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Abstract

Traditional approaches to dialogue segmenta-
tion perform quite well on synthetic or short
dialogues but suffer when dealing with long,
noisy dialogs. In addition, such methods re-
quire careful tuning of hyperparameters. We
propose to leverage a novel approach that is
based on dialogue summaries. Experiments on
different datasets showed that the new approach
outperforms popular SotA algorithms in unsu-
pervised topic segmentation and requires less
setup.

1 Introduction

The objective of topic segmentation is “to construct
a system which, when given a stream of text, identi-
fies locations where the topic changes” (Beeferman
et al., 1999). This is an example of a classic and
still challenging task to automate (Bai et al., 2023),
(Nair et al., 2023).

The challenging nature of topic segmentation
comes from several aspects. First, even for human
annotators topic segmentation might be a hard task
according to (Gruenstein et al., 2008). Hence col-
lecting labeled data for segmented meetings is com-
plex and expensive and there is a lack of ground
truth labeling data. Second, it is hard to handle
unstructured textual datasets, especially for long
noisy real dialogues.

In this work, we propose the use of summariza-
tion to handle the structure of long noisy dialogues.
In the case of dialogues that exceed the context
size of the model, we adopted a solution by split-
ting them into smaller chunks. Each chunk was
individually summarized, and then the resulting
summaries were joined together.

To the best of our knowledge, there has been no
other study focusing specifically on the use of sum-
mary in unsupervised topic segmentation. For a
study closest to our work, (Cho et al., 2022) learned
summarization and segmentation simultaneously
to obtain robust sentence representations.

Figure 1: Reference dialogue and generated summary.
Example from TIAGE dataset.

Our main contributions:

1. We leverage the summarization technique for
topic segmentation of long documents.

2. We show that the resulting approach holds bet-
ter quality on 3 datasets (SuperDialseg, QM-
Sum, TIAGE).

3. The Proposed approach also has fewer hyper-
parameters to tune than other unsupervised
approaches.

2 Related work

2.1 Unsupervised topic segmentation

Most of the existing approaches here are based on
classical work TopicTiling (Riedl and Biemann,
2012).

The TopicTiling algorithm can be divided into
two primary components: the computation of topic
vectors and the derivation of depth scores. While
the methodology for computing depth scores re-
mains relatively consistent or may undergo mini-
mal modifications, the process of calculating topic
vectors offers different approaches. Here we briefly
review some of them in historical order.



2.1.1 Topic modeling-based segmentation

Latent Dirichlet allocation (LDA) (Blei et al., 2001)
is the most popular probabilistic topic model. LDA
is a two-level Bayesian generative model, in which
topic distributions over words and document distri-
butions over topics are generated from prior Dirich-
let distributions.

Later, Additive Regularization of Topic Models
(ARTM) (Vorontsov et al., 2015) was introduced.
The additive Regularization approach enables us
to combine probabilistic assumptions with linguis-
tic and problem-specific requirements in a single
multi-objective topic model.

On the different side from probabilistic topic
models such as ARTM and LDA stays BERTopic
model. BERTopic generates document embedding
with pre-trained transformer-based language mod-
els, clusters these embeddings, and finally, gen-
erates topic representations with the class-based
TF-IDF procedure. BERTopic generates coherent
topics and remains competitive across a variety of
benchmarks involving classical models and those
that follow the more recent clustering approach of
topic modeling.

2.1.2 Embedding-based topic segmentation

Another group of methods aims to vectorize source
text and calculate the distance between adjacent
pieces.

Obtained distances are then employed to decide
whether two neighboring sentences relate to the
same topic. (Solbiati et al., 2021) utilizes siamese
networks to derive semantically meaningful sen-
tence BERT (SBERT) embeddings (insert citation
here) to segment dialogue utterances. It first pre-
trains the encoder model on the Next Sentence
Prediction (NSP) task, then uses Bert as a scor-
ing model to measure the coherence score between
adjacent utterances.

2.2 Supervised topic segmenation

This section briefly mentions supervised models
for topic segmentation, with our primary focus on
unsupervised models.

One notable supervised model, (Koshorek et al.,
2018), employs a stack of two LSTM networks.
The first LSTM serves as a sentence encoder, while
the second classifies sentences as indicative of the
beginning of a new topic or not.

Other approaches include hierarchical architec-
tures. For example, (Takanobu et al., 2018) uses a

hierarchical LSTM for weakly supervised learn-
ing of token segmentation in goal-oriented dia-
logues. Another work, (Masumura et al., 2018),
introduces a hierarchical LSTM approach with ad-
ditional speaker embeddings for improved segment
boundary identification.

3 Method

3.1 Task formulation

Consider corpus D of documents d and vocabu-
lary W of all possible terms w. Every document
d = (S])J 1» consists of utterances s, ..., sp,
which are typically sentences (it might also be repli-
cas or words in some topic segmentation problems).

Given document d = (sj)?i , the goal of seg-

mentation is to find a partition L = (I, )kd , such
that joining the elements (segments) of L in the
same order reconstructs d and [; N l; =0 Vi # j.
Each segment [; € L represents some topic.

3.2 TopicTiling-like pipeline for topic
segmentation

Traditional topic modeling-based segmentation

pipeline consists of multiple steps:

1. Construct a topic model for all corpus:

> p(w | t)p(t | d),

teT

plw|d) =

where d € D,w € W. In the original Top-
icTiling LDA was used, other topic models
may also be chosen, for example, BERTopic
or BigARTM.

2. For particular document d = (s;)’4
topic distribution for sentence s;:

Z (t|d,w)

|J|wes

2 obtain

p(t | dv 5]

and topic vector of sentence s;:
pj = (P (t]d,8))er
3. Apply Savitzky—Golay filter (Savitzky and Go-
lay, 1964) to p; to get p;.

4. Run TopicTiling algorithm (Riedl and Bie-
mann, 2012) on to the smoothed topic vectors.

Compute depth score d; and return candidates
with d; exceeding the threshold.



Table 1: Statistics of datasets

Dataset # docs # words in doc avg #

train val | test min avg max | words in section | uttrances in doc | utterances in section
Super-
DialSeg 6690 | 1298 | 1277 33.0 | 2183 525.0 48.8 13.4 3.4
TIAGE 286 96 97 | 109.0 | 185.1 264.0 40.4 15.4 4.1
QMSum 162 35 35 | 1371.0 | 9521.4 | 25529.0 1593.6 334.7 76.5

1
dj = 5 (hlj + hl"j — 2Cj) ,

Where c; represents the cosine similarity
between left (S,_window+1, - - - » Sp) and right
(Sp+15 - - - » Sp+window) Mean-pooled windows.
hl(c;) identifies the closest local maxima on
the left of index j in the similarity scores.

hr(c;) does the same for the right side.

3.3
Our proposed pipeline:

Proposed summary-based pipeline

1. Document summarization using a neural net-
work model.

2. Divide the summary of a document into sim-
ple sentences using NLTK sentence tokenizer
and spacy syntax parser for tree creation. The
purpose is to address only one specific topic
within the document.

3. Calculate embeddings for simple sentences
from the summary of the document, as well
as for sentences from the source document.

4. Calculate cosine proximity between embed-
dings of text sentences and embeddings of
simple sentences (ss) from the summary. As a
result, we get a matrix £ € R"*%% where n
is the number of sentences in the original doc-
ument, ss is the number of simple sentences
in the summary of the document. Similar to
topic models, we call these vectors topic vec-
tors.

5. Smoothing along initial sentences from doc-
ument(in n dimension). This process is par-
ticularly advantageous for sentences devoid
of topical information, a common occurrence
in dialogues where the inclusion of such sen-
tences contributes to speech fluidity and the
style of the speaker.

6. Apply TopicTilling algorithm.

3.4 Comparing different summary models

We test stability of our setup with different sum-
mary models.

The key difference for our dataset choice is in
input sequence length, which leads to the problem
of long text chunking. The next notable difference
between the models is in the time it takes them to
handle long texts. For example, LED is faster than
all the above models due to the large input context
(16384 tokens), which allows not to divide the text
into many small chunks. Based on Table 4, FLAN-
TS5’s inference time takes the longest, BART is the
trade-off in runtime between LED and FLAN-TS5.

4 Experiments

We have selected 3 most popular and high-quality
datasets for dialog topic segmentation. All of them
are different in structure and meaning, allowing the
most complete comparison of all our models.

4.1 Datasets

SuperDialseg (Jiang et al., 2023) is a large-scale
supervised dataset for dialogue segmentation that
contains 9K dialogues based on two prevalent
document-grounded dialogue corpora. The dataset
is created with a feasible definition of dialogue
segmentation points with the help of document-
grounded dialogues, which allows for a better un-
derstanding of conversational texts.

QMSum benchmark (Zhong et al., 2021) is
designed for the task of query-based multi-domain
meeting summarisation and includes 1,808 pairs of
queries and summaries from 232 meetings across
various domains. The benchmark was created
through human annotation.

TIAGE (Xie et al., 2021) is a dialog benchmark
that considers topic shifts, created through human
annotations. It enables three tasks to study differ-
ent scenarios of topic-shift modeling in dialog set-
tings: detecting topic-shifts, generating responses
triggered by topic-shifts, and creating topic-aware
dialogs.



Table 2: Overall Performance Comparison. The down arrow shows that the lower the metric value, the better,
the up arrow, vice versa. The best result is highlighted in bold, the second is underlined. An asterisk denotes
a supervised model if it outperformed all unsupervised models.

Models Unsupervised Supervised
m Without any annotated corpus TT+Summary With topic modeling

Random | Absence | TT+SBERT | BART-samsum (our) TT+BERTTopic Bi-H-LSTM

WD, 0,554 0,533 0,483 0,480 0,489 *0,220

Super- PK| 0,474 0,533 0,476 0,469 0,478 *0,210

DialSeg F11 0,269 0,000 0,127 0,170 0,138 (0,840

Scoret 0,378 0,234 0,324 0,348 0,328 *0,813

WD, 0,591 0,520 0,470 0,455 0,478 0,492

TIAGE PK| 0,499 0,520 0,439 0,438 0,461 0,442

F11 0,175 0,000 0,120 0,141 0,109 *0,430

Scoret 0,315 0,240 0,333 0,348 0,320 *(,482

WD, 0,530 0,404 0,387 0,379 0,447 0,714

QMSum PK| 0,470 0,404 0,377 0,357 0,438 0,648

F11 0,015 0,000 0,008 0,017 0,008 *0,090

Scoret 0,258 0,298 0,313 0,325 0,283 0,205

4.2 Metrics

In this paper, several metrics widely known in the
literature are used: PK (P:) (Beeferman et al.,
1999) and WD (WindowDiff) (Pevzner and Hearst,
2002) — metrics that use a sliding window to cal-
culate correctly predicted boundaries. For a more
convenient comparison, we use the aggregate met-
ric Score proposed in (Jiang et al., 2023).

A detailed description of all metrics is presented
in Appendix A.

4.3 Models

Baselines

There are 2 baselines included for comparison.
Random baseline places boundaries with a prob-
ability of the inverse average reference segment
length. Absence returns no boundaries. Even
though they are simple, on the SuperDialseg dataset
Random baseline gets a high score, which was
mentioned even in the original article (Jiang et al.,
2023).

Unsupervised models

For unsupervised models comparison we include
BERTopic-based unsupervised model as defined in
3.2 and (Solbiati et al., 2021) close to state-of-the-
art.

Supervised models

Finally, we compare against the bidirectional
H-LSTM supervised model based on (Masumura
et al., 2018).

S Results and analysis

As shown in Tables 2 and 3, our unsupervised
method based on using TopicTiling model with

summary-based topic vectors obtains better results
on each dataset and metrics than the most popular
SotA approaches in unsupervised topic segmenta-
tion — TopicTiling over BERT embeddings. It is
worth noting that on long documents (QMSum)
supervised models show poor quality, while the
summarization model on the contrary shows good
metrics. At best, our algorithm outperforms Topic-
Tiling over BERT embeddings by 5% on WD, 6%
on PK, 114% on F1, and 21% on total score.

6 Conclusion and future work

We have presented and investigated a novel ap-
proach to segment dialog data using summariza-
tion models, which shows better metrics among
the tested unsupervised approaches. The BART-
samsum model showed the best results; it outper-
forms other unsupervised models not only in met-
rics but also in ease of configuration. Although
on some datasets summary-based models are infe-
rior to the supervised approach, they nevertheless
deserve a lot of attention because do not require
careful marking.

Further research steps are planned to investigate
the application of LLM to text segmentation and
summarization and the use of this information for
segmentation.

Limitations

In contrast to existing topic segmentation tech-
niques, such as sentence embeddings, the proposed
approach requires performing additional summa-
rization steps, which may be time-consuming espe-
cially for substantial data, e.g., wiki727. Moreover,



it might be difficult to obtain the pre-trained sum-
marization model for low-resource languages.
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A Metrics

Pk is calculated by passing a sliding window of
length k through the text of the document. The k
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Table 3: Performance Comparison of different summary models. The down arrow shows that the lower the
metric value, the better, the up arrow, vice versa.

Models TT+Summary
Datasets BART | BART-samsum | FLAN-T5-samsum | LED-samsum
WD/ 0,488 0,480 0,485 0,491
Super- PK| 0,480 0,469 0,475 0,483
DialSeg F11 0,136 0,170 0,143 0,154
Scoret | 0,326 0,348 0,331 0,334
WD, 0,443 0,455 0,443 0,493
PK| 0,415 0,438 0,402 0,479
TIAGE F1t 0,234 0,141 0,177 0,097
Scoret | 0,403 0,348 0,377 0,305
WD, 0,431 0,379 0,410 0,436
PK| 0,414 0,357 0,399 0,419
QMSum | By 0,019 0,017 0,000 0,008
Scoret | 0,298 0,325 0,298 0,290

value is defined as half the average length of the L
reference segment. P = 2 x precision * recall

precision + recall

N
2% number of bounderies

Where N is the total number of sentences (or con-
tent utterances).

At each iteration, the algorithm determines
whether the two ends of the frame are in the same
or different segments of the reference segmenta-
tion, and increases the counter if the segmentation
of the model does not agree with the reference one.

The resulting value is normalized by the number
of measurements to get a value in the range from 0
to 1.

WindowDiff is obtained by summing the differ-
ences of the ends of the segments in the reference
segmentation I?; ;4 and in the computed segmen-
tation made by model C; ;. If it is greater than
zero (i.e., the number of segments in the reference
segmentation differs from the segmentation made
by the model), it is summed with the rest, and then
also normalized by the total number of measure-
ments:

N—k
. . 1
WindowDif f = N % Z [Riivk 7 Ciiti]
i—1

k, N defined similarly to the previous paragraph

F1 (fl-score) is a classical metric that uses
boundaries as classes in a binary classification prob-
lem. In this setting, class 1 means the beginning
of a new segment, and 0 means the continuation
of the section. The metric is calculated using the
following formula:



Score is the aggregation of the three previous
metrics.

2% F1+(1—Py)+ (1—WD)
4

Score =

B Implementation details

B.1 Computational time

It takes roughly two hours to pick up parameters
on 3 datasets for one summarization model. Model
inference time represents in Table 4

B.2 Summarization models used

For the purpose of comprehensive comparison, we
select most popular open-source models for abstrac-
tive summarization from HuggingFace.

A list of models is:

1. BART: facebook/bart-large-cnn,
2. BART: philschmid/bart-large-cnn-samsum,
3. FLAN-TS: philschmid/flan-t5-base-samsum,

4. LED: rooftopcoder/led-base-book-summary-
samsum.

Some of the models have the suffix ’samsum’
meaning that a model was fine-tuned using the
SAMSum corpus, which renders it an appro-
priate selection for abstractive dialogue sum-
marization.

C Comparing different summarization
models

Table 4: Model inference time

Model Inference time, sec
BART 7,5
BART-samsum 6.6
FLAN-T5-samsum 19,2
LED-samsum 0,8
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