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ABSTRACT

Error correction code (ECC) is an integral part of the physical communication
layer, ensuring reliable data transfer over noisy channels. Recently, neural de-
coders have demonstrated their advantage over classical decoding techniques.
However, recent state-of-the-art neural decoders suffer from high complexity and
lack the important iterative scheme characteristic of many legacy decoders. In this
work, we propose to employ denoising diffusion models for the soft decoding of
linear codes at arbitrary block lengths. Our framework models the forward chan-
nel corruption as a series of diffusion steps that can be reversed iteratively. Three
contributions are made: (i) a diffusion process suitable for the decoding setting is
introduced, (ii) the neural diffusion decoder is conditioned on the number of par-
ity errors, which indicates the level of corruption at a given step, (iii) a line search
procedure based on the code’s syndrome obtains the optimal reverse diffusion step
size. The proposed approach demonstrates the power of diffusion models for ECC
and is able to achieve state of the art accuracy, outperforming the other neural de-
coders by sizable margins, even for a single reverse diffusion step. Our code is
attached as supplementary material.

1 INTRODUCTION

Reliable digital communication is of major importance in the modern information age and involves
the design of codes that can be robustly decoded despite noisy transmission channels. The target de-
coding is defined by the NP-hard maximum likelihood rule, and the efficient decoding of commonly
employed families of codes, such as algebraic block codes, remains an open problem.

Recently, powerful learning-based techniques have been introduced. Model-free decoders (O’Shea
& Hoydis, 2017; Gruber et al., 2017; Kim et al., 2018) employ generic neural networks and may
potentially benefit from the application of powerful deep architectures that have emerged in recent
years in various fields. A Transformer-based decoder that is able to incorporate the code into the
architecture has been recently proposed by Choukroun & Wolf (2022). It outperforms existing
methods by sizable margins, at a fraction of their time complexity. The decoder’s objective in this
model is to predict the noise corruption, to recover the transmitted codeword (Bennatan et al., 2018).

Deep generative neural networks have shown significant progress over the last years. Denoising
Diffusion Probabilistic Models (DDPM) (Ho et al., 2020b) are an emerging class of likelihood-based
generative models. Such methods use diffusion models and denoising score matching to generate
new samples, for example, images (Dhariwal & Nichol, 2021) or speech (Chen et al., 2020a). The
DDPM model learns to perform a reversed diffusion process on a Markov chain of latent variables,
and generates samples by gradually removing noise from a given signal.

One major drawback of model-free approaches is the high space/memory requirement and time
complexity that hamper its deployment on constrained hardware. Moreover, the lack of an iterative
solution means that both highly and slightly corrupted codewords go through the same computation-
ally demanding neural decoding procedure.

In this work, we consider the error correcting code paradigm via the prism of diffusion processes.
The channel codeword corruption can be viewed as an iterative forward diffusion process to be
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reversed via an adapted DDPM. As far as we can ascertain, this is the first adaptation of diffusion
models to error correction codes.

Beyond the conceptual novelty, we make three technical contributions: (i) our framework is based
on an adapted diffusion process that simulates the coding and transmission processes, (ii) we further
condition the denoising model on the number of parity-check errors, as an indicator of the signal’s
level of corruption, and (iii) we propose a line-search procedure that minimizes the denoised code
syndrome, in order to provide an optimal step size for the reverse diffusion.

Applied to a wide variety of codes, our method outperforms the state-of-the-art learning-based solu-
tions by very large margins, employing extremely shallow architectures. Furthermore, we show that
even a single reverse diffusion step with a controlled step size can outperform concurrent methods.

2 RELATED WORKS

The emergence of deep learning for communication and information theory applications has demon-
strated the advantages of neural networks in many tasks, such as channel equalization, modulation,
detection, quantization, compression, and decoding (Ibnkahla, 2000). Model-free decoders employ
general neural network architectures (Cammerer et al., 2017; Gruber et al., 2017; Kim et al., 2018;
Bennatan et al., 2018). However, the exponential number of possible codewords makes the decod-
ing of large codes unfeasible. Bennatan et al. (2018) preprocess the channel output to allow the
decoder to remain provably invariant to the transmitted codeword and to eliminate risks of over-
fitting. Model-free approaches generally make use of multilayer perceptron networks or recurrent
neural networks to simulate the iterative process existing in many legacy decoders (Gruber et al.,
2017; Kim et al., 2018; Bennatan et al., 2018). However, many architectures have difficulties in
learning the code or analyzing the reliability of the output, and require prohibitive parameterization
or expensive graph permutation preprocessing (Bennatan et al., 2018).

Recently, Choukroun & Wolf (2022) proposed the Error Correction Code Transformer (ECCT),
obtaining SOTA performance. The model embeds the signal elements into a high-dimensional space
where analysis is more efficient, while the information about the code is integrated via a masked
self-attention mechanism.

Diffusion Probabilistic Models were first introduced by Sohl-Dickstein et al. (2015), who presented
the idea of using a slow iterative diffusion process to break the structure of a given distribution while
learning the reverse neural diffusion process, in order to restore the structure in the data. Song &
Ermon (2019) proposed a new score-based generative model, building on the work of Hyvärinen &
Dayan (2005), as a way of modeling a data distribution using its gradients, and then sampling using
Langevin dynamics (Welling & Teh, 2011).

The DDPM method of Ho et al. (2020b) is a generative model based on the neural diffusion process
that applies score matching for image generation. Song et al. (2020b) leverage techniques from
stochastic differential equations to improve the sample quality obtained by score-based models;
Song et al. (2020a) and Nichol & Dhariwal (2021a) propose methods for improving sampling speed;
Nichol & Dhariwal (2021a) and Saharia et al. (2021) demonstrated promising results on the difficult
ImageNet generation task, using upsampling diffusion models. Several extensions to other fields,
such as audio (Kong et al., 2020; Chen et al., 2020b), have been proposed.

3 BACKGROUND

We provide in this section the necessary background on error correction coding and DDPM.

Coding We assume a standard transmission that uses a linear code C. The code is defined by the
binary generator matrix G of size k × n and the binary parity check matrix H of size (n − k) × n
defined such that GHT = 0 over the order 2 Galois field GF (2).

The input message m ∈ {0, 1}k is encoded by G to a codeword x ∈ C ⊂ {0, 1}n satisfying
Hx = 0 and transmitted via a Binary-Input Symmetric-Output channel, e.g., an AWGN channel.
Let y denote the channel output represented as y = xs + ε, where xs denotes the Binary Phase
Shift Keying (BPSK) modulation of x (i.e., over {±1}), and ε is a random noise independent of
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the transmitted x. The main goal of the decoder f : Rn → Rn is to provide a soft approximation
x̂ = f(y) of the codeword.

We follow the preprocessing of Bennatan et al. (2018); Choukroun & Wolf (2022), in order to
remain provably invariant to the transmitted codeword and to avoid overfitting. The preprocessing
transforms y to a vector of dimensionality 2n− k defined as

ỹ = h(y) = [|y|, s(y)] , (1)

where, [·, ·] denotes vector concatenation, |y| denotes the absolute value (magnitude) of y and
s(y) ∈ {0, 1}n−k denotes the binary code syndrome. The syndrome is obtained via the GF (2)
multiplication of the binary mapping of y with the parity check matrix such that

s(y) = Hyb := Hbin(y) := H
(
0.5(1− sign(y))

)
. (2)

The induced parameterized decoder ϵθ : R2n−k → Rn with parameters θ aims to predict the multi-
plicative noise denoted as ε̃ and defined such that y = xs · ε̃. The prediction of the multiplicative
noise instead of the additive physical one is done in order to remain invariant to the transmitted code-
word (|y| = |xsε̃| = |ε̃|), thereby avoiding the risk of code overfitting, as described by Bennatan
et al. (2018) and the proof of lemma 1 of Richardson & Urbanke (2001). The final prediction takes
the form x̂s = sign(y · ϵθ(|y|, Hyb)).

Denoising Diffusion Probability Model (DDPM) Ho et al. (2020a) assume a data distribution
x0 ∼ q(x) and a Markovian noising process q that gradually adds noise to the data to produce
noisy samples {xi}Ti=1. Each step of the corruption process adds Gaussian noise according to some
variance schedule given by βt such that

q(xt|xt−1) ∼ N (xt;
√

1− βtxt−1, βtI))

xt =
√
1− βtxt−1 +

√
βtzt−1, zt−1 ∼ N (0, I).

(3)

q(xt|x0) can be expressed as a Gaussian distribution such that, with αt := 1− βt and
ᾱt :=

∏t
s=0 αs, we have

q(xt|x0) ∼ N (xt;
√
ᾱtx0, (1− ᾱt)I)

xt =
√
ᾱtx0 + ε

√
1− ᾱt, ε ∼ N (0, I).

(4)

The intractable reverse diffusion process q(xt−1|xt) approaches a diagonal Gaussian distribution as
βt −−−→

t→∞
0 (Sohl-Dickstein et al., 2015) and can be approximated using a neural network pθ(xt)

in order to predict the Gaussian statistics. The model is trained by stochastically optimizing the
random terms of the variational lower bound of the negative log-likelihood function.

One can find via Bayes’ theorem that the posterior q(xt−1|xt, x0) is also Gaussian, making the
objective a sum of tractable KL divergences between Gaussians. Ho et al. (2020a) found a more
practical objective, defined via the training of a model ϵDDPM

θ (xt, t) that predicts the additive noise
ε from Eq. 4 as follows

LDDPM (θ) = Et∼U [1,T ],x0∼q(x),ε∼N (0,I)||ε− ϵDDPM
θ (xt, t)||2. (5)

The distribution q(xT ) is assumed to be a nearly isotropic Gaussian distribution, such that sampling
xT is trivial. Thus, the reverse diffusion process is given by the following iterative process

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵDDPM
θ (xt, t)

)
. (6)

4 DENOISING DIFFUSION ERROR CORRECTION CODES

We present the elements of the proposed denoising diffusion for decoding and the proposed archi-
tecture, together with its training procedure. An illustration of the coding setting and the proposed
decoding framework are given in Figure 1.
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Figure 1: Illustration of the communication system. We train a parameterized iterative decoder ϵθ
conditioned on the number of parity check errors. The decoding is performed iteratively through the
reverse diffusion process, as described in this paper.

4.1 DATA TRANSMISSION AS A FORWARD DIFFUSION PROCESS

Given a codeword x0 sampled from the Code distribution x0 ∼ q(x), we propose to define the
codeword transmission procedure y = x0+σε as a forward diffusion process adding a small amount
of Gaussian noise to the sample in t steps with t ∈ (0, . . . , T ), where the step sizes are controlled by
a variance schedule {βt}Tt=0. In our setting, we propose the following unscaled forward diffusion

q(xt := y|xt−1) ∼ N (xt;xt−1, βtI). (7)

Thus, for a given received word y and a corresponding t, we consider y as a codeword that has been
corrupted gradually, such that for ε ∼ N (0, I)

y := xt = x0 + σε = x0 +

√
β̄tε ∼ N (xt;x0, β̄tI), (8)

where β̄t =
∑t

i=1 βi and σ defines the level of corruption of the AWGN channel. Thus, the trans-
mission of data over noisy communication channels can be defined as a modified iterative diffusion
process to be reversed for decoding.

4.2 DECODING AS A REVERSE DIFFUSION PROCESS

Following Bayes’ theorem, the posterior q(xt−1|xt, x0) is a Gaussian such that
q(xt|xt−1, x0) ∼ N (xt; µ̃t(xt, x0), β̃tI), where, according to Eq. 8, we have

µ̃t(xt, x0) =
β̄t

β̄t + βt
xt +

βt
β̄t + βt

x0 = xt −
√
β̄tβt

β̄t + βt
ε , and β̃t =

β̄tβt
β̄t + βt

. (9)

The full derivation is given in the Appendix A. Similarly to (Sohl-Dickstein et al., 2015; Ho et al.,
2020b), we wish to approximate the intractable Gaussian reverse diffusion process q(xt−1|xt) such
that

q(xt−1|xt) ≈ pθ(xt−1|xt) ∼ N (xt−1;µθ(xt, t), β̃tI) , (10)

with fixed variance β̃t. Following the simplified objective of Ho et al. (2020b), one would adapt
the negative log-likelihood approximation such that the decoder predicts the additive noise of the
adapted diffusion process and

L(θ) = Et∼U [1,T ],x0∼q(x),ε∼N (0,I)[||ε− ϵθ(x0 +

√
β̄tε, t)||2]. (11)

One interesting property of the syndrome-based approach of Bennatan et al. (2018) is that, similarly
to denoising diffusion models, in order to retrieve the original codeword, the decoder’s objective is
to predict the channel’s noise. However, the syndrome-based approach enforces the prediction of
the multiplicative noise ε̃ instead of the additive noise ε, in contrast to classic diffusion models. We
note, however, that the exact value of the multiplicative noise is not important for hard decoding, but
only its sign since xs = sign(yε̃).

Therefore, we propose to learn the hard (i.e., the sign) prediction of the multiplicative noise using
the binary cross entropy loss as a surrogate objective, such that
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Figure 2: Reverse diffusion dynamics on a (3,1)
repetition code. The two points represent the
two only signed codewords: ±(1, 1, 1). The col-
ors are defined by Maximum Likelihood decod-
ing. Evidently, the denoising diffusion model
reverses noisy codes towards the right distribu-
tion. An illustration of the forward process for
this code is provided in Appendix B.

Figure 3: Influence of the noise or Eb/N0 (nor-
malized SNR) on the number of parity check er-
rors for several codes. The greater the noise, the
higher the number of parity check errors, which
demonstrates that the syndrome conveys infor-
mation about the level of noise.

L(θ) = Et,x0,εBCE
(
ϵθ(x0 +

√
β̄tε, t), ε̃b

)
, (12)

where the target binary multiplicative noise is defined as ε̃b = bin
(
x0(x0 +

√
β̄tε)

)
, and BCE de-

notes the binary cross entropy loss.

4.3 DENOISING VIA PARITY CHECK CONDITIONING

The reverse denoising process of traditional DDPM is conditioned by the time step. Thus, by sam-
pling Gaussian noise, which is assumed as equivalent to step t = T , one can fully reverse the
diffusion by up to T iterations. In our case, we are not interested in a generative model, but in an
exact iterative denoising scheme, where the original signal is only corrupted to a measured extent.

Moreover, a given noisy code conveys information about the level of noise via its syndrome, since
s(y) = Hy = Hx+Hz = Hz. Fig. 3 illustrates the impact of noise on the number of parity check
errors. Evidently, one can approximate an injective function between the number of parity check er-
rors and the amount of noise. Such a function is a direction indication of the proximity of the current
iterate to a solution (codeword). Therefore, we suggest conditioning the diffusion decoder according
to the number of parity check errors et, such that et := e(xt) =

∑n−k
i=1 s(xt)i ∈ {0, . . . n− k}. The

resulting training objective is now given by L(θ) = Et,x0,εBCE
(
ϵθ(x0 + β̄

1/2
t ε,etetet), ε̃b

)
.

Following this logic, the number of required denoising steps T = n − k is set as the maximum
number of parity check errors. Similarly to the classical DDPM training procedure, sampling a time
step t ∼ U(0, . . . , T ) produces noise, which in turn induces a certain number of parity errors.

The training procedure of our method is given in Alg. 1. The framework assumes a random ”time”
sampling, producing a noise and then a syndrome to be corrected. Note that, our model-free solution
is invariant to the transmitted codeword, and the diffusion decoding can be trained with one single
codeword (Alg. 1 line 1).

Since the denoising model predicts the multiplicative noise ε̃, at inference time it needs to be trans-
formed into its additive counterpart ε in order to perform the gradient step in the original additive
diffusion process domain. We obtain the additive noise by subtracting the modulated predicted code-
word sign(x̂) from the noisy signal, such that ε̂ = y− sign(x̂) = y− sign(ˆ̃εy). Therefore, following
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Algorithm 1: DDECC training procedure.
1: x0 ∈ C
2: Input: Parity check matrix H , noise

schedule β1, ..., βT
3: repeat
4: t ∼ U({1, ..., T})
5: ε ∼ N (0, I)

6: xt = x0 +
√
β̄tε = x0ε̃

7: Take gradient descent step on:
BCE(ϵθ(xt, et), bin(ε̃))

8: until converged

Algorithm 2: DDECC sampling procedure
1: Input: Parity check matrix H , channel’s output
y

2: for n− k iterations do
3: γ = e(bin(y))
4: if γ = 0 then
5: return bin(y)
6: ˆ̃ε = εθ(y, γ) ; ε̂ = y − sign(ˆ̃εy)
7: Get λ according to Eq. 14
8: y = y − λ{β̄γβγ−1/(β̄γ + βγ)ε̂
9: return bin(y)

Eq. 9, at inference time the reverse process is given by

xt−1 = xt −
√
β̄tβt

β̄t + βt

(
xt − sign(xt ˆ̃ε)

)
= xt −

√
β̄tβt

β̄t + βt

(
xt − sign(xtϵθ(xt, et))

)
(13)

The inference procedure is defined in Alg.2. If the syndrome is non-zero, we predict the multiplica-
tive noise, extract the corresponding additive noise, and perform the reverse step. We illustrate in
Fig.2 the reverse diffusion dynamics (gradient field) for a (3, 1) repetition code, i.e., G = (1, 1, 1).

4.4 SYNDROME-BASED LINE SEARCH FOR REVERSE DIFFUSION STEP SIZE

One major limitation of the generative neural diffusion process is the large number of diffusion
steps required - generally a thousand - in order to generate high-quality samples. Several methods
proposed faster sampling procedures in order to accelerate data generation via schedule subsampling
or step size correction (Nichol & Dhariwal, 2021b; San-Roman et al., 2021). In our configuration,
one can assess the quality of the denoised signal via the value of its syndrome, i.e., the number of
parity check errors, while a zero syndrome means a valid codeword.

Therefore, we propose to find the optimal step size λ by solving the following optimization problem

λ∗ = argmin
λ∈R+

∥s
(
xt − λ

√
β̄tβt

β̄t + βt
ε̂
)
∥1, (14)

where s(·) denotes the syndrome computed over GF (2) as in Eq. 2.

While many line-search (LS) methods exist in numerical optimization (Nocedal & Wright, 2006),
since the objective is highly non-differentiable, we suggest adopting a grid search procedure such
that the search space becomes restricted to λ ∈ I where I is a predefined discrete segment. This
parallelizable procedure reduces the number of iterations by a sizable factor, as shown in Section 5.
Details regarding the grid-search procedure are discussed in Appendix C.

Architecture and Training The state-of-the-art ECCT architecture of Choukroun & Wolf (2022)
is used as ϵθ. In this architecture, the capacity of the model is defined according to the chosen
embedding dimension d and the number of self-attention layersN . In order to condition the network
by the number of parity errors et ∈ {0, . . . , n − k}, we employ a d dimensional one hot encoding
multiplied via Hadamard product with the initial elements’ embedding of the ECCT. Denoting the
ECCT’s embedding of the i element as ϕi, the new embedding is defined as ϕ̃i = ϕi ⊙ ψ(et),∀i,
where ψ denotes the n−k one hot embedding. As a transformation of the syndrome, et remains also
invariant to the codeword. Additional details on the DDECCT architecture are given in Appendix F.

The discrete grid search of λ is uniformly sampled over I = [1, 20] with 20 samples, in order to find
the optimal step size. A denser or a code adaptive sampling may improve the results, according to a
predefined computation-speed trade-off. We show the distribution of optimal λ in Appendix C.

The Adam optimizer (Kingma & Ba, 2014) is used with 128 samples per mini-batch, for 2000
epochs, with 1000 mini-batches per epoch. The noise scheduling is constant and set to βt = 0.01,∀t.
An extended discussion regarding the β scheduler can be found in Appendix G. We initialized the
learning rate to 10−4 coupled with a cosine decay scheduler down to 5 · 10−6 at the end of training.
No warmup (Xiong et al., 2020) was employed.
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Table 1: A comparison of the negative natural logarithm of Bit Error Rate (BER) for three normal-
ized SNR values (4,5,6) of our method with literature baselines. Higher is better. The best results
are in bold, second best underlined.
BP-based results are obtained after L = 5 BP iterations in the first row (i.e. 10-layer neural network)
and at convergence results in the second row are obtained after L = 50 BP iterations (i.e., 100-layer
neural network). Our performance is presented for six different architectures: for N = {2, 6} and
d = {32, 64, 128}. The presented results are obtained with the LS procedure.

Method BP ARBP ECCT N=2 ECCT N=6 Ours N=2 Ours N=6

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

Polar(64,32) 3.52
4.26

4.04
5.38

4.48
6.50

4.77
5.57

6.30
7.43

8.19
9.82

4.27
4.57
4.87

5.44
5.86
6.2

6.95
7.50
7.93

5.71
6.48
6.99

7.63
8.60
9.44

9.94
11.43
12.32

5.99
6.23
6.59

8.16
8.52
8.95

10.90
11.23
11.91

6.76
6.90
6.93

9.14
9.43
9.51

12.31
12.85
12.79

Polar(64,48) 4.15
4.74

4.68
5.94

5.31
7.42

5.25
5.41

6.96
7.19

9.00
9.30

4.92
5.14
5.36

6.46
6.78
7.12

8.41
8.9

9.39

5.82
6.15
6.36

7.81
8.20
8.46

10.24
10.86
11.09

5.55
5.74
5.77

7.67
7.85
7.94

10.08
10.40
10.64

5.98
5.98
6.00

8.02
8.26
8.24

10.94
11.13
10.98

Polar(128,64) 3.38
4.10

3.80
5.11

4.15
6.15

4.02
4.84

5.48
6.78

7.55
9.30

3.51
3.83
4.04

4.52
5.16
5.52

5.93
7.04
7.62

4.47
5.12
5.92

6.34
7.36
8.64

8.89
10.48
12.18

5.37
5.97
6.50

7.75
8.52
9.23

10.51
11.72
12.37

6.34
7.24
9.11

9.26
10.70
12.90

12.77
14.56
16.30

Polar(128,86) 3.80
4.49

4.19
5.65

4.62
6.97

4.81
5.39

6.57
7.37

9.04
10.13

4.30
4.49
4.75

5.58
5.90
6.25

7.34
7.75
8.29

5.36
5.75
6.31

7.45
8.16
9.01

10.22
11.29
12.45

5.61
5.99
6.27

7.76
8.19
8.64

10.42
11.00
11.61

6.52
7.09
7.60

9.21
10.20
10.81

12.64
13.84
15.17

Polar(128,96) 3.99
4.61

4.41
5.79

4.78
7.08

4.92
5.27

6.73
7.44

9.30
10.2

4.56
4.69
4.88

5.98
6.20
6.58

7.93
8.30
8.93

5.39
5.88
6.31

7.62
8.33
9.12

10.45
11.49
12.47

5.60
5.95
6.26

7.83
8.42
8.94

10.56
11.38
12.01

6.46
6.83
7.16

9.41
9.99
10.3

12.52
13.36
13.19

LDPC(49,24) 5.30
6.23

7.28
8.19

9.88
11.72

6.05
6.58

8.13
9.39

11.68
12.39

4.51
4.58
4.71

6.07
6.18
6.38

8.11
8.46
8.73

5.74
5.91
6.13

8.13
8.42
8.71

11.30
11.90
12.10

5.27
5.31
5.36

7.38
7.35
7.39

10.23
10.40
10.41

5.87
5.84
6.01

8.22
8.29
8.74

11.56
11.85
11.92

LDPC(121,60) 4.82
-

7.21
-

10.87
-

5.22
-

8.31
-

13.07
-

3.88
3.89
3.93

5.51
5.55
5.66

8.06
8.16
8.51

4.98
5.02
5.17

7.91
7.94
8.31

12.70
12.72
13.30

4.48
4.56
4.46

6.95
7.02
6.92

10.65
10.64
10.76

5.25
5.32
5.38

8.43
8.69
8.73

13.80
13.82
14.17

LDPC(121,70) 5.88
-

8.76
-

13.04
-

6.45
-

10.01
-

14.77
-

4.63
4.64
4.67

6.68
6.71
6.79

9.73
9.77
9.98

6.11
6.28
6.40

9.62
10.12
10.21

15.10
15.57
16.11

5.41
5.52
5.55

8.22
8.47
8.51

12.22
12.63
12.81

6.49
6.64
6.79

10.39
10.65
11.13

15.43
16.21
16.93

LDPC(121,80) 6.66
-

9.82
-

13.98
-

7.22
-

11.03
-

15.90
-

5.27
5.29
5.30

7.59
7.63
7.65

10.08
10.90
11.03

6.92
7.17
7.41

10.74
11.21
11.51

15.10
16.31
16.44

6.12
6.26
6.26

9.38
9.41
9.41

13.25
13.41
13.46

7.68
7.39
7.71

12.19
11.46
12.17

17.83
17.65
17.55

MacKay(96,48) 6.84
-

9.40
-

12.57
-

7.43
-

10.65
-

14.65
-

4.95
5.04
5.17

6.67
6.80
7.07

8.94
9.23
9.64

6.88
7.10
7.38

9.86
10.12
10.72

13.40
14.21
14.83

6.18
6.28
6.31

8.63
8.8

8.83

11.53
11.78
12.03

7.86
7.93
8.12

11.61
11.65
11.88

15.51
15.51
15.93

CCSDS(128,64) 6.55
-

9.65
-

13.78
-

7.25
-

10.99
-

16.36
-

4.35
4.41
4.59

6.01
6.09
6.42

8.30
8.49
9.02

6.34
6.65
6.88

9.80
10.40
10.90

14.40
15.46
15.90

5.79
5.81
6.22

8.48
8.79
9.72

12.24
12.29
13.71

7.28
7.55
7.81

11.66
12.01
12.48

17.02
17.62
17.66

BCH(63,36) 3.72
4.03

4.65
5.42

5.66
7.26

4.33
4.57

5.94
6.39

8.21
8.92

3.79
4.05
4.21

4.87
5.28
5.50

6.35
7.01
7.25

4.42
4.62
4.86

5.91
6.24
6.65

8.01
8.44
9.10

4.71
4.84
5.19

6.45
6.65
7.27

8.72
9.01
9.82

5.01
5.07
5.19

6.84
7.02
7.10

9.30
9.85
9.96

BCH(63,45) 4.08
4.36

4.96
5.55

6.07
7.26

4.80
4.97

6.43
6.90

8.69
9.41

4.47
4.66
4.79

5.88
6.16
6.39

7.81
8.17
8.49

5.16
5.41
5.60

7.02
7.49
7.79

9.75
10.25
10.93

5.12
5.33
5.41

7.16
7.49
7.61

9.95
10.18
10.46

5.49
5.60
5.61

7.71
8.02
7.94

10.86
11.05
11.36

BCH(63,51) 4.34
4.5

5.29
5.82

6.35
7.42

4.95
5.17

6.69
7.16

9.18
9.53

4.60
4.78
5.01

6.05
6.34
6.72

8.05
8.49
9.03

5.20
5.46
5.47

7.08
7.57
7.59

9.65
10.51
10.62

5.09
5.19
5.33

7.08
7.23
7.29

9.87
10.20
10.13

5.35
5.39
5.47

7.49
7.48
7.66

10.38
10.53
10.73

Training and experiments were performed on a 12GB Titan V GPU. The total training time ranged
from 12 to 24 hours depending on the code length, and no optimization of the self-attention mecha-
nism was employed. Per epoch, the training time was in the range of 19-40 and 40-102 seconds for
the N = 2, 6 architectures, respectively.

5 EXPERIMENTS

To evaluate our method, we train the proposed architecture with three classes of linear block
codes: Low-Density Parity Check (LDPC) codes (Gallager, 1962), Polar codes (Arikan, 2008) and
Bose–Chaudhuri–Hocquenghem (BCH) codes (Bose & Ray-Chaudhuri, 1960). All parity check
matrices are taken from Helmling et al. (2019).

The proposed architecture is defined solely by the number of encoder layersN and the dimension of
the embedding d. We compare our method with the BP algorithm (Pearl, 1988), the recent Autore-
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Table 2: A comparison between the line search procedure and the regular reverse diffusion. The ∆
column denotes the difference between the logarithm of Bit Error Rate (BER) for three normalized
SNR values (i.e., ∆ = − log(BERLS) + log(BERReg)).
The other columns represent the mean and standard deviation of the number of iterations of the
reverse process until convergence, i.e., convergence to zero syndrome.

Method ∆ N=2 ∆ N=6 #It. Reg. N=2 #It Reg. N=6 #It. LS N=2 #It LS N=6

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

Polar(64,48)
-0.02
0.01
0.00

0.11
0.14
0.16

0.16
0.30
0.40

0.01
-0.03
-0.01

0.06
0.12
0.07

0.47
0.43
0.71

5.9 ± 4.9
5.8 ± 4.8
5.8 ± 4.7

3.3 ± 3.8
3.2 ± 3.8
3.2 ± 3.8

1.5 ± 2.7
1.5 ± 2.7
1.5 ± 2.7

5.7 ± 4.6
5.7 ± 4.6
5.7 ± 4.6

3.2 ± 3.8
3.2 ± 3.7
3.2 ± 3.7

1.5 ± 2.7
1.5 ± 2.7
1.5 ± 2.7

1.4 ± 2.3
1.3 ± 2.0
1.2 ± 1.8

0.7 ± 1.0
0.7 ± 0.9
0.7 ± 0.8

0.4 ± 0.5
0.4 ± 0.5
0.4 ± 0.5

1.2 ± 1.7
0.9 ± 1.0
1.0 ± 1.0

0.7 ± 0.9
0.6 ± 0.6
0.6 ± 0.6

0.4 ± 0.6
0.4 ± 0.5
0.4 ± 0.5

Polar(128,86)
-0.10
-0.06
-0.09

-0.11
-0.04
-0.06

-0.20
0.00
-0.10

-0.20
-0.30
-0.32

-0.13
-0.34
-0.21

-0.21
-0.33
-0.40

16.5 ± 10.9
15.5 ± 10.0
14.7 ± 9.2

9.1 ± 7.3
8.8 ± 6.8
8.6 ± 6.4

4.7 ± 4.9
4.6 ± 4.8
4.6 ± 4.7

13.4 ± 7.5
13.1 ± 6.9
13.0 ± 6.6

8.3 ± 5.8
8.3 ± 5.7
8.3 ± 5.7

4.6 ± 4.6
4.6 ± 4.6
4.6 ± 4.6

4.0 ± 9.1
3.4 ± 8.3
2.7 ± 6.8

1.4 ± 3.4
1.3 ± 3.2
1.2 ± 2.3

0.8 ± 1.0
0.8 ± 0.9
0.8 ± 0.7

2.9 ± 4.4
1.3 ± 2.4
1.2 ± 1.9

1.6 ± 2.1
1.0 ± 0.6
0.9 ± 0.5

1.0 ± 1.2
0.7 ± 0.5
0.7 ± 0.5

Polar(128,96)
-0.10
-0.09
-0.16

-0.13
-0.10
-0.12

-0.20
-0.10
-0.20

-0.11
-0.19
-0.15

0.04
0.13
0.00

-0.16
0.14
-0.13

12.6 ± 8.8
11.8 ± 8.0
11.1 ± 7.3

6.5 ± 5.9
6.3 ± 5.5
6.2 ± 5.2

3.1 ± 3.9
3.1 ± 3.8
3.1 ± 3.8

10.5 ± 6.4
10.32 ± 6.11

10.2 ± 5.9

6.1 ± 5.0
6.1 ± 4.9
6.1 ± 4.9

3.1 ± 3.8
3.1 ± 3.8
3.1 ± 3.8

3.6 ± 7.4
2.7 ± 6.0
2.0 ± 4.4

1.2 ± 2.7
1.1 ± 2.0
1.0 ± 1.3

0.6 ± 0.8
0.6 ± 0.6
0.6 ± 0.5

2.2 ± 3.4
1.2 ± 2.0
1.1 ± 1.5

1.2 ± 1.4
0.9 ± 0.5
0.9 ± 0.5

0.7 ± 0.8
0.6 ± 0.5
0.6 ± 0.5

LDPC(49,24)
0.06
0.05
0.07

0.03
-0.06
-0.10

0.23
0.20
0.20

-0.05
-0.13
-0.12

-0.31
-0.12
-0.13

-0.16
-0.20
-0.41

11.5 ± 7.0
11.4 ± 7.0
11.4 ± 7.0

7.4 ± 5.7
7.4 ± 5.7
7.4 ± 5.6

4.4 ± 4.5
4.4 ± 4.5
4.4 ± 4.5

10.9 ± 6.3
10.9 ± 6.3
10.9 ± 6.3

7.3 ± 5.4
7.3 ± 5.4
7.3 ± 5.4

4.4 ± 4.5
4.4 ± 4.5
4.4 ± 4.5

2.2 ± 5.1
2.1 ± 4.9
2.1 ± 4.8

1.0 ± 1.9
1.0 ± 1.9
1.0 ± 1.9

0.7 ± 0.7
0.7 ± 0.6
0.7 ± 0.6

2.2 ± 3.6
1.5 ± 3.5
1.4 ± 3.4

1.3 ± 1.5
0.9 ± 1.1
0.9 ± 1.1

0.8 ± 0.8
0.7 ± 0.5
0.7 ± 0.5

LDPC(121,80)
-0.23
-0.13
-0.10

-0.03
-0.10
-0.17

-0.40
-0.30
-0.20

-0.33
-0.15
-0.28

-0.46
-0.42
-0.21

-0.95
0.81
-0.27

12.5 ± 7.9
12.5 ± 7.9

12.4 ± 7.82

7.3 ± 5.0
7.3 ± 4.9
7.2 ± 4.9

4.0 ± 3.8
4.0 ± 3.8
4.0 ± 3.8

11.4 ± 5.6
11.4 ± 5.8
11.4 ± 5.6

7.2 ± 4.7
7.2 ± 4.7
7.2 ± 4.7

4.0 ± 3.8
4.0 ± 3.8
4.0 ± 3.8

2.7 ± 7.5
2.7 ± 7.7
3.1 ± 6.9

1.0 ± 1.6
1.0 ± 1.7
1.3 ± 1.7

0.7 ± 0.5
0.7 ± 0.5
0.8 ± 0.6

1.2 ± 3.0
1.4 ± 3.7
1.3 ± 3.2

0.9 ± 0.4
0.9 ± 0.6
0.9 ± 0.5

0.7 ± 0.4
0.7 ± 0.4
0.7 ± 0.4

MacKay(96,48)
-0.23
-0.20
-0.19

-0.16
-0.14
-0.17

-0.50
-0.30
-0.20

-0.09
-0.17
-0.19

0.29
-0.21
-0.33

0.00
0.00
-0.13

15.3 ± 7.9
15.3 ± 7.8
15.2 ± 7.7

10.2 ± 5.5
10.2 ± 5.4
10.2 ± 5.4

6.4 ± 4.5
6.4 ± 4.5
6.4 ± 4.5

14.4 ± 5.7
14.3 ± 5.7
14.3 ± 5.6

10.0 ± 5.0
10.0 ± 5.0
10.0 ± 5.0

6.4 ± 4.4
6.4 ± 4.4
6.4 ± 4.4

2.8 ± 8.1
2.6 ± 7.8
2.6 ± 7.6

1.2 ± 2.6
1.2 ± 2.5
1.2 ± 2.4

0.9 ± 0.7
0.9 ± 0.7
0.9 ± 0.6

2.2 ± 2.9
1.3 ± 2.6
1.2 ± 2.3

1.5 ± 0.9
1.0 ± 0.5
1.0 ± 0.4

1.1 ± 0.6
0.9 ± 0.3
0.9 ± 0.3

CCSDS(128,64)
-0.19
-0.21
-0.27

-0.58
-0.30
-0.42

-0.40
-0.60
-0.40

-0.31
-0.23
-0.26

-0.36
-0.42
-0.11

0.52
0.31
0.37

20.8 ± 11.4
20.6 ± 11.2
20.6 ± 11.0

13.1 ± 6.3
13.1 ± 6.2
13.1 ± 6.2

8.4 ± 4.9
8.4 ± 4.9
8.4 ± 4.9

18.2 ± 6.6
18.1 ± 6.4
18.1 ± 6.3

12.8 ± 5.4
12.8 ± 5.4
12.8 ± 5.4

8.4 ± 4.9
8.4 ± 4.9
8.4 ± 4.9

4.7 ± 13.4
4.4 ± 12.8
4.2 ± 12.3

1.4 ± 4.1
1.3 ± 3.3
1.3 ± 3.4

1.0 ± 0.8
1.0 ± 0.7
1.0 ± 0.6

1.7 ± 4.7
1.6 ± 4.1
1.6 ± 3.7

1.1 ± 0.7
1.1 ± 0.6
1.1 ± 0.5

1.0 ± 0.3
1.0 ± 0.3
1.0 ± 0.3

BCH(63,36)
-0.01
-0.01
0.04

0.02
0.02
0.16

-0.04
0.13
0.23

0.01
-0.11
-0.11

0.00
-0.05
-0.02

0.09
0.03
0.04

12.6 ± 8.0
12.4 ± 7.9
12.1 ± 7.6

7.8 ± 6.7
7.7 ± 6.6
7.6 ± 6.5

4.3 ± 5.1
4.3 ± 5.1
4.3 ± 5.0

11.9 ± 7.5
11.8 ± 7.4
11.7 ± 7.3

7.6 ± 6.4
7.5 ± 6.3
7.5 ± 6.3

4.3 ± 5.0
4.3 ± 5.0
4.3 ± 5.0

3.7 ± 7.2
3.3 ± 6.8
2.5 ± 5.5

1.4 ± 3.4
1.3 ± 3.1
1.1 ± 2.2

0.7 ± 1.3
0.7 ± 1.1
0.7 ± 0.8

4.3 ± 6.8
2.5 ± 5.6
2.5 ± 5.6

2.0 ± 3.6
1.1 ± 2.4
1.1 ± 2.3

1.0 ± 1.8
0.7 ± 0.8
0.7 ± 0.8

BCH(63,51)
0.04
0.06
0.04

0.28
0.31
0.34

0.94
1.13
1.02

0.09
0.06
0.02

0.42
0.28
0.34

1.16
1.19
1.04

4.8 ± 4.1
4.8 ± 4.1
4.8 ± 4.1

2.6 ± 3.4
2.6 ± 3.4
2.6 ± 3.4

1.2 ± 2.4
1.2 ± 2.4
1.2 ± 2.4

4.7 ± 4.0
4.7 ± 4.0
4.7 ± 4.0

2.6 ± 3.3
2.6 ± 3.4
2.6 ± 3.4

1.2 ± 2.4
1.2 ± 2.4
1.2 ± 2.3

1.8 ± 2.9
1.6 ± 2.7
1.6 ± 2.6

0.7 ± 1.3
0.7 ± 1.2
0.7 ± 1.1

0.3 ± 0.6
0.3 ± 0.5
0.3 ± 0.5

1.6 ± 2.6
1.3 ± 2.1
1.4 ± 2.3

0.7 ± 1.2
0.6 ± 1.0
0.6 ± 1.0

0.3 ± 0.6
0.3 ± 0.5
0.3 ± 0.5

(a) (b) (c)

Figure 4: BER comparison between the ECCT N = 6, d = 32 and the proposed DDECCT, for the
Rayleigh fadding channel for (a) Polar(64,32), (b) BCH(63,36), and (c) LDPC(49,24) codes.

(a) (b)

Figure 5: Performance comparison between ECCT and
DDECCT N = 6, d = 32 for various values of normalized
SNR for (a) Polar(512,384), (b) LDPC (529,440) codes.

Figure 6: BER vs the number of
iterations (up to n − k) for regular
and line search reverse diffusion.

gressive hyper-network BP of Nachmani & Wolf (2021) (AR BP) and the SOTA ECCT (Choukroun
& Wolf, 2022). Since our decoder is based on the ECCT, the contribution of the diffusion model
scheme is pertinent in comparing our results with ECCT since they have similar architectures and
capacities. Our method’s overhead over ECCT is by a factor of the number of diffusion steps L, i.e.,
a complexity of O(LN(d2(2n− k) + hd)), where h is the complexity of the self-attention module.
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We refer the reader to Choukroun & Wolf (2022) for a detailed complexity analysis of the ECCT.
Details about the computational overhead of the DDECCT are given in Appendix F. Note that LDPC
codes are designed specifically for BP-based decoding (Richardson et al., 2001).

The results are reported as bit error rates (BER) for different normalized SNR values (Eb/N0).
We follow the testing benchmark of (Nachmani & Wolf, 2019; Choukroun & Wolf, 2022). During
testing, our decoder decodes at least 105 random codewords, to obtain at least 500 frames with errors
at each SNR value. All baseline results were obtained from the corresponding papers.

The results are reported in Tab. 1, where we present the negative natural logarithm of the BER. For
each code, we present the results of the BP-based competing methods for 5 and 50 iterations (first
and second rows), corresponding to a neural network with 10 and 100 layers, respectively. As in
(Choukroun & Wolf, 2022), our framework’s performance with Line Search (LS) as described in
Section 4.4 is evaluated for six different architectures, with N = {2, 6} and d = {32, 64, 128},
respectively (first to third rows). BER plots with respect to the SNR are given in Appendix I.

As can be seen, our approach outperforms the current SOTA results of ECCT by extremely large
margins on several codes, at a fraction of the capacity. Especially for shallow models, the difference
can be an order of magnitude. Performance is closer with short high-rate codes, for which ECCT
performance is already very high. We present in Figure 5 the performance of the proposed DDECCT
on larger codes. As can be seen, DDECCT can learn to efficiently decode larger codes and outper-
forms ECCT. A separate comparison to the non-neural SCL Polar decoder of Tal & Vardy (2015)
is given in Appendix H, demonstrating the need to train bigger architectures in order to surpass this
specialized decoder.

We present in Table 2 the difference in accuracy ∆ between the line search procedure and the regular
reverse diffusion. We also present convergence statistics (mean and standard deviation of the number
of iterations) for the regular reverse diffusion and the line search procedure. The full table with the
statistics for all of the codes is given in Appendix E. Evidently, the line search procedure enables
extremely fast convergence, requiring as little as one iteration for high SNR. Note that we measure
the number of iterations required to reach a syndrome of zero failed checks. We do not apply early
stopping to the decoding, which could reduce the average number of iterations even further if the
decoder stagnates and does not converge to zero syndrome.

Non-Gaussian Channel We test our framework on a non-Gaussian Rayleigh fading channel,
which is often used for simulating the propagation environment of a signal, e.g., for wireless devices.
In this fading model, the transmission of the codeword x ∈ {0, 1}n is defined as y = hxs +
z, where h is an n-dimensional i.i.d. Rayleigh-distributed vector with a scale parameter α, and
z ∼ N (0, σ2In).

In our simulations, we assume a high scale α = 1 in order to easily compare and reproduce the
results, while the level of Gaussian noise and the testing procedure remain the same as described in
the paper. The overall variance of the transmitted codeword y in the Rayleigh channel is roughly
twice the AWGN’s on the tested SNR range. The results are presented in Figure 4. As can be
observed, our method is still able to learn to decode, even under these very noisy fading channels.

BER evolution through iteration/time We illustrate in Figure 6 the denoising process for sev-
eral codes. We show how the BER decreases with time for the regular proposed method and the
augmented line search procedure. We can observe the very fast convergence of the line search ap-
proach. We further provide in Appendix D the performance of the proposed framework for one, two
and three iteration steps. We can see that LS enables outperforming the original ECCT, even with
one step only.

6 CONCLUSIONS

We present a novel denoising diffusion method for the decoding of algebraic block codes. It is
based on an adapted diffusion process that simulates the channel corruption we wish to reverse. The
method makes use of the syndrome as a conditioning signal and employs a line-search procedure to
control the step size. Since it inherits the iterative nature of the underlying process, both training and
deployment are extremely efficient. Even with very low-capacity networks, the proposed approach
outperforms existing neural decoders by sizable margins for a broad range of code families.
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Thomas J Richardson and Rüdiger L Urbanke. The capacity of low-density parity-check codes under
message-passing decoding. IEEE Transactions on information theory, 47(2):599–618, 2001.

Thomas J Richardson, Mohammad Amin Shokrollahi, and Rüdiger L Urbanke. Design of capacity-
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A UNSCALED DIFFUSION DERIVATION

According to Bayes’ rule,

q(xt−1|xt, x0) = q(xt|xt−1, x0)
q(xt−1|x0)
q(xt|x0)

∝ exp
(
− 1

2

( (xt − xt−1)
2

βt
+

(xt−1 − x0)
2

1− β̄t
− (xt − x0)

2

1− β̄t

))
= exp

(
− 1

2

(
(
1

βt
+

1

β̄t
)x2t−1 − (

2

βt
xt −

2

β̄t
x0)xt−1 + C(xt, x0)

))
(15)

where C(xt, x0) represents the constant term of the second-order equation. Following the standard
Gaussian density function, the mean and variance can be parameterized as follows

β̃t =
( 1

βt
+

1

β̄t

)−1

µ̃t(xt, x0) = (
1

βt
xt +

1

β̄t
x0)/β̃t

=
β̄t

β̄t + βt
xt +

βt
β̄t + βt

x0

=
β̄t

β̄t + βt
xt +

βt
β̄t + βt

(xt −
√
β̄tε)

= xt −
√
β̄tβt

β̄t + βt
ε.

(16)

B FORWARD DIFFUSION PROCESS VISUALIZATION

We provide a visualization of the forward diffusion process as described in Section 4.1, using the
three dimensional repetition code as discussed in Section 4.3.

Figure 7 presents random diffusion processes from one of the two valid codewords through time. As
can be seen, there is a migration from the valid codewords (depicted by either a blue or a red cross)
to the vicinity of invalid words (black crosses).

Figure 7: Visualization of the forward diffusion process. The two valid codewords are represented
as a blue cross and a red cross. The other six words are denoted by black crosses.
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C LINE SEARCH HISTOGRAMS AND COMPLEXITY

C.1 HISTOGRAMS

Figure 8 presents the distribution of the optimal step size λ for several codes. Each code presents a
different distribution of the optimal step sizes, as can be seen from the high variance of the x-axis.

Figure 8: Histograms of optimal λ values on the test set for the POLAR(128,96) code (first row)
and the LDP(49,24) code (second row), for Eb/N0 = {4, 5, 6} corresponding to the left to right
histograms, respectively. The grid search was sampled uniformly, taking 300 samples from the
presented range.

C.2 COMPLEXITY OVERHEAD OF THE LINE SEARCH PROCEDURE

The computation of the syndrome consists of a series of efficient binary operations (xor) inducing a
computational complexity that is proportional to the density of the code.

The line search consists of the parallel computation of the syndrome, over the multiple words ob-
tained for different λ values sampled over a predefined grid. Thus, the time complexity of the
line-search procedure can be reduced to the very efficient computation of the syndrome which can
be assumed as constant. Without parallelization, the complexity is linear with the grid size, but the
overall process remains extremely efficient.
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D DDECCT PERFORMANCE WITH FEW ITERATIONS

Table 3 presents the performance of the proposed framework for one, two, and three iteration steps
with the regular reverse diffusion method and with the proposed line-search approach. As can be
seen, the line-search approach improves over the regular reverse diffusion by orders of magnitude.

Table 3: Negative natural logarithm of BER by number of iterations for N=2 models for the reg-
ular and the LS diffusion methods. Higher is better. The (column) average over the codes and
the dimensions d for the ECCT is {4.58, 6.20, 8.43} on the {4, 5, 6} Eb/N0 respectively, and
{4.64, 6.37, 8.78} for LS with one iteration.

Method ECCT 1 It. Reg 2 It. Reg 3 It. Reg 1 It. LS 2 It. LS 3 It. LS

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

Polar(64,32)
4.27
4.57
4.87

5.44
5.86
6.2

6.95
7.50
7.93

2.96
2.96
2.96

3.39
3.39
3.39

3.92
3.92
3.92

3.04
3.05
3.04

3.51
3.52
3.51

4.09
4.09
4.09

3.13
3.14
3.14

3.64
3.65
3.64

4.26
4.26
4.26

4.59
4.87
5.06

6.13
6.51
6.79

8.23
8.65
8.99

5.48
5.84
6.08

7.43
7.86
8.27

9.89
10.23
10.58

5.71
6.05
6.30

7.75
8.14
8.51

10.26
10.59
10.92

Polar(64,48)
4.92
5.14
5.36

6.46
6.78
7.12

8.41
8.9

9.39

3.78
3.78
3.78

4.41
4.42
4.42

5.18
5.18
5.18

3.92
3.93
3.93

4.63
4.63
4.63

5.46
5.46
5.46

4.07
4.08
4.09

4.85
4.85
4.86

5.75
5.75
5.75

5.03
5.18
5.24

6.80
7.03
7.15

9.13
9.47
9.59

5.42
5.59
5.65

7.42
7.62
7.74

9.92
10.19
10.22

5.52
5.69
5.74

7.58
7.76
7.89

10.15
10.33
10.43

Polar(128,64)
3.51
3.83
4.04

4.52
5.16
5.52

5.93
7.04
7.62

2.92
2.93
2.93

3.35
3.36
3.36

3.88
3.88
3.88

2.97
2.98
2.98

3.43
3.44
3.44

4.00
4.00
4.00

3.02
3.04
3.04

3.52
3.52
3.53

4.12
4.12
4.13

3.72
3.91
4.05

4.94
5.22
5.39

6.64
6.97
7.10

4.45
4.85
5.11

6.30
6.82
7.14

8.54
9.06
9.23

4.78
5.27
5.58

6.77
7.33
7.67

9.01
9.47
9.63

Polar(128,86)
4.30
4.49
4.75

5.58
5.90
6.25

7.34
7.75
8.29

3.49
3.50
3.50

4.05
4.05
4.06

4.74
4.75
4.75

3.57
3.59
3.59

4.18
4.19
4.19

4.93
4.94
4.94

3.66
3.68
3.69

4.32
4.33
4.33

5.13
5.14
5.14

4.53
4.81
5.04

5.97
6.38
6.73

7.92
8.51
9.02

5.21
5.58
5.87

7.18
7.61
8.03

9.64
10.17
10.71

5.42
5.78
6.06

7.46
7.88
8.29

9.98
10.49
11.04

Polar(128,96)
4.56
4.69
4.88

5.98
6.20
6.58

7.93
8.30
8.93

3.74
3.75
3.75

4.37
4.38
4.38

5.13
5.13
5.14

3.85
3.86
3.87

4.54
4.54
4.55

5.36
5.36
5.37

3.96
3.97
3.99

4.71
4.72
4.73

5.60
5.61
5.61

4.75
4.94
5.22

6.40
6.78
7.27

8.73
9.34

10.06

5.29
5.59
5.95

7.36
7.86
8.46

9.97
10.71
11.48

5.45
5.77
6.13

7.59
8.12
8.71

10.19
11.00
11.73

LDPC(49,24)
4.51
4.58
4.71

6.07
6.18
6.38

8.11
8.46
8.73

2.92
2.92
2.92

3.36
3.36
3.36

3.88
3.88
3.88

3.01
3.01
3.01

3.48
3.48
3.48

4.05
4.05
4.05

3.10
3.10
3.10

3.61
3.61
3.62

4.23
4.23
4.23

4.51
4.54
4.58

6.12
6.13
6.19

8.39
8.48
8.57

5.02
5.07
5.10

6.95
6.92
6.96

9.62
9.74
9.77

5.13
5.18
5.21

7.12
7.09
7.12

9.87
10.02
10.00

LDPC(121,60)
3.88
3.89
3.93

5.51
5.55
5.66

8.06
8.16
8.51

2.91
2.91
2.91

3.34
3.34
3.34

3.86
3.86
3.86

2.96
2.96
2.96

3.42
3.42
3.42

3.98
3.98
3.98

3.01
3.01
3.01

3.50
3.50
3.50

4.11
4.11
4.11

3.79
3.79
3.80

5.32
5.33
5.34

7.62
7.64
7.66

4.35
4.36
4.38

6.62
6.62
6.65

10.16
10.16
10.29

4.50
4.52
4.53

6.91
6.91
6.93

10.50
10.48
10.64

LDPC(121,70)
4.63
4.64
4.67

6.68
6.71
6.79

9.73
9.77
9.98

3.19
3.19
3.19

3.68
3.68
3.68

4.29
4.29
4.29

3.26
3.27
3.27

3.80
3.80
3.80

4.45
4.45
4.45

3.34
3.34
3.34

3.92
3.92
3.92

4.62
4.62
4.62

4.57
4.60
4.61

6.58
6.63
6.65

9.50
9.64
9.70

5.32
5.37
5.38

8.06
8.15
8.20

11.80
12.13
12.24

5.45
5.50
5.52

8.24
8.39
8.43

12.08
12.48
12.60

LDPC(121,80)
5.27
5.29
5.30

7.59
7.63
7.65

10.08
10.90
11.03

3.47
3.47
3.47

4.03
4.03
4.03

4.72
4.72
4.72

3.57
3.57
3.57

4.18
4.18
4.18

4.93
4.93
4.93

3.68
3.68
3.68

4.34
4.34
3.68

5.16
5.16
3.68

5.28
5.29
5.29

7.67
7.65
7.65

10.92
11.00
11.00

6.04
6.06
6.06

9.03
9.05
9.10

12.73
12.87
12.91

6.17
6.19
6.19

9.25
9.24
9.25

12.99
13.14
13.20

MacKay(96,48)
4.95
5.04
5.17

6.67
6.80
7.07

8.94
9.23
9.64

2.95
2.95
2.95

3.39
3.39
3.39

3.92
3.92
3.92

3.04
3.04
3.04

3.51
3.51
3.51

4.09
4.09
4.09

3.12
3.13
3.13

3.63
3.63
3.63

4.26
4.26
4.26

5.00
5.05
5.04

6.86
6.95
6.94

9.37
9.52
9.53

5.96
6.02
6.01

8.30
8.42
8.45

11.10
11.41
11.47

6.11
6.18
6.18

8.49
8.64
8.65

11.29
11.59
11.70

CCSDS(128,64)
4.35
4.41
4.59

6.01
6.09
6.42

8.30
8.49
9.02

2.93
2.93
2.93

3.37
3.37
3.37

3.90
3.90
3.90

3.00
3.00
3.00

3.47
3.47
3.47

4.04
4.04
4.04

3.06
3.06
3.07

3.57
3.57
3.57

4.18
4.18
4.18

4.33
4.34
4.35

6.00
6.04
6.08

8.44
8.49
8.51

5.40
5.43
5.44

7.95
8.11
8.09

11.52
11.55
11.65

5.68
5.71
5.72

8.34
8.55
8.48

11.95
12.01
12.13

BCH(63,36)
3.79
4.05
4.21

4.87
5.28
5.50

6.35
7.01
7.25

3.17
3.17
3.18

3.67
3.67
3.67

4.26
4.26
4.27

3.25
3.25
3.26

3.79
3.79
3.80

4.43
4.44
4.44

3.33
3.33
3.35

3.92
3.92
3.93

4.61
4.62
4.62

4.11
4.21
4.37

5.48
5.63
5.91

7.34
7.52
7.95

4.43
4.52
4.76

5.98
6.12
6.55

8.05
8.22
8.90

4.53
4.64
4.91

6.15
6.31
6.78

8.27
8.49
9.23

BCH(63,45)
4.47
4.66
4.79

5.88
6.16
6.39

7.81
8.17
8.49

3.65
3.65
3.65

4.26
4.26
4.26

4.98
4.98
4.98

3.76
3.77
3.77

4.43
4.44
4.44

5.22
5.23
5.23

3.88
3.89
3.90

4.62
4.63
4.63

5.48
5.48
5.48

4.62
4.73
4.79

6.25
6.44
6.52

8.57
8.83
8.95

4.96
5.10
5.17

6.85
7.09
7.18

9.50
9.81
9.93

5.06
5.21
5.30

7.04
7.29
7.39

9.76
10.05
10.21

BCH(63,51)
4.60
4.78
5.01

6.05
6.34
6.72

8.05
8.49
9.03

3.96
3.96
3.96

4.63
4.63
4.63

5.46
5.46
5.46

4.09
4.10
4.10

4.84
4.85
4.85

5.74
5.74
5.74

4.22
4.23
4.24

5.05
5.06
5.06

6.03
6.03
6.03

4.78
4.85
4.88

6.47
6.62
6.66

8.88
9.08
9.16

4.99
5.08
5.11

6.83
6.99
7.04

9.40
9.74
9.79

5.05
5.16
5.18

6.98
7.12
7.19

9.59
9.96
9.97
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E NUMBER OF DIFFUSION STEPS

Table 4 presents the convergence statistics (mean and standard deviation of the number of iterations)
for the regular reverse diffusion and the line search procedure. Evidently, the line-search approach
substantially reduces the number of steps, especially for low SNRs where the improvement can
reach one order of magnitude.

Table 4: A comparison between the line search procedure and the regular reverse diffusion. The ∆
column denotes the difference between the logarithm of Bit Error Rate (BER) for three normalized
SNR values (i.e., ∆ = − log(BERLS) + log(BERReg)).
The other columns represent the mean and standard deviation of the number of iterations of the
reverse process until convergence, i.e., convergence to zero syndrome.

Method ∆ N=2 ∆ N=6 #It. Reg. N=2 #It Reg. N=6 #It. LS N=2 #It LS N=6

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

Polar(64,32)
-0.08
-0.14
-0.01

-0.13
-0.07
-0.05

-0.10
-0.30
0.10

0.04
-0.04
-0.11

0.04
0.21
0.07

0.41
0.89
0.65

13.4 ± 7.5
13.2 ± 7.2
13.0 ± 7.1

8.9 ± 6.3
8.9 ± 6.2
8.8 ± 6.1

5.4 ± 5.1
5.4 ± 5.1
5.4 ± 5.1

12.8 ± 6.8
12.7 ± 6.7
12.7 ± 6.7

8.8 ± 6.1
8.8 ± 6.0
8.8 ± 6.0

5.4 ± 5.1
5.4 ± 5.1
5.4 ± 5.1

1.6 ± 3.1
1.4 ± 2.3
1.3 ± 2.1

1.0 ± 1.2
1.0 ± 0.9
1.0 ± 0.8

0.8 ± 0.5
0.8 ± 0.5
0.8 ± 0.5

2.6 ± 3.0
1.1 ± 0.8
1.1 ± 0.7

1.7 ± 2.1
0.9 ± 0.4
0.9 ± 0.4

1.1 ± 1.5
0.8 ± 0.4
0.8 ± 0.4

Polar(64,48)
-0.02
0.01
0.00

0.11
0.14
0.16

0.16
0.30
0.40

0.01
-0.03
-0.01

0.06
0.12
0.07

0.47
0.43
0.71

5.9 ± 4.9
5.8 ± 4.8
5.8 ± 4.7

3.3 ± 3.8
3.2 ± 3.8
3.2 ± 3.8

1.5 ± 2.7
1.5 ± 2.7
1.5 ± 2.7

5.7 ± 4.6
5.7 ± 4.6
5.7 ± 4.6

3.2 ± 3.8
3.2 ± 3.7
3.2 ± 3.7

1.5 ± 2.7
1.5 ± 2.7
1.5 ± 2.7

1.4 ± 2.3
1.3 ± 2.0
1.2 ± 1.8

0.7 ± 1.0
0.7 ± 0.9
0.7 ± 0.8

0.4 ± 0.5
0.4 ± 0.5
0.4 ± 0.5

1.2 ± 1.7
0.9 ± 1.0
1.0 ± 1.0

0.7 ± 0.9
0.6 ± 0.6
0.6 ± 0.6

0.4 ± 0.6
0.4 ± 0.5
0.4 ± 0.5

Polar(128,64)
-0.19
-0.31
-0.24

-0.24
-0.61
-0.54

-0.30
-0.40
-0.80

-0.32
-0.26
-0.12

-0.33
-0.30
-0.20

-0.60
-0.10
1.00

26.7 ± 14.6
24.4 ± 12.2
23.5 ± 11.1

16.4 ± 9.3
15.8 ± 8.2
15.6 ± 7.9

10.2 ± 6.8
10.1 ± 6.6
10.1 ± 6.6

22.0 ± 9.3
21.6 ± 8.5
21.4 ± 8.0

15.4 ± 7.5
15.4 ± 7.4
15.4 ± 7.4

10.0 ± 6.6
10.1 ± 6.6
10.1 ± 6.6

5.5 ± 12.8
3.5 ± 8.6
2.9 ± 6.8

1.9 ± 4.6
1.5 ± 2.9
1.4 ± 2.1

1.1 ± 1.4
1.1 ± 0.9
1.0 ± 0.7

2.0 ± 3.5
1.8 ± 2.0
1.7 ± 1.2

1.3 ± 1.1
1.3 ± 0.9
1.3 ± 0.8

1.0 ± 0.6
1.0 ± 0.5
1.0 ± 0.5

Polar(128,86)
-0.10
-0.06
-0.09

-0.11
-0.04
-0.06

-0.20
0.00
-0.10

-0.20
-0.30
-0.32

-0.13
-0.34
-0.21

-0.21
-0.33
-0.40

16.5 ± 10.9
15.5 ± 10.0
14.7 ± 9.2

9.1 ± 7.3
8.8 ± 6.8
8.6 ± 6.4

4.7 ± 4.9
4.6 ± 4.8
4.6 ± 4.7

13.4 ± 7.5
13.1 ± 6.9
13.0 ± 6.6

8.3 ± 5.8
8.3 ± 5.7
8.3 ± 5.7

4.6 ± 4.6
4.6 ± 4.6
4.6 ± 4.6

4.0 ± 9.1
3.4 ± 8.3
2.7 ± 6.8

1.4 ± 3.4
1.3 ± 3.2
1.2 ± 2.3

0.8 ± 1.0
0.8 ± 0.9
0.8 ± 0.7

2.9 ± 4.4
1.3 ± 2.4
1.2 ± 1.9

1.6 ± 2.1
1.0 ± 0.6
0.9 ± 0.5

1.0 ± 1.2
0.7 ± 0.5
0.7 ± 0.5

Polar(128,96)
-0.10
-0.09
-0.16

-0.13
-0.10
-0.12

-0.20
-0.10
-0.20

-0.11
-0.19
-0.15

0.04
0.13
0.00

-0.16
0.14
-0.13

12.6 ± 8.8
11.8 ± 8.0
11.1 ± 7.3

6.5 ± 5.9
6.3 ± 5.5
6.2 ± 5.2

3.1 ± 3.9
3.1 ± 3.8
3.1 ± 3.8

10.5 ± 6.4
10.32 ± 6.11
10.2 ± 5.9

6.1 ± 5.0
6.1 ± 4.9
6.1 ± 4.9

3.1 ± 3.8
3.1 ± 3.8
3.1 ± 3.8

3.6 ± 7.4
2.7 ± 6.0
2.0 ± 4.4

1.2 ± 2.7
1.1 ± 2.0
1.0 ± 1.3

0.6 ± 0.8
0.6 ± 0.6
0.6 ± 0.5

2.2 ± 3.4
1.2 ± 2.0
1.1 ± 1.5

1.2 ± 1.4
0.9 ± 0.5
0.9 ± 0.5

0.7 ± 0.8
0.6 ± 0.5
0.6 ± 0.5

LDPC(49,24)
0.06
0.05
0.07

0.03
-0.06
-0.10

0.23
0.20
0.20

-0.05
-0.13
-0.12

-0.31
-0.12
-0.13

-0.16
-0.20
-0.41

11.5 ± 7.0
11.4 ± 7.0
11.4 ± 7.0

7.4 ± 5.7
7.4 ± 5.7
7.4 ± 5.6

4.4 ± 4.5
4.4 ± 4.5
4.4 ± 4.5

10.9 ± 6.3
10.9 ± 6.3
10.9 ± 6.3

7.3 ± 5.4
7.3 ± 5.4
7.3 ± 5.4

4.4 ± 4.5
4.4 ± 4.5
4.4 ± 4.5

2.2 ± 5.1
2.1 ± 4.9
2.1 ± 4.8

1.0 ± 1.9
1.0 ± 1.9
1.0 ± 1.9

0.7 ± 0.7
0.7 ± 0.6
0.7 ± 0.6

2.2 ± 3.6
1.5 ± 3.5
1.4 ± 3.4

1.3 ± 1.5
0.9 ± 1.1
0.9 ± 1.1

0.8 ± 0.8
0.7 ± 0.5
0.7 ± 0.5

LDPC(121,60)
-0.14
-0.08
-0.18

-0.20
-0.17
-0.30

-0.20
-0.30
-0.30

-0.07
-0.11
-0.18

-0.30
-0.09
-0.47

0.00
-0.44
-0.23

26.7 ± 16.7
26.6 ± 16.5
26.5 ± 16.5

15.1 ± 8.6
15.1 ± 8.5
15.1 ± 8.4

9.4 ± 5.7
9.4 ± 5.7
9.4 ± 5.7

21.9 ± 11.5
21.7 ± 11.2
21.5 ± 10.8

14.4 ± 6.5
14.4 ± 6.5
14.4 ± 6.4

9.3 ± 5.6
9.3 ± 5.6
9.3 ± 5.6

10.1 ± 21.2
10.1 ± 21.2
9.8 ± 20.9

2.1 ± 7.0
2.1 ± 7.0
2.0 ± 6.9

1.0 ± 1.3
1.0 ± 1.3
1.0 ± 1.2

6.0 ± 13.3
4.4 ± 13.2
4.2 ± 12.7

2.3 ± 3.1
1.3 ± 2.6
1.3 ± 2.5

1.5 ± 1.1
1.0 ± 0.4
1.0 ± 0.3

LDPC(121,70)
-0.19
-0.16
-0.16

-0.39
-0.29
-0.29

-0.40
-0.20
-0.30

-0.19
-0.16
-0.18

-0.20
-0.44
0.00

-1.00
-0.17
-0.11

17.8 ± 11.2
17.6 ± 10.9
17.5 ± 10.8

10.4 ± 6.1
10.4 ± 6.0
10.4 ± 6.0

6.2 ± 4.7
6.2 ± 4.7
6.2 ± 4.7

15.5 ± 7.4
15.5 ± 7.3
15.4 ± 7.1

10.2 ± 5.5
10.2 ± 5.5
10.2 ± 5.5

6.1 ± 4.7
6.1 ± 4.7
6.1 ± 4.7

4.8 ± 12.9
4.5 ± 12.3
4.3 ± 12.0

1.3 ± 3.5
1.2 ± 3.2
1.2 ± 3.0

0.9 ± 0.6
0.9 ± 0.6
0.9 ± 0.5

2.0 ± 6.7
1.9 ± 6.2
1.8 ± 5.7

1.0 ± 1.1
1.0 ± 0.9
1.0 ± 0.7

0.9 ± 0.4
0.9 ± 0.4
0.9 ± 0.4

LDPC(121,80)
-0.23
-0.13
-0.10

-0.03
-0.10
-0.17

-0.40
-0.30
-0.20

-0.33
-0.15
-0.28

-0.46
-0.42
-0.21

-0.95
0.81
-0.27

12.5 ± 7.9
12.5 ± 7.9

12.4 ± 7.82

7.3 ± 5.0
7.3 ± 4.9
7.2 ± 4.9

4.0 ± 3.8
4.0 ± 3.8
4.0 ± 3.8

11.4 ± 5.6
11.4 ± 5.8
11.4 ± 5.6

7.2 ± 4.7
7.2 ± 4.7
7.2 ± 4.7

4.0 ± 3.8
4.0 ± 3.8
4.0 ± 3.8

2.7 ± 7.5
2.7 ± 7.7
3.1 ± 6.9

1.0 ± 1.6
1.0 ± 1.7
1.3 ± 1.7

0.7 ± 0.5
0.7 ± 0.5
0.8 ± 0.6

1.2 ± 3.0
1.4 ± 3.7
1.3 ± 3.2

0.9 ± 0.4
0.9 ± 0.6
0.9 ± 0.5

0.7 ± 0.4
0.7 ± 0.4
0.7 ± 0.4

MacKay(96,48)
-0.23
-0.20
-0.19

-0.16
-0.14
-0.17

-0.50
-0.30
-0.20

-0.09
-0.17
-0.19

0.29
-0.21
-0.33

0.00
0.00
-0.13

15.3 ± 7.9
15.3 ± 7.8
15.2 ± 7.7

10.2 ± 5.5
10.2 ± 5.4
10.2 ± 5.4

6.4 ± 4.5
6.4 ± 4.5
6.4 ± 4.5

14.4 ± 5.7
14.3 ± 5.7
14.3 ± 5.6

10.0 ± 5.0
10.0 ± 5.0
10.0 ± 5.0

6.4 ± 4.4
6.4 ± 4.4
6.4 ± 4.4

2.8 ± 8.1
2.6 ± 7.8
2.6 ± 7.6

1.2 ± 2.6
1.2 ± 2.5
1.2 ± 2.4

0.9 ± 0.7
0.9 ± 0.7
0.9 ± 0.6

2.2 ± 2.9
1.3 ± 2.6
1.2 ± 2.3

1.5 ± 0.9
1.0 ± 0.5
1.0 ± 0.4

1.1 ± 0.6
0.9 ± 0.3
0.9 ± 0.3

CCSDS(128,64)
-0.19
-0.21
-0.27

-0.58
-0.30
-0.42

-0.40
-0.60
-0.40

-0.31
-0.23
-0.26

-0.36
-0.42
-0.11

0.52
0.31
0.37

20.8 ± 11.4
20.6 ± 11.2
20.6 ± 11.0

13.1 ± 6.3
13.1 ± 6.2
13.1 ± 6.2

8.4 ± 4.9
8.4 ± 4.9
8.4 ± 4.9

18.2 ± 6.6
18.1 ± 6.4
18.1 ± 6.3

12.8 ± 5.4
12.8 ± 5.4
12.8 ± 5.4

8.4 ± 4.9
8.4 ± 4.9
8.4 ± 4.9

4.7 ± 13.4
4.4 ± 12.8
4.2 ± 12.3

1.4 ± 4.1
1.3 ± 3.3
1.3 ± 3.4

1.0 ± 0.8
1.0 ± 0.7
1.0 ± 0.6

1.7 ± 4.7
1.6 ± 4.1
1.6 ± 3.7

1.1 ± 0.7
1.1 ± 0.6
1.1 ± 0.5

1.0 ± 0.3
1.0 ± 0.3
1.0 ± 0.3

BCH(63,36)
-0.01
-0.01
0.04

0.02
0.02
0.16

-0.04
0.13
0.23

0.01
-0.11
-0.11

0.00
-0.05
-0.02

0.09
0.03
0.04

12.6 ± 8.0
12.4 ± 7.9
12.1 ± 7.6

7.8 ± 6.7
7.7 ± 6.6
7.6 ± 6.5

4.3 ± 5.1
4.3 ± 5.1
4.3 ± 5.0

11.9 ± 7.5
11.8 ± 7.4
11.7 ± 7.3

7.6 ± 6.4
7.5 ± 6.3
7.5 ± 6.3

4.3 ± 5.0
4.3 ± 5.0
4.3 ± 5.0

3.7 ± 7.2
3.3 ± 6.8
2.5 ± 5.5

1.4 ± 3.4
1.3 ± 3.1
1.1 ± 2.2

0.7 ± 1.3
0.7 ± 1.1
0.7 ± 0.8

4.3 ± 6.8
2.5 ± 5.6
2.5 ± 5.6

2.0 ± 3.6
1.1 ± 2.4
1.1 ± 2.3

1.0 ± 1.8
0.7 ± 0.8
0.7 ± 0.8

BCH(63,45)
-0.05
0.02
0.03

0.00
0.15
0.18

0.11
0.10
0.20

-0.10
-0.14
-0.13

-0.05
0.08
-0.06

0.37
0.41
0.73

7.2 ± 5.7
7.1 ± 5.6
7.1 ± 5.6

4.1 ± 4.5
4.0 ± 4.5
4.0 ± 4.5

2.0 ± 3.2
2.0 ± 3.2
2.0 ± 3.2

6.9 ± 5.3
6.8 ± 5.2
6.8 ± 5.3

4.0 ± 4.4
3.9 ± 4.3
3.9 ± 4.3

1.9 ± 3.2
2.0 ± 3.2
2.0 ± 3.2

2.1 ± 3.9
1.9 ± 3.6
1.8 ± 3.4

0.9 ± 1.6
0.8 ± 1.4
0.8 ± 1.3

0.4 ± 0.6
0.4 ± 0.6
0.4 ± 0.6

1.5 ± 3.0
1.4 ± 2.6
1.3 ± 2.5

0.7 ± 1.1
0.7 ± 0.9
0.7 ± 1.0

0.4 ± 0.5
0.4 ± 0.5
0.4 ± 0.5

BCH(63,51)
0.04
0.06
0.04

0.28
0.31
0.34

0.94
1.13
1.02

0.09
0.06
0.02

0.42
0.28
0.34

1.16
1.19
1.04

4.8 ± 4.1
4.8 ± 4.1
4.8 ± 4.1

2.6 ± 3.4
2.6 ± 3.4
2.6 ± 3.4

1.2 ± 2.4
1.2 ± 2.4
1.2 ± 2.4

4.7 ± 4.0
4.7 ± 4.0
4.7 ± 4.0

2.6 ± 3.3
2.6 ± 3.4
2.6 ± 3.4

1.2 ± 2.4
1.2 ± 2.4
1.2 ± 2.3

1.8 ± 2.9
1.6 ± 2.7
1.6 ± 2.6

0.7 ± 1.3
0.7 ± 1.2
0.7 ± 1.1

0.3 ± 0.6
0.3 ± 0.5
0.3 ± 0.5

1.6 ± 2.6
1.3 ± 2.1
1.4 ± 2.3

0.7 ± 1.2
0.6 ± 1.0
0.6 ± 1.0

0.3 ± 0.6
0.3 ± 0.5
0.3 ± 0.5

F DENOISING DIFFUSION ERROR CORRECTION CODE TRANSFORMER

F.1 PARITY-CHECK CONDITIONING ARCHITECTURE

The DDECCT architecture is depicted in Figure 9. In order to condition the network on the number
of parity errors et ∈ {0, . . . , n − k}, we employ a d dimensional one hot encoding multiplied
via Hadamard product with the initial elements’ embedding of the ECCT. Denoting the ECCT’s
embedding of the i element as ϕi, the new embedding is defined as ϕ̃i = ϕi ⊙ ψ(et),∀i, where ψ
denotes the n− k one hot embedding.

F.2 DDECCT COMPUTATIONAL COMPLEXITY

The computational overhead consists of the conditioning, which is a negligible Hadamard product
of the initial ECCT embedding with the one-hot encoding of the number of parity-check errors, the
parallel line-search procedure (which scales linearly with the density of the code, and most codes are
sparse), and the number of reverse diffusion iterations, which is reduced to extremely few iterations
by the line-search framework.
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Figure 9: Illustration of the proposed DDECCT architecture. The main difference from ECCT is the
green component in the Initial Embedding module.

Therefore, the large improvement of DDECCT over ECCT is obtained while employing a modest
increase in computational complexity. Most importantly, the space complexity, determining the
capacity of the network, is extremely reduced with the DDECC framework, since even shallow
DDECCT architectures outperform deep ECCT models.

It should also be mentioned that as described in the introduction, the iterative DDECC framework
supports a differential treatment of the samples based on their level of corruption, what is not possi-
ble with ECCT.

G BETA SCHEDULING

The choice of the scheduling range, i.e. t ∈ {0, 1, . . . , T} is explained as follows. In contrast to
classical denoising diffusion models used as generative models, the conditioning in our model is
performed over the number of parity-check errors in order to obtain an estimate of the proximity to
the solution. Thus, T is now defined as the maximum possible number of parity-check errors, i.e.
n− k.

The values of the beta schedule have been set empirically such that the cumulative sum of the
diffusion noise roughly corresponds to the average training noise statistics, i.e.,

√
β̄t ≈ σ such that

y = x+ σz, z ∼ N (0, I), as described in Eq. 8.

In addition to the empirical support, constant scheduling has been chosen to induce a uniform treat-
ment of the noise space. Finally, the full method uses the line-search procedure, reducing the need
to precisely define or tune the scheduler.

H COMPARISON WITH SUCCESSIVE CANCELLATION LIST (SCL) POLAR
DECODER

Table 5 compares the performance of ECCT and DDECCT to the SOTA SCL Polar decoder Tal
& Vardy (2015) for several Polar Codes. The SCL decoder has a time and space complexity of
O(LN logN) and O(LN), respectively.

We tested the SCL algorithm for L = {1, 4} using the AFF3CT software (Cassagne et al., 2019).
Note that with this software package, we cannot ensure an exact comparison to our settings and even
with regard to the polar code used.

Increasing the capacity of the network, especially with more layers, is expected to lead to better
results as demonstrated for LDPC codes. Similarly, SCL with bigger lists would obtain improved
accuracy. We present in Figure 10 the performance of different architecture size. We can observe
larger architecture is able to close the gap with the SOTA on Polar codes.
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Table 5: A comparison of the negative natural logarithm of Bit Error Rate (BER) for three normal-
ized SNR values (4,5,6) between the proposed method with N = 6, d = 128, the ECCT and the
SOTA SC-L algorithm. Higher is better.

Method SC-L = 1 SC-L = 4 ECCT DDECCT

4 5 6 4 5 6 4 5 6 4 5 6

Polar(64,32) 7.30 9.67 13.18 8.11 10.70 14.04 6.62 8.89 12.02 6.93 9.51 12.79

Polar(64,48) 6.17 8.41 10.97 6.63 8.63 11.24 6.19 8.28 11.05 6.00 8.24 10.98

Polar(128,64) 8.37 11.69 13.70 9.60 13.16 17.42 5.92 8.64 12.18 9.11 12.90 16.30

Polar(128,86) 7.54 10.74 15.14 9.26 13.04 17.13 6.31 9.01 12.45 7.60 10.81 15.17

Polar(128,96) 6.74 9.53 13.53 8.02 11.60 18.16 6.31 9.12 12.47 7.16 10.3 13.19

We believe the high number of degrees of freedom in our model coupled with careful training and
hyper-parameter tuning should fill the remaining gap. Most importantly, we believe that permuta-
tions of the parity check matrix may have a large impact on the performance as described in many
previous neural decoding works (e.g. (Bennatan et al., 2018; Raviv et al., 2020)).

Figure 10: BER plots comparing ECCT, DDECCT and the SCL algorithm for various Eb/N0 and
N values.

I RESULTS OVER MULTIPLE SNR VALUES

Figure 11 depicts BER plots comparing the performance of ECCT and DDECCT for several codes.

Figure 11: BER plots comparing ECCT and the proposed DDECCT for various Eb/N0 values.
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