agent 𝑝𝑖 ;

7: Run SADA algorithm to compute the agent-optimal stable

matching𝑚𝑡 with respect to {𝑟𝑖 }𝑖 and {𝜋 𝑗 } 𝑗 ;
8: else
9: 𝑚𝑡 ←𝑚ℎ𝐶+1;
10: end if
11: Perform matching𝑚𝑡 and receive reward 𝑋𝑡,𝑖,𝑚𝑡 (𝑖) for each

agent 𝑝𝑖 .

12: end for

Proof. Since the SADA algorithm outputs the agent-optimal

stable matching, it only needs to show that 𝑚̄ is a stable matching

under valid rankings. Let𝑎 𝑗 be an arm that satisfies 𝑟𝑖 ( 𝑗) < 𝑟𝑖 (𝑚̄(𝑖))
for agent 𝑝𝑖 under the valid ranking 𝑟𝑖 . Since 𝑟𝑖 is a valid ranking, 𝑎 𝑗
also ranks higher under the true preference, i.e., 𝜇𝑖, 𝑗 > 𝜇𝑖,𝑚̄ (𝑖) . Since
𝑚̄ is stable under true preference, arm 𝑎 𝑗 prefers every matched

agent in𝑚̄ over 𝑝𝑖 . Thus agent 𝑝𝑖 and arm𝑎 𝑗 can not form a blocking

pair under ranking {𝑟𝑖 }𝑖 . Such a conclusion holds for any agent,

thus 𝑚̄ is stable under 𝑟 , which concludes the proof. □

Lemma 4.2. For agent 𝑝𝑖 , let Δ̄𝑖, 𝑗 = 𝜇𝑖,𝑚̄ (𝑖) − 𝜇𝑖, 𝑗 and Δ̄𝑖,min =

min𝑗 :Δ̄𝑖,𝑗>0
Δ̄𝑖, 𝑗 . After ℎ𝐶 rounds of exploration, there is

P (𝑟𝑖 is invalid) ≤
𝐾∑︁
𝑗=1

exp(−ℎ𝑐 𝑗 Δ̄2

𝑖,min
/4) .

Proof. If the ranking is invalid, there must exist some arm 𝑎 𝑗
such that 𝜇𝑖,𝑚̄ (𝑖) > 𝜇𝑖, 𝑗 but 𝑟𝑖 ( 𝑗) < 𝑟𝑖 (𝑚̄(𝑖)), or equivalently 𝜇𝑖, 𝑗 >
𝜇𝑖,𝑚̄ (𝑖) . Then there is

P (𝑟𝑖 is invalid)

≤
𝐾∑︁
𝑗=1

P
(
𝜇𝑖, 𝑗 ≥ 𝜇𝑖,𝑚̄ (𝑖) , 𝜇𝑖, 𝑗 < 𝜇𝑖,𝑚̄ (𝑖)

)
=

∑︁
𝑗 :Δ̄𝑖,𝑗>0

P
(
𝜇𝑖, 𝑗 ≥ 𝜇𝑖,𝑚̄ (𝑖)

)
≤

∑︁
𝑗 :Δ̄𝑖,𝑗>0

P
((
𝜇𝑖,𝑚̄ (𝑖) − 𝜇𝑖,𝑚̄ (𝑖)

)
−

(
𝜇𝑖, 𝑗 − 𝜇𝑖, 𝑗

)
≤ 𝜇𝑖, 𝑗 − 𝜇𝑖,𝑚̄ (𝑖)

)
≤

∑︁
𝑗 :Δ̄𝑖,𝑗>0

P
((
𝜇𝑖,𝑚̄ (𝑖) − 𝜇𝑖,𝑚̄ (𝑖)

)
−

(
𝜇𝑖, 𝑗 − 𝜇𝑖, 𝑗

)
≤ −Δ̄𝑖,min

)
≤

∑︁
𝑗 :Δ̄𝑖,𝑗>0

exp(−ℎ𝑐 𝑗 Δ̄2

𝑖,min
/4) ≤

𝐾∑︁
𝑗=1

exp(−ℎ𝑐 𝑗 Δ̄2

𝑖,min
/4) .

The penultimate inequality is due to that

(
𝜇𝑖,𝑚̄ (𝑖) − 𝜇𝑖,𝑚̄ (𝑖)

)
−
(
𝜇𝑖, 𝑗 − 𝜇𝑖, 𝑗

)
is a

√︃
2

ℎ𝑐 𝑗
-subgaussian random variable and Chernoff concentration

inequality [6]. □

When there is enough exploration, the agent-optimal regret

bound of centralized ETC could be guaranteed.

Theorem 4.3. Let Δ̄𝑖, 𝑗 = 𝜇𝑖,𝑚̄ (𝑖) − 𝜇𝑖, 𝑗 , Δ̄𝑖,min = min𝑗 :Δ̄𝑖,𝑗>0
Δ̄𝑖, 𝑗

and Δ = min𝑖 Δ̄𝑖,min. Then the expected agent-optimal regret for
agent 𝑝𝑖 satisfies

𝑅𝑇,𝑖 ≤ ℎ
𝐾∑︁
𝑗=1

𝑐 𝑗 Δ̄𝑖, 𝑗 + (𝑇 − ℎ𝐶)𝑁
𝐾∑︁
𝑗=1

exp

(
−
ℎ𝑐 𝑗Δ

2

4

)
. (3)

When ℎ = 4

𝑐minΔ2
log

(
1 + 𝑇𝑁Δ2

4

)
and 𝑐min = min𝑗 𝑐 𝑗 , the regret

becomes

𝑅𝑇,𝑖 ≤
4

𝑐minΔ2
log

(
1 + 𝑇𝑁Δ2

4

) 𝐾∑︁
𝑗=1

𝑐 𝑗 Δ̄𝑖, 𝑗 +
4𝐾

Δ2
log

(
1 + 𝑇𝑁Δ2

4

)
=𝑂

(
𝐾

Δ2
log (𝑇𝑁 )

)
.

Proof. The agent 𝑝𝑖 pulls 𝑎 𝑗 arm ℎ𝑐 𝑗 times during the exploring

stage, and incurs Δ̄𝑖, 𝑗 in the expected regret each time. Thus the

regret during the exploring stage is the first term in (3). For the later

exploitation part, there is regret only when some agent’s empirical

ranking is invalid, whose probability is at most

𝑁∑︁
𝑖=1

P (𝑟𝑖 is invalid) ≤ 𝑁
𝐾∑︁
𝑗=1

exp(−ℎ𝑐 𝑗Δ2/4)

due to Lemma 4.1. Also since the reward per round lies in [0, 1],
the regret in the exploitation is at most, if there is, 𝑇 − ℎ𝐶 , thus
giving the second term in (3).

A proper ℎ can well balance the two terms in (3). Note that

𝑅𝑇,𝑖 ≤ ℎ
𝐾∑︁
𝑗=1

𝑐 𝑗 Δ̄𝑖, 𝑗 + (𝑇 − ℎ𝐶)𝑁
𝐾∑︁
𝑗=1

exp

(
−ℎ𝑐minΔ

2

4

)
. (4)

Choose ℎ = 4

𝑐minΔ2
log

(
1 + 𝑇𝑁Δ2

4

)
to ensure the two terms in the

regret to have the same order, that is

𝑅𝑇,𝑖 ≤
4

𝑐minΔ2
log

(
1 + 𝑇𝑁Δ2

4

) 𝐾∑︁
𝑗=1

𝑐 𝑗 Δ̄𝑖, 𝑗 +
4𝐾

Δ2
log

(
1 + 𝑇𝑁Δ2

4

)
=𝑂

(
𝐾

Δ2
log (𝑇𝑁 )

)
.

□

4.2 Centralized UCB Algorithm
Although the ETC algorithm can effectively find stable matching

in the centralized setting, it needs to know the horizon 𝑇 and the

minimum reward gap Δ in advance, which may not be satisfied

in practice. To refrain from such a constraint, we further intro-

duce a centralized UCB algorithm (cenUCB) (Algorithm 2) which is

adaptive and refrains such constraint.
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Algorithm 2 Centralized UCB

1: Input: The preference ranking 𝜋 𝑗 and the capacity 𝑐 𝑗 for each

arm 𝑎 𝑗 , and the horizon 𝑇 .

2: for 𝑡 = 1, 2, ...,𝑇 do
3: Compute UCB index 𝑢𝑡,𝑖, 𝑗 for each agent 𝑝𝑖 and arm 𝑎 𝑗 as

in (5);

4: Rank all arms for 𝑝𝑖 as 𝑟𝑖 according to the decreasing order

of {𝑢𝑡,𝑖, 𝑗 : 𝑗 ∈ [𝐾]};
5: Run SADA algorithm to compute the agent-optimal stable

matching𝑚𝑡 with respect to {𝑟𝑡,𝑖 }𝑖 and {𝜋 𝑗 } 𝑗 ;
6: Perform matching 𝑚𝑡 , receive reward 𝑋𝑡,𝑖,𝑚𝑡 (𝑖) for each

agent 𝑝𝑖 .

7: end for

At each time 𝑡 , the platform first computes UCB index 𝑢𝑡,𝑖, 𝑗
(whose formula will be given later in (5)) for every agent 𝑝𝑖 and

every arm 𝑎 𝑗 which serves as an upper confidence bound of the

associated reward (line 3). Then the platform forms the ranking

𝑟𝑖 as the decreasing order of {𝑢𝑡,𝑖, 𝑗 : 𝑗 ∈ [𝐾]} for every agent 𝑝𝑖
similar to (2) (line 4). After running SADA algorithm on 𝑟𝑡,𝑖 and

𝜋 𝑗 , every agent 𝑝𝑖 selects arm𝑚𝑡 (𝑖) based on this output matching

𝑚𝑡 (line 5) and receive the corresponding reward 𝑋𝑡,𝑖,𝑚𝑡 (𝑖) (line 6).
Note that in this case there is also no collision and thus 𝐼𝑡 (𝑖) = 1

for all agents. Specifically, the UCB index is computed as [21]

𝑢𝑡,𝑖, 𝑗 = 𝜇𝑡,𝑖, 𝑗 +
√︄

3 log 𝑡

2𝑇𝑡−1,𝑖, 𝑗
, (5)

where 𝑇𝑡,𝑖, 𝑗 =
∑𝑡
𝑠=1

1{𝑚𝑠 (𝑖) = 𝑗} is the times arm 𝑎 𝑗 has suc-

cessfully been matched with agent 𝑝𝑖 at time 𝑡 − 1 and 𝜇𝑡,𝑖, 𝑗 =
1

𝑇𝑡,𝑖,𝑗

∑𝑡
𝑠=1

1{𝑚𝑠 (𝑖) = 𝑗} 𝑋𝑠,𝑖, 𝑗 the estimated reward for agent 𝑝𝑖

who is matched to arm 𝑎 𝑗 .

Since there is no collision in centralized setting, stable regret is

incurred from wrong matchings based on wrong estimated prefer-

ences. Note that an example in [25] shows that it is hard to approach

agent-optimal stable matching with such an algorithm in one-to-

one setting, which is a special case of our setting. Thus we only

prove the agent-pessimal stable regret for this algorithm.

Recall that the agent-pessimal stable matching is the least pre-

ferred by agents among all stable matchings. Then if the performed

matching is a stable matching under the true preferences, there

would be no pessimal stable regret. We formally define that a match-

ing is truly stable if it is stable under the true rankings and it is

achievable if it appears as some𝑚𝑡 in the running of the algorithm.

If𝑚𝑡 is non-truly stable, then there must be a blocking pair (𝑖, 𝑗)
under the true preferences. To be specific, agent 𝑝𝑖 prefers arm 𝑎 𝑗
over𝑚𝑡 (𝑖) at time 𝑡 (note that agents are always matched in this

case) and arm 𝑎 𝑗 prefers agent 𝑝𝑖 over some of its matched agents

𝑚−1

𝑡 ( 𝑗) or 𝑎 𝑗 is unmatched.

For a certain triplet (𝑝ℓ , 𝑎𝑘 , 𝑎𝑘′), we denote 𝐵ℓ,𝑘,𝑘′ as the set of
all matchings blocked by this triplet.. Given a set 𝑆 of matching, we

say a set 𝑄 of triplets (𝑝ℓ , 𝑎𝑘 , 𝑎𝑘′) is a cover of 𝑆 if⋃
(𝑝ℓ ,𝑎𝑘 ,𝑎𝑘′ ) ∈𝑄

𝐵ℓ,𝑘,𝑘′ ⊇ 𝑆 ,

and 𝐶 (𝑆) is the set of all covers of 𝑆 . Then for non-truly stable

matchings for agent 𝑝𝑖 and arm 𝑎 𝑗 , which is denoted as𝑂𝑖, 𝑗 , hence

C(𝑂𝑖, 𝑗 ) is the set containing all blocking triplets of (𝑝𝑖 , 𝑎 𝑗 ).

Theorem 4.4. For each agent 𝑝𝑖 , the agent-pessimal stable regret
of our centralized UCB algorithm up to time 𝑇 satisfies

𝑅𝑇,𝑖 ≤
∑︁

𝑗 :Δ𝑖,𝑗>0

Δ𝑖, 𝑗

 min

𝑄 ∈𝐶 (𝑂𝑖,𝑗 )

∑︁
(𝑝ℓ ,𝑎𝑘 ,𝑎′𝑘 ) ∈𝑄

(
5 + 6 log(𝑇 )

Δ2

ℓ,𝑘,𝑘′

)
= 𝑂 (𝑁𝐾

3

Δ2
log(𝑇𝑁 )) ,

where 𝑂𝑖, 𝑗 is the set of matchings that agent 𝑝𝑖 and arm 𝑎 𝑗 is not
truly-stable.

Theorem 4.4 guarantees an 𝑂 (log(𝑇 )) upper bound of agent-

pessimal stable regret for each agent 𝑝𝑖 .

By the definition of the blocking triplet, for agent 𝑝ℓ , 𝑎𝑘 is a

better choice for her rather than 𝑚𝑡 (ℓ) = 𝑎𝑘′ according to true

preference, i.e. 𝜇𝑡,ℓ,𝑘 > 𝜇𝑡,ℓ,𝑘′ . If 𝑝ℓ pulls 𝑎𝑘′ successfully rather

than 𝑎𝑘 when (𝑝ℓ , 𝑎𝑘 , 𝑎𝑘′) is blocking, there must be a higher upper

confidence bound for 𝑎𝑘′ than for 𝑎𝑘 . In other words, in order to

prove Theorem 4.4, we are trying to upper bound the expected

number of times that 𝑢𝑡,ℓ,𝑘′ in (5) is higher than 𝑢𝑡,ℓ,𝑘 when 𝑎𝑘′ is

successfully matched.

Lemma 4.5. Under UCB policy, for agent 𝑝ℓ , ℓ ∈ [𝑁 ], the expected
number of times that the UCB index of 𝑎𝑘′ is higher than that of the
better arm 𝑎𝑘 and 𝑎𝑘′ is successfully pulled is at most 5 + 6 log(𝑡 )

Δ2

ℓ,𝑘,𝑘′
by

time 𝑡 .

Proof. By Chernoff concentration inequality [6], for any 𝑘, ℓ, 𝑡

we have,

𝜇ℓ,𝑘 −
√︄

3 log(𝑡)
2𝑇𝑡−1,ℓ,𝑘

< 𝜇𝑡,ℓ,𝑘 < 𝜇ℓ,𝑘 +
√︄

3 log(𝑡)
2𝑇𝑡−1,ℓ,𝑘

. (6a)

Recall that the UCB index is:

𝑢𝑡,ℓ,𝑘 = 𝜇𝑡,ℓ,𝑘 +
√︄

3 log(𝑡)
2𝑇𝑡−1,ℓ,𝑘

. (6b)

The event arm 𝑎𝑘′ is successfully selected for agent 𝑝 𝑗 rather

than the better arm 𝑎𝑘 at time 𝑡 implies that

𝑢𝑡,ℓ,𝑘′ > 𝑢𝑡,ℓ,𝑘 . (6c)

Hence,

𝜇ℓ,𝑘′ + 2

√︄
3 log(𝑡)
𝑇𝑡−1,ℓ,𝑘′

(6𝑎)
> 𝜇𝑡,ℓ,𝑘′ +

√︄
3 log(𝑡)
𝑇𝑡−1,ℓ,𝑘′

(6𝑐)
> 𝜇𝑡,ℓ,𝑘 +

√︄
3 log(𝑡)
𝑇𝑡−1,ℓ,𝑘

> 𝜇ℓ,𝑘 −
√︄

3 log(𝑡)
𝑇𝑡−1,ℓ,𝑘

+
√︄

3 log(𝑡)
𝑇𝑡−1,ℓ,𝑘

= 𝜇ℓ,𝑘 ,
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which leads to

𝑇𝑡,ℓ,𝑘′ <
6 log(𝑡)
Δ2

ℓ,𝑘,𝑘′
,

where Δℓ,𝑘,𝑘′ is the reward difference between the 𝜇ℓ,𝑘′ and 𝜇ℓ,𝑘 .

Note that the inequality 𝑇𝑡,ℓ,𝑘′ <
6 log(𝑡 )
Δ2

𝑡,ℓ,𝑘,𝑘′
holds true with high

probability. By Theorem 2.1 in [5] and 𝑇𝑡,ℓ,𝑘′ <
6 log(𝑡 )
Δ2

𝑡,ℓ,𝑘,𝑘′
at time 𝑡 ,

E
[
𝑇𝑡,ℓ,𝑘′

]
≤ 5 + 6 log(𝑡 )

Δ2

𝑡,ℓ,𝑘,𝑘′
can be obtained. □

Proof of Theorem 4.4. Let𝑁𝑚 (𝑡) be the number of timesmatch-

ing𝑚 has been played at time 𝑡 and denote𝑂𝑖, 𝑗 as the set of match-

ings that the matched pair (𝑝𝑖 , 𝑎 𝑗 ) is not truly-stable. Since regret
comes from the untrue preferences reported by the agents, we can

bound the regret by

𝑅𝑇,𝑖 ≤
∑︁

𝑗 :Δ𝑖,𝑗>0

Δ𝑖, 𝑗


∑︁

𝑚∈𝑂𝑖,𝑗

E [𝑁𝑚 (𝑇 )]
 .

Let 𝐿𝑡,(ℓ,𝑘,𝑘′) be the number of times agent 𝑝ℓ pulls arm 𝑎𝑘′ when

(𝑝ℓ , 𝑎𝑘 , 𝑎𝑘′) is a blocking triplet of the matching𝑚𝑡 . Note that a

non-truly stable matching means that there exists a tuple (ℓ, 𝑘, 𝑘 ′)
such that agent 𝑝ℓ pulls arm 𝑎′

𝑘
but prefers arm 𝑎𝑘 under the true

preferences. Then we have,

𝐿𝑇,(ℓ,𝑘,𝑘′) =
∑︁

𝑚∈𝐵 (ℓ,𝑘,𝑘′)
𝑁𝑚 (𝑇 ) .

The blocking triplet (𝑝ℓ , 𝑎𝑘 , 𝑎𝑘′) exists at time 𝑡 when 𝑝ℓ pulls 𝑎𝑘′

successfully only if 𝜇ℓ,𝑘 > 𝜇ℓ,𝑘′ , but 𝑢𝑡,ℓ,𝑘′ > 𝑢𝑡,ℓ,𝑘 . By Lemma 4.5,

we have

E
[
𝐿𝑇,(ℓ,𝑘,𝑘′)

]
≤ E

[
𝑇𝑇,ℓ,𝑎𝑘′

]
≤ 5 + 6 log(𝑇 )

Δ2

ℓ,𝑘,𝑘′
.

Thus we can bound the regret

𝑅𝑇,𝑖 ≤
∑︁

𝑗 :Δ𝑖,𝑗>0

Δ𝑖, 𝑗

 min

𝑄 ∈𝐶 (𝑂𝑖,𝑗 )

∑︁
(𝑝ℓ ,𝑎𝑘 ,𝑎′𝑘 ) ∈𝑄

(
5 + 6 log(𝑇 )

Δ2

ℓ,𝑘,𝑘′

)
= 𝑂 (𝑁𝐾

Δ2
log(𝑇𝑁 )) .

□

5 DECENTRALIZED CASE
In real applications, agents usually have no chance to observe oth-

ers’ rewards, like the online recruitment platform. Such a case

cannot be covered by the centralized market. Thus the decentral-

ized market is more general and realistic. In this section, we propose

a decentralized conflict-avoiding upper-confidence-bound (MOCA-

UCB) algorithm in many-to-one matching markets (Algorithm 3).

5.1 Algorithm
Each agent 𝑝𝑖 independently runs the MOCA-UCB algorithm. At

the beginning, our algorithm sets the UCB index as in (5) for all

arms as∞ (line 5), the same as the centralized UCB algorithm.

At each time 𝑡 , agent 𝑝𝑖 independently samples a random vari-

able 𝑞 with distribution Bernoulli(𝜆), where 𝜆 ∈ [0, 1) is a hyper-
parameter (line 7). Then 𝑝𝑖 constructs a plausible arm set 𝑆 (𝑖) (𝑡)

Algorithm 3 MOCA-UCB for agent 𝑝𝑖

1: Input: Capacity 𝑐 𝑗 of each arm 𝑎 𝑗 , parameter 𝜆 ∈ (0, 1) .
2: for 𝑡 = 1, ...,𝑇 do
3: if 𝑡 = 1 then
4: Set upper confidence bound to∞ for all arms;

5: Sample an index 𝑗 ∼ 1, ..., 𝐾 uniformly at random. Set

𝑚𝑡 (𝑖) ← 𝑎 𝑗 ;

6: else
7: Draw 𝑞 ∼ Ber(𝜆) ;
8: if 𝑞 = 0 then
9: Update plausible set 𝑆 (𝑖) (𝑡) for agent 𝑝𝑖 :

𝑆 (𝑖) (𝑡) := {𝑎 𝑗 : 𝑝𝑖 is matched with 𝑎 𝑗 or 𝑎 𝑗 prefers

𝑝𝑖 than some of its matched agent at time 𝑡 − 1} ;

10: Pull 𝑎 𝑗 ∈ 𝑆 (𝑖) (𝑡) with maximum 𝑢𝑡,𝑖, 𝑗 and set𝑚𝑡 (𝑖) ←
𝑎 𝑗 ;

11: else
12: Pull𝑚𝑡−1 (𝑖). Set𝑚𝑡 (𝑖) ←𝑚𝑡−1 (𝑖) ;
13: end if
14: end if
15: if 𝑝𝑖 wins the conflict then
16: Update 𝑢𝑡,𝑖, 𝑗 for arm𝑚𝑡 (𝑖) as in (5).

17: end if
18: end for

(line 9), from which it selects the arm with highest UCB index

(line 10). Specifically, an arm 𝑎 𝑗 is in the plausible set if agent 𝑝𝑖 is

matched with 𝑎 𝑗 at time 𝑡−1 or 𝑎 𝑗 prefers 𝑝𝑖 than one of its matched

agents last time. Note that this is different from the CA-UCB [26] in

the one-to-one setting since the capacity of each arm is considered.

Intuitively, the plausible set contains arms that may accept 𝑝𝑖 at

time 𝑡 .

Instead of pulling the arm with the highest UCB index in the

plausible set, agent 𝑝𝑖 may still keep pulling its last choice with

probability 𝜆. It is a key step to ensure our algorithm could reduce

conflicts. Intuitively, if all other agents hold their last choices then

𝑝𝑖 will not collide when selecting an arm from its plausible set.

If 𝑝𝑖 is accepted by the selected arm𝑚𝑡 (𝑖) it selects, it will update
the UCB index for this arm (line 16), where the estimated reward

is calculated by 𝜇𝑡,𝑖, 𝑗 =
1

𝑇𝑡,𝑖,𝑗

∑𝑡
𝑠=1

1{𝑚𝑠 (𝑖) = 𝑗 and 𝐼𝑠 (𝑖) = 1} 𝑋𝑠,𝑖, 𝑗 .
Otherwise, it will be collided and receive zero reward.

The delay parameter 𝜆 mentioned above is the probability that

the agent can maintain its last-time choice. It helps to avoid conflict

cycles and converge to a stable matching. However, higher 𝜆 seems

to be wasteful since the probability of choosing the arm with the

highest upper confidence bound is reduced. Thus there is a trade-off

of choosing the 𝜆.

5.2 Regret Analysis
As shown in Example 1 of [26], it is hard to guarantee that an UCB-

type algorithm can converge to the agent-optimal stable matching

in the one-to-one matching markets. Such challenges still exist

when we study the more general decentralized many-to-one setting.

Thus we focus on the agent-pessimal stable regret bound in this

section.
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Theorem 5.1. The agent-pessimal regret for agent 𝑝𝑖 of MOCA-
UCB algorithm is upper bounded by

𝑅𝑇,𝑖 ≤ 𝑂
(
7Δ𝑖

𝑁 5𝐾2

𝜅𝑁
4

log
2 (𝑇 )
Δ2

)
,

where 𝜅 = (1 − 𝜆)𝜆𝑁−1 and 𝜆 is the random delay variable.

Recall that 𝑚𝑡 is the matching results at time 𝑡 and 𝑚 is the

agent-pessimal stable matching. Denote 𝑀𝑠 as the set of all stable

matchings. The agent-pessimal regret can be upper bounded by

𝑅𝑇,𝑖 ≤ Δ𝑖

𝑇∑︁
𝑡=1

P (𝑚𝑡 ∉ 𝑀𝑠 ) , (7)

where Δ𝑖 = max𝑗 {𝜇𝑖,𝑚 (𝑖) − 𝜇𝑖, 𝑗 } is the maximum reward gap. To

bound

∑𝑇
𝑡=1
P (𝑚𝑡 ∉ 𝑀𝑠 ), we need to find out what case the match-

ing is unstable. The following lemma illustrates the condition to

guarantee𝑚𝑡+1 to be stable.

Lemma 5.2. When the arm with highest UCB index in 𝑆 (𝑖) (𝑡) at
time 𝑡 is also the arm with the highest mean in 𝑆 (𝑖) (𝑡) for all agents,
i.e., ∀𝑖 , argmax𝑎 𝑗 ∈𝑆 (𝑖 ) (𝑡 ) 𝑢𝑡,𝑖, 𝑗 ⊆ argmax𝑎 𝑗 ∈𝑆 (𝑖 ) (𝑡 ) 𝜇𝑖, 𝑗 , then𝑚𝑡+1 is
also stable if𝑚𝑡 is stable.

Proof. We prove this lemma by contradiction. Suppose𝑚𝑡+1 ≠

𝑚𝑡 , then there must exist an agent 𝑝𝑖 who selects another arm

𝑎 ≠ 𝑚𝑡 (𝑖) at time 𝑡 + 1. This implies arm 𝑎 has the highest UCB

index in the plausible set 𝑆 (𝑖) (𝑡 + 1). From the assumption, we

know that arm 𝑎 is also the arm with the highest mean in 𝑆 (𝑖) (𝑡 +1).
Thus 𝑎 ≻𝑝𝑖 𝑚𝑡 (𝑖). In addition, since 𝑎 ∈ 𝑆 (𝑖) (𝑡 + 1), we can also

conclude that arm 𝑎 prefers 𝑝𝑖 than one of its stable matched agents

at time 𝑡 . Thus arm 𝑎 and agent 𝑝𝑖 can form a blocking pair, which

contradicts the assumption that𝑚𝑡 is stable. So𝑚𝑡+1 is stable under
our assumptions, further we can also conclude that𝑚𝑡+1 = 𝑚𝑡 if

𝑚𝑡 is stable. □

Denote the aforementioned event that the arm with the high-

est UCB in the plausible set at time 𝑡 is also the arm which has

the highest mean reward in the plausible set as 𝐺𝑡 , which can be

mathematically expressed as

𝐺𝑡 =
⋂
𝑝𝑖

 argmax

𝑎 𝑗 ∈𝑆 (𝑖 ) (𝑡 )
𝑢𝑡,𝑖, 𝑗 ⊆ argmax

𝑎 𝑗 ∈𝑆 (𝑖 ) (𝑡 )
𝜇𝑖, 𝑗

 .

According to Lemma 5.2, if 𝑚𝑡+1 is unstable, then one of the

following two events must happen: there are some UCB ranking

errors such that argmax𝑎 𝑗 ∈𝑆 (𝑖 ) (𝑡 ) 𝑢𝑡,𝑖, 𝑗 ⊈ argmax𝑎 𝑗 ∈𝑆 (𝑖 ) (𝑡 ) 𝜇𝑖, 𝑗 for
some agent 𝑝𝑖 ; or there is no ranking error but the matching𝑚𝑡
is not stable. By induction, we can further conclude that if𝑚𝑡+1
is unstable, there must be some UCB ranking errors in the last 𝐿

rounds or no ranking error but the matching is unstable in the last

𝐿 rounds, where 0 < 𝐿 < 𝑡 . Recall that 𝑀𝑠 is the set of all stable

matchings, then the event {𝑚𝑡 ∉ 𝑀𝑠 } implies that(
𝑡⋂

𝑡′=𝑡−𝐿
(𝐺𝑡′ ∩ {𝑚𝑡′−1

∉ 𝑀𝑠 })
)

︸                                   ︷︷                                   ︸
(𝑎)

⋃ (
𝑡⋃

𝑡′=𝑡−𝐿
𝐺𝑐
𝑡′

)
︸         ︷︷         ︸

(𝑏)

. (8)

We then bound the probability of event {𝑚𝑡 ∉ 𝑀𝑠 } by bounding

above two terms (a) and (b) separately.

The bound of the probability of (a). Given a matching 𝑚𝑡
and a blocking pair (𝑝𝑖 , 𝑎 𝑗 ) in𝑚𝑡 , we say that𝑚𝑡+1 is obtained by

resolving (𝑝𝑖 , 𝑎 𝑗 ), if 𝑚𝑡+1 (𝑖) = 𝑎 𝑗 and other agents remain their

choices in 𝑚𝑡 . Abeledo and Rothblum [1] point out that for the

one-to-one setting, given any unstable matching 𝑚, there exists

a sequence of blocking pairs with length at most 𝑁 4
such that

resolving blocking pair in sequence order reaches a stable matching.

Here we extend this result to the many-to-one matching.

Lemma 5.3. For the many-to-one matching markets, given any
unstable matching𝑚, there exists a sequence of blocking pairs with
length at most 𝑁 4 such that resolving this blocking pair sequence can
reach a stable matching.

Proof. For any many-to-one matching market𝑀 , we can con-

struct a related one-to-one model 𝑀 ′. Specifically, the arm in 𝑀

with capacity 𝑐 is broken into 𝑐 independent arms in𝑀 ′, each with

capacity 1. And those broken arms in𝑀 ′ share the same preference

as the original arm in𝑀 . Agents and their preferences in𝑀 ′ are the
same as that in𝑀 . Thus for the many-to-one matching𝑚 in𝑀 , we

have the related one-to-one matching𝑚′ in𝑀 ′. Since agents and
arms in𝑀 and𝑀 ′ share the same preference, the blocking pair in

𝑚′ can also block𝑚 and vice versa. Thus we can further conclude

that𝑚′ is stable if and only if𝑚 is stable.

For the related one-to-one matching𝑚′, previous works show
that there exists a sequence of blocking pairs whose length is at

most𝑁 4
(Theorem 4.2 in [1]) such that we can get a stable matching

from𝑚′ by resolving this blocking pair sequence. Since the blocking
pairs and stable matching of𝑚′ are consistent with those of𝑚, this

sequence of blocking pairs is also the resolving route for𝑚 in the

original many-to-one model 𝑀 to achieve stable matching. Thus

the proof is completed. □

Recall that term (𝑎) denotes the event that there is no UCB

ranking error but the matching is unstable from time 𝑡 − 𝐿 to 𝑡 ,

where 𝐿 is the window length.

Lemma 5.4. Let 𝜅 = (1 − 𝜆)𝜆𝑁−1, where 𝜆 is the delay parameter
in Algorithm MOCA-UCB. For any window length 𝐿 such that 𝑁 4 ≤
𝐿 < 𝑡 −1, the probability of event (a) can be upper bounded as follows,

P

(
𝑡⋂

𝜏=𝑡−𝐿
(𝐺𝜏 ∩ {𝑚𝜏−1 ∉ 𝑀𝑠 })

)
≤

(
1 − 𝜅𝑁

4

) ⌊
𝐿

𝑁 4

⌋
.

Proof. Note that event 𝐺𝜏 means that ∀𝑖 ∈ [𝑁 ], with 𝑡 − 𝐿 ≤
𝜏 ≤ 𝑡 , the arm with the largest UCB in 𝑆 (𝑖) (𝜏), denoted as 𝑎 𝑗 , is

also the arm preferred most by 𝑝𝑖 in 𝑆
(𝑖) (𝜏). Thus under event 𝐺𝜏 ,

if𝑚𝜏−1 (𝑖) ≠ 𝑎 𝑗 , we know that (𝑝𝑖 , 𝑎 𝑗 ) forms a blocking pair for

matching𝑚𝜏−1 since agent 𝑝𝑖 and arm 𝑎 𝑗 both prefer each other

than their matched result in𝑚𝜏−1. Note that at time 𝜏 , 𝑝𝑖 turns to

pull the arm𝑎 𝑗 with the highest UCB in 𝑆 (𝑖) (𝜏)with probability 1−𝜆,
and all of other agents hold their choices at 𝜏 − 1 with probability

𝜆𝑁−1
bt line 7-12 of MOCA algorithm. Thus when 𝐺𝜏 holds,𝑚𝜏

is obtained by resolving (𝑝𝑖 , 𝑎 𝑗 ) with probability 𝜅 = (1 − 𝜆)𝜆𝑁−1
.

From lemma 5.3, we know that there exists a blocking pair sequence

with length no more than𝑁 4
such that we can get a stable matching

from𝑚𝜏−1 by resolving the blocking pairs on the sequence. Thus

𝑚𝜏−1 can reach stable within 𝑁 4
steps if it resolves the blocking

pairs in the order of that sequence, which happens with probability
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at least 𝜅𝑁
4

. When the window length 𝐿 = 𝑁 4
, then the probability

of (𝑎) can be bounded by 1 − 𝜅𝑁 4

. When 𝐿 > 𝑁 4
, it is independent

for any non-overlapping blocks of 𝑁 4
steps, thus the probability of

(𝑎) can be bounded by

P

(
𝑡⋂

𝜏=𝑡−𝐿
(𝐺𝜏 ∩ {𝑚𝜏−1 ∉ 𝑀𝑠 })

)
≤

(
1 − 𝜅𝑁

4

) ⌊
𝐿

𝑁 4

⌋
.

Thus the proof is completed. □

The bound of the probability of (b). Then we turn to fo-

cus on term (b). Recall that 𝐺𝑡 means argmax𝑎 𝑗 ∈𝑆 (𝑖 ) (𝑡 ) 𝑢𝑡,𝑖, 𝑗 ⊆
argmax𝑎 𝑗 ∈𝑆 (𝑖 ) (𝑡 ) 𝜇𝑖, 𝑗 for each agent 𝑝𝑖 . When𝐺𝑡 does not happen,

there must exist at least one triplet (𝑖, 𝑗, 𝑘) such that arm 𝑎 𝑗 ranks

the highest UCB index for agent 𝑝𝑖 while 𝑝𝑖 truly prefers another

𝑎𝑘 ∈ 𝑆 (𝑖) (𝑡) over 𝑎 𝑗 . Then we have

P
(
𝐺𝑐
𝑡

)
≤

∑︁
(𝑖,𝑗,𝑘 ) :𝑎𝑘≻𝑖𝑎 𝑗

P
(
𝑚𝑡 (𝑖) = 𝑎 𝑗 ,𝑢𝑡,𝑖,𝑘 < 𝑢𝑡,𝑖,𝑗

)
.

As 𝑎 𝑗 has the highest UCB index for 𝑝𝑖 , then with probability at

least 𝜅 = 𝜆𝑁−1 (1 − 𝜆), 𝑝𝑖 could successfully pull arm 𝑎 𝑗 . 𝜅 is the

probability that 𝑝𝑖 attempts to pull 𝑎 𝑗 at time 𝑡 , and other agents

keep pulling the arms they chose at time 𝑡 − 1. Recall that 𝐼𝑡 (𝑖)
indicates whether agent 𝑝𝑖 is successfully matched, then we can

further bound the probability that 𝐺𝑡 does not happen as follows:

P
(
𝐺𝑐
𝑡

)
≤ 𝜅−1

∑︁
(𝑖,𝑗,𝑘 ) :𝑎𝑘≻𝑖𝑎 𝑗

P
(
𝑚𝑡 (𝑖) = 𝑎 𝑗 , 𝐼𝑡 (𝑖) = 1,𝑢𝑡,𝑖,𝑘 < 𝑢𝑡,𝑖,𝑗

)
.

The term

∑𝑇
𝑡=1

𝐺𝑐𝑡 can be then bounded by standard UCB analysis

and by Lemma 5 in [26]:

𝑇∑︁
𝑡=1

P
(
𝐺𝑐
𝑡

)
≤

𝑇∑︁
𝑡=1

𝜅−1

∑︁
(𝑖,𝑗,𝑘 ) :𝑎𝑘≻𝑖𝑎 𝑗

P
(
𝑚𝑡 (𝑖) = 𝑎 𝑗 , 𝐼𝑡 (𝑖) = 1,𝑢𝑡,𝑖,𝑘 < 𝑢𝑡,𝑖,𝑗

)
≤ 𝜅−1

6

Δ2
log(𝑇 ) + 6 .

Choose the window 𝐿 > 𝑁 4
and sum up the bound for term (a)

and (b) above (equation (8)), we have

𝑇∑︁
𝑡=1

P (𝑚𝑡 ∉ 𝑀𝑠 )

≤
𝑇∑︁
𝑡=1

P

(
𝑡⋂

𝑡′=𝑡−𝐿
(𝐺𝑡′ ∩ {𝑚𝑡′−1

∉ 𝑀𝑠 })
)
+

𝑇∑︁
𝑡=1

P

(
𝑡⋃

𝑡′=𝑡−𝐿
𝐺𝑐
𝑡′

)
≤𝑇 exp

(
−𝐿𝜅4

𝑁 4

)
+ (𝐿 + 1)𝑁𝐾2

(
𝜅−1

6

Δ2
log(𝑇 ) + 6

)
.

Then we can balance the two terms by choosing a proper time

window length 𝐿 = ⌈𝑁 4

𝜅 log(𝑇 )⌉. The final bound would be

𝑇∑︁
𝑡=1

P (𝑚𝑡 ∉ 𝑀𝑠 ) ≤ 𝑂
(
7

𝑁 5𝐾2

𝜅𝑁
4

Δ2

log
2 (𝑇 )

)
.

Thus the agent-pessimal regret bound in Theorem 5.1 is obtained.

The regret upper bound with MOCA-UCB is exponential with the

number of agents 𝑁 and polynomial with the number of arms 𝐾 . In

particular, when it is reduced to the one-to-one setting, it has similar

performances to [26] and this regret upper bound can recover the

CA-UCB algorithm. The difference between the above two results

is that the number of arms 𝐾 could be very small. An interesting

question is whether the regret is dependent on the total capacity of

all arms 𝐶 and each arm’s capacity 𝑐 𝑗 , 𝑗 ∈ [𝐾].

6 EXPERIMENTS
In this section, we show the empirical performances of our many-

to-one cenETC (Algorithm 1), cenUCB (Algorithm 2), and decen-

tralized MOCA-UCB algorithm (Algorithm 3). For all experiments,

the rankings of all agents and arms are generated uniformly. We set

the mean of the reward value towards the least preferred arm to be

1/𝑁 and the most preferred one as 1 for each agent. And the reward

gap between any adjacently ranked arms is Δ = 1/𝑁 . The random

reward of agent 𝑝𝑖 for arm 𝑎 𝑗 𝑋𝑡,𝑖, 𝑗 is sampled from Ber(𝜇𝑖, 𝑗 ) when
𝑝𝑖 successfully pulls arm 𝑎 𝑗 at time 𝑡 . The horizon 𝑇 is set to be

100, 000. The capacity 𝑐 = 𝑁
𝐾

is equally distributed to each arm. In

our experiments, all results are averaged over 10 independent runs,

and the error bars are calculated as standard deviations divided

by

√
10. Since our work is the first one to study the many-to-one

setting, there are indeed no comparable baselines.

In order to show the performances of the algorithm, we test the

cumulative regret and the averaged unstability for each experiment,

where the latter is defined as the number of unstable matchings

over 𝑡 rounds divided by 𝑡 .

6.1 Varying the Market Size
In this experiment, we investigate how performances of the cenETC,

cenUCB andMOCA-UCB algorithms are influenced by market sizes.

The number of agents is set to be 𝑁 ∈ {5, 10, 15, 20} and the number

of arms is 𝐾 = ⌊𝑁 /2⌋. For cenETC algorithm, the exploration ℎ is

set to be 50, 100, 200, 300 separately.

We first investigate the centralized setting. It can be seen from

Figure 1 (a)(b) that our cenETC and cenUCB algorithm show the

same trend that both the cumulative regret and averaged unstability

increase when the market size becomes larger. Such phenomenon

is also verified by theoretical analysis (Theorem 4.3 and Theorem

4.4). And when 𝑁 is smaller, the convergence rate is faster. Though

cenETC requires knowledge of both the time horizon and the min-

imum gap Δ, it performs the best when changing approximate

parameters. CA-UCB performs a bit worse since it requires less

information.
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(a) Cumulative Regret
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(b) Averaged Unstability
Cen-ETC, N=5

Cen-ETC, N=10

Cen-ETC, N=15

Cen-ETC, N=20

Cen-UCB, N=5

Cen-UCB, N=10

Cen-UCB, N=15

Cen-UCB, N=20

MOCA-UCB, N=5

MOCA-UCB, N=10

MOCA-UCB, N=15

MOCA-UCB, N=20

Figure 1: Cumulative regret and average unstability of cen-
tralized ETC, centralized UCB and MOCA-UCB algorithm of
sizewith𝑁 ∈ {5, 10, 15, 20} and the number of arms𝐾 = ⌊𝑁 /2⌋.

We then examine the MOCA-UCB algorithm when changing

the market size. It can be seen from Figure 1 that the cumulative

regret increases with the increase of the market size, and so does
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the averaged unstability. Regret is caused by unstable matchings

from the analysis of MOCA-UCB (Equation (7)), which explains

that unstability and cumulative regret show the same growth trend.

From the analysis we know that the regret upper bound of MOCA-

UCB is also positively correlated with the number of agents 𝑁

(Theorem 5.1).

6.2 Varying Arm’s Capacity
In this section, we test how the performances depend on the arm’s

capacity. The market size is fixed with 𝑁 = 𝐶 = 15 and the number

of arms 𝐾 is chosen by 𝐾 ∈ {2, 5, 10, 15}. The average capacity of

each arm is 𝑁 /𝐾 , which is in inverse proportion to 𝐾 . For cenETC

algorithm, the exploring time ℎ is set to be 50, 100, 200, 300 respec-

tively when 𝐾 is chosen as above.

In the centralized setting, it can be seen from Figure 2 that for

both centralized ETC and UCB algorithms, the reduction of capac-

ity will increase the averaged unstability and cumulative regret.

As proved in Section 4, regret is resulted from inaccurate estimate

rankings. When an agent 𝑝𝑖 incorrectly ranks arms, the smaller the

capacity of each arm, the larger the probability of producing unsta-

ble pairs. Without collision, the cenUCB performs more unstability

and less regret than ETC. The difference between the two metrics

in the two algorithms is caused by the selection of ℎ. When 𝐾, 𝑁

and 𝑇 are fixed, cenUCB keeps approaching the optimal matching,

and its regret can be bounded by a fixed upper bound. The regret

of cenETC comes from the exploration of the previous ℎ𝐶 round,

which is closely related to the selection of ℎ.
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(c) Cumulative Regret
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(d) Averaged Unstability
Cen-ETC, K=2

Cen-ETC, K=5

Cen-ETC, K=10

Cen-ETC, K=15

Cen-UCB, K=2

Cen-UCB, K=5

Cen-UCB, K=10

Cen-UCB, K=15

MOCA-UCB, K=2

MOCA-UCB, K=5

MOCA-UCB, K=10

MOCA-UCB, K=15

Figure 2: Cumulative regret and averaged unstability of cen-
tralized ETC, centralized UCB and MOCA-UCB algorithm of
size with 𝐾 ∈ {2, 5, 10, 15} and fixed 𝑁 = 𝐶 = 15.

The MOCA-UCB algorithm is designed for decentralized match-

ing where conflicts are unavoidable. It can be seen from Figure 2

that with the increase of the number of arms𝐾 , both the cumulative

regret and the averaged unstability increase as the competitions

become more intense.

If we compare the MOCA-UCB algorithm with the other two

centralized algorithms, it can be seen from Figure 1 and 2 that

MOCA-UCB suffers more regret and averaged unstability than

centralized ETC and UCB when 𝑁 or 𝐾 is fixed. This is reasonable

since there is no platform for MOCA-UCB to assign the matching

at each time. Thus the collision is unavoidable and MOCA-UCB has

to find the stable matching while decreasing the collision.

7 CONCLUSIONS
7.1 Contributions
This paper analyzes bandit models in the many-to-one matching

market with online short-term worker employment problem as an

example. We are the first to study both ETC algorithm and UCB

algorithm in the centralized many-to-one market, both of which

achieve an optimal regret of𝑂 (log(𝑇 )). In the decentralized setting,

we propose the MOCA-UCB algorithm in the many-to-one setting

which achieves an agent-pessimal stable matching regret bound

of 𝑂 (log
2 (𝑇 )). Regrets of our algorithms in these two settings can

recover the algorithms in the one-to-one setting [25, 26] when each

arm’s capacity is exactly 1. Extensive experiments show the good

performances of the above algorithms by testing the cumulative

regret and averaged market unstability.

7.2 Many-to-One Matching is Different from
One-to-One Setting

As Roth [32] mentioned, the many-to-one problem is not equivalent

to the one-to-one problem and the analysis in the many-to-one

matching markets is more difficult. First, the capacity of an arm

can be regarded as multiple seats accepting agents, and there is an

order in the vacant seats according to the arm’s preference. It is

worth noting that the arm with capacity 𝑐 cannot be broken into

𝑐 independent individuals sharing the same preference due to the

implicit competition among the vacant seats.

To better solve these problems, we analyze them from two main

aspects. Firstly, we add the capacity limit to the algorithm design.

For the construction of plausible sets, we add the limitation of the

arm’s capacity. An arm is plausible for agent 𝑝𝑖 if they have been

matched at time 𝑡 − 1, or the arm prefers 𝑝𝑖 to some of its matched

agents at last time step. Note that each arm matches a set of agents,

we need to consider the arm’s capacity as this arm may still have

a vacant seat. We then prove the feasibility of the algorithm from

two aspects of theory and numerical experiments. Secondly, in

theoretical analysis, bounding the length of the sequence to get a

stable matching by resolving the blocking pairs is a key point in the

many-to-one decentralized markets. Considering that the capacity

is usually more than one, we show that the length of the sequence

of resolving blocking pairs is no more than 𝑁 4
(in Lemma 5.3) by

using the set splitting idea and generalizing the existing one-to-

one theory, which guarantees that our MOCA-UCB algorithm can

converge to a stable matching.

In terms of the comparisons of the results, our work in the many-

to-one setting obtains similar results to the one-to-one matching

markets [25, 26]. For the centralized market, the agent-optimal

regret with the centralized-ETC algorithm has a 𝑂 (log(𝑇 )) upper
bound and the agent-pessimal stable regret of the centralized-UCB

algorithm is also upper bounded by𝑂 (log(𝑇 )), both of them obtain

the same scale compared with algorithms in [25] when reduced to

one-to-one matching. As for the decentralized setting, our MOCA-

UCB algorithm achieves an𝑂 (log
2 (𝑇 )) agent-pessimal stable regret,

which is similar to the CA-UCB in the one-to-one setting [26].

Specifically, when it is reduced to the one-to-one setting, i.e., |𝑐 𝑗 | = 1

for all 𝑗 ∈ [𝐾], the regret of our algorithms is the same as the

previous work.
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