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ABSTRACT

The ability to generalize compositionally is central to intelligent behavior. While
recent work shows that networks can generalize compositionally under certain
conditions, many studies focus on simple compositional tasks, such as those that
are purely linguistic (or unimodal), or those with no temporal structure. Here we
investigate how representational dynamics shape compositional generalization in
recurrent neural network (RNN) models during cognitive tasks with evolving tem-
poral structure, providing insights into neural computation during flexible reason-
ing. We trained RNN’s on the Concrete Permuted Rules (C-PRO) task, a cognitive
compositional task established for humans that requires integration of information
across task phases. We assessed how different learning regimes induced general-
ization and representational dynamics. We systematically varied model initial-
izations to generate RNNs that exhibited a wide range of compositional gener-
alization performance, ranging from 38% to 90%. Analysis of high-performing
models revealed nontrivial temporal dynamics of task representations, highlight-
ing the importance of selectively engaging the right features at the appropriate task
phase for generalization. Our findings reveal that successful compositional gener-
alization requires the orchestration of structured intermediate representations that
are dynamically composed, resulting in complex, feature-specific representational
dynamics — providing testable principles for how neural systems enable flexible
reasoning.

1 INTRODUCTION

Understanding the mechanisms underlying compositional generalization requires examining how
networks organize their internal representations during learning and task performance. Recent
work has established that neural networks can achieve compositional generalization when equipped
with useful and reusable representations (Yang et al.l 2019; [Ito et al., 2022; Johnston & Fusi,
2023}, |Driscoll et al., [2024). Other theoretical work has identified distinct learning regimes, with
“rich” learning leading to structured representations that likely enhance compositional generaliza-
tion (Lippl & Stachenfeld, 2024), while “lazy” models learn input-output mappings by projecting
input features to a random, high-dimensional space, similar to reservoir computing (Chizat et al.,
2019). However, these prior studies have primarily examined the structure of representations with-
out considering cognitive tasks that require the temporal orchestration of information, and have
typically focused on simple categorization or context-dependent tasks with limited manipulation of
task features. This limits the insights from prior studies to more practical settings, where decisions
in realistic cognitive tasks unfold over time and require dynamic integration of evolving information.
Thus, a computational understanding of how representational dynamics and learning regimes jointly
influence compositional generalization remains limited.

When computational experiments are paired with well-designed cognitive tasks, they can help un-
cover the mechanisms underlying specific cognitive processes. Here, we study computational mod-
els performing the Concrete Permuted Rules Operation (C-PRO) task, a task commonly used to
probe compositionality in humans. Successful C-PRO performance requires 1) composability across
diverse feature domains, and 2) dynamic integration of these features within and across distinct tem-
poral phases. Characterizing how models perform this task extends prior work by tracking how
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representations of context, stimuli, and response information evolve to support compositional gen-
eralization.

A promising approach for understanding these dynamics is through the lens of neural representa-
tional dimensionality and decoding (Badre et al.l 2021)). Studies have shown that high-dimensional,
decodable representations during stimulus integration improve task performance (Rigotti et al.,
2013} [Fusi et al} 2016} Kikumoto & Mayr, 2020), while compressed, lower-dimensional abstract
representations enable generalization (Bernardi et al.|[2020; [Flesch et al., 2022} Ito & Murray}, 2023;
Chakravarthula et al.| [2025). These findings may appear contradictory, but prior studies primar-
ily characterized representational geometry during isolated task phases (e.g., instruction period vs.
stimulus presentation). We adjudicate these differences by tracking the evolution of dimensionality
and decodability across all phases, assessing their impact on compositional generalization.

We trained RNNs on the C-PRO task to examine how rich vs. lazy learning regimes affect repre-
sentational dynamics and compositional generalization. Consistent with prior work, rich learning
led to significantly better generalization. However, while previous work has emphasized that rich
learning tends to produce low-dimensional, structured representations that support generalization
(Flesch et al., |2022; Ito & Murray, [2023} |[Farrell et al., [2023} |Liu et al.,|2023)), our findings revealed
that examining the geometry of feature-specific representations — specifically stimulus, context, and
response information — provides critical insights into compositional generalization in tasks with dy-
namic temporal structure. Specifically, we found that successful generalization emerged through
coordinated temporal dynamics across feature representations. High-performing rich networks dis-
played feature representations that expanded and compressed throughout different task phases, while
lazy networks showed relatively simplistic temporal dynamics. Interestingly, the dynamic coordina-
tion observed in rich networks enabled the formation of contingency representations that enabled the
formation of early and efficient decisions. Together, these findings demonstrate that compositional
generalization in temporally structured tasks depends on the development of structured, feature-
specific temporal dynamics.

2 EXPERIMENTAL DESIGN

2.1 THE CONCRETE PERMUTED RULES OPERATION TASK

The C-PRO paradigm studies context-dependent compositionality, executive control, and task gen-
eralization in humans (Ito et al.| 2017} |Cole et al., 2013). C-PRO composes task rules from three
domains (logical decision, sensory semantic, and motor response) to generate up to 64 task contexts
(Fig. [IB-C). The sensory rule indicates which stimulus feature to attend (Is it red? Is it vertical?? Is
it high pitch? Is it periodic?); the logic rule specifies the Boolean operation (AND/NAND/OR/NOR)
applied to two sequentially presented stimuli; and the motor rule specifies the required action (button
press with a specific finger, corresponding to four output channels in our computational implemen-
tation). While the human C-PRO task involves naturalistic multimodal stimuli, we remapped these
conditions and sensory modalities to multi-hot encoded stimulus input vectors for computational
experiments. Successful performance requires flexibly gating the relevant sensory dimension and
assigning motor responses according to the logical evaluation of sensory information.

To study the evolution and dynamics of task representations, we imposed a temporal structure mim-
icking human experiments (Fig. [IB). The structure consists of six phases: 1) task encoding where
the 3-rule context is presented (1 timepoint, Rule); 2) first stimulus presentation (2 timepoints,
early and late, Stiml_e and Stiml_1); 3) first delay period for working memory and integration
(2 timepoints, D1y1l_e and D1y1_1); 4) second stimulus presentation (2 timepoints, St im2_e and
Stim2_1);5) second delay period (2 timepoints, D1y2_e and D1y2_1); 6) motor response window
(Resp). In our computational model, task context input remains active throughout, though we also
examine variants where context is limited to the first timepoint (Appendix Fig. [A4).

2.2 TASK DIMENSIONS: CONTEXT, STIMULI, AND RESPONSE FEATURES

The C-PRO contains three task dimensions: task context, stimuli, and response features (Fig. [T[C).

Sensory Stimuli. In the human experiment, stimuli were defined by four feature categories (two
visual and two auditory categories): color (red/blue), orientation (vertical/horizontal visual line),
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Figure 1: Experimental overview. We study how representational dynamics contribute to gen-
eralization in a compositional task by manipulating model initializations. A) We examined how
dynamics of task feature representations contribute to generalization. B) We modeled six tempo-
ral phases within the C-PRO task: Rule encoding, Stimulus 1, Delay 1, Stimulus 2, Delay 2, and
Response. Task rules compositionally combined logical operations (AND/OR/NOR/NAND), sensory
features (RED/VERTICAL), and motor responses (see section @ C) One-hot encoded inputs are
projected to a 128-unit RNN initialized with either high-norm (lazy learning) or low-norm (rich
learning) weights. D) Rich models achieved 90% generalization accuracy vs. 38% for lazy models.

frequency (high/low auditory pitch), periodicity (high/low period) (Fig. [IB). To model this com-
putationally, we encoded each of these stimulus features as their own separate embedding dimen-
sion, represented as a multi-hot encoding. For simplicity, we defined the binary stimulus vector
s € {0, 1}2 for each of the four stimulus dimensions (color, orientation, frequency and periodicity).
A given stimulus activated one of the two features per each category (activating four category units
in total). Furthermore, the C-PRO task presented two stimuli across task phases. This resulted in in
24 x 2% = 256 possible stimulus combinations across the two stimuli presentations trial.

Context. Task context is composed from three rule domains (sensory, logic, and motor/output).
Each domain has four specific rules. Sensory rules — RED, VERTICAL, HIGH-PITCH,
CONSTANT - specify which stimulus feature to attend to or gate. These correspond to a specific
color, orientation, frequency, or periodicity dimensions respectively. Logical rules — AND, NAND,
OR, NOR - determine how to logically evaluate the gated sensory dimension across the two stimu-
lus phases (e.g., AND x RED — “Are both stimuli red?”. Motor rules — left index, left middle,
right index, right middle finger responses — specify the finger to respond with if the answer to the
sensory-logical evaluation is TRUE. If the evaluation is FALSE, e.g., if the logic and sensory rules
are AND and RED, but one of the stimuli is blue, then the other finger on the same hand is used.
Computationally, a rule from each rule domain is represented as a one-hot vector r, € {0, 1}*, for
Tlogics Tsensory> Tmotor- 1he full task context vector is specified by concatenating the vectors across
each rule domain, i.e., Tcontext = [Tsensorys Tlogics Tmotor] € {0, 1}*2. Permuting four rules across three
rule domains results in 64 possible unique contexts (4 x 4 x 4 combinations):

Motor/output vector. Computationally, we map each finger to an embedding dimension of a one-
hot vector o € {0, 1}%.
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2.3 EVALUATING GENERALIZATION

Our primary goal was to assess the influence of training regime and learned representational dynam-
ics on compositional generalization. This required a subset of tasks where we 1) measured general-
ization and 2) performed mechanistic analyses. Thus, model training was performed on 60/64 task
contexts. Generalization and mechanistic analyses were carried out on the remaining 4 contexts.
The training set was chosen such that each individual rule was equally represented across the 60
training contexts. Generalization testing was then evaluated on the four remaining contexts, where
each context was tested across all 256 unique trials (e.g., 256 unique stimulus combinations). Train-
ing regime was manipulated through scaling the norm of the weight initialization (see Appendix[A.3]
for further details).

2.4 MODEL AND DIMENSIONALITY METRIC DETAILS

We implemented an RNN architecture with 128 hidden units, 20 input units (12 context + 8 stim-
ulus), and 4 output units. The model used ReLLU non-linearity with layer normalization applied
before the activation function. To manipulate learning regimes, we scaled Xavier initialization
weights for the recurrent connections. We tested 5 logarithmically-spaced initialization values:
{0.01,0.04,0.17,0.72, 3.0}. For each initialization scale, we trained 10 networks with different ran-
dom seeds, yielding 50 networks total. Training proceeded for 1000 epochs using vanilla stochastic
gradient descent with a batch size of 128 and learning rate of 0.01. Each epoch comprised 15,360
training examples (60 tasks x 256 stimuli per task). We include additional experiments varying
model size and optimizer in the Appendix.

We characterized representational dimensionality at each time point separately. Representational di-
mensionality measures how many dimensions are required to capture meaningful variation in neural
representations. If the 64 task contexts were stored as unique contexts (i.e., each orthogonal to each
other), they would span a 64-dimensional space. However, if some contexts share structure (e.g.,
through overlapping rules), they can be represented in a lower-dimensional subspace. We quantified
this using the participation ratio:

_ (i 0)?
PR = Zf:ll of
where o; represents the singular values from SVD decomposition of neural activity matrices. Higher
values indicate more distributed, high-dimensional representations. We measured this metric glob-
ally across all trials and separately for each feature (stimulus, context, response, contingency) by
averaging activity across the other features.

3 RESULTS

Networks exhibited a striking dependence on initialization scale for compositional generalization.
Rich networks (smallest initialization scale) achieved 89 (£2.9 SD)% mean accuracy across seeds,
demonstrating robust compositional generalization (see Appendix Fig. [A7]for detailed breakdown).
In stark contrast, lazy networks (largest initialization scale) achieved only 38 (+5.7 SD)% accuracy,
barely above chance level (25%) (Fig. [ID), despite near-perfect training accuracy on 60 training
contexts (Fig. [AT). This contrast in generalization performance motivated our subsequent analyses
of the internal representational dynamics underlying successful compositional generalization.

3.1 REPRESENTATIONAL DYNAMICS ACROSS TASK PHASES

We quantified dimensionality of feature-specific representations (stimulus, context, response) and
global dimensionality to assess representational dynamics across models (Fig. [2). Lazy networks
exhibited stereotyped dynamics with dimensionality generally increasing across task phases (Fig.
2ID-G). In contrast, rich networks showed feature-specific heterogeneous dynamics: stimulus dimen-
sionality increased during stimulus presentations then compressed after encoding both stimuli (Fig.
[2D); context dimensionality fluctuated with suppression during stimulus periods and re-emergence
during delays (Fig. [2E); response dimensionality rose earlier in rich networks (Fig. 2JF); global
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dimensionality showed marked compression during response (Fig. [2JG). These dynamics were con-
sistent across different model sizes (Appendix Fig. [A2) and optimizers (Appendix Fig. [A3).

To validate whether dimensionality changes reflected information content versus noise, we per-
formed cross-validated decoding of task features (Fig. [2H-K). Decoding confirmed that rich net-
works’ stimulus dimensionality expansion tracked increased decodable information (Fig. 2H). Inter-
estingly, however, high feature dimensionality did not always imply high decodability; in fact, lower
context dimensionality was associated with greater decoding accuracy, suggesting efficient compres-
sion of context information aided decodability and generalization performance (Fig. [2J). Further-
more, response information emerged independently of dimensionality changes in rich networks (Fig.
[2)). Critically, context-relevant stimulus decoding revealed that rich networks selectively maintained
task-relevant dimensions while irrelevant features decayed during delays, demonstrating active fil-
tering rather than passive forgetting (Fig. 2JJK). Complementarily, subspace angle analysis confirmed
rich networks transiently decoupled stimulus and context subspaces during delay periods (Appendix
Fig. [A6). We further quantified the cross-context representational invariance for each task feature in
rich and lazy networks across time (Appendix Fig. [A3)), as well as a supporting analysis using RSA
rather than decoding (Appendix Fig. [AS). These distinct representational dynamics between rich
and lazy networks motivated our subsequent analysis on how these representational patterns directly
support compositional generalization.

3.2 REPRESENTATIONAL DYNAMICS FOR C-PRO GENERALIZATION

To examine how temporal variations in representational dynamics influenced generalization, we an-
alyzed how task features across different phases contributed to generalization. This was done by
performing regression analyses to predict how representational dimensionality (independent vari-
able) at each task phase contributed to generalization performance (dependent variable), with each
of the 50 models (5 initialization scales x 10 seeds) serving as a sample. This enabled us to infer
whether higher or lower representational dimensionality affected generalization across task phases.
We first analyzed how global dimensionality contributed to generalization across task phases, fol-
lowed by investigating how the dimensionality of task-specific features influenced generalization

(Fig. 3).
3.2.1 GLOBAL DIMENSIONALITY DYNAMICS AND GENERALIZATION

Global dimensionality — which captures the overall dimensionality of trial-wise neural activity pat-
terns — revealed temporally specific relationships between dimensionality and generalization (Fig.
BJA). We found that during the rule encoding phase (Rule), low dimensionality supported gener-
alization. Following rule encoding, the initial stimulus presentation period (Stiml_e, Stiml_1,
D1y1_e) exhibited the opposite pattern, where high dimensionality supported generalization. Late
task periods (D1y1_1 — Resp) showed that increasingly lower dimensionality improved general-
ization. These patterns reconcile contrasting neuroscience findings showing high-dimensional rep-
resentations support stimulus integration (Rigotti et al), 2013} [Kikumoto et all, 2024) while low-
dimensional representations aid task encoding (Bernardi et al., |2020), revealing task-phase depen-
dent dimensionality requirements. Global dimensionality’s explanatory power (R?) showed temporal
progression: low (R? <30%) until D1y1_e, then increasing to >90% by trial end (Fig. 3B), indicat-
ing late-stage representations primarily account for generalization variance.

3.2.2 FEATURE-SPECIFIC DIMENSIONALITY DYNAMICS AND GENERALIZATION

Next, we characterized how representational dynamics of specific task features contributed to gen-
eralization by quantifying feature-specific dimensionality (stimulus, context, response) across all
model initializations and using these as regressors predicting generalization performance. Decom-
posing global dimensionality into feature-specific components explained significantly more variance
(R? > 90% from Stiml_e through Resp; Fig. BF) than global dimensionality alone.

Context dimensionality showed that improved generalization was associated with consistently low-
dimensional representations (Fig. [3]D), consistent with prior work on abstract rule representations

supporting cross-context generalization (Bernardi et al.| 2020; [Tto et al} 2022). Decoding analysis

confirmed that low context dimensionality corresponded to higher decoding accuracy (Fig. 2JD).
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Figure 2: Feature-specific and global representational dynamics. We illustrate the ground truth
feature similarity matrices for A) stimulus features, B) context features, and C) response features by
computing the cosine similarity of each feature vector (either the ground truth input or output vec-
tor) across sample trials. D-F) Dimensionality dynamics of task-specific features in rich versus lazy
networks for D) stimulus, E) context, and F) response. G) Global dimensionality measured across
all 64 contexts x 256 stimulus combinations. H-J) Decoding traces using 10-fold cross-validation
with distance-based classifiers. H) Rich models showed positive coupling between stimulus dimen-
sionality and decodability. I) Context decodability and dimensionality show opposite relationships
between regimes — rich models achieve higher decodability with lower dimensionality, while lazy
models do not. J) Response dimensionality rises earlier in rich models, but decodable information
emerges independently of dimensionality changes. K) Context-relevant versus -irrelevant stimulus
decoding. Rich models preferentially gate and maintain relevant stimulus information (active se-
lection); lazy models show minimal differentiation. Asterisks show FDR-corrected rich-versus-lazy
comparisons (paired t-tests): * p < 0.05, ** p < 0.01, *** p < 0.001. Panel K uses triangles (rich)
and circles (lazy) for relevant versus irrelevant stimulus comparisons.

Stimulus dimensionality revealed dynamic temporal strategies. High dimensionality during
Stiml_e strongly predicted generalization (Fig. [PB|C), with decoding confirming dimensionality
expansion tracked information content (Fig. 2H).

Response dimensionality showed high-dimensional encoding benefited generalization during rule
encoding (Fig. BE). Decoding showed response information emerged independently of dimension-
ality changes (Fig. [JJJ), with rich networks showing an earlier rise in dimensionality than lazy
networks.

3.3 THE EFFECT OF TASK CLOSURE AND INTEGRATION ON REPRESENTATIONAL DYNAMICS

The C-PRO task structure integrates task context information with two sequentially presented stim-
uli. However, when studying the contributions of stimulus-related dimensionality on generalization,
we observed that the first stimulus had an out-sized effect on generalization, compared to the second
stimulus (Fig. [B[C). This effect is likely due to the structure of the C-PRO task, where certain context
and stimulus combinations enable early decision-making after the first stimulus. For example, if
the task context was AND - RED - LEFT MIDDLE, corresponding to the instruction “If Stiml
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Figure 3: Representational dynamics supporting compositional generalization. Regression co-
efficients of representational dimensionality (global, stimulus, context, response) predict general-
ization performance across initializations. A) Global dimensionality coefficients: negative dur-
ing rule encoding (low-dimensional improves generalization), positive during stimulus processing
(high-dimensional improves), strongly negative near response (low-dimensional predicts best perfor-
mance). B) R? for global dimensionality: low explanatory power during early phases rises to >90%
by D1y2_1, showing late-stage low-dimensional representations primarily account for generaliza-
tion variation. C-E) Multiple regression isolating feature-specific dimensionality contributions. C)
Stimulus: high-dimensional at Stiml transitioning to low-dimensional by D1y2 predicts better
generalization. D) Context: consistently low-dimensional predicts better generalization. E) Re-
sponse: sustained high-dimensional after St im1 predicts better generalization. F) Feature-specific
R? exceeds 90% from Stiml_e through Resp, demonstrating that isolating task features better
captures how representational dynamics support compositional generalization than global dimen-
sionality alone. Asterisks show FDR-corrected comparisons of coefficients (t-test against zero): * p
< 0.05, ** p < 0.01, *** p < 0.001.

and Stim2 is red, press your left middle finger”, and the first stimulus was blue, then the response
could be prepared after the first stimulus (Fig. [#A). This task effect has previously been described
as “closure”, and leverages contingency representations — representations that enable efficient map-
pings to future responses/decisions (Ehrlich & Murrayl} 2022). We refer to trials that do not exhibit
closure — tasks that require both stimuli to form the correct response — as “integration” (Fig. FjA).
In this section, we characterize the representational dynamics of high-performing models during
closure and integration trials. Clear dissociation of representational dynamics across these two con-
ditions provides strong evidence that these high-performing models leverage these highly efficient
contingency representations that are common for human working memory and planning (Ehrlich &
Murrayl, 2022).

3.3.1 CONTINGENCY REPRESENTATION DYNAMICS

Contingency representations correspond to Boolean evaluations of sensory and logic rules (e.g., Are
both stimuli red?), providing intermediate representations that map efficiently to motor responses (If
True, respond with X). Rich networks showed decreased contingency dimensionality during delay
periods (Fig. fB), corresponding to high decoding accuracy during these same periods (Fig. B[C),
indicating accurate encoding of the task contingency. In contrast, lazy networks showed no such
contingency representations (Stiml_1 — Dlyl_e, Stim2_1 — D1y2_e: AnovaRM interactions
p<0.0001). Strikingly, when evaluating closure and integration trials separately, we found that rich
models achieved perfect decoding accuracy after Stiml in closure trials, while integration trials
reached equivalent accuracy only after St im2 (Fig. @D). This suggests that rich networks accurately
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Figure 4: High-performing models exhibit contingency representations that enable efficient
early decision-making. A) CPRO task structure enables early decisions after Stim1 in “’closure”
trials (logical rule resolvable immediately), but not “integration” trials (requiring both stimuli). In
particular, these “early decisions” can be captured through contingency representations that encode
intermediate information about the task (e.g., “Are both stimuli red?” — TRUE/FALSE. B) Di-
mensionality of contingency representations. C) Decoding analyses of contingency representations
illustrated that contingency representations tended to emerge later in the trials. D) However, when
analyzing closure and integration trials separately, decoding contingency representations revealed
that rich models achieved perfect decodability as soon as decisions can be theoretically formed (after
Stim1 in closure trials; after Stim2 in integration trials). Feature-specific dimensionality for closure
versus integration trials for E) stimulus features, F) context features, and G) response features. De-
coding traces for closure versus integration trials for H) stimulus features, I) context features, and
J) response features. Asterisks show FDR-corrected rich-versus-lazy comparisons (paired t-tests):
*p <0.05, ¥* p < 0.01, ¥** p < 0.001. Panels D-J use triangles (rich) and circles (lazy) for closure
versus integration comparisons.

encode intermediate contingency representations that would allow the early formation of response
information. We next examine how contingency representations influence dynamics during closure
versus integration trials across all task features.

3.3.2 REPRESENTATIONAL DYNAMICS OF CLOSURE AND INTEGRATION TRIALS

Contingency representations influenced feature-specific dynamics differently during closure (deci-
sion after St im1) versus integration (requiring both stimuli) trials (Fig. @E-J). Stimulus dimension-
ality and decoding both showed lower values during the presentation of the second stimulus when
comparing closure versus integration trials (Fig. E,H), reflecting reduced stimulus processing when
contingencies are already formed. Context dimensionality decreased in closure trials from D1y1_e
onwards while decoding remained at ceiling (Fig. BFI). Response dynamics revealed the starkest
contrast, and their trajectory best tracks with the emergence of decodable contingency representa-
tions: both dimensionality and decoding of response information rose immediately after St im1 in
closure trials, but only after St im2 in integration trials (Fig. fJG.J). Together, these results provide
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clear evidence that early response information in closure trials is enabled by the early formation of
intermediate contingency representations.

4 DISCUSSION AND CONCLUSION

Our findings revealed that successful compositional generalization emerges from structured repre-
sentational dynamics that enable systematic interactions between context, stimuli, and response task
features. In particular, we found that high-performing rich networks develop three key signatures:
strategic dimensionality modulation (low-dimensional context encoding, high-dimensional stimulus
processing with selective compression, and flexible response timing; Fig. [2)), temporal decoupling
between stimulus and context subspaces during delay periods (Fig. [A6), and efficient formation of
intermediate contingency representations that enable early decision strategies (Fig. [ [A3). These
dynamics distinguish improved generalization in rich networks from lazy networks, which exhibited
non-specific temporal dynamics across features, and failed to form reliable contingency representa-
tions critical for the correct response.

4.1 RELATED WORK

Representational dynamics in models for computational neuroscience. Prior work has demon-
strated that gradient descent optimization drives RNNs toward dimensionality compression in simple
tasks, with greater compression supporting better generalization (Farrell et al.| [2022)). Other work
has shown that networks trained on multiple tasks develop recurring computational motifs that en-
able compositional computation (Driscoll et al., 2024} [Yang et al., 2019; [Kay et al., 2024} Johnston|
[& Fusil, [2023; [lto et al 2022). Our findings complement these results by revealing how feature-
specific representational dynamics — rather than global compression alone — enable compositional
generalization through stereotyped temporal dynamics of stimulus, context, and response represen-
tations.

Rich and lazy learning regimes. Our work extends the feature learning vs. function fitting trade-

off in the rich/lazy spectrum (Chizat et al.l 2019; [Flesch et al.| 2022} [Tong & Pehlevan| 2025}

& Stachenfeld, 2024} [Liu et al., [2023). While prior work focused primarily on static tasks (e.g., see
Farrell et al.[(2023) for review) or learning dynamics during optimization (Chou et al.} 2025} [Dominé|

et al.l 2024; [Kunin et al.l 2024} [Ciu et all [2023)), we examine how task feature representations
evolve after the model has been optimized. Critically, these systematic representational dynamics
predict generalization performance and reveal efficient, intermediary contingency representations
that enable early decision making (Ehrlich & Murray},[2022).

Relation to empirical neuroscience and cognitive science. Our findings help reconcile contrasting
views on how representational dimensionality supports task performance in empirical neuroscience.
Some studies emphasize high-dimensional representations during stimulus and delay periods for
integrating stimuli with task context (Kikumoto & Mayr] [2020; [Kikumoto et al} 2024} [Fusi et al}
[2016} Rigotti et al., 2013)), while others highlight low-dimensional context representations as crucial
for generalization through “abstract or disentangled representations” (Bernardi et al., 2020} [Flesch|
et al] 2022 [Courellis et al 2024). Our results revealed that these seemingly contrasting proper-
ties reflect distinct computational phases: networks compress context representations during rule
encoding, then expand stimulus representations during integration. Crucially, we demonstrate that
feature-specific temporal coordination — not global dimensionality patterns — predicts generalization
success.

Compositional generalization in the machine learning literature. Substantial effort in machine
learning has developed benchmarks for compositional generalization (Keysers et al. 2020} [Lake &
Baroni), 2018; [Hupkes et al., 2020; Johnson et al, 2017; [Ruis et al.} [2020; Kim & Linzen, 2020
Delétang et al.,[2022)), characterizing fundamental limitations of neural networks (Dziri et al., 2023}
Kim et al.,[2022}; [Lake & Baroni}, [2018)) and approaches for improving generalization in lazy regimes
(Canatar et al., 2021; |Abbe et al.,[2024). While specialized architectures or training regimes can im-
prove compositional performance (Lake & Baronil, 2023}, [Csordés et all, 2022} [Sinha et al., 2024}
[Zhou et al .|, [2023} [Ontanon et al.,[2021; [Kazemnejad et al.,[2023)), these benchmarks typically study
unimodal (e.g., linguistic) or static settings without the temporal integration demands of real-world
cognitive tasks. Our work differs from traditional compositionality studies in ML by focusing our
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efforts on temporally-structured compositional paradigms established in the human literature to ad-
dress compositionality in cognitive science. While our experiments focus on a single task and ar-
chitecture (RNNs), future work should assess generalizability across diverse cognitive demands,
network architectures, and human data.

4.2 LIMITATIONS

Our study highlights the critical role of structured temporal representations in enabling robust com-
positional generalization in RNNs. Nonetheless, several limitations remain in the present work.
First, while our implementation of the C-PRO task preserves its core cognitive operations — com-
positional reasoning, working memory integration, and contingency formation — we used symbolic
input encodings (e.g., multi-hot encodings of binary features) rather than naturalistic stimuli used
in the original human task design. While this limits direct comparisons to the naturalistic sensory
processes involved in human cognition, this allowed us to isolate the cognitive processes of interest
(compositional reasoning). Nevertheless, it will be interesting for future work to explore the tem-
poral evolution of representations in compositional tasks that use naturalistic stimuli. Second, we
studied the contribution of representational dynamics to compositional generalization by manipu-
lating RNN weight initialization. While prior work has demonstrated that weight initialization can
strongly influence generalization (Chizat et all 2019} [Farrell et al] [2023), it is possible that there
are other model manipulations — as well as model architectures and optimization protocols — that in-
duce different relationships between representational dynamics and generalization that future work
can explore. Finally, we limited our investigation to the C-PRO task. While the C-PRO task has
a highly stereotyped task configuration that is commonly-used within neuroscience and cognitive
science (i.e., context — stimulus — response), it will be important to explore compositional task
designs in future work.

4.3 CONCLUSION

Successful compositional generalization in temporal cognitive tasks requires learning representa-
tional dynamics that enable systematic coordination across task features. Networks with different
initialization scales achieve equivalent training accuracy (>99% on trained contexts) yet show dra-
matically different generalization (90% vs. 38% on held-out contexts), allowing us to isolate which
temporal dynamics distinguish compositional success from failure. Through convergent evidence
from dimensionality, decoding, and representation analyses, we demonstrated that rich networks
coordinate temporal transformations across stimulus, context, and response features: context di-
mensionality modulates strategically across task phases including increases during working memory
delays, stimulus representations expand during presentation periods then selectively compress, and
response representations emerge with timing that reflects when decisions can be formed. Critically,
feature-specific dimensionalities predict > 90% of generalization variance from early task phases,
while global dimensionality achieves comparable predictive power only at trial end. This demon-
strates that the relevant compositional structure manifests in coordinated feature dynamics. These
dynamics also enable computational efficiency, as rich networks exploit task structure that enable
early decisions to form when possible. Together, our findings establish that successful composi-
tional generalization emerges from temporally coordinated transformations across feature spaces
that enable systematic interactions between task features throughout processing phases.

5 REPRODUCIBILITY STATEMENT

All code and environment needed to reproduce our models, results, and figures are included in the
supplementary materials.
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A  APPENDIX

A.1 LARGE LANGUAGE MODEL USAGE

Claude Sonnet 4 was used to refine grammar, improve sentence structure, and enhance readability.
All substantive content and ideas remain original to the authors.

A.2 TASK DESIGN AND EXPERIMENTAL SETUP

A.2.1 CPRO TASK STRUCTURE

We operationalized the Concrete Permuted Rules Operation (C-PRO) to study compositional
decision-making across a temporally structured task. The task rule/context was composed of three
distinct rule components: logical operations, sensory contexts, and motor responses. Each exper-
imental trial consisted of two sequentially presented stimuli (Stim1 and Stim2) followed by a re-
sponse period, interleaved with delay periods. The task structure incorporated 20-dimensional input
vectors with 4 stimulus dimensions (VDim1, VDim2, ADim1, ADim?2), each taking 2 possible val-
ues. Input encoding used 8 dedicated embedding dimensions for stimulus features that were reused
between Stiml and Stim2 presentations. In total, there were six task phases (Rule, Stiml, Dlyl,
Stim2, Dly2, and Resp). However, there were 10 timepoints in total, as two timepoints were allo-
cated per stimulus and delay period, providing enhanced resolution for studying temporal dynamics.

The compositional structure of CPRO incorporated three types of rule components making up each
context. Logical rules included AND, NAND, OR, and NOR operations (4 options). Sensory rules
comprised RED, VERTICAL, HIGH-PITCH, and CONSTANT conditions (4 options). Motor rules
consisted of LIND, LMID, RIND, and RMID responses (4 options). This design yielded a total task
space of 64 unique tasks through all possible combinations of the three rule components (4 x 4 x 4).
All stimulus and context inputs are one-hot encoded.

A.2.2 TRAINING AND GENERALIZATION SPLITS

We evaluated compositional generalization by training networks on 60/64 contexts (rule combina-
tions) while systematically withholding specific combinations for testing. The test set consisted of

14


http://arxiv.org/abs/2406.08787
http://arxiv.org/abs/2406.08787
https://www.nature.com/articles/s41593-018-0310-2
https://www.nature.com/articles/s41593-018-0310-2
http://arxiv.org/abs/2310.16028

Under review as a conference paper at ICLR 2026

4 contexts where each of the 12 rules occurred exactly once. This test set design required composi-
tional generalization on novel task combinations, enabling assessment of systematic compositional
generalization (Hupkes et al.| 2020).

Batch training structure. Training data incorporated 256 unique stimulus combinations per task
context, representing a 16 x 16 grid of possible Stim1-Stim2 pairs. We organized training batches
such that all samples in a batch belonged to a single task context, following prior precedent in|Yang
et al.| (2019); Driscoll et al.| (2024). Training batches were ordered in nested loops across logical,
sensory, and motor contexts. This created a specific curriculum structure where logical and sensory
contexts remained constant across 4 consecutive motor contexts before transitioning to the next
logical-sensory pairing. With a batch size of 128, each task context required exactly 2 consecutive
batches per context. Training data comprised of 15,360 examples per epoch (60 tasks x 256 stimuli).

Optimization. Training employed Stochastic Gradient Descent (SGD), using a learning rate of
0.01. Batch sizes were set to 128 for training. Networks were trained for 1000 epochs. We verified
that training loss reached comparable levels across all 50 models by the final epoch (Fig. [ATA,B).
Loss computation was restricted to the response (Resp) timepoint using cross-entropy loss. Network
performance was assessed every 100 training epochs using separate test batches of the 4 held-out
generalization tasks (Fig. [ATC,D).

A.3 MODEL ARCHITECTURE AND INITIALIZATION

We implemented an RNN architecture with 128 hidden units following the standard recurrent update
rule:
hy = ReLU(LayerNorm(Wyh;—1 + Wz + b)) (D

where W, € R128%20 transforms 20-dimensional inputs to 128-dimensional hidden representations,
and W, € R128%128 performs the recurrent processing. Layer normalization was applied before the
ReLU nonlinearity. The output stage consisted of a linear transformation followed by softmax:

y¢ = softmax(W,hy + by) 2
where W, € R**128 projects the hidden state to 4-class logits for classification.

Prior studies illustrated that different learning regimes can be induced by altering model initial-
izations (Chizat et al., 2019). To characterize how representational dynamics affect compositional
generalization, we systematically varied the initialization scales of recurrent weights while keeping
input and output weights at PyTorch’s default uniform initialization. We tested 5 logarithmically-
spaced initialization scale values in the interval [0.01,3.0]: {0.01,0.04,0.17,0.72,3.0} (Flesch
et al}, 2022). These scales multiply normally distributed values (with mean 0, i.e., N/ (0,0)) to
create weight distributions with o € {0.0009, 0.0035,0.015,0.0636,0.2652}. We trained 10 net-
works with different random seeds for each scale, yielding 50 networks total. The rich learning
condition corresponded to the smallest initialization scale (0.01), while the lazy learning condition
used the largest scale (3.0). Recurrent weights were initialized according to Xavier initialization
principles (Glorot & Bengiol [2010). Input layer weights maintained standard Gaussian initialization
across all conditions to isolate the effects of recurrent weight scaling.

A.4 REPRESENTATIONAL ANALYSIS METHODS

We used representational similarity analysis (RSA; |Kriegeskorte et al.| (2008)) to characterize how
specific task features contributed to generalization. Neural activation vectors (128 units) were ex-
tracted from the recurrent hidden layer at each of the 10 timepoints during task execution. Neu-
ral activation vectors were sorted and averaged according to distinct task features. For example,
for context representations, all activations corresponding to each unique context were averaged to-
gether; unit activations corresponding to specific stimulus conditions were averaged together; unit
activations corresponding to trials for a specific response were averaged together.

A.4.1 FEATURE-SPECIFIC ANALYSES

Neural representations were analyzed across ten distinct timepoints corresponding to different task
periods: Rule_only (rule presentation), Stiml_e and Stiml_l (early and late Stiml processing),
Dlyl_e and Dlyl_1 (early and late delay after Stiml), Stim2_e and Stim2_1 (early and late Stim2
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processing), Dly2_e and Dly2_1 (early and late final delay), and Resp (response period). This tem-
poral decomposition provided two timepoints per stimulus and delay period for enhanced resolution
of temporal dynamics.

Feature-specific analysis involved decomposing neural activity into distinct functional components
through targeted averaging and singular value decomposition (SVD). Stimulus dimensionality was
computed by averaging activity across all 64 contexts for each of the 256 stimulus combinations,
creating (256 x 128) matrices. Context dimensionality averaged activity across all 256 stimulus
combinations for each of the 64 contexts, yielding (64 x 128) matrices. Response dimensionality
averaged activity across all trials for each of the 4 potential responses, producing (4 x 128) matri-
ces. Contingency representational dimensionality was derived by averaging activity according to
logical rule satisfaction across all trials, creating (2 x 128) matrices. For closure and integration
trials comparison, the activities of the two trial types are separately averaged into respective feature
conditions and two sets of feature dimensionalities (one for closure, another for integration cases)
are computed. Global dimensionality analysis used the complete (16,384 x 128) matrix representing
all trials without feature-specific averaging. Participation ratios were computed from singular value
spectra to quantify effective dimensionality on each feature-specific matrix. We computed the par-
ticipation ratio as a measure of effective dimensionality of hidden representations through singular
value decomposition (SVD) of neural activity matrices. The participation ratio was calculated as

_ (Z:: ‘77,)2
PR = Zf:ll of

where o; represents the singular values from SVD decomposition of neural activity matrices. This
metric quantifies the effective number of dimensions utilized by neural representations, with higher
values indicating more distributed, high-dimensional representations (see |(Gao et al.| (2017) for fur-
ther details).

A.4.2 STATISTICAL ANALYSES

Statistical comparisons employed repeated measures ANOVA to assess dimensionality changes
across task phases and rich versus lazy learning conditions. We performed 2-way repeated-measures
ANOVA (2 Initialization [Rich, Lazy] x 2 timepoints, AnovaRM) for all pairs of timepoints, report-
ing interaction terms. Post-hoc analyses were carried out using pairwise t-tests between rich versus
lazy learning conditions at all 10 timepoints. We corrected for multiple comparisons using false
discovery rate (FDR) correction.

To quantify dimensionality-generalization associations, we conducted linear regression analyses us-
ing generalization accuracy from all 50 networks (5 initialization scales x 10 seeds) as the dependent
variable and dimensionality values as regressors. Regressions were performed on each timepoint
separately, with FDR correction across tests. Feature-specific dimensionality analysis incorporated
10 separate regressions (3 features x 10 timepoints) with FDR correction across all tests. This
comprehensive statistical framework enabled robust assessment of the relationships between time-
dependent representational dimensionality and compositional generalization performance.

A.5 REPRESENTATIONAL DYNAMICS IN RICH AND LAZY NETWORKS: TEMPORAL
EVOLUTION

High-performing and low-performing networks exhibited fundamentally different representational
dynamics, with lazy networks increasing global dimensionality over time compared to the dynamic
dimensionality patterns in rich networks. Kendall’s tau between time and dimensionality (averaged
across 10 seeds) was 7 = 0.911 (p = 2.98e-05) for lazy networks versus 7 =-0.156 (p = 0.6) for rich
networks. This non-monotonicity in rich networks was evident as global dimensionality dropped
significantly lower closer to the response timepoint compared to lazy networks (FDR-corrected p <
0.001).

Task feature analysis revealed that high-performing rich networks employed a dynamic encoding
strategy, exhibiting high stimulus dimensionality during first stimulus encoding (paired t-tests, FDR-
corrected p < 0.001) followed by dimensionality compression after encoding both stimuli. Lazy
networks maintained their monotonic pattern (Kendall’s 7 = 1.0, p = 5.5e-07) compared to the more
variable rich networks (7 = 0.733, p = 0.002). Context dimensionality in rich networks showed
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an inverse relationship with stimulus dimensionality—suppressed during stimulus presentation but
rising during delay periods (Spearman correlation of seed-average dimensionalities: p = -0.67, p =
0.033)—while lazy networks showed no such pattern (p = 0.394, p = 0.26). Despite these fluctua-
tions, rich network dimensionalities remained substantially lower than lazy networks overall (paired
t-tests, FDR-corrected p < 0.001). The early rise in response dimensionality in rich networks sug-
gests capacity for early decision-making when feasible (paired t-tests: FDR-corrected p < 0.01
starting from Stim1_1 onwards).

A.6 SUPPLEMENTARY FIGURES
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Figure Al: Training and generalization loss and accuracy during training. Evaluation for general-
ization was performed once every 100 epochs.
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Figure A2: We reproduced the results in the main text using RNNs with 64 (A: generalization accu-
racy, C-F: dimensionality traces) and 256 (B: generalization accuracy, G-J: dimensionality traces)
units. Both model variations reproduced patterns similar to the model with 128 units, indicating that

these results are robust to model size.
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Figure A3: We reproduced the results in the main text using the Adam optimizer (rather than SGD in
the main text). We trained networks using Adam optimizer with learning rates of 0.001 (A, E, F) and
0.0001 (C, D, G, H). A,C: Adam achieved near-perfect generalization (>95%) across the original
initialization scale range [0.01, 3.0], eliminating rich-lazy distinctions except at large initializations
(e.g., norm of 3.0) (E, F, G, H). B, D: Prior work suggested that to induce lazy learning with Adam,
the initialization scale needs to be magnified (Whitefield & Summerfield,2025). Thus, as a follow-
up, we expanded the initialization range to [0.1, 30.0], where we observed ’lazier’ learning with

larger initializations.
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Figure A4: We evaluate model performance with a more challenging task variant, where context
information is only available at Rule timepoint (i.e., t=0). This increases task difficulty as context
information has to be retained over time in the model’s working memory. A) Richly trained models
(initialization scale at 0.01 and 0.04) reached accuracy values close to 65%. (Model parameters were
the same as the model used in the main text.) B) When the model size was increased to 256 units
and number of training epochs increased to 2000, we observed similar results. C) Model general-
ization performance when using the Adam optimizer (learning rate = 0.0001, 1000 epochs). D-G)
Dimensionality analysis plots for the model with 128 hidden units and SGD. H-K) Dimensionality
analysis plots for the model with 128 hidden units using the Adam optimizer.

20



Under review as a conference paper at ICLR 2026

A Stimulus B Context c Response D Contingency
e * - - 1o e T
040 " 0015
S S08 S
;0.35 ﬁ ﬁOlo
_Eo.zo go.s %
s s ]
T025 z04 ®
5 5 5
% 0.20 0.2 I
e e S, S S, O O S G O O
%"% ’%f’b %%, % O*e o*e ﬁ’% ?%so)fsz % % % %% R, KX &, %, % %% "y ’%f’b % %, KX ’% ”'o i Lo %y, iy %o Lo %,
26 X %o AR 26 X o Xs Ne W Re %, %o Xs 2, e s ° Te Y/
Timepoints T\mepo\nts Tlmepomts 'I'vmepoints
Stimulus: Closure / Integration Context: Closure / Integration Response: Closure / Integration Contingency: Closure / Integration
10 04 w4 2o oz oo RS 0.3 wom o e
s 00 qolm m m oo oo oo o N 2 o e
gQ-S S g closure S
S closure ol S8 : . Fros
£06 integration £03 P integration €
Z 2 £06 2
0.4 2 o 2
H To2 closure — - S04 e
0.2 sl i i - - & | el T3n> S -
& & integration N L% = “0 integration
¢, I .. S E:... S .o | | S ...
S S 9 9.8 %, 9 9 A TS, S, O 0% % 9 Y A& T % 9 9% %, 9 9 A 0»‘,,&00,0,%%0,0,4
% % "z % % s T % %, % "’”o) % % ’z’%% ’*es/‘e/% % "z "z % &’ % ”z /*e % % %o) Iy 1K *g@*g/‘“&
CRR, e Y 2% XRR N Y o Xr e
Tmepmnts Tlmepomts 'ﬁmepomts Tmepomts
—rich
=== lazy

Figure A5: To measure invariance of task representations across contexts, we measured the paral-
lelism score as a measure of representational invariance (or abstraction). Parallelism score measures
the alignment of activity vectors across contexts, thereby providing information analogous to cross-
condition decoding (the measure was introduced by [Bernardi et al| (2020)). Parallelism scores were
computed by measuring the cosine similarity between the difference of two vectors, where only a
single task feature (rule, stimulus, or response) was varied, while keeping all other task conditions.
Specifically, for each variable (e.g., color), we calculated difference vectors between feature values
(RED vs BLUE) within the same context, then measured how parallel these vectors are across all
context pairs. Higher parallelism indicates more abstract, context-invariant representations. A,E:
Stimulus abstraction peaks during Stim1 but decreases by Stim2, indicating that stimulus represen-
tations become less invariant as integration demands increase. B,F: Context information maintains
invariant throughout trials, but shows striking differences in closure vs. integration trials — abstrac-
tion drops when early decisions are possible, despite being decodable (cf. Figure []). Interestingly,
this reveals that dimensionality reductions in closure trials reflect loss of invariant representations
rather than information loss. C,G: Response abstraction increases when decisions can be formed;
closure trials achieve high abstraction immediately after Stim1 while integration trials show delayed
abstraction. D,H: Contingency abstraction mirrors response patterns — closure trials develop ab-
stract True/False representations early and maintain them, while integration trials achieve equivalent
abstraction only after Stim2 processing.
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Figure A6: We measured the orthogonality between stimulus and context subspaces, and found
that in rich models, stimulus and context subspaces transiently orthogonalized during delay pe-
riods. For each feature domain (stimulus and context), we computed subspace bases by using
singular value decomposition (SVD) on the averaged neural activity matrices (conditions X neu-
rons). We retained the minimum number of principal components that explained 90% of the
variance within each subspace. Principal angles between subspaces were then computed using
scipy.linalg.subspace_angles (), with the minimum principal angle serving as our in-
dex of orthogonality. Principal angles quantify the canonical relationships between subspaces, with
the minimum principal angle indicating the most aligned directions between subspaces. We chose
to retain the components explaining only 90% of the variance to account for different intrinsic di-
mensionalities (governed by number of input latent variables) across subspaces. We observed that
while the angle is overall close to zero, rich networks demonstrate slight decoupling (increase in the
minimum principal angle) during delay periods, whereas lazy models do not.
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Figure A8: Stimulus and Context Representational Similarity Analysis (RSA). (A,B,F) Stimulus
RSA: In each context, we computed the similarity matrix among the hidden unit representations
of 256 stimulus combinations at each timepoint and tested the following six potential hypotheses
together to explain the observed similarity pattern via multiple regression: A) Coefficients of overall
stimulus feature similarity (similarity along the four stimulus dimensions, e.g., whether two stimulus
combinations have the same color, orientation etc.) of Stimulus 1, Stimulus 2 and their interaction;
B) Coefficients of context-relevant stimulus feature similarity (similarity along the color dimension
if the task context involves evaluation of color dimension of the stimulus) of Stimulus 1, Stimulus 2
and their interaction. (C-E,G) Context RSA: In each context, we used the average activity across all
stimulus combinations and computed similarity matrix among the 64 context representations at each
timepoint and tested the following eight hypotheses to explain the observed similarity pattern via
multiple regression: C) Coefficients of similarity within each rule domain, i.e., whether two contexts
have the same logical or sensory or motor rule; D) Coefficients of two-way similarity interactions
among the rule domains; E) Coefficients of three-way similarity interaction among the rule domains
and graded similarity, i.e., the number of overlapping rules between two contexts irrespective of
the rule domain; F) Coefficient of determination (r-squared) of stimulus RSA; G) Coefficient of

determination of context RSA.
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