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Abstract

Graph Neural Networks (GNNs) have proven effec-
tive for learning from graph structured data, with
heterogeneous graphs (HetGs) gaining particular
prominence for their ability to model diverse real
world systems through multiple node and edge types.
However, class imbalance where certain node classes
are significantly underrepresented presents a critical
challenge for node classification tasks on HetGs, as
traditional learning approaches fail to adequately
handle minority classes. This work introduces Het-
GSMOTE, a novel oversampling framework that
extends SMOTE-based techniques to heterogeneous
graph settings by systematically incorporating node-
type, edge-type, and metapath information into the
synthetic sample generation process. HetGSMOTE
operates by constructing a content-aggregated and
neighbor-type-aggregated embedding space through
a base model, then generating synthetic minority
nodes while training specialized edge generators
for each node type to preserve essential relational
structures. Through comprehensive experiments
across multiple benchmark datasets and base mod-
els, we demonstrate that HetGSMOTE consistently
outperforms existing baseline methods, achieving
substantial improvements in classification perfor-
mance under various imbalance scenarios, particu-
larly in extreme imbalance cases while maintaining
broad compatibility across different heterogeneous
graph neural network architectures. We release our
code and data preparations at github.com/smlab-
niser/hetgsmote.

1 Introduction

Graph-based learning and Graph Neural Networks
(GNNs) have garnered significant attention for their
capacity to model intricate relationships and de-
pendencies within structured data [1]. Among
these graph-based structures, heterogeneous graphs
(HetGs) represent a particularly important class that
involves multiple types of nodes and edges. HetGs
are well-suited for modeling real-world data where di-
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verse entities and relationships must be represented
distinctly. Examples include recommender systems,
social networks, and bibliographic networks [2, 3],
where entities such as authors, papers, and venues
interact through different relationship types. These
diverse entities and relationships encode rich, com-
plex information, with nodes often containing both
structured and unstructured content, making down-
stream tasks like node classification [4, 5] and link
prediction [6, 7] particularly important.

While Heterogeneous Graph Neural Networks
(HGNNs) [5] excel in node classification tasks, they
typically assume balanced class distributions to
achieve consistent performance across all classes.
However, many real-world applications exhibit sig-
nificant class imbalance, where certain classes have
substantially fewer instances than others [6, 8]. This
imbalance leads to suboptimal performance when
using traditional baseline models, necessitating spe-
cialized imbalanced learning techniques such as over-
sampling for heterogeneous graphs.

Synthetic Minority Oversampling Technique
(SMOTE) has proven effective for balancing class
distributions across various domains, including ho-
mogeneous graphs [9]. Different SMOTE variants
have been developed to address imbalance through
various strategies. Some focus on specific spaces
within minority classes [10, 11], while others target
difficult-to-learn regions [12–14]. As these oversam-
pling techniques continue to evolve, their adaptation
to heterogeneous graphs requires careful consider-
ation of the unique structural properties involved.
However, its direct application to heterogeneous
graph data presents unique challenges: type-specific
semantics, edge heterogeneity, rich contextual in-
formation from diverse metapaths, and non-shared
feature spaces.

To address these challenges, we present the Het-
GSMOTE framework as shown in Figure 1, which
extends the GraphSMOTE approach [9] from homo-
geneous to heterogeneous graphs. Our framework
constructs a content-aggregated and neighbor-type-
aggregated embedding space that encodes node sim-
ilarities, facilitating the generation of synthetic sam-
ples that preserve contextual relationships within
the graph. Additionally, HetGSMOTE trains spe-
cialized edge generators for different node types to
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model relational information between nodes, ensur-
ing that synthesized samples retain essential struc-
tural characteristics. This approach generates syn-
thetic sample representations in safe regions of the
embedding space, where source samples are less
prone to producing noisy synthetic data.
The main contributions of this paper are:

1. We address the class imbalance problem in het-
erogeneous graphs and propose a comprehensive
solution with broad real-world applicability.

2. We extend the GraphSMOTE oversampling ap-
proach into a complete framework for heteroge-
neous graphs through our novel HetGSMOTE
strategy.

3. We demonstrate our approach’s efficacy through
comprehensive experiments across diverse set-
tings, datasets, and base models, showcasing
superior performance compared to existing base-
line methods.

2 Related Works

Class imbalance, where one class significantly out-
numbers another, leads to biased models and poor
generalization, evident in tasks such as fraud detec-
tion, rare disease identification, and bot recognition.
Addressing this issue involves algorithm-level, data-
level, and hybrid strategies [9]. Data-level methods,
such as oversampling and data augmentation, in-
crease minority class samples. Algorithm-level ap-
proaches include cost-sensitive techniques, ensemble
learning, and threshold adjustments [15, 16]. Hybrid
methods combine these strategies, e.g., classifier-
specific models [8].
Oversampling generates synthetic minority sam-

ples with methods like SMOTE, which interpolates
between samples. Approaches like DBSMOTE[10],
and k-means SMOTE[11], focus on generating syn-
thetic samples within the minority class space with
smaller scales. Methods like borderline-SMOTE[12],
ADASYN[13], and Adaptive-SMOTE[14] also gen-
erates samples in difficult regions within minority
class. These improvements help mitigate overgener-
alization by filtering out potential noise or by strate-
gically generating additional samples within specific
regions of the minority class. A newer technique,
NaNG-SMOTE[17], addresses the same obstacles by
using a natural neighborhood graph and subgraph
cores of the minority class to generate synthetic
samples while filtering noise based on edge char-
acteristics. Oversampling has proven effective in
numerous machine learning domains, addressing the
issue of limited minority data [8] and improving
model performance.
Oversampling techniques for graph data, like

GraphSMOTE [9], address class imbalance in homo-

geneous graphs by generating synthetic nodes and
connections. Other methods, such as GraphMixup
[18] and Graph-DAO[19], use latent space sampling
and semantic relations. Despite progress, SMOTE
has found limited applications in graph-based learn-
ing. For HetGs, there are even fewer techniques,
such as FincGAN [20], an adversarial GAN-based
approach, and BARE[21], which leverages student-
teacher networks to distill knowledge from real nodes
for improved learning. This motivates our work on
the extension of GraphSMOTE to heterogeneous
graphs.

3 Problem Statement

Consider a heterogeneous graph (HetG) denoted as
G = (V,A,F), where:

• V = {v1, . . . , vn} is the node set, with Vt ⊆ V
representing the subset of nodes of type t ∈ T ,
where T is the set of node types.

• A = {Atu : t, u ∈ T } is the set of adjacency
matrices, where Atu ∈ {0, 1}nt×nu represents
the adjacency matrix between nodes of types t
and u, with nt = |Vt| and nu = |Vu|.

• F = {F t : t ∈ T } is the set of node feature
matrices, where F t ∈ Rnt×d contains the d-
dimensional feature vectors for all nodes of type
t. Specifically, F t[vj , :] ∈ R1×d represents the
feature vector for node vj of type t.

For node classification tasks, we focus on a specific
target node type t∗ ∈ T with associated class labels
Y ∈ Rnt∗ . In practical scenarios, only a subset
of labels is available during training, denoted as
Y ′ ⊆ Y corresponding to the labeled node subset
V ′ ⊆ Vt∗ where |V ′| ≪ |Vt∗ |.

We adopt a semi-supervised transductive learning
setting where the entire graph structure is available
during both training and testing, but only a small
fraction of nodes are labeled. These labeled nodes
are partitioned into training, validation, and testing
sets for the learning process. We adopt the trans-
ductive setting to isolate the effect of oversampling
on performance without the variability introduced
by unseen nodes. Moreover, most heterogeneous
datasets are naturally split for transductive evalua-
tion.
Problem Definition: Given a heterogeneous

graph G with imbalanced class distribution among
labeled nodes V ′ and their corresponding labels Y ′,
our objective is to:

1. Use the HetGSMOTE framework to generate
synthetic minority nodes V s with corresponding
synthetic edges As that preserve the structural
and semantic properties of the original graph.
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Figure 1. Overview of the HetGSMOTE framework pipeline showing the operation of main components.

2. Train a node classifier f : G ∪ Gs → Y that
achieves balanced performance across both
majority and minority classes, where Gs =
(V s,As,Fs) represents the synthetic graph com-
ponents.

The key challenge lies in generating synthetic
nodes and edges that maintain the rich semantic
relationships encoded in the heterogeneous graph
structure while effectively addressing the class im-
balance problem for improved classification perfor-
mance on minority classes.

4 Background

This section covers the required background con-
cepts. Details are provided in Appendix A.

Class Imbalance. For dataset with classes
{c1, . . . , ck}, imbalance ratio for class i is:

IRi =
|ci|

maxj |cj |

SMOTE [22]. Generates synthetic minority sam-
ples via interpolation:

SMOTE(X1, X2) = (1−r)X1+rX2, r ∼ Uniform(0, 1)

HGNNs. Update node vj of type t as:

Gt[vj , :] = BaseModel
(
F t[vj , :],N (vj)

)
Specific models:

• HetGNN [5]:
Gt[vj , :] =

1
|N t(vj)|

∑
v∈N t(vj)

σ (W · F t[v, :])

• HAN [4]:
Gt[vj , :] =

∑
k

∑
v∈Nk(vj)

αv,vjσ
(
W1 · F k[v, :]

)
• MAGNN [23]:
Gt[vj , :] = σ

(
W2 ·

∑
m∈M βm ·Aggm(MPm(vj))

)

5 Methodology

To address the class imbalance challenge in het-
erogeneous graphs, we propose the HetGSMOTE
framework, which integrates representation learning,
oversampling, adaptive edge generation, and clas-
sification into a unified pipeline. As illustrated in
Fig. 2, our approach consists of four interconnected
components: (1) a heterogeneous graph encoder for
feature extraction, (2) SMOTE-based oversampling
in the learned embedding space, (3) neural edge
generators for synthetic node connectivity, and (4) a
classifier for final predictions. The core components
of HEtGSMOTE, the feature extraction, SMOTE
oversampling and edge Generation has been illus-
trated in Fig. 1.

5.1 Heterogeneous Graph Encoder

The encoder serves as a feature extractor that lever-
ages heterogeneous graph neural networks (HGNNs)
such as HetGNN [5], MAGNN [23], and HAN [4] to
generate meaningful node embeddings. We selected
these HGNNs to cover a spectrum of mechanisms,
including simple, attention-based, and metapath-
based approaches. The encoder operates through
two sequential aggregation mechanisms: content ag-
gregation and type-specific neighbor aggregation,
producing node representations that capture both
attribute information and structural relationships
within the heterogeneous graph.

5.1.1 Content Aggregation

The content aggregation layer combines multiple
attribute matrices associated with each node type.
For a node vj of type t, we concatenate all available
attribute matrices along the feature dimension and
apply a linear transformation followed by a non-
linear activation to maintain the original embedding
dimensionality:

F t[vj , :] = σ

(
Wc ·

(
nattr⊕
i=1

F t
i [vj , :]

))
(1)
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Figure 2. Illustration of the HetGSMOTE process, highlighting feature extraction, SMOTE-based node oversam-
pling, neural edge generation, and classifier.

where F t
i ∈ Rnt×di represents the i-th attribute

matrix for nodes of type t, nattr is the total num-
ber of attribute matrices, Wc ∈ Rd×

∑nattr
i=1 di is the

learnable weight matrix,
⊕

denotes concatenation,
and σ(·) is the ReLU activation function.
The content-aggregated embeddings F t serve as

input for subsequent type-specific neighbor aggrega-
tion and can also be used independently for baseline
comparisons with vanilla SMOTE implementations.

5.1.2 Type-Specific Neighbor Aggregation

This component captures the heterogeneous struc-
tural information by aggregating neighbor repre-
sentations across different node types. For each
node, we first extract frequently occurring neigh-
bors through random walks, selecting the top m
neighbors of each type to construct type-specific
neighborhood representations.
The neighbor aggregation process varies depend-

ing on the chosen base HGNN architecture. Let
Gt[vj , :] denote the aggregated embedding of type-
t neighbors for node vj . The specific aggregation
mechanisms for different base models were detailed
in Section A.3 using (17), (18), and (19). For clarity
and consistency, we reiterate the generalized formu-
lation below:

Gt[vj , :] = BaseModel
(
F t[vj , :],N (vj)

)
After obtaining aggregated neighbor embeddings,

we compute type-level attention weights to deter-
mine the importance of different node types:

αt′
vj =

exp
(
σ
(
Wa · (Gt′ [vj , :]⊕ F t[vj , :])

))
∑

t′∈T exp (σ (Wa · (Gt′ [vj , :]⊕ F t[vj , :])))
(2)

and final node embedding combines the content-
aggregated features with the weighted sum of type-
specific neighbor embeddings as:

Xt[vj , :] = Wf ·

(
F t[vj , :]⊕

∑
t′∈T

αt′

vjG
t′ [vj , :]

)
(3)

where Wa and Wf are learnable weight matri-
ces, and σ(·) represents the LeakyReLU activation
function.

5.2 SMOTE-Based Oversampling

Following the embedding generation, we apply
SMOTE to address class imbalance by generating
synthetic minority class samples in the learned em-
bedding space. This approach leverages the property
that semantically similar nodes tend to cluster to-
gether in the embedding space after heterogeneous
graph convolution.

For a randomly selected minority class node vj
with embedding Xt[vj , :] and label Yvj , we identify
its nearest neighbor from the same class:

NN(vj) = arg min
v∈Vt,Yv=Yvj

∥Xt[vj , :]−Xt[v, :]∥2 (4)

The synthetic node embedding is generated
through linear interpolation between the source node
and its nearest neighbor:

Xt
syn[vj , :] = Xt[vj , :]+λ ·(Xt[NN(vj), :]−Xt[vj , :]) (5)

where λ ∼ Uniform(0, 1) is a random interpolation
factor, and the synthetic node inherits the same label
as the source nodes: Ysyn[vj ] = Yvj .

This process continues until the desired level of
class balance is achieved, with all synthetic nodes
forming the set V syn

t . The key advantage of perform-
ing oversampling in the learned embedding space is
that the generated samples are less prone to noise,
as nodes of the same class naturally cluster together
after the heterogeneous graph encoding process.

5.3 Neural Edge Generation

Since synthetic nodes are initially isolated from the
graph structure, we employ neural edge generators
to predict realistic connectivity patterns. The edge
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generator is trained to reconstruct adjacency ma-
trices for real nodes using their learned representa-
tions, enabling effective edge prediction for synthetic
nodes.
For edge types between node types t and u, the

edge generator employs a bilinear transformation:

Âtu = σ(XtWeX
u⊤)⊙Atu (6)

where We ∈ Rd×d is a learnable weight matrix,
σ(·) is the sigmoid activation function, and ⊙ de-
notes element-wise multiplication with the original
adjacency matrix Atu to focus learning on existing
edge patterns.
The edge generator is trained using the recon-

struction loss:

Ledge =
∑

(t,u)∈T ×T

∥Âreal
tu −Areal

tu ∥2F (7)

where Âreal
tu represents the predicted adjacency

matrix for real nodes, and ∥ · ∥F denotes the Frobe-
nius norm.
We implement two strategies for incorporating

predicted edges into the augmented graph:
Hard Edge Strategy: Binary edges are created

using a threshold η = 0.5:

(Asyn
tu )ij =

{
1, if (Âtu)ij ≥ η

0, if (Âtu)ij < η
(8)

Soft Edge Strategy: Continuous edge weights
are preserved to enable gradient flow:

(Asyn
tu )ij = (Âtu)ij ∀vi ∈ V syn

t , vj ∈ Vu (9)

The soft edge strategy allows joint optimization
of both edge prediction and node classification ob-
jectives, potentially leading to better overall perfor-
mance.

5.4 Node Classification

The final component employs a heterogeneous GNN
classifier that operates on the augmented graph con-
taining both real and synthetic nodes with their
predicted edges. The classifier utilizes a similar
neighbor aggregation mechanism as the encoder to
generate updated node embeddings that incorporate
the relational information from predicted synthetic
edges.
The classification process computes node predic-

tions through an MLP head:

Pvj = softmax(MLP(X ′[vj , :])) (10)

where X ′[vj , :] represents the updated embedding
for node vj after aggregating information from the
augmented graph structure.

The classifier is trained using cross-entropy loss
over all labeled nodes (real and synthetic):

Lcls = −
∑

vj∈Vlabeled

C∑
c=1

I[Yvj = c] logP (c)
vj (11)

where C is the number of classes, I[·] is the indi-

cator function, and P
(c)
vj is the predicted probability

for class c.
For inference, the predicted class is determined

as:
Ŷvj = argmax

c
P (c)
vj (12)

The overall training objective combines the edge
generation and classification losses when using the
soft edge strategy as Ltotal = Lcls + λLedge where
λ is a hyperparameter controlling the relative im-
portance of edge reconstruction.

6 Experiments

6.1 Optimization

The optimization objective for HetGSMOTE in-
volves the optimization of weights for the feature
extractor, edge generator, and classifier. The model
is optimized on two loss functions: the edge loss
(Ledge) from the edge generator and the classification
loss (Lcls) from the classifier. They are combined as
L = λ · Ledge + Lcls, where λ is a hyperparameter
that defines the relative importance of the two tasks.
The resulting objective function of HetGSMOTE is
the same as for GraphSMOTE:

min
θ,ϕ,φ

(Lcls + λ · Ledge) (13)

where θ, ϕ, and φ are the feature extractor, edge gen-
erator, and node classifier parameters, respectively.
The pretraining of the feature extractor and edge
generator using Ledge was also explored to enhance
the stability of the training.

6.2 Datasets

We procured diverse heterogeneous datasets of vari-
ous sizes to show the domain independence of our
method. These include AMiner (A-II) [5] and DBLP
bibliographic datasets [23], movie collaboration-
based IMDb [4], and biomedical PubMed [6] datasets.
The summary and statistics of these datasets are
included in the Appendix Section B and Table B.1.

6.3 Experimental Settings

To evaluate performance, we conduct node classifi-
cation experiments with HetGSMOTE and baseline
oversampling methods under various settings. Our
focus in this work is on SMOTE-based oversampling
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Table 1. Overview of Baselines and Experimental Settings

Method Code Description

No oversampling no Original datasets without oversampling

Upsampling up Upsampling by duplicating source nodes with adjacency: Atu[vj , :] = A0
tu[v, :]

SMOTE[22] smote SMOTE on raw embedding space post-content aggregation with adjacency:
Atu[vj , :] = min(1, A0

tu[v1, :] +A0
tu[v2, :])

Re-weight [16] reweight Cost-sensitive approach with higher loss weights for minority classes

Embed-SMOTE [24] embed sm SMOTE after neighbor aggregation without edge generator, assuming sufficient
relational information transfer

SMOTE + inherited edges em smote SMOTE after neighbor aggregation with inherited adjacency matrix to demon-
strate edge generator impact

HetGSMOTE (Ours) HetGSM Framework with edge generator and encoder pre-trained on edge prediction,
fine-tuned on edge loss and classification loss

Table 2. Test Accuracy of HetGSMOTE (with HGNN) vs Upsampling Ratios for IMDb datasets

Setting 0.2 0.4 0.6 0.8 1.0 1.2

no 0.505 ± 0.027 0.496 ± 0.023 0.505 ± 0.025 0.501 ± 0.021 0.505 ± 0.027 0.509 ± 0.021
up 0.500 ± 0.029 0.501 ± 0.026 0.505 ± 0.024 0.504 ± 0.027 0.499 ± 0.021 0.509 ± 0.024
smote 0.507 ± 0.019 0.500 ± 0.015 0.504 ± 0.018 0.498 ± 0.019 0.502 ± 0.020 0.505 ± 0.023
reweight 0.500 ± 0.019 0.501 ± 0.013 0.504 ± 0.022 0.503 ± 0.019 0.500 ± 0.026 0.500 ± 0.018
embed sm 0.503 ± 0.020 0.500 ± 0.020 0.496 ± 0.020 0.506 ± 0.019 0.502 ± 0.018 0.496 ± 0.018
em smote 0.495 ± 0.021 0.508 ± 0.025 0.498 ± 0.026 0.502 ± 0.020 0.503 ± 0.027 0.494 ± 0.021
HetGSM 0.504 ± 0.019 0.507 ± 0.020 0.506 ± 0.018 0.508 ± 0.019 0.509 ± 0.021 0.515 ± 0.022

methods, chosen for their simplicity, interpretabil-
ity, and lower computational overhead compared to
adversarial or autoencoder-based approaches. The
baselines are listed in Table 1.

For the HetGSMOTE (HetGSM) method , we will
pre-train the encoder and edge generator on the edge
prediction task since the model can take advantage
of prior knowledge of general graph structure. We
will also be using soft synthetic edges, as mentioned
in (9), for the framework. As a result, the encoder
and edge generator will be fine-tuned on both edge
loss and classification loss.

6.4 Evaluation Metrics

To comprehensively evaluate the performance of
our proposed HetGSMOTE method on imbalanced
heterogeneous graph node classification, we employ
three widely-adopted evaluation metrics following
the experimental setup of GraphSMOTE: macro-
averaged accuracy (ACC), macro-averaged AUC-
ROC score (AUC), and macro-averaged F1-score
(F1). The macro-averaging approach for evaluation
metrics ensures that performance on minority classes
receives equal weight to majority classes, providing
a more balanced assessment of model effectiveness in
imbalanced scenarios. The details of the evaluation
metrics and formulas are given in the Appendix
Section C.

6.5 Experimental Configuration

Experiments run on NVIDIA A100 80GB GPU us-
ing ADAM optimizer (lr=1e-4, weight decay=5e-4).
Regularization λ: 1e-6 for HetGSMOTE with syn-
thetic soft edges, 10 otherwise. Models trained for

200 epochs with embedding dimensions 128-256. Re-
sults averaged over 10 independent runs with fixed
seeds across different imbalance ratios and upsam-
pling ratios, with synthetic edges incorporated only
during training.

7 Results

Results span all base models, datasets, and imbal-
ance ratios using 3 metrics. We present the most
significant findings for each evaluation context. All
values represent means across 10 training subsets.
Bold indicates best performance within each imbal-
ance/upsampling comparison. We also include the
extended results with F1 and AUC tables in GitHub
and Appendix D.

7.1 Influence of Up-sampling Ratio

The upsampling ratio defines the fractional increase
in minority samples to overcome the imbalance. An
upsampling ratio of 1 implies the minority size was
doubled by oversampling. Experiments with the
upsampling ratio highlight the learning curve of our
oversampling technique in different oversampling
stages. In the experiments, the upsampling ratio
scale is varied in the range [0.2, 1.2] in 0.2 steps to
obtain results for both high and low ratio cases while
keeping the imbalance ratio to 0.5. The results were
obtained from HetGMOTE with HGNN base model
on IMDb dataset and are tabulated in Table 2.
We find that HetGSMOTE outperforms all the

baselines regularly from the 0.6 ratio threshold, as
seen in the table. This shows that the generated
node samples have an impact on the performance

6

https://github.com/smlab-niser/hetgsmote/blob/master/results.md#experimental-results---extended


without fail. For lower ratios, smote, and em smote
gave better results. Baseline em smote performing
better might indicate the less importance of the edge
generators when synthetic samples are low, which
can affect the classification negatively compared to
simpler oversampling.

7.2 Performance of HetGSMOTE

To show the superior performance of the Het-
GSMOTE framework, we show its performance with
the HAN base model on IMDb datasets across all
metrics. With the IMDb dataset being small with a
fairly balanced distribution of node types and HAN
the best-performing model we have, we substanti-
ate the choice of experiment showcased here. The
results are tabulated in Table 3. HetGSMOTE has
shown higher performance than its counterparts in
most cases across all three metrics, especially in the
severe imbalance (low IR) scenarios.

7.3 Influence of Base Model

We evaluate HetGSMOTE with HAN, MAGNN,
and HGNN base models using test accuracy on the
IMDb dataset (Table 4). HAN achieves the best
performance among base models, reflecting different
model capacities for learning heterogeneous graph
structures. Importantly, HetGSMOTE consistently
outperforms baselines across all base models, demon-
strating the framework’s effectiveness regardless of
the underlying architecture.

7.4 Variation across datasets

To show the consistency of performance across dif-
ferent datasets, we have shown the results in Table 5
with the test accuracy performance of HetGSMOTE
on all datasets. We note that that Heterogeneous
graph datasets with imbalanced node-type distribu-
tions often show greater performance fluctuations, as
class imbalance interacts with structural imbalance.
For clarity and focus, the comparison is limited

to the most competitive baseline methods. Here,
we make the following observation: (1) the Het-
GSMOTE performs comparatively better than the
baselines in most cases for all datasets. (2) Signif-
icant performance gains are observed under condi-
tions of severe class imbalance.

7.5 Ablation Studies

We conduct ablation experiments to evaluate the
individual contributions of key components in the
HetGSMOTE framework discussed in Section 6.3.
We systematically examine variants by selectively
including or excluding specific framework elements.
The HetGSMOTE framework incorporates two pri-
mary components: pre-training for edge prediction

tasks and soft synthetic edges. We evaluate four
distinct variants: GSM base (neither component),
GSM S (soft edges only), GSM PT (pre-training
only), and HetGSM (both components combined).
The soft synthetic edges implementation trains

both the encoder and edge generator using classi-
fication loss combined with edge loss, as detailed
in (9). Pre-training focuses exclusively on the edge
prediction task.

7.5.1 Imbalance Ratio Analysis

We compare these variants using the HAN base
model on the IMDb dataset under low imbalance ra-
tio conditions, consistent with the rationale provided
in Section 7.2. Table 6 presents the comparative
performance results. Similar trends have been ob-
served for other datasets as well. The complete
HetGSM variant incorporating both pre-training
and synthetic soft edges demonstrates superior per-
formance across most imbalance ratios, achieving
the highest scores in four out of five test conditions.

7.5.2 Upsampling Ratio Analysis

We examine overgeneration through upsampling ra-
tio ablation studies. Table 7 reveals optimal upsam-
pling thresholds. Results show two findings: First,
above the 0.6 threshold from Section 7.1, HetGSM
consistently outperforms alternatives. Second, three
approaches degrade when transitioning from ratio
1.0 to 1.2, indicating excessive synthetic generation
compromises embedding quality.

8 Conclusion

Our findings demonstrate the effectiveness of Het-
GSMOTE for addressing class imbalance in hetero-
geneous graphs across various datasets, base models,
and imbalance conditions. The approach is domain-
independent, consistently surpassing baselines across
diverse datasets including AMiner, DBLP, IMDb,
and PubMed. The framework’s flexibility allows it
to work with different base models (HetGNN, HAN,
MAGNN) and shows promise for more.
Key insights from our experiments include: (1)

performance boost is significant under severe imbal-
ance, (2) very low upsampling ratios hinder effective-
ness, and (3) pretraining the feature extractor and
edge generator significantly boosts performance.
Future work will extend the approach to addi-

tional tasks including link prediction, edge type
classification, and node representation learning. Ad-
ditionally methods such as BARE and FinC-GAN,
compatible with our framework, can be investigated
with HetGSMOTE to enhance robustness. Future
directions could explore integrating our approach
with privacy-preserving techniques [25].
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Table 3. Performance of baselines and HetGSMOTE (HAN base model) vs. imbalance ratio for IMDb dataset

# Settings 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc
u
ra
cy

no 0.447 ± 0.018 0.458 ± 0.021 0.479 ± 0.023 0.500 ± 0.025 0.517 ± 0.037 0.515 ± 0.026 0.525 ± 0.036 0.516 ± 0.029 0.518 ± 0.029
up 0.443 ± 0.023 0.456 ± 0.026 0.472 ± 0.024 0.485 ± 0.028 0.511 ± 0.024 0.508 ± 0.029 0.520 ± 0.031 0.520 ± 0.020 0.523 ± 0.024
smote 0.451 ± 0.022 0.456 ± 0.030 0.477 ± 0.029 0.495 ± 0.023 0.509 ± 0.032 0.525 ± 0.025 0.521 ± 0.028 0.517 ± 0.030 0.521 ± 0.032
reweight 0.452 ± 0.015 0.476 ± 0.024 0.499 ± 0.032 0.518 ± 0.020 0.515 ± 0.019 0.523 ± 0.017 0.528 ± 0.019 0.531 ± 0.021 0.534 ± 0.029
embed sm 0.445 ± 0.017 0.450 ± 0.029 0.460 ± 0.024 0.481 ± 0.029 0.490 ± 0.028 0.499 ± 0.027 0.507 ± 0.026 0.509 ± 0.026 0.519 ± 0.024
em smote 0.455 ± 0.016 0.487 ± 0.028 0.494 ± 0.036 0.503 ± 0.024 0.517 ± 0.025 0.524 ± 0.028 0.529 ± 0.026 0.527 ± 0.025 0.529 ± 0.021
HetGSM 0.472 ± 0.014 0.489 ± 0.017 0.495 ± 0.024 0.518 ± 0.015 0.528 ± 0.035 0.537 ± 0.017 0.531 ± 0.023 0.544 ± 0.026 0.534 ± 0.031

F
1
-S
co
re

no 0.550 ± 0.018 0.554 ± 0.012 0.557 ± 0.016 0.564 ± 0.013 0.573 ± 0.016 0.563 ± 0.009 0.570 ± 0.015 0.566 ± 0.017 0.568 ± 0.018
up 0.545 ± 0.013 0.546 ± 0.017 0.551 ± 0.010 0.553 ± 0.015 0.559 ± 0.015 0.562 ± 0.017 0.567 ± 0.020 0.561 ± 0.014 0.566 ± 0.019
smote 0.545 ± 0.014 0.550 ± 0.016 0.549 ± 0.018 0.558 ± 0.011 0.561 ± 0.020 0.568 ± 0.013 0.567 ± 0.017 0.566 ± 0.017 0.565 ± 0.014
reweight 0.541 ± 0.011 0.551 ± 0.016 0.556 ± 0.016 0.560 ± 0.012 0.569 ± 0.010 0.567 ± 0.018 0.569 ± 0.014 0.574 ± 0.010 0.581 ± 0.017
embed sm 0.544 ± 0.010 0.543 ± 0.019 0.545 ± 0.012 0.549 ± 0.011 0.555 ± 0.014 0.555 ± 0.007 0.560 ± 0.017 0.558 ± 0.014 0.571 ± 0.012
em smote 0.547 ± 0.021 0.553 ± 0.015 0.556 ± 0.016 0.558 ± 0.012 0.568 ± 0.014 0.568 ± 0.012 0.572 ± 0.019 0.566 ± 0.018 0.568 ± 0.013
HetGSM 0.553 ± 0.010 0.561 ± 0.017 0.562 ± 0.016 0.571 ± 0.021 0.570 ± 0.024∗ 0.573 ± 0.015 0.575 ± 0.017 0.576 ± 0.019 0.579 ± 0.018

A
U
C

no 0.661 ± 0.030 0.670 ± 0.022 0.682 ± 0.028 0.699 ± 0.018 0.706 ± 0.021 0.699 ± 0.014 0.707 ± 0.017 0.703 ± 0.022 0.707 ± 0.020
up 0.652 ± 0.023 0.662 ± 0.029 0.669 ± 0.020 0.675 ± 0.023 0.685 ± 0.018 0.692 ± 0.021 0.702 ± 0.028 0.694 ± 0.020 0.701 ± 0.024
smote 0.658 ± 0.030 0.669 ± 0.027 0.670 ± 0.028 0.685 ± 0.011 0.692 ± 0.028 0.703 ± 0.020 0.699 ± 0.022 0.704 ± 0.023 0.703 ± 0.023
reweight 0.645 ± 0.025 0.679 ± 0.029 0.686 ± 0.021 0.693 ± 0.016 0.703 ± 0.019 0.700 ± 0.020 0.703 ± 0.021 0.707 ± 0.018 0.716 ± 0.024
embed sm 0.646 ± 0.018 0.651 ± 0.031 0.660 ± 0.025 0.670 ± 0.018 0.676 ± 0.024 0.683 ± 0.017 0.689 ± 0.023 0.691 ± 0.020 0.705 ± 0.019
em smote 0.665 ± 0.031 0.680 ± 0.028 0.690 ± 0.021 0.690 ± 0.018 0.701 ± 0.018 0.704 ± 0.020 0.712 ± 0.021 0.702 ± 0.023 0.706 ± 0.014
HetGSM 0.667 ± 0.020 0.685 ± 0.024 0.692 ± 0.019 0.705 ± 0.022 0.702 ± 0.023∗ 0.713 ± 0.016 0.705 ± 0.020 0.713 ± 0.023 0.717 ± 0.024

∗Accuracy is higher for our method; the other metrics are comparable within run-to-run variance.

Table 4. Test Accuracy for HetGSMOTE (all base models) vs imbalance ratio for IMDb dataset

# Settings 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
A
N

reweight 0.452 ± 0.015 0.476 ± 0.024 0.499 ± 0.032 0.518 ± 0.020 0.515 ± 0.019 0.523 ± 0.017 0.528 ± 0.019 0.531 ± 0.021 0.534 ± 0.029
embed sm 0.445 ± 0.017 0.450 ± 0.029 0.460 ± 0.024 0.481 ± 0.029 0.490 ± 0.028 0.499 ± 0.027 0.507 ± 0.026 0.509 ± 0.026 0.519 ± 0.024
em smote 0.455 ± 0.016 0.487 ± 0.028 0.494 ± 0.036 0.503 ± 0.024 0.517 ± 0.025 0.524 ± 0.028 0.529 ± 0.026 0.527 ± 0.025 0.529 ± 0.021
HetGSM 0.472 ± 0.014 0.489 ± 0.017 0.495 ± 0.024 0.518 ± 0.015 0.528 ± 0.035 0.537 ± 0.017 0.531 ± 0.023 0.544 ± 0.026 0.534 ± 0.031

M
A
G
N
N reweight 0.357 ± 0.022 0.348 ± 0.022 0.367 ± 0.039 0.406 ± 0.067 0.338 ± 0.011 0.352 ± 0.038 0.348 ± 0.024 0.338 ± 0.008 0.340 ± 0.008

embed sm 0.346 ± 0.011 0.346 ± 0.023 0.348 ± 0.025 0.350 ± 0.025 0.346 ± 0.015 0.339 ± 0.008 0.345 ± 0.012 0.342 ± 0.013 0.363 ± 0.023
em smote 0.430 ± 0.044 0.470 ± 0.019 0.488 ± 0.024 0.501 ± 0.021 0.474 ± 0.045 0.497 ± 0.031 0.513 ± 0.018 0.489 ± 0.034 0.504 ± 0.031
HetGSM 0.454 ± 0.026 0.475 ± 0.016 0.489 ± 0.023 0.498 ± 0.026 0.510 ± 0.026 0.525 ± 0.022 0.512 ± 0.027 0.520 ± 0.027 0.509 ± 0.024

H
G
N
N

reweight 0.434 ± 0.016 0.440 ± 0.033 0.456 ± 0.028 0.466 ± 0.028 0.489 ± 0.028 0.488 ± 0.029 0.508 ± 0.041 0.499 ± 0.021 0.512 ± 0.030
embed sm 0.435 ± 0.019 0.457 ± 0.024 0.466 ± 0.016 0.475 ± 0.035 0.500 ± 0.028 0.494 ± 0.035 0.503 ± 0.025 0.501 ± 0.019 0.495 ± 0.022
em smote 0.434 ± 0.022 0.442 ± 0.023 0.456 ± 0.027 0.479 ± 0.026 0.494 ± 0.031 0.501 ± 0.025 0.497 ± 0.031 0.498 ± 0.028 0.501 ± 0.031
HetGSM 0.444 ± 0.018 0.448 ± 0.021 0.476 ± 0.023 0.495 ± 0.025 0.503 ± 0.033 0.508 ± 0.024 0.498 ± 0.024 0.507 ± 0.022 0.508 ± 0.021

Table 5. Test Accuracy of HetGSMOTE (HAN base model) vs imbalance ratios for all datasets

# Settings 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IM
D
b

reweight 0.452 ± 0.015 0.476 ± 0.024 0.499 ± 0.032 0.518 ± 0.020 0.515 ± 0.019 0.523 ± 0.017 0.528 ± 0.019 0.531 ± 0.021 0.534 ± 0.029
embed sm 0.445 ± 0.017 0.450 ± 0.029 0.460 ± 0.024 0.481 ± 0.029 0.490 ± 0.028 0.499 ± 0.027 0.507 ± 0.026 0.509 ± 0.026 0.519 ± 0.024
em smote 0.455 ± 0.016 0.487 ± 0.028 0.494 ± 0.036 0.503 ± 0.024 0.517 ± 0.025 0.524 ± 0.028 0.529 ± 0.026 0.527 ± 0.025 0.529 ± 0.021
HetGSM 0.472 ± 0.014 0.489 ± 0.017 0.495 ± 0.024 0.518 ± 0.015 0.528 ± 0.035 0.537 ± 0.017 0.531 ± 0.023 0.544 ± 0.026 0.534 ± 0.031

A
M
in
er

reweight 0.922 ± 0.020 0.949 ± 0.011 0.957 ± 0.011 0.959 ± 0.010 0.964 ± 0.007 0.962 ± 0.010 0.965 ± 0.008 0.963 ± 0.012 0.961 ± 0.009
embed sm 0.932 ± 0.022 0.952 ± 0.013 0.962 ± 0.012 0.963 ± 0.011 0.958 ± 0.013 0.967 ± 0.010 0.960 ± 0.013 0.965 ± 0.008 0.963 ± 0.013
em smote 0.948 ± 0.022 0.956 ± 0.015 0.964 ± 0.013 0.962 ± 0.009 0.965 ± 0.010 0.962 ± 0.012 0.967 ± 0.012 0.964 ± 0.009 0.963 ± 0.014
HetGSM 0.951 ± 0.012 0.961 ± 0.010 0.965 ± 0.013 0.966 ± 0.013 0.964 ± 0.012 0.964 ± 0.012 0.967 ± 0.014 0.962 ± 0.015 0.967 ± 0.013

P
u
b
M
ed

reweight 0.168 ± 0.019 0.168 ± 0.019 0.153 ± 0.013 0.154 ± 0.015 0.158 ± 0.020 0.158 ± 0.017 0.164 ± 0.016 0.156 ± 0.016 0.153 ± 0.009
embed sm 0.140 ± 0.015 0.149 ± 0.015 0.164 ± 0.011 0.151 ± 0.012 0.158 ± 0.006 0.153 ± 0.012 0.154 ± 0.015 0.153 ± 0.016 0.159 ± 0.019
em smote 0.154 ± 0.021 0.154 ± 0.021 0.157 ± 0.016 0.153 ± 0.013 0.154 ± 0.013 0.160 ± 0.012 0.156 ± 0.017 0.146 ± 0.015 0.154 ± 0.018
HetGSM 0.170 ± 0.018 0.171 ± 0.017 0.169 ± 0.016 0.151 ± 0.012 0.163 ± 0.019 0.150 ± 0.016 0.158 ± 0.017 0.156 ± 0.017 0.157 ± 0.013

D
B
L
P

reweight 0.646 ± 0.021 0.690 ± 0.044 0.735 ± 0.049 0.770 ± 0.055 0.800 ± 0.036 0.805 ± 0.018 0.776 ± 0.046 0.791 ± 0.048 0.777 ± 0.046
embed sm 0.637 ± 0.024 0.683 ± 0.040 0.705 ± 0.039 0.738 ± 0.043 0.767 ± 0.023 0.769 ± 0.030 0.768 ± 0.033 0.774 ± 0.030 0.781 ± 0.036
em smote 0.645 ± 0.039 0.684 ± 0.049 0.715 ± 0.048 0.746 ± 0.044 0.764 ± 0.040 0.775 ± 0.022 0.736 ± 0.051 0.762 ± 0.034 0.751 ± 0.059
HetGSM 0.665 ± 0.032 0.714 ± 0.055 0.744 ± 0.043 0.762 ± 0.048 0.761 ± 0.040 0.767 ± 0.030 0.764 ± 0.045 0.784 ± 0.031 0.787 ± 0.044

Table 6. Test Accuracy of HetGSMOTE variants (HAN base model) vs. imbalance ratio for IMDb dataset

Setting 0.1 0.2 0.3 0.4 0.5

GSM base 0.449 ± 0.018 0.481 ± 0.022 0.495 ± 0.032 0.501 ± 0.028 0.520 ± 0.032
GSM S 0.458 ± 0.026 0.483 ± 0.031 0.488 ± 0.029 0.505 ± 0.032 0.524 ± 0.029
GSM PT 0.471 ± 0.013 0.484 ± 0.026 0.505 ± 0.027 0.516 ± 0.015 0.520 ± 0.025
HetGSM 0.472 ± 0.014 0.489 ± 0.017 0.495 ± 0.024 0.518 ± 0.015 0.528 ± 0.035

Table 7. Test Accuracy of HetGSMOTE variants (HGNN) vs. Upsampling Ratio for IMDb dataset

Setting 0.6 0.8 1.0 1.2

GSM base 0.493 ± 0.018 0.494 ± 0.023 0.501 ± 0.027 0.492 ± 0.012
GSM S 0.501 ± 0.011 0.501 ± 0.021 0.495 ± 0.019 0.490 ± 0.024
GSM PT 0.506 ± 0.024 0.503 ± 0.016 0.510 ± 0.022 0.506 ± 0.022
HetGSM 0.506 ± 0.018 0.508 ± 0.019 0.509 ± 0.021 0.515 ± 0.022

8



References

[1] R. B. Joshi and S. Mishra. “Learning graph
representations”. In: Principles of Social Net-
working: The New Horizon and Emerging
Challenges. Springer, 2021, pp. 209–228.

[2] J. Liu, C. Shi, C. Yang, Z. Lu, and P. S. Yu.
“A survey on heterogeneous information net-
work based recommender systems: Concepts,
methods, applications and resources”. In: AI
Open 3 (2022), pp. 40–57. doi: 10.1016/j.
aiopen.2022.03.002.

[3] C. Shi. “Heterogeneous Graph Neural Net-
works”. In: Graph Neural Networks: Founda-
tions, Frontiers, and Applications. Ed. by L.
Wu, P. Cui, J. Pei, and L. Zhao. Singapore:
Springer Nature Singapore, 2022, pp. 351–369.
doi: 10.1007/978-981-16-6054-2_16.

[4] X. Wang et al. “Heterogeneous Graph Atten-
tion Network”. In: The World Wide Web Con-
ference. San Francisco CA USA: ACM, May
2019, pp. 2022–2032. doi: 10.1145/3308558.
3313562.

[5] C. Zhang, D. Song, C. Huang, A. Swami, and
N. V. Chawla. “Heterogeneous Graph Neural
Network”. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. Anchorage
AK USA: ACM, July 2019, pp. 793–803. doi:
10.1145/3292500.3330961.

[6] C. Yang, Y. Xiao, Y. Zhang, Y. Sun, and
J. Han. “Heterogeneous Network Representa-
tion Learning: A Unified Framework With Sur-
vey and Benchmark”. In: IEEE Trans. Knowl.
Data Eng. 34.10 (Oct. 2022), pp. 4854–4873.
doi: 10.1109/TKDE.2020.3045924.

[7] T.-K. Nguyen, Z. Liu, and Y. Fang. “Link Pre-
diction on Latent Heterogeneous Graphs”. In:
Proceedings of the ACM Web Conference 2023.
Austin TX USA: ACM, Apr. 2023, pp. 263–
273. doi: 10.1145/3543507.3583284.
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A Background - Detailed

A.1 Class Imbalance

Given a dataset with k classes represented as
{c1, . . . , ck}, let |ci| denote the number of samples in
class ci. To quantify the degree of class imbalance,
we employ the imbalance ratio (IR) for each class i:

IRi =
|ci|

maxj∈{1,...,k}(|cj |)
(14)

where maxj |cj | represents the size of the largest
class. A perfectly balanced dataset has IRi = 1 for
all classes, while lower values of IRi indicate higher
imbalance, with minority classes having significantly
fewer samples than the majority class.

A.2 SMOTE

Synthetic Minority Oversampling Technique
(SMOTE) [22] addresses class imbalance by generat-
ing synthetic samples for minority classes through
interpolation rather than simple duplication. Given
two feature vectors X1 and X2 from the same
minority class, SMOTE creates synthetic samples
using linear interpolation:

SMOTE(X1, X2) = (1− r)X1 + rX2 (15)
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where r ∼ Uniform(0, 1) is a random interpolation
parameter. This approach generates synthetic sam-
ples along the line segment connecting existing mi-
nority samples, effectively expanding the decision
boundary for minority classes.

A.3 Heterogeneous Graph Neural
Networks

Heterogeneous graphs (HetGs) extend traditional
homogeneous graphs by incorporating multiple node
types and edge types, enabling richer semantic rela-
tionship modeling in domains such as bibliographic
networks and knowledge graphs. HetG learning has
evolved from manual feature engineering to sophis-
ticated representation learning approaches, broadly
categorized into shallow and deep models [26].

Shallow models include random walk-based meth-
ods like metapath2vec, which employs metapath-
guided random walks, and matrix decomposition
approaches such as HERec [2]. DeepWalk intro-
duced SkipGram embeddings for capturing node co-
occurrence probabilities, with variants like Spacey,
JUST, and HHNE [3] incorporating enhancements
such as jump-stay strategies and heterogeneous ran-
dom walks.

Deep models leverage Heterogeneous Graph Neu-
ral Networks (HGNNs), including unsupervised
methods like HetGNN [5] and semi-supervised ap-
proaches like HAN [4] that utilize attention mech-
anisms. Advanced HGNNs such as MAGNN and
HGT [23] further refine intra- and inter-metapath
aggregations. Additional techniques include encoder-
decoder models [3] and adversarial frameworks like
GraphGAN [27].

In this work, we employ three representative base
models: HetGNN (HGNN), HAN, and MAGNN.
Each base model updates node features by aggre-
gating information from neighbors through distinct
mechanisms. The general form for updating node
vj of type t with initial features F t[vj , :] can be
expressed as:

Gt[vj , :] = BaseModel
(
F t[vj , :],N (vj)

)
(16)

where Gt[vj , :] represents the aggregated node fea-
tures and N (vj) denotes the neighborhood of node
vj . The specific aggregation mechanisms are:

A.3.1 HetGNN (HGNN)

Performs mean aggregation over transformed neigh-
bor features:

Gt[vj , :] =
1

|N t(vj)|
∑

v∈N t(vj)

σ
(
W · F t[v, :]

)
(17)

where N t(vj) denotes neighbors of node vj of type
t, W is a trainable weight matrix, and σ represents
the ReLU activation function.

A.3.2 HAN

Employs type-specific attention mechanisms across
heterogeneous neighbors:

Gt[vj , :] =
∑
k

∑
v∈Nk(vj)

αv,vjσ
(
W1 · F k[v, :]

)
(18)

where N k(vj) represents neighbors of type k, αv,vj

denotes the attention weight between nodes v and
vj , W1 is a learnable transformation matrix, and σ
is the LeakyReLU activation.

A.3.3 MAGNN

Incorporates metapath-based context through hier-
archical intra-metapath and inter-metapath aggre-
gation:

Gt[vj , :] = σ

(
W2 ·

∑
m∈M

βm ·Aggm(MPm(vj))

)
(19)

where M represents the set of metapaths,
Aggm(MPm(vj)) denotes intra-metapath aggrega-
tion for metapath m containing node vj , βm repre-
sents the attention weight for metapath m, and W2

is a learnable weight matrix.

B Datasets

THe datasets, as discussed in Section 6.2, are given
below.

1. AMiner-AII [5]: This is an academic dataset
that includes paper publications in top venues
related to artificial intelligence and data science
from year 2006 to 2015. Each paper has various
bibliographic content information: title (128
dim) and abstract (128 dim). The author and
venue attributes are extracted from the random
walks in the graph using Par2Vec [28].

2. DBLP[23]: This is a subset of the DBLP com-
puter science bibliography website dataset col-
lected from [23] containing bibliographic infor-
mation for four node types with corresponding
binary attributes (256 dim). The representa-
tion words of their paper keywords describe the
author node’s features.

3. IMDb [4]: This is a subset of the Internet
Movie Database (IMDb) dataset collected from
[4]. This is a movie-based dataset where movies
are divided into three classes (action, comedy,
drama) according to their genre, and their fea-
tures are derived from the representation words
of the plot keywords (128 dim). The attributes
of other nodes are determined from the random
walks using Par2Vec [28].
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Table B.1. Information about datasets (labeled node type marked with ∗)

Dataset Nodes Edges Classes

Type Count Type Count (Minority)

AMiner-AII
author∗ 20,171 author-paper 42,379 4 (3)
paper 13,250 paper-paper 14,583
venue 18 paper-venue 13,250

IMDb
movie∗ 4,666 movie-actor 13,990 3 (2)
director 2,271 movie-director 4,666
actor 5,845

DBLP

author 4,057 author-paper 19,645 4 (3)
paper∗ 14,328 paper-term 85,810
term 7,723 paper-conference 14,328
conference 20

PubMed 4 types 63,109 10 types 244,986 8 (6)

4. PubMed [6]: This is bio-medical data describ-
ing relations between genes, diseases, chemicals,
and species with corresponding attributes (200
dim). The links include gene-gene interactions,
gene-disease associations, chemical-species rela-
tionships, etc. There are 8 target labels for the
disease nodes.

To prepare the experimental datasets with vary-
ing imbalance ratios, we followed the procedure of
GraphSMOTE [9]: majority classes were downsam-
pled to match the second-largest class in each graph,
after which minority class nodes were further down-
sampled to obtain the desired imbalance ratio. For
the DBLP dataset, where the smallest class contains
only 20 samples, we instead selected another minor-
ity class with sufficient samples, since the standard
definition of the imbalance ratio (smallest-to-largest
class) does not apply. For all datasets, the adjacency
matrix was preserved for the selected nodes, ensuring
consistency with the original graph structure.

C Evaluation Metrics

Macro-averaged Accuracy (ACC) computes the
classification accuracy independently for each class
and then averages across all classes:

ACCmacro =
1

|C|
∑

c ∈ CACCc (20)

where the accuracy for each class c is defined as:

ACCc =
TPc + TNc

TPc + TNc + FPc + FNc
(21)

Macro-averaged AUC-ROC (AUC) com-
putes the area under the receiver operating char-
acteristic curve for each class independently, then
averages across all classes:

AUCmacro =
1

|C|
∑
c∈C

AUCc (22)

where C represents the set of all node classes and
AUCc denotes the AUC score for class c computed
in a one-versus-rest manner.

Macro-averaged F1-score (F1) calculates the
harmonic mean of precision and recall for each class,
then averages across all classes:

F1macro =
1

|C|
∑
c∈C

F1c (23)

where the F1-score for each class c is defined as:

F1c =
2 · Precisionc · Recallc
Precisionc +Recallc

(24)

with precision and recall computed as:

Precisionc =
TPc

TPc + FPc
, Recallc =

TPc

TPc + FNc
(25)

Here, TPc, TNc, FPc, and FNc denote the true
positives, true negatives, false positives, and false
negatives for class c, respectively. For fair compari-
son, the classification threshold for F1-score compu-
tation is optimally tuned to maximize performance
across all baseline methods.

D Extended Results

This section presents extended evaluation results to
verify that the trends reported in the main text re-
main consistent across metrics beyond test accuracy.
In particular, we include additional F1 and AUC
tables, which reinforce that the relative performance
differences across models, datasets, and imbalance
ratios follow the same patterns, with only minor
numerical variations.

D.1 Influence of Base Model

Tables D.1 and D.2 report the F1 and AUC scores for
HAN, MAGNN, and HGNN on the IMDb dataset,
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Table D.1. F1 scores for HetGSMOTE (across all base models) under varying imbalance ratios on the IMDb
dataset

# Settings 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
A
N

reweight 0.541 ± 0.011 0.551 ± 0.016 0.556 ± 0.016 0.560 ± 0.012 0.569 ± 0.010 0.567 ± 0.018 0.569 ± 0.014 0.574 ± 0.010 0.581 ± 0.017
embed sm 0.544 ± 0.010 0.543 ± 0.019 0.545 ± 0.012 0.549 ± 0.011 0.555 ± 0.014 0.555 ± 0.007 0.560 ± 0.017 0.558 ± 0.014 0.571 ± 0.012
em smote 0.547 ± 0.021 0.553 ± 0.015 0.556 ± 0.016 0.558 ± 0.012 0.568 ± 0.014 0.568 ± 0.012 0.572 ± 0.019 0.566 ± 0.018 0.568 ± 0.013
HetGSM 0.553 ± 0.010 0.561 ± 0.017 0.562 ± 0.016 0.571 ± 0.021 0.570 ± 0.024 0.573 ± 0.015 0.575 ± 0.017 0.576 ± 0.019 0.579 ± 0.018

M
A
G
N
N reweight 0.536 ± 0.013 0.544 ± 0.020 0.549 ± 0.016 0.540 ± 0.010 0.541 ± 0.021 0.550 ± 0.012 0.544 ± 0.008 0.542 ± 0.018 0.542 ± 0.013

embed sm 0.505 ± 0.002 0.510 ± 0.011 0.510 ± 0.010 0.514 ± 0.008 0.512 ± 0.007 0.518 ± 0.012 0.523 ± 0.007 0.535 ± 0.010 0.543 ± 0.008
em smote 0.525 ± 0.022 0.521 ± 0.006 0.517 ± 0.012 0.518 ± 0.015 0.523 ± 0.020 0.522 ± 0.015 0.520 ± 0.014 0.513 ± 0.010 0.523 ± 0.013
HetGSM 0.539 ± 0.017 0.556 ± 0.015 0.556 ± 0.012 0.555 ± 0.015 0.553 ± 0.020 0.559 ± 0.014 0.559 ± 0.018 0.558 ± 0.015 0.553 ± 0.016

H
G
N
N

reweight 0.532 ± 0.009 0.533 ± 0.022 0.533 ± 0.014 0.541 ± 0.016 0.546 ± 0.013 0.542 ± 0.019 0.541 ± 0.015 0.548 ± 0.024 0.549 ± 0.019
embed sm 0.525 ± 0.015 0.532 ± 0.019 0.533 ± 0.010 0.542 ± 0.021 0.547 ± 0.017 0.546 ± 0.028 0.546 ± 0.021 0.547 ± 0.017 0.546 ± 0.018
em smote 0.530 ± 0.010 0.531 ± 0.020 0.528 ± 0.016 0.542 ± 0.011 0.551 ± 0.016 0.547 ± 0.014 0.538 ± 0.018 0.544 ± 0.018 0.547 ± 0.023
HetGSM 0.534 ± 0.014 0.532 ± 0.013 0.537 ± 0.020 0.543 ± 0.014 0.549 ± 0.023 0.548 ± 0.017 0.551 ± 0.023 0.551 ± 0.014 0.540 ± 0.028

Table D.2. AUC scores for HetGSMOTE (across all base models) under varying imbalance ratios on the IMDb
dataset.

# Settings 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
A
N

reweight 0.658 ± 0.023 0.679 ± 0.031 0.684 ± 0.023 0.688 ± 0.028 0.703 ± 0.027 0.706 ± 0.021 0.704 ± 0.029 0.708 ± 0.025 0.708 ± 0.021
embed sm 0.662 ± 0.034 0.675 ± 0.033 0.683 ± 0.028 0.688 ± 0.022 0.704 ± 0.026 0.699 ± 0.026 0.704 ± 0.024 0.706 ± 0.021 0.716 ± 0.015
em smote 0.664 ± 0.022 0.680 ± 0.025 0.697 ± 0.026 0.699 ± 0.016 0.705 ± 0.032 0.707 ± 0.018 0.709 ± 0.023 0.713 ± 0.025 0.713 ± 0.027
HetGSM 0.667 ± 0.020 0.685 ± 0.024 0.692 ± 0.019 0.705 ± 0.022 0.702 ± 0.023 0.713 ± 0.016 0.705 ± 0.020 0.713 ± 0.023 0.717 ± 0.024

M
A
G
N
N reweight 0.653 ± 0.025 0.659 ± 0.030 0.672 ± 0.018 0.671 ± 0.026 0.649 ± 0.017 0.640 ± 0.022 0.633 ± 0.018 0.629 ± 0.021 0.628 ± 0.019

embed sm 0.597 ± 0.013 0.600 ± 0.019 0.607 ± 0.020 0.608 ± 0.018 0.614 ± 0.021 0.608 ± 0.029 0.616 ± 0.014 0.657 ± 0.034 0.667 ± 0.011
em smote 0.638 ± 0.030 0.664 ± 0.018 0.666 ± 0.011 0.676 ± 0.025 0.670 ± 0.022 0.675 ± 0.023 0.682 ± 0.023 0.681 ± 0.028 0.679 ± 0.033
HetGSM 0.655 ± 0.019 0.673 ± 0.022 0.676 ± 0.024 0.687 ± 0.020 0.686 ± 0.025 0.694 ± 0.020 0.694 ± 0.022 0.694 ± 0.018 0.688 ± 0.022

H
G
N
N

reweight 0.647 ± 0.017 0.659 ± 0.035 0.670 ± 0.024 0.679 ± 0.021 0.684 ± 0.018 0.684 ± 0.021 0.695 ± 0.026 0.687 ± 0.021 0.696 ± 0.021
embed sm 0.645 ± 0.026 0.659 ± 0.026 0.669 ± 0.027 0.678 ± 0.020 0.687 ± 0.027 0.683 ± 0.030 0.688 ± 0.025 0.689 ± 0.018 0.688 ± 0.019
em smote 0.647 ± 0.027 0.662 ± 0.036 0.670 ± 0.029 0.681 ± 0.010 0.688 ± 0.023 0.691 ± 0.019 0.682 ± 0.024 0.684 ± 0.020 0.686 ± 0.027
HetGSM 0.650 ± 0.025 0.661 ± 0.032 0.670 ± 0.021 0.681 ± 0.020 0.688 ± 0.022 0.693 ± 0.020 0.682 ± 0.022 0.693 ± 0.021 0.694 ± 0.021

complementing the accuracy-based comparison in
Table 4. The trends remain fully aligned with those
in the main text: HAN continues to perform best
among the base models, and HetGSMOTE consis-
tently surpasses all baselines across every architec-
ture. These results confirm that the effectiveness of
HetGSMOTE is preserved regardless of the evalua-
tion metric or underlying model.

D.2 Variation Across Datasets

Tables D.3 and D.4 extend the dataset-wise compari-
son from Table 5. As observed earlier with accuracy,
heterogeneous datasets with uneven node-type distri-
butions still show greater metric variability. Despite
this, HetGSMOTE maintains its advantage over the
most competitive baselines across all datasets.
The extended F1 and AUC results further rein-

force two core findings: (1) HetGSMOTE performs
competitively or better in the majority of cases,
and (2) the performance gains are more pronounced
under severe imbalance conditions.

D.3 Ablation with Imbalance Ratio

Tables D.5 and D.6 provide the extended F1 and
AUC results for the ablation study on imbalance
ratios using the HAN base model, complementing
the accuracy comparison in Table 6. As with the
main findings, the full HetGSMOTE variant, incor-
porating both pre-training and synthetic soft edges,
retains its superior performance across most imbal-
ance levels and secures the top score in the majority

of test settings.
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Table D.3. F1 scores of HetGSMOTE using the HAN base model across multiple datasets under varying
imbalance ratios.

# Settings 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IM
D
b

reweight 0.541 ± 0.011 0.551 ± 0.016 0.556 ± 0.016 0.560 ± 0.012 0.569 ± 0.010 0.567 ± 0.018 0.569 ± 0.014 0.574 ± 0.010 0.581 ± 0.017
embed sm 0.544 ± 0.010 0.543 ± 0.019 0.545 ± 0.012 0.549 ± 0.011 0.555 ± 0.014 0.555 ± 0.007 0.560 ± 0.017 0.558 ± 0.014 0.571 ± 0.012
em smote 0.547 ± 0.021 0.553 ± 0.015 0.556 ± 0.016 0.558 ± 0.012 0.568 ± 0.014 0.568 ± 0.012 0.572 ± 0.019 0.566 ± 0.018 0.568 ± 0.013
HetGSM 0.553 ± 0.010 0.561 ± 0.017 0.562 ± 0.016 0.571 ± 0.021 0.570 ± 0.024 0.573 ± 0.015 0.575 ± 0.017 0.576 ± 0.019 0.579 ± 0.018

A
M
IN

E
R reweight 0.955 ± 0.008 0.958 ± 0.011 0.958 ± 0.010 0.962 ± 0.008 0.961 ± 0.009 0.961 ± 0.010 0.963 ± 0.011 0.963 ± 0.012 0.965 ± 0.011

embed sm 0.955 ± 0.009 0.957 ± 0.010 0.962 ± 0.012 0.963 ± 0.010 0.961 ± 0.012 0.964 ± 0.013 0.960 ± 0.010 0.965 ± 0.009 0.965 ± 0.010
em smote 0.960 ± 0.011 0.962 ± 0.009 0.962 ± 0.012 0.962 ± 0.011 0.964 ± 0.009 0.963 ± 0.011 0.964 ± 0.011 0.965 ± 0.010 0.968 ± 0.011
HetGSM 0.960 ± 0.010 0.965 ± 0.014 0.965 ± 0.009 0.963 ± 0.009 0.965 ± 0.010 0.963 ± 0.008 0.965 ± 0.012 0.963 ± 0.009 0.968 ± 0.009

P
u
b
M
ed

reweight 0.167 ± 0.019 0.168 ± 0.019 0.153 ± 0.013 0.154 ± 0.015 0.154 ± 0.017 0.158 ± 0.017 0.164 ± 0.016 0.156 ± 0.016 0.153 ± 0.009
embed sm 0.149 ± 0.015 0.149 ± 0.015 0.164 ± 0.011 0.151 ± 0.012 0.158 ± 0.006 0.153 ± 0.012 0.154 ± 0.015 0.153 ± 0.016 0.159 ± 0.019
em smote 0.154 ± 0.021 0.154 ± 0.021 0.157 ± 0.016 0.153 ± 0.013 0.154 ± 0.013 0.160 ± 0.012 0.156 ± 0.017 0.146 ± 0.015 0.154 ± 0.018
HetGSM 0.171 ± 0.017 0.171 ± 0.017 0.169 ± 0.016 0.144 ± 0.017 0.158 ± 0.020 0.146 ± 0.012 0.158 ± 0.017 0.156 ± 0.017 0.147 ± 0.010

D
B
L
P

reweight 0.717 ± 0.036 0.771 ± 0.034 0.787 ± 0.035 0.796 ± 0.047 0.804 ± 0.032 0.808 ± 0.019 0.795 ± 0.030 0.807 ± 0.041 0.799 ± 0.034
embed sm 0.703 ± 0.022 0.734 ± 0.032 0.750 ± 0.022 0.765 ± 0.031 0.777 ± 0.140 0.785 ± 0.016 0.778 ± 0.025 0.783 ± 0.020 0.803 ± 0.029
em smote 0.722 ± 0.042 0.757 ± 0.034 0.771 ± 0.022 0.782 ± 0.036 0.790 ± 0.024 0.796 ± 0.020 0.772 ± 0.036 0.789 ± 0.028 0.781 ± 0.024
HetGSM 0.732 ± 0.028 0.774 ± 0.041 0.788 ± 0.029 0.796 ± 0.032 0.800 ± 0.032 0.804 ± 0.027 0.808 ± 0.035 0.807 ± 0.031 0.815 ± 0.026

Table D.4. AUC scores of HetGSMOTE using the HAN base model across multiple datasets under varying
imbalance ratios.

# Settings 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IM
D
b

reweight 0.658 ± 0.023 0.679 ± 0.031 0.684 ± 0.023 0.688 ± 0.028 0.703 ± 0.027 0.706 ± 0.021 0.704 ± 0.029 0.708 ± 0.025 0.708 ± 0.021
embed sm 0.662 ± 0.034 0.675 ± 0.033 0.683 ± 0.028 0.688 ± 0.022 0.704 ± 0.026 0.699 ± 0.026 0.704 ± 0.024 0.706 ± 0.021 0.716 ± 0.015
em smote 0.664 ± 0.022 0.680 ± 0.025 0.697 ± 0.026 0.699 ± 0.016 0.705 ± 0.032 0.707 ± 0.018 0.709 ± 0.023 0.713 ± 0.025 0.713 ± 0.027
HetGSM 0.667 ± 0.020 0.685 ± 0.024 0.692 ± 0.019 0.705 ± 0.022 0.702 ± 0.023 0.713 ± 0.016 0.705 ± 0.020 0.713 ± 0.023 0.717 ± 0.024

A
M
IN

E
R reweight 0.994 ± 0.003 0.996 ± 0.002 0.996 ± 0.002 0.997 ± 0.002 0.997 ± 0.001 0.997 ± 0.002 0.996 ± 0.003 0.997 ± 0.002 0.998 ± 0.001

embed sm 0.994 ± 0.003 0.996 ± 0.002 0.996 ± 0.002 0.997 ± 0.001 0.997 ± 0.002 0.997 ± 0.001 0.997 ± 0.001 0.998 ± 0.001 0.997 ± 0.001
em smote 0.995 ± 0.002 0.996 ± 0.003 0.997 ± 0.002 0.997 ± 0.002 0.998 ± 0.001 0.998 ± 0.001 0.997 ± 0.002 0.998 ± 0.001 0.997 ± 0.001
HetGSM 0.996 ± 0.002 0.997 ± 0.002 0.998 ± 0.001 0.997 ± 0.001 0.997 ± 0.001 0.997 ± 0.002 0.997 ± 0.001 0.997 ± 0.002 0.998 ± 0.001

P
u
b
M
ed

reweight 0.536 ± 0.021 0.536 ± 0.021 0.514 ± 0.020 0.513 ± 0.016 0.505 ± 0.023 0.521 ± 0.023 0.521 ± 0.037 0.529 ± 0.020 0.519 ± 0.025
embed sm 0.515 ± 0.026 0.516 ± 0.026 0.523 ± 0.032 0.516 ± 0.025 0.499 ± 0.020 0.513 ± 0.027 0.521 ± 0.023 0.517 ± 0.017 0.525 ± 0.020
em smote 0.532 ± 0.032 0.533 ± 0.032 0.513 ± 0.021 0.517 ± 0.021 0.529 ± 0.020 0.511 ± 0.020 0.509 ± 0.021 0.516 ± 0.025 0.520 ± 0.011
HetGSM 0.538 ± 0.014 0.539 ± 0.015 0.526 ± 0.027 0.513 ± 0.023 0.506 ± 0.029 0.508 ± 0.017 0.517 ± 0.036 0.506 ± 0.025 0.530 ± 0.021

D
B
L
P

reweight 0.891 ± 0.024 0.917 ± 0.017 0.926 ± 0.023 0.940 ± 0.022 0.946 ± 0.014 0.950 ± 0.008 0.952 ± 0.008 0.950 ± 0.007 0.943 ± 0.015
embed sm 0.880 ± 0.017 0.902 ± 0.019 0.916 ± 0.012 0.924 ± 0.016 0.932 ± 0.009 0.938 ± 0.007 0.931 ± 0.013 0.939 ± 0.010 0.945 ± 0.012
em smote 0.892 ± 0.018 0.916 ± 0.019 0.928 ± 0.013 0.935 ± 0.016 0.943 ± 0.013 0.942 ± 0.010 0.930 ± 0.019 0.941 ± 0.014 0.937 ± 0.011
HetGSM 0.894 ± 0.029 0.929 ± 0.019 0.936 ± 0.018 0.942 ± 0.013 0.942 ± 0.014 0.952 ± 0.015 0.942 ± 0.014 0.945 ± 0.020 0.952 ± 0.014

Table D.5. F1 scores of HetGSMOTE variants (HAN base model) under different imbalance ratios on the IMDb
dataset.

Settings 0.1 0.2 0.3 0.4 0.5

GSM base 0.545 ± 0.014 0.552 ± 0.017 0.562 ± 0.011 0.556 ± 0.022 0.569 ± 0.021
GSM S 0.547 ± 0.021 0.553 ± 0.016 0.557 ± 0.017 0.557 ± 0.018 0.567 ± 0.018
GSM PT 0.551 ± 0.009 0.559 ± 0.020 0.565 ± 0.020 0.565 ± 0.012 0.570 ± 0.017
HetGSM 0.553 ± 0.010 0.561 ± 0.017 0.562 ± 0.016 0.571 ± 0.021 0.570 ± 0.024

Table D.6. AUC scores of HetGSMOTE variants (HAN base model) under different imbalance ratios on the
IMDb dataset.

Settings 0.1 0.2 0.3 0.4 0.5

GSM base 0.658 ± 0.023 0.679 ± 0.031 0.684 ± 0.023 0.688 ± 0.028 0.703 ± 0.027
GSM S 0.662 ± 0.034 0.675 ± 0.033 0.683 ± 0.028 0.688 ± 0.022 0.704 ± 0.026
GSM PT 0.664 ± 0.022 0.680 ± 0.025 0.697 ± 0.026 0.699 ± 0.016 0.705 ± 0.032
HetGSM 0.667 ± 0.020 0.685 ± 0.024 0.692 ± 0.019 0.705 ± 0.022 0.702 ± 0.023
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