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Abstract

Current theories propose that the short-term retention of information in working memory (WM) and the recall of
information from long-term memory (LTM) are supported by overlapping neural mechanisms in occipital and parietal
cortex. However, the extent of the shared representations between WM and LTM is unclear. We designed a spatial memory
task that allowed us to directly compare the representations of remembered spatial information in WM and LTM with
carefully matched behavioral response precision between tasks. Using multivariate pattern analyses on functional
magnetic resonance imaging data, we show that visual memories were represented in a sensory-like code in both memory
tasks across retinotopic regions in occipital and parietal cortex. Regions in lateral parietal cortex also encoded remembered
locations in both tasks, but in a format that differed from sensory-evoked activity. These results suggest a striking
correspondence in the format of representations maintained in WM and retrieved from LTM across occipital and parietal
cortex. On the other hand, we also show that activity patterns in nearly all parietal regions, but not occipital regions,
contained information that could discriminate between WM and LTM trials. Our data provide new evidence for theories of
memory systems and the representation of mnemonic content.
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Introduction
It is well established that performance on a working memory
(WM) or a long-term memory (LTM) task relies on the partial
reactivation, or reinstatement, of patterns of cortical activity
that were present during the initial perception of the remem-
bered item (Squire and Wixted 2011; D’Esposito and Postle 2015;
Serences 2016; Xue 2018). For example, viewing a blue couch elic-
its feature-specific patterns of activity in visual regions selective
for color and complex objects. Then, when trying to maintain
the colored object in WM, or retrieve it from LTM, patterns of
neural activity that resemble those at encoding are reinstated.
That said, evidence for feature-specific cortical reinstatement
has typically been assessed separately in studies of LTM (Ritchey
et al. 2013; Bosch et al. 2014; Kuhl and Chun 2014; Xiao et al. 2017;
Favila et al. 2018) and studies of WM (Harrison and Tong 2009;
Serences et al. 2009; Riggall and Postle 2012; Emrich et al. 2013;
Ester et al. 2013, 2016; Lee et al. 2013; Sprague et al. 2014, 2016).
Several prominent theories suggest that both WM and LTM
retrieval rely on shared neural substrates (Atkinson and Shrif-
fin 1968; Kosslyn 1980; Cowan 1995; Baddeley 2000), but direct
tests of this hypothesis are rare. One study reported evidence
that there is an overlap between representations of stimulus
categories held in WM or activated from LTM (Lewis-Peacock
and Postle 2008). Furthermore, some of these theories propose
that retrieving information from LTM would simply place it in
short term or WM, implying that the representations between
WM and LTM would be equivalent and indistinguishable (Atkin-
son and Shriffin 1968; Cowan 1995). We are unaware of any
tests of equivalence between representations maintained in WM
and retrieved from LTM, perhaps because this would require
carefully matching the task performance.

Here, we strived for a direct comparison of cortical rein-
statement of stimulus features between a WM task and a LTM
task. Participants either maintained a spatial position in WM, or
retrieved it from LTM and maintained it for the same duration
(Fig. 1), while we measured responses with functional magnetic
resonance imaging (fMRI). Importantly, we carefully matched
behavioral performance across memory tasks and minimized
any differences in visual stimulation between the tasks. There-
fore, the remembered information was the same across con-
ditions—it simply arose from a different source (perception
for WM vs. an internal source for LTM). We used multivariate
pattern analysis to examine the remembered representations
in early occipital visual areas and across several regions in
retinotopic and lateral parietal cortex (LPC). In this paper, we
use the terms “representation” or “mnemonic representation”
to specifically refer to information about the memory stimulus
present in a given region during the maintenance interval of
either task. The eight retinotopic regions that we defined (V1
through dorsal parietal regions in the intraparietal sulcus, IPS0-
2) are known to have sensory-like WM representations (Riggall
and Postle 2012; Emrich et al. 2013; Sprague et al. 2014, 2016; Ester
et al. 2015) that are finely resolved enough to decode stimulus
features such as orientation or motion direction. That is, a
model trained on data from a sensory task can decode feature
information during a WM task. Recent evidence suggests that in
intraparietal sulcus (IPS), feature-specific WM representations
can be encoded in a nonsensory format (Christophel et al. 2018;
Rademaker et al. 2019; Iamshchinina et al. 2021). That is, only a
model trained on data from a WM task can decode information
during a held-out WM run. As for LTM, the data on reinstated
stimulus features in retinotopic regions are limited to V1–V3
(Bosch et al. 2014) or rely on a single large occipitotemporal

region of interest (ROI) (Favila et al. 2018). However, work has
shown that feature-specific LTM representations are encoded in
LPC (Kuhl and Chun 2014; Lee et al. 2017), likely in a nonsensory
format (Xiao et al. 2017; Favila et al. 2018). Therefore, we also
examined a set of lateral parietal regions (dorsal and ventral
lateral intraparietal sulcus, together lateral IPS; angular gyrus
[AnG]) reported in those studies. The role of LPC in WM is not
well understood (Xiao et al. 2017; Favila et al. 2018, 2020). Accord-
ingly, we took advantage of our experimental design to test
whether the reinstated information in these regions is similar
between WM and LTM or if the feature-specific information is
maintained via different representational formats.

First, we used an inverted encoding model (IEM) to quantify
the fidelity of cortical reinstatement in both tasks, which was
based on the amount of spatial information in fMRI activation
patterns. Put another way, the IEM indexes the quality and
strength of the mnemonic representation. To test whether the
remembered spatial position was represented in a sensory-
like format, we trained the IEM on an independent perceptual
task and tested it on either the WM maintenance task or LTM
retrieval task. To test if a mnemonic representation was in
a nonsensory-like format, we trained the IEM on one of the
memory tasks instead. First, we found that memories for spatial
position maintained in WM or retrieved from LTM were rep-
resented in a sensory-like format across all retinotopic ROIs.
Furthermore, the fidelity or quality of these representations was
statistically indistinguishable between WM and LTM. We found
that lateral IPS and AnG both tracked some spatial information
held in memory. However, this information was represented in
a nonsensory format.

Next, we used a two-way linear classifier to decode the mem-
ory task that subjects were performing on each trial. We found
that the memory task could be decoded from activation patterns
in parietal regions (both retinotopic and lateral) but not in early
visual cortex. Taken together, our results provide direct evidence
that information in maintained WMs and retrieved LTMs rely on
similar neural representations in occipital and parietal cortex.
However, parietal cortex, unlike early visual cortex, also encodes
information about the source of the remembered information in
addition to coding the remembered location.

Methods
Participants

We trained 12 human participants (8 females) on both the LTM
and the WM tasks. Two participants dropped out of the study
during behavioral training. This left 10 participants (6 females)
from whom we collected both behavioral and fMRI data, 2 of
whom were the coauthors of this paper. Six of these participants
(participant IDs BI, BJ, BO, and BC) had previously completed a
set of retinotopic mapping scans in the lab for other studies
(Henderson and Serences 2019; Rademaker et al. 2019). For the
remaining four participants, we collected new retinotopy data
to define each ROI (see ROI Definition). All participants provided
written informed consent. Participants were compensated for
their time ($20/h for fMRI, $10/h for behavior) unless they were
this paper’s coauthors. These procedures were approved by the
local UC San Diego Institutional Review Board.

Prescan Behavioral Training

We trained participants to form LTM pairings between 24 unique
clip art items and 24 unique spatial positions (Fig. 1). After 1 day
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Figure 1. Memory tasks and perceptual task presented to participants in the scanner. (A) The two memory tasks were identical except for the memory cue—in the
WM task, participants saw a dot indicating the position along an annulus, along with an irrelevant clip art item; in the LTM task, participants instead saw a previously

studied clip art item that they had learned to associate with a spatial position during behavioral training. After an 11.5-s delay period, participants reported the
remembered spatial position by rotating a randomly placed dot to the correct position. (B) An independent task was used to map the position selectivity of voxels
in retinotopically defined regions of visual and parietal cortex. Participants detected an occasional dimming of a checkerboard stimulus that appeared at randomly
ordered locations along a ring. This independent task was used to train the IEM, which was then tested on the memory tasks. (C) Example spatial representations and

their corresponding fidelity values, a single number which characterizes the quality of the representation of the remembered position (always set to 0◦ here). Each
spatial representation was plotted in polar space. The fidelity metric is equivalent to the length of the bold horizontal vectors. Dark purple: The best model-based
spatial representation is narrow and centered exactly at 0◦. Light purple: A broader spatial representation has a shorter mean vector, capturing the fact that less
“energy” is at 0◦. Dark green: A spatial representation that is slightly offset from zero has a short x-component and therefore a lower fidelity value, as compared to a

representation centered at zero. Light green: An inverted spatial representation has a mean vector that points in the opposite direction, resulting in a negative fidelity
value.
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of LTM study and retrieval, we continued LTM training while also
measuring their performance on an analogous WM task. In both
tasks, participants were asked to report the remembered spatial
positions as precisely as possible. To minimize differences in
effort and difficulty of recall between the two memory tasks at
the time of scanning, participants were trained until their error
on the LTM task was stable.

For each participant, the 24 spatial positions were selected
randomly from 24 bins evenly spaced along an isoeccentric ring
at 3.9◦ visual angle from a central fixation point. As a result,
the set of locations was roughly uniformly distributed around
a circle for each participant, and each participant had a slightly
different set of positions. Each spatial position was rendered as
a dot subtending 0.2◦ visual angle (in polar co-ordinates of the
360◦ circle, this subtended 1.4◦ polar angle). The clip art items
(diameter: 1.5◦ visual angle) were filled outlines of real-world
objects taken from a bank of 48 images that all subtended the
same area of retinal space (Fig. 1). These stimuli have been used
in previous LTM studies and are all royalty-free images (Sutterer
and Awh 2015; Sutterer et al. 2019).

The LTM study-retrieval task on the first day of training
consisted of six alternating runs of a study phase and a retrieval
phase. During the study phase, the participant was shown each
clip art item at the center of the screen and its associated spatial
position. The trial order was randomized. This study phase was
self-paced—while each pairing was always presented for 500 ms
followed by at least a 1000-ms blank period, participants chose
when to advance to the next item by hitting the space bar. During
the retrieval phase of the task, each clip art item was presented
at the center in a randomized order, and participants were asked
to report the associated spatial position as precisely as possible
by clicking on a part of the visible isoeccentric ring. After each
retrieval trial, participants received two forms of feedback about
their performance: The true position was shown in dark gray
on the ring, and the error was shown as a signed integer at
the center. This number indicated how far their report deviated
from the true position (+, if report was too far clockwise; −, for
counterclockwise).

On all remaining days of prescan training, participants prac-
ticed both the LTM retrieval task and a similar WM maintenance
task (similar to Fig. 1A, with different timings). The order of
the tasks was counterbalanced across participants. In the LTM
retrieval task, the participant was shown one of the 24 clip
art items at the center (500 ms). After a delay (1000 ms), they
were presented with the response probe: A dot appeared at a
random position along the (now invisible) isoeccentric ring, and
participants used four keyboard keys to rotate this dot along the
ring until it matched the item’s associated position as precisely
as possible. The two outer buttons moved the dot along the ring
at a fast rate, whereas the two inner buttons moved it along
a slower rate. This allowed participants to make fast but pre-
cise responses. After the 4000-ms response period, participants
received numerical feedback on their response error (Fig. 1).
We chose to only present numerical feedback to minimize any
interference between the retrieved memory representation and
feedback given at the end of the trial. The intertrial interval (ITI)
varied between 200 and 500 ms. Participants repeated this set of
24 trials per run, for a total of six runs in the LTM task block.

The WM maintenance task was nearly identical to the LTM
task in timing and presentation. The one exception was that the
initial memory array displayed a dot at a random spatial position
on the ring in addition to a clip art item presented at the center,
which was randomly selected from a separate set of 24 unique

clip art items. Participants were asked to remember the position
of the dot during the 1-s delay and to use the keyboard keys
to rotate the response dot to the position of the memorandum
(Fig. 1). The clip art item was a task-irrelevant sensory control,
and there was no predictive relationship between WM position
and clip art item. As with the LTM task, a set of 24 trials was
repeated for six times.

All participants performed six runs of each task on each
training day. The first two participants (BG, BH) completed more
training runs as we piloted the best way to collect response
data (mouse or keyboard). Their behavioral performance in the
scanner did not appear significantly different from the other
subjects. All participants were trained on both the LTM and
WM tasks for at least 5 days. At the end of each training day,
the experimenter plotted the mean recall error on both tasks
to assess whether the mean recall error on the LTM retrieval
task was stable across days. Two different experimenters were
involved in training, and the criterion was subjective for each
experimenter. Importantly, however, the criterion does not
enforce similar recall error between the WM and LTM tasks.
Instead, it was simply a check for stable performance in the LTM
task. One participant (BV) requested to repeat the initial LTM
study training on day 4 of training.

Behavioral Tasks Performed in fMRI Scanner

Participants performed both LTM and WM tasks in the scanner
(Fig. 1A). While these were very similar to the behavioral training
task, they differed in several key respects: 1) instead of a 1000-ms
delay between the cue and the response, we inserted a 11 500-
ms delay to accommodate the slow hemodynamic response; 2)
LTM and WM runs were alternated instead of blocked in the
order preserved from the training; 3) participants viewed the
experiment through a head-coil-mounted mirror pointing at a
gray rectangular screen (120 × 90 cm) at the foot of the scanner
bore (∼3.85 m viewing distance); 4) responses were made via
a four-key button box; and 5) the ITIs were longer (uniformly
distributed in 200-ms steps between 3000 and 7000 ms) to aid in
estimating the stimulus-evoked blood oxygen level–dependent
(BOLD) response. Participants continued to receive feedback on
every trial that indicated the signed response error.

In addition to the memory tasks, participants also performed
an independent mapping task, which we used to train the spatial
encoding model (see below) and to localize voxels responsive
to the isoeccentric ring (as before, 3.9◦ from central fixation
point). In this task, participants fixated at a central point as
a flickering stimulus (6 Hz) appeared at some location on the
screen for 3000 ms. Participants monitored the flickering stim-
ulus for an occasional contrast change (8 of 54 total trials per
run) and reported whether the contrast increased or decreased
on those trials (pedestal at 70% Michelson contrast). On most
trials, the stimulus was a circular checkerboard (0.9◦ radius,
1.36 cycles/deg) centered at a point on the isoeccentric ring.
Each location was pseudorandomly drawn from one of 30 evenly
spaced polar bins. On five trials, participants instead saw a ring
aperture (1◦ wide) with a similar flickering checkerboard pattern
(3.9◦ from center). On the target trials, either the entire circular
checkerboard changed contrast, or a 0.681◦ (36◦ polar angle) wide
area of the ring changed contrast for 500 ms. We also included
six null trials to aid in the estimation of the stimulus-evoked
BOLD response. Trial order was randomized, with ITIs varying
between 2000 and 5000 ms (mean: 3500 ms). The magnitude of
the contrast change was manually adjusted by the experimenter
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on each run to keep task performance for each participant near
75% (participant averaged mean and bootstrapped 95% confi-
dence interval [CI]: 71.7% accuracy [60.11%, 81.62%]; Michelson
contrast change 0.50 [0.42, 0.58]).

Statistical Analysis

The majority of the statistical analyses reported in the paper
and all CIs were generated by bootstrapping. We opted for a
nonparametric approach because it carries fewer assumptions
about the distribution of the underlying data.

Unless otherwise noted, the bootstrapping was done by
resampling with replacement across the N = 10 participants for
10 000 iterations. To correct the CIs for a bias toward narrowness
in small samples, we drew N − 1 samples on each iteration
(Hesterberg 2011). Then, the mean of the value of interest (e.g.,
response error) was computed on each resampling iteration to
generate a distribution of means for the sampled population.
Generally, we calculated 95% CIs using the percentile method.
When computing the fidelity metric, however, we also corrected
for skewness in the CIs across participants by applying the
bias correction and acceleration (BCa) adjustment (Davison
and Hinkley 1997; Hesterberg 2014) after estimating bias and
acceleration by jackknife. BCa-adjusted values also produced an
accompanying P value.

To evaluate the evidence for the null hypothesis that there
was no difference between the WM and LTM tasks, we computed
a Bayes factor for the comparison between conditions. We used
the “BayesFactor” package in R 3.5.3 to convert a paired-sample
t-value into a Bayes factor, given a standard Cauchy prior on the
effect size and Jeffreys prior on variance (Rouder et al. 2009).
For a stable estimate of the t-value in our small sample, we
computed a t-value on every iteration of the across-subject boot-
strap described above. This generated a distribution of t-values.
We took the mean t-value of the bootstrapped distribution to
calculate the Bayes factor in favor of the null hypothesis of no
difference between WM and LTM (BF01).

To assess effects across ROIs, we ran repeated-measures
ANOVAs on either the representational fidelity metric or the
decoding accuracy. While it is challenging to control for differ-
ences in ROI size and for correlations between ROIs, we adopted
a nonparametric randomization approach that should minimize
any spurious effects from these factors. We compared the F-
score from a typical ANOVA to a null distribution of F-scores that
were generated by permuting the data across all factors (e.g.,
ROI, temporal epoch, and memory task), separately within each
participant, for 10 000 iterations (Manly 2007).

When multiple statistical comparisons are made (e.g.,
repeated for each ROI), we corrected across all test P values using
the false discovery rate procedure (q = 0.05 unless otherwise
noted; Benjamini and Yekutieli 2001).

Behavioral Data Analysis

To describe participant performance on each memory task, we
examined each participant’s trial-by-trial response error. This is
the signed difference between the true location of the memo-
randum and the participant’s response (between 0 and ±180◦).
Previous findings have shown that a histogram of response
errors can be described as a mixture of a uniform distribution,
representing guesses, and a circular Gaussian distribution cen-
tered near the correct response (Zhang and Luck 2008). The two
parameters of the circular Gaussian describe the mean response

(μ), which describes any systematic bias, and the standard devi-
ation (SD) of the responses, which describes the variability of
the memory reports. These parameters were fit using publicly
available code (Schneegans and Bays 2016).

We also fit the data with a simpler single-parameter model.
We set the mean of the circular Gaussian to be the sample
mean and used a modified version of the same code to fit the
SD. We then compared the single-parameter and two-parameter
models to one another by computing the Bayesian Information
Criterion separately for each participant.

All behavioral data analyses used 10 000 resampling itera-
tions.

Magnetic Resonance Imaging

We obtained all structural and functional MR images from par-
ticipants using a GE 3 T MR750 scanner at the University of Cali-
fornia, San Diego. We collected all functional images (19.2 cm2

FOV, 64 × 64 acquisition matrix, 35 interleaved slices, 3 mm3

voxels with 0-mm slice gap, 263 volumes per memory run, and
179 volumes per mapping run) using a gradient echo planar
pulse sequence (2000 ms repetition [TR], 30 ms echo [TE], 90◦ flip
angle) and a 32-channel head coil (Nova Medical). Five dummy
scans preceded each functional run. A high-resolution structural
image was acquired at the end of each session using a FSPGR T1-
weighted pulse sequence (25.6 cm2 FOV, 256 × 192 acquisition
matrix, 8136/3172 ms TR/TE, 9◦ flip angle, 1 mm3 voxels, and
172 volumes). All functional scans were coregistered to the
anatomical images acquired during the same session, and this
anatomical was in turn coregistered to the anatomical acquired
during the retinotopy scan.

EPI images were unwarped with a custom script from UCSD’s
Center for Functional Magnetic Resonance Imaging that calls
the FSL PRELUDE and FUGUE functions. All subsequent prepro-
cessing was performed in BrainVoyager 2.6.1, including slice-
time correction, affine motion correction, and temporal high-
pass filtering to remove slow signal drifts over the course of each
session. Data were then transformed into Talairach space and
resampled to a 3 × 3 × 3 mm voxel size. Finally, the BOLD signal
in each voxel was Z-transformed on a scan-by-scan basis. All
subsequent analyses were performed in MATLAB using custom
scripts (available at https://osf.io/fcp5y/).

For the encoding and decoding analyses, we balanced the
data by equating the number of runs for each memory task.
Some data were discarded due to excessive movement (>3 mm
in one run/scan). In these cases, we dropped runs until there
were an equal number of WM and LTM runs.

ROI Definition

The retinotopic ROIs were first defined for each participant fol-
lowing a previously published procedure (Sprague and Serences
2013). Briefly, we collected fMRI data in a separate 1.5-h session
that mapped the visual field. While one task was a passive
viewing task, the other task required participants to attend to
the portion of the visual field which contained the checkerboard
stimulus and to report an occasional dimming in one portion of
the stimulus. This attention task allowed us to reliably define
parietal ROIs. In total, we defined eight retinotopic regions: V1,
V2, V3, V4, V3A/B, IPS0, IPS1, and IPS2.

We then applied a mask to the retinotopically defined
occipital and parietal regions to isolate voxels that show some
response to the area where the spatial positions were presented.
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Figure 2. Retinotopic parietal ROIs (outlines) and lateral parietal ROIs (colored)
for the left hemisphere of an example participant.

This functional localizer relied on defining different conditions
for the circular checkerboard and ring aperture checkerboard
trials during the mapping task. We estimated BOLD response
activation to each condition by convolving the trial events with
a canonical two-gamma HRF (peak at 5 s, undershoot peak
at 15 s, response undershoot ratio 6, response dispersion 1,
and undershoot dispersion 1). We then solved a generalized
linear model (GLM) on all runs of this mapping task for a
single participant. This produced a statistical parametric map
of voxels with a significant BOLD response change attributable
to each condition (FDR q = 0.05, Benjamini and Yekutieli 2001).
The localizer mask only included voxels that responded with
a significant BOLD response increase during the ring aperture
condition.

In addition to retinotopic regions, we also defined three
lateral parietal regions: dorsal lateral intraparietal sulcus
(dLatIPS), ventral lateral intraparietal sulcus (vLatIPS), and AnG.
We defined these regions following a previous method used in
a study of episodic memory (Favila et al. 2018). First, we used
the Freesurfer parcellation to specify the LPC as any area in the
superior parietal, inferior parietal, and supramarginal parcels.
We then subdivided this portion of cortex using a 17-network
atlas defined from resting-state functional connectivity data
(Yeo et al. 2011). dLatIPS was part of network 12 in the atlas, and
vLatIPS was part of network 13. Both of these networks are part
of the frontoparietal control network. The AnG was defined by
combining the small parietal nodes from networks 15, 16, and
17, which are part of the default mode network.

Note that these atlas-defined regions were not defined using
any functional data. As a result, they exhibit some overlap with
the retinotopically defined parietal regions (see Fig. 2).

IEM for Spatial Position

Following previously published methods, we first estimated
an encoding model for spatial position using z-scored BOLD
responses obtained from the independent perceptual task
(Brouwer and Heeger 2009; Sprague and Serences 2013; Sprague
et al. 2018). This allowed us to estimate the response of each
voxel to any arbitrary spatial position covered by the visual
stimuli. Importantly, the encoding model approach allows us to
test more specific hypotheses about the format of mnemonic
information in a given region. This distinguishes it from other
multivariate pattern analysis methods that have been used

to measure encoding-retrieval similarity. Below, we detail a
model that assumes each voxel has a spatial tuning profile
along a continuous axis such that responses to nearby positions
should be more similar than responses to far-apart positions.
This assumption is known to be true in retinotopic regions,
and prior work has shown that spatial encoding models are
able to measure expected properties of perceptual codes,
such as broadening of spatial representations with increasing
eccentricity (Sprague and Serences 2013). If these models can
recover accurate representations of remembered positions in
nonretinotopic regions, we can infer that the activation pattern
associated with memory recall in each voxel covaries with
spatial position. This does not imply retinotopy in the region
or even stable spatial tuning across many tasks—it only implies
that it is stable across the training data and the test data. As a
test of reinstatement from perception, this model is a more
exact hypothesis test than correlative methods or general-
purpose classifiers which do not instantiate the hypothesis
of the encoding format in the algorithm itself. Finally, this
approach only accounts for signal correlations between voxels
and ignores noise correlations unlike other previously used
approaches (see discussion in Kriegeskorte and Douglas 2019).
Hence, any inferences made from the IEM analyses are only
about the spatial encoding properties in these regions, given
single-voxel, spatially specific responses, and not about other
information that could be simultaneously encoded.

We defined nine evenly spaced spatial channels, or basis
functions, along the polar angle axis (Fig. 1). This was the only
axis we varied in our mapping runs. Each spatial channel was
defined by equation (1), assuming a discretized polar axis (i.e.,
0–2π in steps of 0.0175 radians, or 1◦). The width and center of
the basis functions are modified by the term s/FWHM, where
s is the circular distance between the channel center and the
polar axis, and FWHM is the desired full-width half-maximum
of the response of the spatial channels. Our basis functions had a
FWHM of 60◦. Finally, to keep the encoding model weights within
an interpretable range, we want each spatial channel to have a
baseline of 0 and a maximum of 1. To achieve this, we used a
positive, half-wave rectified cosine.

f (s) =
(
0.5 ∗

(
1 + cos

( s
FWHM

)))7
for s ≤ r. (1)

Finally, although cosine functions are periodic, each spatial
channel should only have a peak response at its center, and
nowhere else. We mask the function by setting all values beyond
the radius r to 0 (here, r = 151).

The basis set S is the nine spatial channels in the discretized
polar axis (c channels × p points along the polar axis, here, 9 ×
360). For every training trial, we used the basis set to specify a
modeled activation on each of the c channels for each presented
mapping stimulus, resulting in a design matrix C (c channels ×
n trials).

The forward encoding model is then described in equation
(2), where B = BOLD responses (v voxels × n trials). As long as
n > c, it is possible to solve for W using the pseudoinverse (eq. 3).
We solved equation (3) using “mldivide” in MATLAB.

B = WC, (2)

W = C
(
BTB

)−1
BT, (3)

C2 =
(
WTW

)−1
WTB2. (4)
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After training the model by solving for W, we inverted the
encoding model (eq. 3) to estimate the activation of each spatial
channel, given the BOLD responses on a separate test dataset
and the independently trained model from the same participant
(eq. 4). The spatial channel activations allowed us to estimate
the spatial position of the stimulus that was presented in each
trial. The test dataset could be the BOLD responses of voxels
during the memory delay of either the WM or LTM task (Sprague
et al. 2014; Ester et al. 2015), or the BOLD responses to a held out
portion of the independent mapping task. Notably, we attempted
to recover spatially specific information in the patterns of voxel
responses during each of two memory tasks when “no visual
stimulus was shown on the screen.” When directly comparing
the fidelity of WM and LTM representations, we used a “fixed”
encoding model across conditions. That is, the encoding model
was estimated once (here, on data from a separate task) such
that the trained model is “fixed” across conditions. Then to test
the model, reconstructions were obtained for each condition
separately. As noted previously, it is essential to use a fixed
encoding model scheme to directly compare the model-based
representations across different conditions (Sprague et al. 2018,
2019).

We estimated channel responses C2 from two different types
of BOLD data B2. In our first analysis, B2 consisted of the BOLD
response at each TR (after motion-correction and z-scoring
within each run), for a total of eight TRs. In other analyses
described below, we averaged the data across TRs for use in
the IEM.

To generate a continuous representation of spatial position,
we multiplied C2 by the basis set S. We recentered all of the
model-based representations such that the memory stimulus is
at 0◦ and average across all trials.

We varied the dataset used for training and testing the IEM
to test different hypotheses about how information is encoded
in a given region. To test whether a region encoded information
in a perception-like code, we trained on the perceptual mapping
task and tested on the memory task. To identify which regions
contained significant representations of the sensory stimuli (i.e.,
the spatial position), we trained and tested within the mapping
dataset with leave-one-run-out cross-validation. To characterize
whether a region contained significant spatial representations
within a memory task, we trained and tested within the memory
task, only using TRs from the late delay period. To ensure that
the datasets are balanced across spatial position, we randomly
resampled from each of 24 position bins and held out those 24
trials for testing. This resampling procedure was repeated 1000
times, and the results were averaged across these iterations.
Finally, to test whether a region encoded spatial representations
similarly across memory tasks, we trained on one memory task
and tested on the other, again only using TRs from the late delay
period.

Representational Fidelity Metric

To quantify the model-based memory representations, we com-
pute a metric which describes the fidelity of the spatial repre-
sentation. This is similar to previously published metrics but
is modified so that it monotonically increases as the repre-
sentation decreases in width (Sprague et al. 2016; Wolff et al.
2017).

Consider each point of the spatial IEM-based representation
in polar co-ordinates as

[
rp, θp

]
, where r is the value of the

representation in arbitrary units (y-axis in Fig. 1B) and θ is the

polar angle (x-axis in Fig. 1B). The representational fidelity is
directly proportional to the average directional energy of the
spatial representation pointing in the expected direction (0◦).
We computed this by finding the mean vector for across all n
points using two metrics of circular data, the average preferred
direction and the dispersion (Jammalamadaka and SenGupta
2001). Since these metrics only exhibit the desired behavior
when r is positive, and because we were focused on fidelity
as opposed to baseline offsets, we forced the minimum of the
model-based representation to be 0 by adding an offset to every
representation.

First, we found the mean direction of the spatial IEM-
based representation (i.e., the angle of the vector) using the
“circ_mean” function in the CircStats MATLAB toolbox (Berens
2009). We then computed how closely the vector points to the
expected value of 0 by taking the cosine of this value.

fidelity = max(r)∗ | circ_r (θ, r) | ∗ cos
(
circ_mean (θ, r)

)
.

We then calculated the dispersion of the spatial representa-
tion (i.e., the vector length), which scales monotonically with the
width of the function. As the spatial representation becomes
narrower and more precise, the vector length increases. The
dispersion is computed with “circ_r” (Berens 2009).

Finally, we multiplied the mean direction by the dispersion
and scaled the result by the maximum value of the spatial
representation, yielding a fidelity metric which monotonically
increases as a given spatial representation increases in ampli-
tude and in precision (Fig. 1B). The metric is negative when the
mean vector points in the opposite direction (180◦), and it is
close to 0 if the spatial representation is flat and contains no
information about the remembered location. Another way to
understand this metric is to compare it to methods for measur-
ing behavioral recall and precision based on error distributions.
Here, we are instead quantifying the error of the reconstruction,
with wider and lower reconstructions representing higher error,
or worse fidelity. However, it is critical to note that a model-
based reconstruction computed with the IEM approach is not
analogous to a probability distribution.

As noted in the Statistical Analysis, we resampled across par-
ticipants to generate CIs for the sampled population. To generate
single-participant CIs, we bootstrapped the data by resampling
across trials. If the 95% CIs overlapped with 0, then there was
no significant memory representation for that participant or for
that region. When we compared fidelity across memory tasks,
we subtracted the two bootstrapped distributions (e.g., WM −
LTM) and compared this difference distribution against 0.

We also computed a post-hoc power analysis to examine the
ability of our sample to detect significant changes in representa-
tional fidelity. Details are in the Supplementary Material (Table
S1, Fig. S2).

Support Vector Machine Classification

The analyses described above allowed us to generate continuous
estimates of remembered stimuli to precisely compare the qual-
ity of spatial memory representations across ROIs and memory
tasks. We were also interested in whether activation patterns in
these ROIs could discriminate between the two memory tasks.
To test this, we trained a support vector machine (SVM) with the
default linear kernel to discriminate between the WM trials and
LTM trials. This was done using MATLAB’s “fitclinear” routine.
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We first divided the data into two temporal epochs during
the memory delay period and averaged across the TRs in those
epochs (early epoch: TRs 2–4, late epoch: TRs 5–7). While we
equated the WM and LTM tasks as closely as possible, the WM
task displayed an additional sensory stimulus that may increase
the likelihood that a given ROI can classify a trial into either
task. We hypothesized that this should only occur in the early
epoch when the visually evoked hemodynamic response is at its
peak. Classifier training and testing were performed separately
for each epoch, ROI, and participant. To ensure that classifica-
tion performance was not driven by a global difference in the
univariate response between the memory tasks, we computed
the global mean across all trials and voxels for each memory
task. We then subtracted this constant from the data before we
performed any of the SVM analyses below. This mean subtrac-
tion amounts to a baseline shift and thus has no effect on the
variance of the data in each condition.

Mean classifier accuracy was determined by k-fold cross-
validation (k = 12, which is the typical number of runs in each
task condition) using MATLAB’s “crossval” function. We then
assessed statistical significance by randomizing the labels asso-
ciated with each task and generated a null distribution of clas-
sifier accuracies over 1000 iterations.

To combine the data across participants, we took all classifier
accuracies for a given ROI and temporal epoch (10 values, one for
each participant) and calculated the mean. We then performed
a similar operation on the permuted null distributions, concate-
nating all the distributions (10 participants × 1000 iterations)
and calculating the mean across participants to generate a
single null distribution for the mean.

We computed empirical one-tailed P values by comparing
when the mean classifier performance was higher than the
permuted null values [1 – mean(classAcc > nullDistr)]. Note
that we used one-tailed tests to reflect the fact that the clas-
sifier accuracies were not predicted to drop significantly below
chance. These P values were subject to FDR correction across
temporal epochs and ROIs. We used a stricter FDR q = 0.025 to
reflect the fact that we only used one-tailed P values.

Code Accessibility

The code to analyze the behavioral data and the fMRI data
(i.e., the IEM, SVM, and associated analyses) is available at
https://osf.io/fcp5y/. This repository also includes the code for
the training and scanner tasks.

Results
Behavioral Data

Outside of the scanner, participants were trained on both the
LTM and WM tasks for at least 5 days, with the goal that mean
recall error on the LTM retrieval task was stable at the end of
training (mean number [95% CIs] of training days 7.39 [5.78,
9.22]). This training target did not enforce similar performance
between tasks (participant averaged error on the last day: WM:
4.29◦ [3.58◦, 5.12◦]; LTM: 6.54◦ [4.69◦, 8.52◦]). To characterize each
participant’s recall success and precision, we plotted a his-
togram of their recall errors and fit the data with an additive
mixture of a circular Gaussian and a uniform distribution (Zhang
and Luck 2008; Harlow and Yonelinas 2016). The SD of the
Gaussian is a measure of the spatial precision of their recall,
with larger SDs corresponding to imprecise recall. The height of

the uniform distribution is a measure of their rate of forgetting.
Here, we report the complement of this number, the probability
of recall (P(recall)). The interval training procedure combined
with precise feedback significantly increased both the precision
and probability of recall in the LTM task (difference between first
and last set of trials: SD: 14.12◦ [2.88◦, 37.23◦], P < 0.001; P(recall):
0.05 [0.01, 0.10], P = 0.01). Although our training procedure did
not require that performance was matched between the WM
and LTM tasks, we nevertheless found that mean response
error was comparable between the tasks during the sessions
in the scanner (participant averaged WM error: 7.40 [5.67, 9.53];
LTM error: 7.78 [4.54, 11.88], P = 0.78; Bayes factor in favor of
null BF01 = 3.24). The probability of recall was high (P(recall):
WM 0.98 [0.96, 1.00], LTM: 0.97 [0.94, 1.00]; Fig. 3B, right) and
similar between both memory tasks (P = 0.35; BF01 = 2.40). As a
group, participants also had similar recall precision between
both tasks (mixture model SD: WM 7.61 [6.56, 8.69], LTM: 7.91
[5.38, 10.81]; P = 0.85; BF01 = 3.23). However, recall precision varied
more on the LTM task: Some participants had worse precision
in the LTM task than the WM task, while others had better
precision (Fig. 3B, left). We obtained similar results when we fit
a simpler single parameter model (one-parameter model that
only estimates circular Gaussian SD: WM: 11.73 [8.20, 15.96],
LTM: 11.37 [6.22, 17.83]; P = 0.78; BF01 = 3.06). Model comparison
with the Bayesian Information Criterion revealed that neither
model was consistently better across the 10 participants (WM:
mixture model better in four participants; LTM: mixture model
better in five participants). Thus, the number of parameters
in the models does not substantively alter our main conclu-
sions.

Sensory-like Representations of Remembered
Spatial Position

To assess how spatial information was encoded during the
delay period of both memory tasks, we trained an encoding
model using data from an independent perceptual task, which
allowed us to map the spatial selectivity of visually responsive
voxels in several retinotopic ROIs. Having trained the model
of the independent perceptual task, we inverted the encoding
model to reconstruct spatial representations of the remembered
location from the pattern of activity across voxels in the WM
or LTM tasks. If this reconstruction is highly accurate, then we
can conclude that the pattern of voxel activations during the
perceptual task is similar to the pattern of activations during
the delay period of the memory tasks (i.e., it is sensory-like).
This is a strong test of the cortical reinstatement hypothesis,
which posits that the neural representation of an item dur-
ing perception is reinstated when that item is recalled from
memory. Furthermore, using an encoding model trained on a
single independent task allows us to directly compare between
spatial representations across WM and LTM (Sprague et al. 2018,
2019).

The spatial reconstructions show activation at each modeled
location, and peaks within reconstructions can be interpreted
as visual spatial memory representations that can be param-
eterized as a curve in circular (polar) co-ordinate space since
the eccentricity of the stimuli was fixed (Fig. 1B). To average
across trials with different remembered positions, we recen-
tered the reconstruction on each trial so that the remembered
position was at 0◦. In Figure 4A, we plot these averaged spatial
reconstructions from area V1 at several timepoints during the
memory delay of both tasks. As expected, spatial information
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Figure 3. Memory recall across both scanner tasks is similar. (A) The distribution of memory recall errors for an example participant. We fit a mixture model to this

distribution for every participant, where the Gaussian distribution characterized the variability of recall (SD) and the uniform distribution characterized the likelihood
of recall (P(recall)). (B) The mixture model fit parameters for each subject and task. The mean across participants and 95% CIs are shown in black.

during the delay period did not emerge until 4–6 s after stim-
ulus onset, when the BOLD response evoked by a stimulus is
expected to peak. Additionally, the spatial reconstruction was
higher amplitude in the WM task than in the LTM task early
in the delay period. This early difference is likely due to fact
that the remembered position was marked by a dot in the
WM task but not in the LTM task (Fig. 1A), which should evoke
a sensory response. However, retrieval from LTM also occurs
in the early TRs and may also contribute to this difference.
Regardless, we found that late in the delay period (∼10 s after
stimulus onset), when lingering sensory activation should have
decayed, we found that model-based spatial representations
were similar between the WM and LTM tasks. For comparison
to the univariate timecourses for each task, see Figure S1.

To quantify the model-based spatial representations, we
computed a metric to measure the representational fidelity
of each recentered spatial representation (see Methods). We
illustrate some properties of this fidelity metric and its
computation in Figure 1B (left panel). First, each point in the

spatial representation is replotted in polar space. We then
find the mean vector of all of these points, which describes
the average directional energy of the spatial representation.
The fidelity, then, is proportional to the length of the vector
along the expected direction (i.e., 0◦, or the x-component of
the vector; bold italic numbers in Fig. 1B, left panel). Thus,
fidelity increases as a spatial representation increases in
amplitude, and increases as dispersion—the width of the spatial
representation—decreases.

We found that spatial position was represented with high
fidelity during the delay period of both memory tasks in several
retinotopic ROIs. Representational fidelity tended to peak earlier
for the WM task (mean timepoint across ROIs: WM 6.89 s after
stimulus presentation; LTM: 8.89 s). Again, this is likely due to
sensory activity evoked by the small dot stimulus marking the
to-be-remembered position in the WM task. However, the spatial
representation persisted well into the delay period, after the
initial sensory response would decay (Fig. 4B, V1—IPS2). In the
lateral parietal ROIs (dLatIPS, vLatIPS, and AnG), there appeared
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Figure 4. Model-based representations of remembered spatial positions over time for both memory tasks. Error bars are participant-resampled 95% CIs. (A) The
timecourse of model-based spatial representations using V1 data, averaged across participants (0 s is stimulus onset). Remembered position was represented similarly
for WM and LTM late in the delay period (8–14 s). (B) Representational fidelity timecourses for all retinotopic areas we analyzed. CIs that intersect with 0 are not
significant. dLatIPS, dorsolateral IPS; vLatIPS, ventrolateral IPS; AnG, AnG.

to be no significant evidence of sensory reinstatement across
the entire delay.

In the remainder of our analyses, we report results from data
averaged over TRs either early in the delay period (TRs 2–4, or 2–
6 s after stimulus presentation) or late in the delay period (TRs 5–
7, or 8–12 s). Figure 5A summarizes representational fidelity late
in the delay period (comparable to Fig. 4B). As we saw previously,
the retinotopic ROIs show evidence of sensory reinstatement,
while the LPC ROIs do not. To test this, we first ran a two-
way repeated-measures ANOVA with ROI and memory task as
factors and determined statistical significance by comparing
the F-scores to a permuted null distribution. We found a main
effect of ROI (P < 0.001) and a significant interaction (P = 0.003)
but no significant difference between memory tasks (P = 0.191).
This interaction suggests that some ROIs have a larger difference
between memory tasks than others (e.g., higher WM fidelity
in V1 − V3/V3AB, Fig. 5A) even though the average difference
between tasks is insignificant.

Bayesian t-tests on the data from the late delay period
revealed that most ROIs had weak-to-moderate evidence for
the hypothesis that there was no difference between WM and
LTM (BF01 for V3: 1.47, V4: 2.25, IPS0: 1.80, IPS1 2.18, IPS2 2.89,
dLatIPS 2.16, vLatIPS 3.24, AnG 2.92), while in the remaining
ROIs, there was weak evidence for the alternative hypothesis
that one condition has higher fidelity (BF01 for V1: 0.35, V2: 0.77,
V3AB: 0.45; Jeffreys 1961; Schönbrodt and Wagenmakers 2018).

Overall, we do not find compelling evidence of a difference in
sensory reinstatement between model-based representations
during WM and LTM.

One possible explanation for this null result in LPC ROIs is
that there was poor signal in the sensory mapping task, and this
led to unstable estimates of the spatial selectivity of each voxel
that did not generalize well to the memory tasks. To evaluate
this possibility, we used a leave-one-run-out cross-validation
procedure to train and test models based only on data from the
sensory mapping task. In this analysis, as shown in Figure 5B,
we found that activation patterns in all retinotopic and non-
retinotopic ROIs except vLatIPS contained information about
the viewed position of the mapping stimulus (all significant
Ps < 0.05). Thus, even the nonretinotopically organized areas
dLatIPS and AnG encoded information about the location of a
continuously visible stimulus, suggesting that a failure to find
information about remembered positions was not due to poor
SNR in the mapping task. Note that this is contrast to prior work
using a different method to measure feature-level information—
using correlative methods, they failed to find significant feature-
level information in any lateral parietal region during their
perceptual task (Favila et al. 2018).

In summary, we assessed the fidelity of memory represen-
tations using an encoding model that was trained on sensory-
evoked responses from an independent task. We found that
activation patterns in retinotopic ROIs contained information
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Figure 5. Model-based representations for different combinations of training and testing data, taken from the end of the delay period (8–12 s). For each plot, we ran a

permuted two-way ANOVA of ROI by memory task (or for the sensory control, a one-way ANOVA across ROIs). (A) Train on the sensory task and test memory, as a test
of sensory reinstatement. (B) As a control, train and test within the sensory task. (C) Train and test within each memory task, to examine task-specific representations.
(D) Cross-train memory tasks, e.g. train WM and test LTM, to examine memory representations that are general across tasks. In all four cases, there was a significant
main effect of ROI (P < 0.001). We found a significant two-way interaction for both the independent training set (P = 0.003) and the cross-training procedure (P = 0.001),

but no main effect of task. Training within memory tasks yielded a borderline significant effect of memory task (P = 0.052), as the WM task generally resulted in higher
fidelity than the LTM task. Asterisks indicate significant information after FDR correction across all ROIs and both memory tasks, q = 0.05.

about the remembered spatial position in both the WM and LTM
tasks, and there was little evidence for a difference in repre-
sentational fidelity between the memory tasks after ∼8 s into
the delay period. This is a compelling test of the reinstatement
hypothesis because it demonstrates fMRI activation patterns,
evoked by viewing and attending a spatial position, have a strong

overlap with activation patterns elicited by remembering the
same spatial position. By contrast, nonretinotopically organized
ROIs in parietal cortex did not contain information about
remembered positions in either memory task when the model
was trained on the sensory localizer and tested on data from
each memory task. Taken together, these data imply that
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information reinstated from both WM and LTM is encoded in a
sensory-like code, but only in retinotopically organized regions
of occipital and parietal cortex.

Model Cross-Generalization to Compare Sensory
and Mnemonic Representations in Retinotopic
and Nonretinotopic ROIs

The presence of spatial information in the LPC ROIs during a
perceptual task raises the possibility that they do encode spatial
information in the memory tasks but in a different format than
the sensory evoked code.

To evaluate this possibility, we used a balanced cross-
validation procedure to train and test the spatial IEM separately
within each memory task (Fig. 5C). A permuted two-way ANOVA
of ROI by task only showed a significant effect of ROI (ROI:
P < 0.001; task P = 0.052; interaction P = 0.071). We then tested
each ROI and task individually as before (FDR correcting over all
comparisons, q = 0.05). All of the retinotopically organized ROIs
contained information about the remembered spatial position
in both the WM and the LTM tasks (all Ps < 0.005). However, we
also found evidence that activation patterns in dLatIPS and AnG
also represented the remembered spatial position in both tasks
(dLatIPS WM: P = 0.002, LTM: P = 0.027; AnG WM: P < 0.001, LTM:
P = 0.072). By contrast, vLatIPS did not contain position-specific
representations of the remembered position (WM: P = 0.165, LTM:
P = 0.549). The observation of information about remembered
position when training and testing was carried out separately
for each memory task—but not when we trained on the sensory
localizer—suggests that dLatIPS and AnG encode mnemonic
information in a format that differs from the sensory evoked
response patterns.

Finally, we also performed cross-training between the
memory tasks (i.e., train WM, test LTM; train LTM, test WM)
to more directly estimate the extent to which memory-
related activation patterns were shared across the two tasks
(Fig. 5D). The two-way ANOVA showed a main effect of ROI
and a significant interaction (ROI: P < 0.001; task: P = 0.211;
interaction: P < 0.001). Similar to the interaction effect when
training on the independent sensory task, the interaction
appeared to be driven by higher fidelity when training on
the WM task and testing on the LTM task in the early visual
areas (red dots; Fig. 5D). When we tested each ROI and task
individually, we found significant generalization between the
WM and LTM tasks in all of the retinotopic ROIs and in
dLatIPS and AnG (all Ps < 0.05). Interestingly, we also found
significant information in the cross-training analysis in vLatIPS
for both memory tasks (WM: P < 0.001, LTM: P = 0.003). This
was surprising given that vLatIPS did not contain information
about either task when training was carried out on the sensory
mapping task or when training and testing was done entirely
within task. It is possible that this is due to noisy data,
especially because training and testing within-task means
that the model is trained on fewer trials. It is also possible
that vLatIPS activation patterns may be representing other
information, such as features of the clip art item (which
could be task-relevant, in the LTM task, or task-irrelevant).
Some have reported evidence that cues may have a significant
effect on activation patterns during memory retrieval (Xiao
et al. 2017). Furthermore, there is other evidence that vLatIPS
represents feature information that is irrelevant to a memory
judgment (Favila et al. 2018). While these studies relied on

correlation methods to compute information scores, it is still
possible that such factors would impact our IEM analysis. In
particular, if some cue features are not well randomized with
respect to spatial position, the IEM may overfit to feature-level
responses.

Overall, these findings suggest that dLatIPS and AnG encode
mnemonic information for spatial position during WM and LTM
in a different format than the original perceptual representation.
Moreover, the WM/LTM cross-training analysis suggests that the
representational format of remembered information in dLatIPS,
vLatIPS, and AnG is at least partially common to both WM and
LTM.

Task Classification

In the analyses above, we used different IEM training and testing
schemes to test whether the format of reinstated memories was
shared between WM and LTM. Next, we examined a related but
distinct question: Is there a discriminable difference between
the activation patterns elicited by WM recall and LTM recall?
ROIs that share representational codes may still contain encode
some information unique to the memory task. To test this
possibility, we trained a binary SVM to classify each memory trial
as belonging to the WM or LTM task. The SVM was trained using
data balanced across spatial position and task.

We ran the SVM classifier for both the early and late temporal
epochs as defined above (early epoch: TRs 2–4, late epoch: TRs
5–7). We found that we could discriminate between the two
tasks early in the delay period across all retinotopic ROIs and
in both dLatIPS and vLatIPS (Fig. 6). We believe this effect is
largely driven by the presence of a sensory stimulus in the
WM task but not in the LTM task. Note that successful SVM
discrimination cannot be driven by differences in univariate
delay period activity because we removed the mean within
each memory task before training and testing the classifier
(see Methods). However, we also found that early visual areas
(V1–V4) failed to discriminate between tasks in the late delay
period. Instead, only activation patterns in retinotopic parietal
regions discriminated between the WM and LTM tasks dur-
ing the late temporal epoch. Activation patterns in the dorsal
and ventral lateral IPS also discriminated between tasks dur-
ing the late temporal epoch. Lastly, we found that activation
patterns in AnG were unable to discriminate between tasks
entirely.

To evaluate the differential classification accuracy across
ROIs, we ran a two-way repeated-measures ANOVA of ROI by
temporal epoch on classifier accuracy and calculated P values as
previously described. Both main effects of ROI and epoch were
significant (Ps < 0.001), and there was a significant interaction
between the two (P = 0.001). Since AnG did not show any ability
to discriminate between task, we reran the ANOVA without this
ROI. While there was no main effect of ROI (P = 0.076), the effect
of epoch (P < 0.001) and the interaction (P = 0.01) remained signif-
icant. To test the hypothesis that the interaction was driven by
the difference in discriminability between epochs, we ran post
hoc one-way ANOVAs of ROI on classifier accuracy separately
within each epoch (main effect of ROI on early epoch: P = 0.065;
late epoch: P = 0.016). Since all ROIs were able to discriminate
task in the early epoch, we saw no significant effect of ROI
there. These data suggest that although the representation of
the remembered location is similar between the WM and LTM
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Figure 6. Task decoding in the early and late epochs of the delay period in each ROI. Colored dots show data from each individual subject, and error bars are 95% CIs

estimated with bootstrapping. Classifier accuracy is significantly above chance (∗) if it passes a one-tailed a permutation test, FDR-corrected across ROI and temporal
epoch (q = 0.025). Unlike the occipital ROIs, the activation patterns in regions of parietal cortex (V3AB, IPS0, etc.) resulted in above chance decoding accuracy in the late
epoch.

tasks, in most ROIs that we examined, information that differ-
entiates the two tasks is selectively present in both retinotopic
and lateral parietal regions.

Discussion
The present study, in which we examined WM and LTM using an
experimental design that closely matched behavioral precision,
makes three main contributions. First, we demonstrate that
the fidelity of sensory-like representations is similar between
both WM and LTM in both occipital (V1–V4) and parietal (V3AB,
IPS0-2) retinotopic regions. Second, we provide evidence that
while lateral parietal regions do not reinstate information in
a sensory-like format, they do encode spatial memories in a
format that is partially shared between the WM and LTM tasks.
Third, we show that activity patterns in parietal regions, but
not early visual areas, contained information about whether
subjects were maintaining information encoded into WM or
retrieved from LTM. We propose that these parietal areas may
be jointly coding information about the content and the source
of visual memories.

The results that directly compare between WM and LTM
representations have implications for theories about how
memory systems interact with one another. Many theories posit
that LTM retrieval places remembered content directly into WM.
That is, both WM and actively retrieved LTMs are maintained
via the same processes, a capacity-limited state called the
“focus of attention” (Atkinson and Shriffin 1968; Cowan 1995;
LaRocque et al. 2014; D’Esposito and Postle 2015; Fukuda and
Woodman 2017). Our finding that WM and LTM representations

are both represented in the same retinotopic regions in the
same sensory-like format provides compelling evidence for this
account.

This theory is also consistent with our finding that lateral
parietal regions encode mnemonic information in a format that
was shared between WM and LTM tasks. We could robustly
reconstruct the remembered position from dLatIPS activity
when we trained and tested the model within or across memory
tasks. The pattern of results was similar in AnG, although only
modest task-specific mnemonic information was observed in
the within-task training/testing analysis (see Table 1; Fig. 5C).
By contrast, we only observed spatial information in vLatIPS
when models were trained on one memory condition and
tested on the other. Together, these results support a general
role for these regions in representing spatial information in
both WM and LTM. However, since the format is not sensory-
like, it suggests that the information is somehow reformatted
or transformed. This is supported by recent evidence (Xiao
et al. 2017; Favila et al. 2018; Bainbridge et al. 2021) that has
led some to argue that these mnemonic representations are
spatially transformed versions of perceptual representations
(Favila et al. 2020). This transformation may be functional,
ensuring that information in memory is distinguishable from
incoming sensory information (Bettencourt and Xu 2015; Stokes
2015; Xu 2017). We note this is purely speculative in the absence
of additional experimental data evaluating memory fidelity in
the face of different kinds of competing distractors (i.e., Does
the degree to which the codes in LPC are transformed away
from sensory codes predicts success in the face of concurrent
sensory distractors?).
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Table 1 Summary of our findings, separated by the major region groupings (retinotopic occipital, retinotopic parietal, and lateral parietal)

Method Test of representation Occipital Retinotopic parietal Lateral parietal

V1–V4 V3A/B, IPS0-2 dLatIPS vLatIPS AnG

IEM Sensory info (control) 1 1 1 0 1
IEM Sensory-like reinstatement 1 1 0 0 0
IEM Task-specific 1 1 1 0 ∼1
IEM Task-general (cross-training) 1 1 1 1 1
SVM Task discriminable 0 1 1 1 0

Note: A “1” indicates a significant effect and a “0” indicates a nonsignificant effect. A tilde indicates that the effect was not consistent across the WM and LTM tasks.

We also found that activity patterns in almost all parietal
ROIs, but not occipital ROIs, could decode whether a trial
belonged to the WM or LTM task (Fig. 6). The one exception
was AnG, which could not discriminate between the two
memory tasks. We discuss three possible reasons we observed
this finding in the remaining parietal ROIs. One possibility
is that parietal regions encode the task set (i.e., higher-level
representations that govern the execution of a specific task).
Indeed, past work has shown that parietal regions encode
higher-order task representations, such as the task rule that
the subject is executing (Bode and Haynes, 2009; Woolgar
et al., 2011a, 2011b). The second possibility is that the WM
and LTM tasks require different attentional processes. Parietal
regions have been reported to be engaged during attention
tasks, WM tasks, and LTM tasks (Awh and Jonides 2001; Awh
et al. 2006; Cabeza et al. 2008; Hutchinson et al. 2014; Sestieri
et al. 2017). Researchers have separately proposed that the
parietal mechanisms involved in spatial attention also support
spatial WM (Awh and Jonides 2001; Awh et al. 2006) and that
parietal regions mediate attention to long-term memories
during retrieval (Cabeza et al. 2008; Sestieri et al. 2017). The
ability of the SVM decoder to distinguish between WM and
LTM tasks in parietal regions raises the possibility that these
attention-mediated memory processes may not be identical
across tasks. The last possibility is that parietal regions encode
the “source” of memory representations (perception for WM,
and an internal store for LTM). One issue with relying solely
on cortical reinstatement for memory recall is that multiple
sensory representations in one cortical region, such as area V1,
could be attributable to ongoing perception, recent perception
(WM), or distant perception (LTM). In order to maintain separable
representations within sensory areas, parietal regions may
additionally represent the source of sensory information.
This could help protect reinstated sensory memories from
interference by concurrent sensory input (Bettencourt and Xu
2015; Rademaker et al. 2019). Further work is needed to test
these hypotheses.

Finally, we note that our investigation of memory represen-
tations is limited to visual and parietal cortex and does not
provide any evidence about the differential role of other areas,
such as the medial temporal lobe (MTL), which is thought to play
a role in both LTM and WM (Squire and Wixted 2011). Several
studies have shown that the hippocampus and surrounding
cortical regions exhibit encoding-retrieval reinstatement, both
for stimulus categories (Polyn et al. 2005; Liang and Preston 2017;
Schultz et al. 2019; Bainbridge et al. 2021) and for individual
episodic events (Staresina et al. 2012; Tompary et al. 2016) across
a variety of different recall tasks that may involve both WM and
LTM to varying degrees. Although the MTL has long been linked

with LTM (Scoville and Milner 1957; Mishkin 1978; Squire and
Zola-Morgan 1978), a review of existing evidence suggests that
the hippocampus is necessary for some types of WM tasks—
perhaps specifically when they are complex (Yonelinas 2013)
or spatial tasks (Nadel and Hardt 2011). Future studies that
are optimized for imaging and segmenting the MTL could use
similar techniques as the current study to compare memory
reinstatement and retrieval across WM and LTM in MTL regions.

In conclusion, our findings suggest that remembered
spatial positions encoded into WM or retrieved from LTM
are represented similarly in occipital and parietal cortex. In
retinotopic regions, activity patterns recapitulated those that
were observed during an independent sensory stimulation
condition, showing that a sensory recruitment model provides
a useful perspective for how visual details are maintained
regardless of the specific memory system. In nonretinotopic
areas of LPC, mnemonic representations appear to share a
sensory format across WM and LTM that is distinct from a
sensory-like code. Moreover, parietal regions—both retinotopic
and lateral—also represented the memory task being performed,
unlike retinotopic occipital regions.
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Supplementary material can be found at Cerebral Cortex online.
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