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MoTrans: Customized Motion Transfer with Text-Driven Video
Diffusion Models

Anonymous Authors

Reference videos: <lift weights>

Reference videos: <bow> A person panda is waving hand under the tree

Reference videos: <ride a bicycle> A person bear is riding a bicycle on the road

A person monkey is playing golf  in the streetReference videos: <play golf>

A person tiger is lifting weights in the forest

Figure 1: MoTrans is meticulously crafted to capture precise motion patterns from either singular or multiple reference videos,
facilitating seamless transfer of these motions onto fresh subjects within diverse contextual scenes.

ABSTRACT
Existing pretrained text-to-video (T2V) models have demonstrated
impressive abilities in generating realistic videos with basic motion
or camera movement. However, these models exhibit significant
limitations when generating intricate, human-centric motions. Cur-
rent efforts primarily focus on fine-tuning models on a small set
of videos containing a specific motion. They often fail to effec-
tively decouple motion and the appearance in the limited refer-
ence videos, thereby weakening the modeling capability of motion
patterns. To this end, we propose MoTrans, a customized motion
transfer method enabling video generation of similar motion in
new context. Specifically, we introduce a multimodal large language
model (MLLM)-based recaptioner to expand the initial prompt to
focus more on appearance and an appearance injection module
to adapt appearance prior from video frames to the motion mod-
eling process. These complementary multimodal representations
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from recaptioned prompt and video frames promote the model-
ing of appearance and facilitate the decoupling of appearance and
motion. In addition, we devise a motion-specific embedding for fur-
ther enhancing the modeling of the specific motion. Experimental
results demonstrate that our method effectively learns specific mo-
tion pattern from singular or multiple reference videos, performing
favorably against existing methods in customized video generation.

CCS CONCEPTS
• Computing methodologies → Computer vision; Motion
capture.

KEYWORDS
Diffusion models, Motion customization, Multimodal fusion

1 INTRODUCTION
Diffusion-based video generation has achieved significant break-
throughs [3, 11, 17, 33], facilitating the production of high-quality,
imaginative videos. While foundation Text-to-Video (T2V) mod-
els can generate diverse videos from provided text, tailoring them
to generate specific motion could more closely align with user’s
preferences. Akin to subjects customization in Text-to-Image (T2I)
tasks [9, 26, 36], human-centric motions in videos can also be cus-
tomized and transferred to various subjects, which holds significant
practical benefits for animation and film production [45, 46].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Existing pretrained T2V models [5, 42] often struggle to generate
intricate, human-centric motions like golf swings and skateboard-
ing, which involve multiple continuous sub-motions. One potential
reason is that these foundation models are predominantly trained
on highly diverse datasets [1] sourced from the internet, which
may suffer from imbalanced data distribution. Consequently, the
models might encounter certain motions infrequently, leading to
inadequate training for those motions. To better generate particular
motions, these pretrained T2V models [5, 42] require fine-tuning
on a small set of videos containing the desired motion pattern.
However, fine-tuning the model directly without any additional
constraints is prone to leading to an undesirable coupling between
the motion and the appearance in the limited reference videos and
weakening the modeling capability of motion patterns.

Several works [34, 45, 53, 55] have been proposed to address the
issue outlined above. These approaches predominantly leverage
a dual-branch architecture, with one branch dedicated to captur-
ing single-frame spatial information and the other to inter-frame
temporal dynamics. Additionally, they also introduce decoupling
mechanisms, such as embedding appearance priors to guide the
focus of temporal layers on motion [45] or adjusting latent codes to
minimize the negative impact of appearance [55]. Despite their ef-
forts to separate appearance from motion, these approaches exhibit
insufficient learning of motion patterns, resulting in videos with
diminished motion magnitudes and a deviation from the motion
observed in reference videos to some extent.

To this end, we introduceMoTrans, a customizedMotionTrans-
fer method, which mainly focuses on modeling the motion patterns
in reference videos while avoiding overfitting to its appearance.
Specifically, we adopt a two-stage training strategy, with an ap-
pearance learning stage and a motion learning stage respectively
modeling appearance and motion. To alleviate the coupling issue
between appearance and motion, we undertake comprehensive
explorations in both stages. 1) During the appearance learning
stage, a multimodal large language model (MLLM) is adopted as
the recaptioner to expand the original textual descriptions of the
reference video. 2) During the motion learning stage, before adapt-
ing the temporal module to a specific motion, representations of
video frame are pre-injected to compel this module to capture mo-
tion dynamics. The complementary multimodal information from
expanded prompt and video frame promotes the modeling of ap-
pearance and decomposition of appearance and motion. Notably,
it has been observed that motions in videos are primarily driven
by verbs within the prompt. Inspired by this observation, we em-
ploy a residual embedding to enhance the token embeddings of
the verbs corresponding to motion, thereby capturing the specified
motion patterns in the reference video. Extensive experimental
results demonstrate that our method effectively mitigates the is-
sue of overfitting to appearance and produces high-quality motion,
performing favorably against other state-of-the-art methods. The
main contributions of our work can be summarized as follows:

• We propose MoTrans, a customized video generation method
enabling motion pattern transfer from single or multiple
reference videos to various subjects.

• By introducing an MLLM-based recaptioner and appearance
prior injector, we leverage complementary text and image

multimodal information to model the appearance informa-
tion, effectively mitigating the issue of coupling between
motion and the limited appearance.

• We introduce the motion-specific embedding, which is inte-
grated with temporal modules to collaboratively represent
specific motion within reference videos.

• Experimental results demonstrate that our method surpasses
other motion customization methods, enabling any motion
customization contextualized in different scenes.

2 RELATEDWORK
2.1 Text-to-Video Generation
Diffusion models are catalyzing rapid advancements in image gen-
eration tasks [8, 31, 35] and have spawned numerous valuable appli-
cations [12, 28, 43, 49, 51, 54]. This success has garnered significant
interest in extending these capabilities to video generation [16, 32,
44, 46]. Early efforts in T2V domain [19, 21, 37, 44] primarily focus
on cascading video frame interpolation and super-resolution mod-
els to generate high-resolution videos, which seems to be complex
and cumbersome. In contrast, ModelScopeT2V [42] represents a
significant shift by incorporating spatio-temporal blocks atop stable
diffusion [35] to model motion more effectively. Building on this,
ZeroScope [5] expands the training data and utilizes watermark-
free data for fine-tuning, enabling the generation of videos with
improved resolution and enhanced quality.

Recently, a new wave of high-quality T2V models [14, 17, 52, 56]
has achieved impressive progress. Emu Video [14] generates high-
quality videos from natural language descriptions by dividing the
video generation process into two steps: initially generating a text-
conditioned image, followed by creating videos conditioned on both
the text and the generated image. VideoCrafter2 [7] utilizes low-
quality videos to ensure motion consistency while employing high-
quality images to enhance video quality and conceptual composi-
tion ability. Commercial models such as Pika [33] and Gen-2 [11]
also exhibit exceptionally strong generative capabilities. Moreover,
OpenAI’s recent launch of the Sora model [3], capable of generating
high-quality videos up to 60 seconds in length, marks a significant
milestone in video generation. Although the above foundation T2V
models can generate appealing videos, they face challenges in pre-
cisely controlling the generated motion.

2.2 Customized Video Generation
Existing T2Vmodels [5, 7, 42] excel at generating simple motions or
camera movements, struggling to produce specific human-centric
motions that align with user preferences. To this end, some mod-
els have been introduced to synthesize specific motion pattern
and transfer it to diverse subjects. For customized motion trans-
fer [6, 22, 48], some methods employ additional pose maps [4] or
dense poses [15] as guidance and require substantial amounts of
training data. During the inference stage, it is possible to animate
static characters by merely providing initial noise, a reference im-
age, and a set of pose sequences as additional guiding conditions.
These approaches allows to produce animations without any need
for fine-tuning once they are adequately trained. However, they
primarily focus on human-to-human motion transfer and often
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MLLM-based Recaptioner

A person is skateboarding 

(b) Motion Learning
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Figure 2: Overview of the proposed MoTrans. In the appearance learning stage, an MLLM-based recaptioner is employed to
extend the base prompt, encouraging the spatial LoRAs to sufficiently learn appearance information. The weights of spatial
LoRAs are shared in the second stage. In the motion learning stage, video frame embeddings are injected as appearance priors,
compelling the temporal LoRAs to concentrate on motion learning. Furthermore, we adopt MLP to learn a motion-specific
embedding, which is jointly trained with the temporal LoRAs to fit specific motion patterns in the reference video.

struggle to transfer motion to subjects that significantly deviate
from the human domain, such as animals.

We aim to learn specific motion patterns rather than precisely
replicate every frame’s action. This task [29, 34, 45, 47, 53, 55] re-
quires only a minimal amount of training data sharing the same
motion concept. Similar to the T2I method DreamBooth [36], these
approaches necessitate individual training for each type of motion.
Since the generation process does not require additional control
conditions such as pose, the resulting motions are more flexible
and do not need to follow each frame of the reference video strictly.
MotionDirector [55] learns both camera movement and motion,
adopting a dual-path way framework to separately learn appear-
ance and motion. During motion learning, the spatial layers trained
for appearance learning are frozen to inhibit the temporal layers
from learning appearance. DreamVideo [45] introduces structurally
simple identity and motion adapters to learn appearance and mo-
tion, respectively. To decouple spatial and temporal information, it
proposes injecting appearance information into the motion adapter,
forcing the temporal layers to learn motion.

Although some methods [34, 45, 53, 55] realize the issue of
appearance-motion coupling, they are still prone to synthesizing
videos overfitting to the appearances of training data to a certain
extent, thereby exhibiting insufficient learning of motion patterns.
Furthermore, some methods [47, 53] learn motions that are easier
to model. In this paper, we are more concerned with challenging
actions with larger ranges of motion, such as sports actions.

3 METHOD
3.1 Overview
Given a single video or multiple videos with similar motions, the
goal of our task is to learn the specific motion or the common
motion pattern contained in reference videos. Subsequently, the
learned motion can be adapted to new subjects contextualized in dif-
ferent scenes. As illustrated in Fig. 2, the overall training pipeline is
divided into the appearance learning stage and the motion learning
stage. In the appearance learning stage, we employ an MLLM-based
recaptioner to expand the initial prompt of the reference videos.
It could promote the modeling capabilities of the spatial attention
modules for appearance information. At this stage, we only train
spatial low-rank adaptions (LoRAs) and share the weights with the
second stage to fit the appearance of the corresponding reference
video. As shown in Fig. 4 (a), to preserve the textual alignment capa-
bility of the pretrained T2V model, we freeze the parameters of the
cross-attention layer and only inject LoRAs into the self-attention
and feed-forward layers (FFN). In the motion learning stage, before
adapting temporal modules to a specific motion, image embed-
dings are injected to introduce appearance priors, thereby forcing
the temporal LoRAs to focus on motion modeling. Additionally,
we employ a multilayer perceptron (MLP) to augment the token
embeddings corresponding to verbs, which is jointly trained with
temporal LoRAs to capture specific motion pattern. For temporal
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Task Instruction:

You are a recaptioner. Please briefly expand the base 

prompt, mainly describing the foreground subject and the 

background content. Please make sure the final prompt 

includes the base prompt and does not exceed 15 words.

MLLM-based Recaptioner

A person is playing the guitar, wearing a cap 

and striped shirt, seated by a white door.

A person is playing the guitar. Base Prompt

User

Recaption

Source Image

Figure 3: Illustration of multimodal recaptioning. Given an
image, an MLLM-based recaptioner is employed to expand
the base prompt according to the task instruction, enabling
the extended prompt to fully describe its appearance.

modules, LoRAs are injected into both the self-attention layer and
FFN of the temporal transformers.

During the inference stage, we integrate the temporal LoRAs and
the residual embedding into pretrained video generation models to
transfer the specific motion to new subjects.

3.2 Multimodal Appearance-Motion Decoupling
The primary objective of our task is to learn motion patterns speci-
fied by several reference videos. Due to the inherent characteristics
of the diffusion model’s training loss, the leakage of some appear-
ance information is inevitable in the motion learning stage. To
seperate motion from appearance to a certain extent during the
motion learning process, we propose an MLLM-based recaptioner
and an appearance injector. In this manner, the complementary
multimodal appearance information provided by text and video
facilitates the decoupling of appearance and motion information.
MLLM-based recaptioner.MLLMs like LLaVA 1.5 [24] or GPT4 [30]
have robust in-context reasoning and language understanding ca-
pabilities, which can be used for image recaptioning [2, 50]. As
illustrated in Fig. 3, let V = {𝑓 𝑖 |𝑖 = 1, ..., 𝑙} denote the reference
video with 𝑙 frames, given a carefully crafted task instruction, the
recaptioner can perform text-to-text translation and expand the
base prompt c𝑏 based on a random frame 𝑓 𝑖 . In this manner, the re-
captioned prompt c𝑟 can comprehensively describe the appearance
information contained within the video frames. Through training,
the spatial attention module will adapt to the appearance informa-
tion of the reference video and remains frozen in the subsequent

Self-Attn

Cross-Attn

FFN

L
in

ear

Im
ag

e em
b

ed
d

in
g
s

(a) Trainable Spatial and Temporal LoRA

(b) Appearance Injector

LoRA

Conv Layers

Spatial Transformers

Temporal Transformers

Self-Attn

Self-Attn

FFN

Figure 4: Details of trainable LoRAs and appearance injector.
(a) Parameters of the base model are frozen and only param-
eters of LoRAs injected into the self-attention and FFN are
updated. (b) The image embedding is processed through a
Linear layer before being fused with the hidden states from
the spatial transformers. This pre-injected appearance prior
encourages the temporal LoRAs to effectively capture mo-
tion patterns.

stage, encouraging the temporal attention module to effectively
model the motion information in the videos.

During the appearance learning stage, we adopt a frozen MLLM
and only spatial LoRAs need to be trained. The optimization process
of this stage is defined as follows:

L𝑠 = Ezi0,c𝑟 ,𝜖∼N(0,I ),𝑡 [| |𝜖 − 𝜖𝜃 (zit, 𝜏𝜃 (c𝑟 ), 𝑡) | |
2
2] . (1)

Here, a VQ-VAE [23] initially compresses frame 𝑓 𝑖 into a latent
representation zi0 ∈ R𝑏×1×ℎ×𝑤×𝑐 , where 𝑏, ℎ,𝑤, 𝑐 represent batch
size, height, width, and channel count, respectively. zit is the noised
latent code at timestep 𝑡 ∼ U(0,𝑇 ). 𝜏𝜃 (·) denotes the pretrained
OpenCLIP ViT-H/14 [10] text encoder. Meanwhile, the network
𝜖𝜃 (·) is trained to predict the noises added at each timestep.
Appearance injector. In addition to leveraging recaptioned prompts
to enhance the modeling of appearance, integrating embedding
information from video frames themselves can also yield signifi-
cant benefits. These two modalities collaboratively contribute to
the effective decomposition of motion from its appearance. Draw-
ing inspiration from [45], we inject appearance information in
the second stage to diminish its impact on motion learning. As
shown in Fig. 2 (b), an image encoder𝜓 is utilized to obtain embed-
dings of all video frames, we randomly select an image embedding
𝜓 (f i) ∈ R1×𝑑 from the input video, where 𝑑 denotes the dimension
of image embedding. Then the appearance information is injected
before the temporal transformers, as demonstrated in Fig. 4 (b).
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Formally, for each UNet block 𝑙 , the spatial transformer produces
the hidden states ℎ𝑙𝑠 ∈ R(𝑏×ℎ×𝑤 )×𝑓 ×𝑐 . We employ a linear pro-
jection to broadcast the input embeddings across all frames and
spatial positions, which are then summed with the hidden states
ℎ𝑙𝑠 before being fed into the temporal transformer. In this way, the
appearance representations from the visual modal are pre-injected.
The entire process can be formulated as follows:

ℎ𝑙𝑡 = ℎ𝑙𝑠 ⊙ (𝑊𝑝 ·𝜓 (f i)), (2)

where𝑊𝑝 represents the weights of the linear projection layer, with
its output dimension adapting to variations in the dimensions of
the UNet hidden states. And ⊙ denotes the broadcast operator.

3.3 Motion Enhancement
An intuitive observation is that motion patterns in videos generally
align with verbs in a text prompt. Hence, we posit that emphasiz-
ing verbs could potentially encourage the model to enhance its
modeling of motion in the reference videos.
MotionEnhancer.Aheuristic strategy for enhancing themodeling
of motion involves leveraging visual appearance information to
enrich the textual embedding representation of motion concept.
This is achieved by learning a residual motion-specific embedding
on top of the base text embedding. The base embedding can be
considered a coarse embedding corresponding to a general motion
category, whereas the residual embedding is tailored to capture the
specific motion within given reference videos.

Specifically, we employ a pretrained text encoder 𝜏𝜃 to extract
text embeddings from a sequence of words S = {𝑠1, ..., 𝑠𝑁 }. To lo-
cate the position i of the verb 𝑠𝑖 in the text prompt, we use Spacy for
part-of-speech tagging and syntactic dependency analysis. Follow-
ing this, the base motion embeddings corresponding to the motion
concept are then selected. As shown in Fig. 2 (b), video frames are
initially processed by an image encoder to generate frame-wise
embeddings. To capture temporal interactions, these embeddings
are aggregated through a mean pooling operation, resulting in a
unified video embedding. This video embedding is concatenated
with the base motion embedding and further processed by an MLP.
The MLP comprises two linear layers separated by a Gaussian Er-
ror Linear Unit (GELU) [18] activation function. Subsequently, we
compute a residual embedding, which is added to the base motion
embedding to form an enhanced motion-specific representation.
Mathematically, let 𝐸𝑏 and 𝐸𝑟 represent the base embedding and
learnable residual embedding, respectively, the operation can be
expressed as follows:

𝐸𝑟 =𝑊2 · (𝜎𝐺𝐸𝐿𝑈 (𝑊1 · ( [𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙 (𝜓 (V)), 𝜏𝜃 (si)]))), (3)

𝐸𝑐𝑜𝑛𝑑 = 𝐸𝑏 + 𝐸𝑟 . (4)
Here, [·] refers to the concatenation operation, and𝑊1 and𝑊2
denote the weights of two Linear layers in MLP. The GELU func-
tion is represented by 𝜎𝐺𝐸𝐿𝑈 . This motion-specific embedding is
integrated with the text embeddings of other words in the prompt
to serve as the new condition for training temporal transformers.

To prevent the learned residuals from becoming excessively large,
akin to the strategy in [13], we introduce an L2 regularization term
as a constraint as:

L𝑟𝑒𝑔 = | |𝐸𝑟 | |22 (5)

Similar to the appearance learning stage, the loss function in the
motion learning stage calculates the Mean Squared Error (MSE)
loss between the predicted noise of the diffusion model and the
ground truth noise, except that the frame dimension is no longer 1.
Therefore, the final loss function for this stage is defined as:

L𝑡 = Ez1:N
0 ,c𝑏 ,𝜖∼N(0,I ),𝑡 [| |𝜖 − 𝜖𝜃 (z1:N

t , 𝜏𝜃 (c𝑏 ), 𝑡) | |22] . (6)

For motion learning, the loss function is the combination of tempo-
ral loss and a constraint term as follows,

L𝑚𝑜𝑡𝑖𝑜𝑛 = L𝑡 + 𝜆L𝑟𝑒𝑔, (7)

where 𝜆 controls the relative weight of the regularization term.

4 EXPERIMENTS
4.1 Experimental Setup
Dataset. We collect a dataset that includes 12 distinct motion pat-
terns, sourced from the Internet, the UCF101 dataset [40], the UCF
Sports Action dataset [39], and NTU RGB+D 120 [25]. Each motion
pattern is represented by approximately 4-10 training videos. The
dataset consists of various sports motions, such as weightlifting
and golf swing, alongside large-scale limb movements like wav-
ing hands and drinking water. For evaluation, we employ six base
prompt templates that involve variations in subject, motion, and
context. An example template is "A {cat} is {motion} {in the living
room}", with placeholders indicating dynamic elements. Videos
corresponding to each motion are generated based on these six
prompt categories. More details of our dataset are available in the
supplementary materials.
Implementation details. We employ ZeroScope as the base T2V
model, which is trained with the AdamW [27] optimizer across ap-
proximately 600 steps with a learning rate of 5𝑒 − 4. For the spatial
and temporal transformers, we specifically fine-tune LoRAs instead
of all parameters, with the LoRA rank set to 32. The image encoder
used for appearance injection is derived from OpenCLIP ViT-H/14,
which is also used to calculate CLIP-based metrics. The regulariza-
tion loss coefficient for normalizing the verb’s residual embedding
is 1𝑒 − 4. During inference, we employ DDIM [38] sampler with
30-step sampling and classifier-free guidance scale [20] of 12. We
generate 24-frame videos at 8 fps with a resolution of 576× 320. All
experiments are conducted on a single NVIDIA A100 GPU.
Comparison methods. To investigate the generative capabilities
of existing T2V models, we compare our approach with prominent
open-source models, including ZeroScope [5] and VideoCrafter2 [7].
Additionally, we explore the effectiveness of directly fine-tuning
ZeroScope on a small set of videos containing a specific motion. It
is noteworthy that fine-tuning is not applied to the entire diffusion
model but specifically targets the LoRAs within the temporal trans-
formers. Our proposed method is adaptable for both single and
multiple video customization scenarios. Consequently, we bench-
mark our approach against open-source methods specialized for
one-shot customization, such as Tune-a-Video [46], and for few-shot
customization, like LAMP [47]. Further comparisons are conducted
with MotionDirector, which serves as our baseline.
Evaluation metrics. The performance of the comparison methods
is evaluated by four metrics. CLIP Textual Alignment (CLIP-T) is
employed to assess the correspondence between the synthesized
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Figure 5: Qualitative comparison of customized motion transfer. The reference videos on the left demonstrate the motion of
a person slowly lifting their hand to drink water. On the right, the videos show a skateboarding pushing action, where the
person pushes off the ground with their foot and then slides forward. For one-shot motion customization, the learned motion
refers to the second example from the reference videos. Best viewed zoomed-in.

video and the provided prompt, while Temporal Consistency (Tem-
pCons) measures frame consistency within videos. Due to issues
of appearance overfitting observed in some comparison methods,
we introduce CLIP Entity Alignment (CLIP-E) metric, which is
similar to Textual Alignment but foucses on prompts containing
only entities, such as "a panda". This metric evaluates whether the
synthesized video accurately generates the entity specified by the
new prompt. To the best of our knowledge, there exists no metric
capable of measuring the congruence between motion patterns in
the synthesized videos and those in the reference videos. Therefore,
we propose Motion Fidelity (MoFid), which is based on the video
understanding model VideoMAE [41]. Specifically, a video 𝑣𝑖𝑚 is
randomly selected from the training videos, and a pretrained Video-
MAE 𝑓 (·) is used to obtain the embeddings for both the selected
video 𝑣𝑖𝑚 and the synthesized video 𝑣𝑘 . Formally, motion fidelity is

calculated as follows:

E𝑚 =
1

|M||𝑣𝑚 |
∑︁

𝑚∈M

|𝑣𝑚 |∑︁
𝑘=1

𝑐𝑜𝑠 (𝑓 (𝑣𝑖𝑚), 𝑣𝑘 ), (8)

where M denotes the set of motions, |𝑣𝑚 | is the number of videos
with motion𝑚 in the generated videos, and 𝑐𝑜𝑠 (·) refers to cosine
similarity function. Further details on motion fidelity are available
in the supplementary material.

4.2 Main Results
Qualitative Evaluation. To validate the motion customization
capabilities of our method, we conduct a comparative analysis with
several representative open-source methods tailored for one-shot
and few-shot motion customization. As depicted in Fig. 5, direct in-
ference using pretrained T2V models ZeroScope and VideoCrafter
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Table 1: Quantitative evaluation of customized motion trans-
fer methods. The best results under one-shot and few-shot
settings are highlighted in blue and red, respectively.

CLIP-T (↑) CLIP-E (↑) TempCons (↑) MoFid (↑)

Inference ZeroScope [5] 0.2017 0.2116 0.9785 0.4419
VideoCrafter [7] 0.2090 0.2228 0.9691 0.4497

One-shot

Tune-a-video [46] 0.1911 0.2031 0.9401 0.5627
ZeroScope (fine-tune) 0.2088 0.2092 0.9878 0.6011
MotionDirector [55] 0.2178 0.2130 0.9889 0.5423

MoTrans (ours) 0.2192 0.2173 0.9872 0.5679

Few-shot

LAMP [47] 0.1773 0.1934 0.9587 0.4522
ZeroScope (fine-tune) 0.2191 0.2132 0.9789 0.5409

MotionDirector 0.2079 0.2137 0.9801 0.5417
MoTrans (ours) 0.2275 0.2192 0.9895 0.5695

Table 2: Quantitative results of the ablation study.

CLIP-T (↑) CLIP-E (↑) TempCons (↑) MoFid (↑)

One-shot

w/o MLLM-based recaptioner 0.2138 0.2101 0.9865 0.6129
w/o appearance injector 0.2114 0.2034 0.9862 0.6150
w/o motion enhancer 0.2164 0.2135 0.9871 0.5643

MoTrans 0.2192 0.2173 0.9872 0.5679

Few-shot

w/o MLLM-based recaptioner 0.2179 0.2138 0.9792 0.5997
w/o appearance injector 0.2143 0.2132 0.9807 0.6030
w/o motion enhancer 0.2211 0.2171 0.9801 0.5541

MoTrans 0.2275 0.2192 0.9895 0.5695

fails to synthesize specific motion patterns due to the lack of fine-
tuning on specified videos. Additionally, the synthesized videos
exhibit notably small motion amplitudes, suggesting that pretrained
T2V models struggle to generate complex, human-centric motion.
In particular, these models face significant challenges in generat-
ing specific motions without targeted training on specific videos.
Furthermore, unconstrained fine-tuning of Zeroscope leads to an
undesirable coupling between appearance and motion, and the mo-
tions in the generated videos do not sufficiently resemble those in
the reference videos, with notably small motion amplitudes.

Tune-A-Video, which targets single-video customization and is
based on the T2I model, suffers from poor inter-frame smoothness
and severe appearance overfitting. Similarly, the few-shot motion
customization method LAMP, also leveraging a T2I model, exhibits
very poor temporal consistency and heavily relies on the quality of
the initial frame. Compared to other methods, LAMP requires more
reference videos and training iterations to achieve relatively better
results. MotionDirector also encounters challenges with appearance
overfitting, often generating unrealistic scenarios such as a panda
on a skateboard dressed in human attire. Moreover, it exhibits
insufficient modeling of motion patterns, resulting in videos with
diminished motion magnitudes and deviations from the observed
motion in reference videos.

Our method, however, demonstrates superior ability to accu-
rately capture motion patterns in both one-shot and few-shot mo-
tion customization scenarios. Additionally, one-shot methods some-
times fail to discern whether to learn camera movement or fore-
ground motion. In contrast, few-shot methods can leverage induc-
tive biases derived from multiple videos, better capturing common
motion patterns. This allows the temporal transformer to focus on
foreground action rather than camera movements.

Figure 6: User study. For each metric, the percentages at-
tributed to all methods sum to 1. MoTrans accounts for the
largest proportion, indicating that the videos generated by
our method exhibit superior text alignment, temporal con-
sistency, and the closest resemblance to the reference video.

A person panda is waving hand under the tree

w/o appearance 
injector

w/o motion 
enhancer

MoTrans
(ours)

w/o MLLM-based 
recaptioner

Reference
Videos

Figure 7: Qualitative results of the ablation study. Given sev-
eral reference videos, Motrans can learn motion patterns
from reference videos without appearance overfitting.

Quantitative Evaluation. As illustrated in Table 1, when only
a single reference video is provided, both Tune-a-Video and the
fine-tuned Zeroscope exhibit higher motion fidelity but lower entity
alignment. This is primarily attributed to the severe appearance
overfitting, which leads to pronounced similarities in both appear-
ance and motion to the reference video. Consequently, these meth-
ods fail to synthesize the new subject specified in the prompt, which
is also demonstrated in Fig. 5. When multiple reference videos are
provided, our approach outperforms other methods across all eval-
uated metrics. Notably, it achieves high levels of text alignment
and motion fidelity, showcasing our method’s capability to effec-
tively learn motion patterns from reference videos while avoiding
overfitting to the appearance information.
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Figure 8: Customized video generation with specific subjects and motions. The two-stage training strategy allows for the motion
transfer (top) from the reference video to the subject specified by exemplar images (left).

User study. Automatic metrics like CLIP-T have limitations in fully
reflecting human preferences, hence, we conduct user studies to
further validate our method. We collect 1536 sets of answers from
32 participants, with each completing a questionnaire containing
48 sets of questions. Participants are asked to pick the best video
through answering the following questions: (1) which video better
aligns with the textual description? (2) which video is smoother,
and with fewer flickering? (3) which video’s motion is more similar
to that in the reference video without resembling its appearance?
Considering the significantly inferior performance of the T2I-based
model LAMP, our comparison primarily focused on MoTrans ver-
sus the other methods. The results, shown in Fig. 6, reveal that
our method consistently outperforms the others across all metrics,
aligning more closely with human intuition.

4.3 Ablation Study
We conduct ablation studies to demonstrate the efficacy of the key
modules introduced in this paper. Specifically, the MLLM-based
recaptioner and the appearance injector leverage the prior knowl-
edge of multimodal sources, i.e., textual and visual modalities, to
address the challenge of coupling between appearance and motion.
As illustrated in Table 2 and Fig. 7 (rows 1 and 2), the absence of
either the MLLM-based recaptioner or the appearance injector leads
to a performance drop in both CLIP-T and CLIP-E, alongside high
motion fidelity. This suggests a severe overfitting to both appear-
ance and motion. Additionally, without the motion enhancer, the
model struggles to synthesize the specific motion depicted in the
reference videos, but with the introduction of the first two modules,
it can synthesize the specified subject. In comparison, our method
effectively mitigates appearance overfitting while ensuring motion
fidelity as much as possible. Each module we propose significantly
contributes to the improvement of the final generation results.

4.4 Application
Video customization with both subject and motion. Benefit-
ting from the two-stage training strategy of our approach, appear-
ance and motion can be learned separately through the spatial
and temporal transformers within a UNet. As depicted in Fig. 8,
we simultaneously customize the subject depicted in an image set
and the motion specified by a video set. The customization results
demonstrate that our method does not suffer from appearance over-
fitting to the training data and can successfully enable a specific
animal or inanimate object to perform a human-centric motion.

5 CONCLUSION
We propose MoTrans, a customized motion transfer method that
effectively transfers a specific motion pattern from reference videos
to diverse subjects. By integrating multimodal appearance priors,
encompassing both visual and textual modalities, our approach
mitigates the issue of coupling between motion patterns in syn-
thesized videos and the limited appearance contained in reference
videos. Additionally, our method employs dedicated residual em-
beddings to accurately represent the specific motion pattern inher-
ent in the reference videos. Compared with existing methods, our
method demonstrates superior capabilities in customizing motion
and decoupling appearance, and it also supports the simultaneous
customization of subjects and motions.

Although our method can synthesize high-quality motion, it is
currently optimized for short video clips of 2-3 seconds and faces
challenges in generating longer sequences. Moreover, while our
method currently supports the customization of motion for a single
subject, extending this capability to multiple subjects performing
the same motion remains a challenge. Future work will aim to
address these limitations and expand the applicability of ourmethod
to more complex and practical scenarios.
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