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ABSTRACT

Federated composite optimization (FCO) is an optimization problem in federated
learning whose loss function contains a non-smooth regularizer. It arises naturally
in the applications of federated learning (FL) that involve requirements such as
sparsity, low rankness, and monotonicity. In this study, we propose a personal-
ization method, called pFedFBE, for FCO by using forward-backward envelope
(FBE) as clients’ loss functions. With FBE, we not only decouple the personalized
model from the global model, but also allow personalized models to be smooth
and easily optimized. In spite of the nonsmoothness of FCO, pFedFBE shows the
same convergence complexity results as FedAvg for FL with unconstrained smooth
objectives. Numerical experiments are shown to demonstrate the effectiveness of
our proposed method.

1 INTRODUCTION

Federated learning (FL) is originally proposed by (McMahan et al., 2016) to solve learning tasks
with decentralized data arising in various applications. For example, data are generated from medical
institutions which can not share its data to each other due to confidentiality or legal constraints.
Instead of accessing all the data sets, different institutions or clients are under the coordination of a
central server and the central server aggregates the local information to train a global model. Similar
methodologies have been investigated in the literature of decentralized optimization (Colorni et al.,
1991; Boyd et al., 2011; Yang et al., 2019). For more introductions and open problems in the field of
federated optimization, we refer to the review articles (Kairouz et al., 2021; Wang et al., 2021).

The local loss functions of FL can be nonsmooth. In particular, it is a summation of a smooth
function and a nonsmooth regularizer, where the regularizer is used to promote certain structure of
the optimal parameters such as sparisity, low rankness, total variation, and additional constraints on
the parameters. This has motivated the recent study of the federated setting of composite optimization
(Yuan et al., 2021). The mathematical formulation of FCO is to optimize

min
w∈Rd

f(w) :=
1

N

N∑
i=1

(fi(w) + h(w)) , (1)

where fi(w) = Eξi f̃i(w, ξi) or its empirical version fi(w) = 1
|Di|

∑
ξi∈Di f̃i(w, ξi) is a smooth

function with local dataset Di, and h : Rd → R is a nonsmooth but convex regularizer. Besides,
we assume that the proximal operator of h, proxh(w) := argminu∈Rd h(u) + 1

2∥u − w∥2 has
closed-form expressions and is easy to compute. The difference to the centralized setting is that Di is
local data of client i and the data distribution of each client may not be the same. Optimizing FL with
unconstrained smooth objectives, i.e., problem (1) with h ≡ 0, has been extensively studied in the
literature, e.g., FedAvg (McMahan et al., 2016), FedProx (Li et al., 2020), SCAFFOLD (Karimireddy
et al., 2020b) and MIME (Karimireddy et al., 2020a), to name a few. When h ̸= 0, FedDual (Yuan
et al., 2021), FedDR (Tran Dinh et al., 2021) and FedADMM (Wang et al., 2022) are developed.
One of the challenges of these algorithms is the heterogeneity of the local dataset Di, where the
distribution of Di is none-identical. The model parameter w learned by minimizing f(w) may
perform poorly for each client. If each client learns its parameter by its own data, the local model
parameters may not generalize well due to the insufficient data. For the case h ≡ 0, in order to learn
the global parameter and the local parameters jointly, the concept of the personalized FL has been
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studied, e.g., (Smith et al., 2017; Hanzely and Richtárik, 2020; Hanzely et al., 2020; Fallah et al.,
2020b; Mansour et al., 2020; Chen and Chao, 2021; T Dinh et al., 2020). To our best knowledge,
there is no paper which directly investigating the personalization techniques to FCO, although the
above personalized methods may be generalized.

Our Contributions. In this paper, we consider constructing the personalized model for the FCO
(1), while existing methods mentioned above all conduct personalizations to FL with unconstrained
smooth objectives, i.e., h = 0. Although their approaches may be generalized to (1) by replacing
gradients with subgradients, the computational results could be worse due to the slow convergence of
subgradient methods. The main contributions are summarized as follows.

• We present a personalized model by utilizing forward-backward envelope (FBE) for FCO (1),
called pFedFBE. As a generalized of the Moreau envelope of the Moreau envelope under the
Bregman distance (Liu and Pong, 2017), FBE is smooth and has explicit forms of gradients, which
is a crucial benefit compared to the Moreau envelope. Analogous to the personalized method by
the Moreau envelope (T Dinh et al., 2020), our proposed method is able to obtain both global
parameters for generalization and local parameters for personalization. To our best knowledge,
this is the first work to investigate personalizations to FCO.

• Based on FBE, the local loss functions and global loss function are smooth and hence FedAvg
can be used to solve the resulting model. By applying FedAvg, the optimization process of our
proposed personalized model can be regarded as several local variable-metric proximal gradient
updates followed by a global aggregated parameter. The variable-metric proximal gradient steps
are able to protect the local information, and the aggregation steps guarantee the total loss is
minimized at the aggregated parameter. A proper choice of parameter of FBE allows local
parameter to move towards their own models and not to go far away from the global parameter.
An algorithm, called pFedFBE, is proposed. We show its convergence for the nonconvex fi under
mild assumptions. The complexity result matches the standard results of FedAvg for unconstrained
smooth FL.

• Based on the properties of FBE, the convergence rate of pFedFBE match with the standard
analysis of applying FedAvg under standard assumptions over f , h and the stochasticity. Numerical
experiments on various applications are performed to demonstrate the effectiveness of our proposed
personalized model.

Notations. For a vector w ∈ Rd or a matrix H ∈ Rd×d, we use ∥w∥ and ∥H∥ to denote its ℓ2 norm
and Frobenius norm, respectively. For a smooth function f : Rd → R, ∇f(x) and ∇2f(x) represent
its gradient and Hessian at x, respectively. For a nonsmooth and convex function h, we denote by
∂h(x) its subgradients at x. We use |D| to denote the cardinality of a set D.

2 PERSONALIZED FEDERATED LEARNING WITH FORWARD-BACKWARD
ENVELOPE (PFEDFBE)

The personalized FedAvg (Per-FedAvg) (Fallah et al., 2020b) and personalized FL with Moreau
envelope (pFedMe) (T Dinh et al., 2020) are proposed to deal with the data heterogeneity for the
smooth setting, i.e., h = 0. For pFedMe, the local model is constructed based on the Moreau envelope
of fi, namely,

F̂i(w) = min
θi∈Rd

fi(θi) +
λ

2
∥θi − w∥2. (2)

Then, the resulting personalized model is a bi-level problem:

min
w∈Rd

F̂ (w) :=
1

N

N∑
i=1

F̂i(w). (3)

Solving (3) will give both the global parameter w and local personalized parameter θi(w) :=
proxfi/λ(w) := argminθi∈Rd fi(θi) +

λ
2 ∥θi − w∥2. A crucial benefit of optimizing with the

Moreau envelope F̂i’s lies on the flexible choices of λ. When λ = ∞, we have F̂i(w) = fi(w) and
θi(w) = w, which means no personalization is introduced. If λ = 0, F̂i(w) is a constant function
taking value f(θi(w)) with θi(w) ≡ argminθi∈Rd fi(θi). In this case, there is only personalization
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and no federation. Hence, they claim that a proper λ ∈ (0,∞) will introduce both federation and
personalization.

Since there is no explicit solution of the inner problems, it is proposed to use multiple gradient steps
to get an estimation of gradient ∇F̂i(w) = λ(w− proxfi/λ(w)). For the convergence, they need this
estimation satisfying certain accuracy. Once the gradient of F̂i(w) is available, the existing federated
optimization algorithms can be adopted to obtain a global parameter w and locally personalized
parameters θi(w).

We note that the Moreau envelope for a nonsmooth function also exists (Rockafellar and Wets, 2009)
and pFedMe can be applied to our setting (1). However, obtaining the Moreau envelope needs to
solve a nonsmooth problem, which may be costly due to the absence of explicit expressions. Note that
the inner problem (3) should be solved to a certain accuracy to guarantee the convergence (T Dinh
et al., 2020). The bi-level model (3) will be time-consuming to solve and may not be ideal in this
setting.

2.1 PROBLEM FORMULATION

Since the Moreau envelope does not obey explicit expressions, we aim to find efficient envelopes
not only enjoying simpler formulation, but also sharing similar properties of both federations and
personalizations. For composite optimization, a famous generalization of Moreau envelope is called
FBE (Stella et al., 2017; Liu and Pong, 2017). Specifically, the FBE of fi + h is defined as

Fi(w) := min
θi∈Rd

fi(w) + ⟨∇fi(w), θi − w⟩+ h(θi) +
λ

2
∥θi − w∥2. (4)

When the proximal operator of h has a closed-form solution, the above envelope can be equivalently
written as (Stella et al., 2017)

Fi(w) = fi(w)−
1

2λ
∥∇fi(w)∥2 +H(w − 1

λ
∇fi(w)), (5)

where H(w) := minθ∈Rd h(θ)+ λ
2 ∥θ−w∥2 = h(proxh/λ(w))+

λ
2 ∥proxh/λ(w)−w∥2. Assuming

the gradient of fi is Lipschitz continuous with modulus L, i.e., ∥∇fi(θ) − ∇fi(w)∥ ≤ L∥θ −
w∥, ∀θ, w, i, the function Fi(w) is continuously differentiable for any λ > L, with gradients

∇Fi(w) = λ(I − 1

λ
∇2fi(w))(w − prox 1

λh(w − 1

λ
∇fi(w))). (6)

Compared with the Moreau envelope, the gradient of FBE is of closed form and can be calculated
with much less computational costs. Furthermore, when λ > L, the set of global minimizers of Fi

equals to that of fi + h.

With the definition of FBE (4), our personalized model for FCO (1) is

min
w∈Rd

F (w) :=
1

N

N∑
i=1

Fi(w). (7)

Similar to pFedMe, one can obtain both global parameter w and local personalized parameter

θi(w) := prox 1
λh(w −∇fi(w)) (8)

by solving (7). When λ = ∞, Fi(w) = fi(w) + h(w), θi(w) = w. That is to say, problem
(7) reduces to the original problem (1) and there is no personalization. If λ = 0, then θi(w) =
argminθi ∇fi(w)

⊤(θi − w) + h(θi), which is not constant function if ∇fi(w) depends on w. In
the extreme case of linear fi, θi(w) will be a constant function taking value argminθi fi(θi) + h(θi).
Then, θi(w) will be the best personalization parameter and no federation introduced. As λ = ∞
results in only federation, we claim λ ∈ (0,∞) will allow both federations and personalizations.
Other than the linear case, if fi is a quadratic function with Hessian matrix being λ0I (λ0 > 0), then
setting λ = λ0 will result in the perfect personalization and no federation. In this case, a λ ∈ (λ0,∞)
will guarantee both federations and personalizations. We also note that λ > 0 is needed for the
smoothness. Otherwise, problem (4) is not strongly convex and Fi will not be smooth.
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Besides, compared with original model (1), i.e., λ = ∞, the objective function of our new model
(7) is smooth and hence easier to optimize. Basically, our new model takes the solution of (7) as an
initial point and slightly update it with respect to their own data by performing one proximal gradient
step. The benefits compared with the original Moreau envelope lie on the explicit expressions of
θi(w) and ∇Fi(w), given in (8) and (6), respectively.

To summarize, our proposed model (7) has the following advantages:

• The flexible choice of λ allows the user-defined trade-off between FL and personalization.
• Fi is smooth while shares the same optimizers with the nonsmooth function fi + h.
• Although the Moreau envelope of fi + h is smooth, the calculations of gradients are expensive

compared with FBE Fi. Both the gradients ∇Fi(w) and local personalized parameters θi(w)
has explicit expressions whenever proxh has simple and closed-form solution.

2.2 PFEDFBE: ALGORITHM

In this subsection, we conduct an algorithm, called pFedFBE, to solve our proposed model (7). Since
Fi(w) is smooth and its gradient is with explicit expression, solving (7) falls into the classic FL
setting. One may utilize the existing methods (McMahan et al., 2016; Li et al., 2020; Karimireddy
et al., 2020b;a).

We now describe how to use FedAvg to solve our proposed model (7). At k-th step, the server
randomly select a subset of clients, denoted by Sk. Each selected client is initialized with wk and
optimized by R local updates. By collecting all local parameters {wi

k,R}i∈Sk
, the server updates

its model by wk+1 = 1
|Sk|

∑
i∈Sk

wi
k,R. Let us introduce the details of local updates. Since the full

batch gradient is costly, we take a minibatch Di
k ⊂ Di and calculate the unbiased minibatch gradient

∇fi(w
i
k,t) ≈ ∇f̃i(w

i
k,t,Di

k,t) :=
1

|Di
k,t|

∑
ξi∈Di

k,t

∇f̃i(w
i
k,t, ξi).

From the expression of ∇Fi(w), we need to compute the Hessian of fi as well. By using another
minibatch D̂i

k,t ⊂ Di, the unbiased estimated Hessian is

∇2fi(w
i
k,t) ≈ ∇2f̃i(w

i
k,t, D̂i

k) :=
1

|D̂i
k,t|

∑
ξi∈D̂i

k

∇2f̃i(w
i
k,t, ξi).

Plugging the estimations into (6), we obtain the estimated gradient

∇Fi(w
i
k,t) ≈ gi(w

i
k,t) := λ(I − 1

λ
∇2f̃i(w

i
k,t, D̂i

k,t))(w
i
k,t − prox 1

λh(w
i
k,t −

1

λ
∇f̃i(w

i
k,t,Di

k,t))).

(9)
Note that gi(wi

k,t) is biased due to the nonlinearity of prox 1
λh. After obtaining the estimated gradient

of Fi, we do R-step stochastic gradient descent with a fixed step size η > 0, namely,

wi
k,0 := wk, w

i
k,t+1 = wi

k,t − ηgi(w
i
k,t), i = 0, . . . , R− 1.

The detailed algorithm is presented in Algorithm 1. Note that the computations of Hessian may be
costly. The approximations to the Hessian are developed in (Finn et al., 2017; Nichol et al., 2018;
Fallah et al., 2020a). To make the computations afordable, we use the following approximations in
our numerical experiments:

∇2f(w)[u] ≈ (∇f(w + tu)−∇f(w))/t,

where t is a small positive number. Hence, two mini-batch gradient evaluations of f̃i are needed
for estimating ∇Fi. Similar to (Fallah et al., 2020b, Section 5), the proximal gradient (wi

k,t −
prox 1

λh(w
i
k,t− 1

λ∇f̃i(w
i
k,t,Di

k,t))) can also serve as an efficient estimate of ∇Fi(w
i
k,t) when λ > L.

3 CONVERGENCE

In this section, we present the convergence results of the proposed pFedFBE, i.e., Algorithm 1. Let
us start with the following necessary assumptions.
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Algorithm 1: pFedFBE for solving (7)
input: Initial point w0, personalization parameter λ and learning rate η.
for k = 0, 1, . . . ,K − 1 do

Sample a subset Sk of clients
for client i ∈ Sk in parallel do

Initialize local model wi
k,0 = wk

for t = 0, 1, . . . , R− 1 do
Sample two minibatches Di

k,t and D̂i
k,t from Di

Calculate the personalized parameter θi(wi
k,t) = prox 1

λh(w
i
k,t − 1

λ∇f̃i(w
i
k,t,Di

k,t))

Compute local stochastic gradient gi(wi
k,t) by following (9)

Perform local update wi
k,t+1 = wi

k,t − ηgi(w
i
k,t)

Aggregate local parameters and set wk+1 = 1
|Sk|

∑
i∈Sk

wi
k,R

Assumption 1 Let fi = 1, 2, . . . , N and h be the local functions in FCO (1).

(A1) Functions fi, i = 1, 2, . . . , N are smooth, h is proper, closed, convex with cheap proximity
operator, and functions fi+h, i = 1, 2, . . . , N are coercive (i.e., lim inf∥w∥→∞

fi(x)+h(x)
∥x∥ > 0).

(A2) The functions fi, i = 1, 2, . . . , N are twice continuously differentiable and L-smooth, and the
gradients ∇fi(w) and subgrdients ∂̃h(w) ∈ ∂h(w) are bounded by a positive constant B in a
compact ball C containing {wi

k,t}k,t,i generated by Algorithm 1, namely, for all i,

∥∇fi(w)−∇fi(u)∥ ≤ L∥w − u∥, ∀w, u ∈ Rd,

∥∇fi(w)∥ ≤ B, ∀w ∈ C,∥∥∥∂̃hi(w)
∥∥∥ ≤ B, ∀w ∈ C, ∂̃hi(w) ∈ ∂hi(w).

(A3) For each i ∈ {1, . . . , N}, the Hessian of the function fi is ρ-Lipschitz continuous, i.e.,∥∥∇2fi(w)−∇2fi(u)
∥∥ ≤ ρ∥w − u∥, ∀w, u ∈ Rd, i.

(A4) For any w ∈ Rd, the stochastic gradient ∇f̃(w, ξi) and Hessian ∇2f̃i(w, ξi), computed with
respect to a single data point ξi ∈ Di, have bounded variance, i.e., for all i and w,

Eξi

[∥∥∥∇f̃i(w, ξi)−∇fi(w)
∥∥∥2] ≤ σ2

G,

Eξi

[∥∥∥∇2f̃i(w, ξi)−∇2fi(w)
∥∥∥2] ≤ σ2

H .

(A5) For any w ∈ Rd, the gradient and Hessian of local functions fi(w) and the global function
f(w) :=

∑N
i=1 fi(w) satisfy the following conditions

∥∇fi(w)−∇f(w)∥2 ≤ γ2
G,
∥∥∇2fi(w)−∇2f(w)

∥∥2 ≤ γ2
H , ∀i, w.

The smoothness of fi and cheap proximity operator property of h are standard assumptions in FCO
(Yuan et al., 2021). The assumptions (A2) and (A3) hold for sufficiently smooth f , which are satisfied
by many problems arising from machine learning, such as the federated Lasso problem and the
federated matrix completion problem in Section 4. These two assumptions are used for the Lipschitz
continuous property of Fi. The bounded variance condition (A4) and bounded diversity condition
(A5) are crucial to control the bias introduced by the randomness and the heterogeneity of the local
clients. Conditions on fi in Assumption 1 are also made in (Fallah et al., 2020b), and the conditions
on h is standard in decentralized composite optimization, see (Zeng and Yin, 2018). Compared
with the analysis of pFedMe (T Dinh et al., 2020), we do not need an additional assumption on the
exactness of solving the Moreau envelope since the closed-form solutions is avaliable for the FBE.

Based on Assumption 1, FBE Fi has the following desired properties.
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Proposition 1 (Liu and Pong, 2017, Theorem 3.1) If Assumption (A1) holds, then Fi is smooth and
level-bounded for all λ > L. Here, we say a function φ is level-bounded if {w ∈ Rd : φ(w) ≤ γ} is
bounded for all γ ∈ R.

The level boundedness and the smoothness ensure the existence of the minimizer of F . The next
lemma establishes the gradient Lipschitz continuous property of Fi and F .

Lemma 1 Suppose that Assumptions (A1)-(A2) hold. If λ > L, the gradient ∇Fi is Lipschitz
continuous with modulus LF := 2ρB+(λ+L)(2λ+L)

λ over the set C.

The assumption (A5) gives the bounded divergence between fi and f . We show that the divergence
of the local gradient of FBE is also bounded.

Lemma 2 Suppose that the assumptions (A2) and (A5) hold. Then, for λ > L, we have

1

N

N∑
i=1

∥∇Fi(w)−∇F (w)∥2 ≤ γF := 24γ2
G +

12B2

λ2
γ2
H .

With the variance assumptions (A4) of fi, we show the estimations on Fi in the following lemma.

Lemma 3 Let D1,D2 ⊂ D be the sample set and independent to each other. Suppose that (A4)
holds. Then for any λ > L, it holds

∥E [gi(w,D1,D2)−∇Fi(w)] ∥ ≤ 2√
|D1|

√
1− |D1| − 1

|D| − 1
σG,

E
[
∥gi(w,D1,D2)−∇Fi(w)∥2

]
≤ σ2

F :=
12

|D1|
σ2
G +

12B2

|D2|λ2
σ2
H +

1

|D1||D2|λ2
σ2
Gσ

2
H .

The above lemma tells us the error of the stochastic gradient of Fi can be controlled by the variances
of the stochastic gradient and Hessian of fi. Note that the estimated gradient of Fi is biased unless
using the full batch D.

Lemma 4 Let {wi
k,t} be the iterates generated by Algorithm 1. Suppose that Assumption 1 holds.

Assume that λ > L and η < 1
10LFR , we have

E
[

1
N

∑N
i=1

∥∥∥wi
k,t − wk,t

∥∥∥] ≤ 4ηt (σF + γF ) , (10)

E
[

1
N

∑N
i=1

∥∥∥wi
k,t − wk,t

∥∥∥2] ≤ 48tRη2(γ2
F + 4σ2

F ), (11)

where wk,t :=
1
N

∑N
i=1 w

i
k,t.

The above lemma presents the consensus error induced by the local stochastic gradient updates,
which is proportional to the local step size η. With the above preparations, we show the following
convergence of Algorithm 1.

Theorem 1 Consider the objective function Fi defined in (4) for the case that λ > L. Suppose that
Assumption 1 is satisfied, and recall the definitions of LF , γF and σF , from Lemmas 1, 2 and 3,
respectively. Consider running Algorithm 1 for K rounds with R local updates in each round and
with η ≤ 1

10RLF
. Then, the following first-order stationary condition holds

1

RK

K−1∑
k=0

R−1∑
t=0

E
[
∥∇F (w̄k+1,t)∥2

]
≤4 (F (w0)− F ∗)

ηRK
+ 1600η2R2(γ2

F + 4σ2
F )

+ 8LF η

(
N − S

S(N − 1)
γ2
F + σ2

F

)
+ 16rσ2

G,

where w̄k+1,t = 1
S

∑
i∈Sk

wi
k+1,t with w̄k+1,0 = wk and w̄k+1,R = wk+1, and r =

maxk,t,i

(
1− |Di

k,t|−1

|Di|−1

)
/|Di

k,t|.
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Remark. Theorem 1 presents the results of using fixed step size. One can easily extend to the
setting of diminishing step size. Due to the bias of the estimated gradient of Fi, the squared norm
of F at w̄k,t will converge to a ball of center 0 and radius 16rσ2

G. When full-batch gradients are
used, this radius diminishes. By taking η = 1/

√
RK, the convergence speed of the squared norm of

expected gradient is O( 1√
RK

), which is similar to (Deng et al., 2020; Reddi et al., 2021). Since Fi is
smooth, the advanced algorithms, such as FedProx (Li et al., 2020) and SCAFFOLD (Karimireddy
et al., 2020b) can also be adopted for better complexity results.

4 NUMERICAL EXPERIMENTS

4.1 FEDERATED LASSO

Federated Lasso was considered in (Yuan et al., 2021), which is to recover the sparse ground-truth
signal from observations. The mathematical formulation is

min
w∈Rd, b∈R

1

N

N∑
j=1

(
nj∑
i=1

((x
(i)
j )⊤w + b− y

(i)
j )22

)
+ λ∥w∥1,

where N is the number of clients and client j has nj observation pairs {(x(i)
j , y

(i)
j )}nj

i=1. We set
λ = 0.1 in our numerical experiments.

Synthetic Dataset Descriptions. We consider both i.i.d. setting and non-i.i.d. setting.

(I) We generate the ground truth wreal ∈ R1024 with d1 = 992 ones and d0 = 32 zeros, namely,

wreal = [1⊤
d1
,0⊤

d0
]⊤,

and ground truth breal = 0. The observations (x, y) are generated as follows to simulate the
heterogeneity among clients. Let

(
x
(i)
j , y

(i)
j

)
denotes the i-th observation of the j-th client. For

each client j, we first generate and fix the mean µj ∼ N (0, Id×d). Then, we sample nj pairs of
observations following

x
(i)
j = µj + δ

(i)
j , where δ

(i)
j ∼ N (0d, Id×d) are i.i.d., for i = 1, . . . , nj

y
(i)
j = w⊤

real x
(i)
j + ε

(i)
j , where ε

(i)
j ∼ N (0, 1) are i.i.d., for i = 1, . . . , nj . We generate

N = 30 training clients where each client possesses 128 pairs of samples. There are 3840
training samples in total.

(II) The ground truth wi ∈ R1024 of each client are constructed as follows:

wreal = [1⊤
d1
, 0, . . . , 0, 0.5× 1i1 , 0, . . . , 0, 0.5× 1id0 , 0, . . . , 0]

⊤,

where i1, . . . id0
are uniformly drawn from the {d1 + 1, d1 + 2, . . . , 1024} for each client. We

set d1 = 8 and d0 = 2. Using the same data generalization process as in (I), 30 training clients
where each client possesses 128 pairs of samples are constructed.

The numerical results for settings (I) and (II) are presented in Figures 1, 2, 3, and 4. The precision,
recall, density, and F1 indexes are calculated by measuring the difference between the ground truth
wreal and the obtained parameters by the algorithms (where any element with absolute value less
than 0.01 is regraded as 0). We compare with the baseline algorithms, FedAvg (McMahan et al.,
2016), Fedmirror (Yuan et al., 2021), FedDual (Yuan et al., 2021), pFedMe (T Dinh et al., 2020), and
pFedditto (Li et al., 2021). For all algorithms, we set the maximum number of rounds to 200. In each
round, we sample 10 clients and run 20 local iterations with batch size 50. For all algorithms, we
tune to get the best clients’ learning rate and keep the remaining parameters as their default values.
For both settings (I) and (II), we set the learning rate η = 0.0005 and λ = 2000 for pFedFBE. From
Figure 1 and 2, we see that our proposed pFedFBE and Fedmirror give the best performances among
all algorithms for setting (I). The poor performance of FedDual compared with Fedmirror may be
from the multiple local iterations while the number of the local iteration is set to 1 in (Yuan et al.,
2021). For the non-i.i.d. setting (II), Figures 3 and 4 show the results with respect to the personalized
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parameters. For those algorithms without personalization, we directly set the personalized parameter
as the global parameters. From the test precision and recall, our proposed pFedFBE is able to find all
nonzero elements of wreal and do not introduce extra nonzero elements. Although the personalized
algorithm pFedditto can recognize all nonzero elements, the zero entries are mistaken as nonzero as
well. pFedFBE gives the best F1 score, the test accuracy, and the train loss.

Figure 1: Results for federated Lasso with setting (I).

Figure 2: Results (cont.) for federated Lasso with setting (I).

Figure 3: Results for federated Lasso with setting (II).

Figure 4: Results (cont.) for federated Lasso with setting (II).
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4.2 FEDERATED MATRIX COMPLETION

Federated matrix completion (Yuan et al., 2021) can be mathematically formulated as

min
W∈Rd×d, b∈R

1

N

N∑
j=1

(
nj∑
i=1

(
〈
X

(i)
j ,W

〉
+ b− yi)

2
2

)
+ λ∥W∥nuc,

where N is the number of clients, client j has nj observation pairs {(X(i)
j , y

(i)
j )}nj

i=1, ∥W∥nuc is
the nuclear norm of W , and λ > 0 is a parameter to control the rank of W . We set λ = 0.1 in our
numerical experiments.

We only present the numerical results for a non-i.i.d. setting to exhibit the importance of personaliza-
tion. The setting is as follows. We set the number of clients to 30 and generate a vector wj ∈ R32 of
the form

wj = [1⊤
4 , 0, . . . , 0, 0.25× 1d0

, 0, . . . , 0]⊤,

where d0 is uniformly drawn from {5, 6, . . . , 32} for each client. After getting wj , we set the diagonal
matrix Wj = diag(wj) with diagonal elements wj as the local ground truth. For each client j, we
first generate and fix the mean µj ∼ N (0, Id×d). Then we sample nj pairs of observations following

x
(i)
j = µj + δ

(i)
j , where δ

(i)
j ∼ N (0d, Id×d) are i.i.d., for i = 1, . . . , nj

y
(i)
j =

〈
Wj , X

(i)
j

〉
+ ε

(i)
j , where ε

(i)
j ∼ N (0, 1) are i.i.d., for i = 1, . . . , nj . 128 pairs of samples

are generated for each client.

The numerical results are presented in Figure 5. Since FedDual is not comparable to Fedmirror in
the case of multiple local iterations, we omit it and add comparisons with pFedprox (Li et al., 2020).
Analogous to the Federated Lasso, the total number of global rounds is set to 200. In each round, we
randomly select 10 clients and perform 20 local iterations with batch size 50. We only tune to get the
best step sizes for each algorithm. The learning rate η and the parameter λ used for pFedFBE are
0.0005 and 2000, respectively. From Figure 5, the personalized parameters of pFedFBE are able to
recover the ground truth rank 5, while all other algorithms fail. Moreover, pFedFBE converges fastest
to better training loss, training MSE, and recovery error (which is defined as the Euclidean distance
between the local ground truth and the obtained personalized parameters).

Figure 5: Results for federated matrix completion.
4.3 NEURAL NETWORK WITH NONSMOOTH REGULARIZATION

Consider a two-layer deep neural network with hidden layer of size 100, the ReLU activation, and a
softmax layer at the end. The numerical results are performed on the Mnist dataset, which consists of
7000 handwritten digit images from 10 classes. We distribute the complete dataset to N = 20 clients.
To model a heterogeneous setting in terms of local data sizes and classes, each client is allocated
a different local data size in the range of [1165, 3834] and only has 2 of the 10 labels. A similar
setting is used in (T Dinh et al., 2020). The loss function is a sum of the cross-entropy loss and the
nonsmooth ℓ2 norm function on the weights. Therefore, the resulting problem takes the composite
form (1).

For the numerical tests, we set the total number of global rounds to 100. In each round, we randomly
select 10 clients and perform 10 local iterations with batch size 20. For all algorithms, we tune to get
the best clients’ learning rate and keep the remaining parameters as their default values. We use the
learning rate η = 0.005 and λ = 200 for pFedFBE. The results are presented in Figure 6, where the
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global accuracies are based on the global parameters, and personalized accuracies are computed from
the local parameters. We see the algorithms taking the composite structures, pFedFBE, Fedmirror,
and FedDual, converge faster than the other algorithms in terms of the global accuracies. Moreover,
pFedFBE outperforms Fedmirror and FedDual. For the personalized accuracies, our pFedFBE
performs the best although the personalized algorithms could achieve better accuracies.

Figure 6: Results for non-iid Mnist dataset
5 CONCLUSION

In this paper, we propose a novel personalized method for FCO. The idea is to use the forward-
backward envelope arising from the composite optimization. We then utilize the FedAvg algorithm
to solve the resulted Federated learning problem with smooth objective functions. Convergence
results of the proposed algorithm are shown under standrad assumptions. Numerical experiments on
federated lasso, federated matrix completion, and nonsmooth deep neural network outperforms the
existing methods.

REFERENCES

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends®
in Machine learning, 3(1):1–122, 2011.

Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning. arXiv
preprint arXiv:2107.00778, 2021.

Alberto Colorni, Marco Dorigo, Vittorio Maniezzo, et al. Distributed optimization by ant colonies. In
Proceedings of the first European conference on artificial life, volume 142, pages 134–142. Paris,
France, 1991.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-based
model-agnostic meta-learning algorithms. In International Conference on Artificial Intelligence
and Statistics, pages 1082–1092. PMLR, 2020a.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020b.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

Filip Hanzely, Slavomír Hanzely, Samuel Horváth, and Peter Richtárik. Lower bounds and optimal
algorithms for personalized federated learning. Advances in Neural Information Processing
Systems, 33:2304–2315, 2020.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

10



Under review as a conference paper at ICLR 2023

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
federated learning. arXiv preprint arXiv:2008.03606, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020b.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems,
2:429–450, 2020.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pages 6357–6368.
PMLR, 2021.

Tianxiang Liu and Ting Kei Pong. Further properties of the forward–backward envelope with
applications to difference-of-convex programming. Computational Optimization and Applications,
67(3):489–520, 2017.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-e cient learning of deep networks from decentralized data. In Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics (AISTATS). hp://arxiv.
org/abs/1602.05629, 2016.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
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A APPENDIX

A.1 PROOF OF LEMMA 1

Note that ∇Fi(w) = λ(I − 1
λ∇

2fi(w))(w− prox 1
λh(w− 1

λ∇fi(w))). It holds for w1, w2 ∈ C that

∥∇Fi(w1)−∇Fi(w2)∥

=λ

∥∥∥∥(I − 1

λ
∇2fi(w1))(w1 − prox 1

λh(w1 −
1

λ
∇fi(w1)))

−(I − 1

λ
∇2fi(w2))(w − prox 1

λh(w2 −
1

λ
∇fi(w2)))

∥∥∥∥
=λ

∥∥∥∥((I − 1

λ
∇2fi(w1))− (I − 1

λ
∇2fi(w2))

)
(w1 − prox 1

λh(w1 −
1

λ
∇fi(w1)))

+(I − 1

λ
∇2fi(w2))

(
w1 − prox 1

λh(w1 −
1

λ
∇fi(w1))− w2 + prox 1

λh(w2 −
1

λ
∇fi(w2))

)∥∥∥∥
≤∥∇2fi(w1)−∇2fi(w2)∥∥w1 − prox 1

λh(w1 −
1

λ
∇fi(w1))∥

+ λ∥I − 1

λ
∇2fi(w2)∥

(
∥w1 − w2∥+ ∥w1 −

1

λ
∇fi(w1)− w2 +

1

λ
∇fi(w2)∥

)
≤ρ∥w1 − w2∥∥w1 − prox 1

λh(w1 −
1

λ
∇fi(w1))∥+ λ

(
1 +

L

λ

)(
2 +

L

λ

)
∥w1 − w2∥

≤

(
ρ

(
1

λ
∥∇fi(w1)∥+

1

λ
max

θ∈∂h(prox 1
λ

h
(w1− 1

λ∇fi(w1))
∥θ∥

)
+

(λ+ L)(2λ+ L)

λ

)
∥w1 − w2∥

≤2ρB + (λ+ L)(2λ+ L)

λ
∥w1 − w2∥,

where the first inequality is due to triangle inequality, the second inequality is from (A3) and the
nonexpansive property of prox 1

λh, the third inequality is from w − prox 1
λh(u) ∈ ∂h(prox 1

λh(u)),
and the last inequality is due to (A2).

A.2 PROOF OF LEMMA 2

It follows from ∇Fi(w) = λ(I − 1
λ∇

2fi(w))(w − prox 1
λh(w − 1

λ∇fi(w))) that

∇Fi(w)−∇F (w) = λ

(
I − 1

λ
∇2f(w)

)
ri + λEi(w − prox 1

λh(w − 1

λ
∇f(w))) + λEiri,

where Ei =
1
λ (∇

2f(w)−∇2fi(w)) and ri = prox 1
λh(w − 1

λ∇f(w))− prox 1
λh(w − 1

λ∇fi(w)).
Due to (A5), it holds

∥Ei∥2 ≤ 1

λ2
γ2
H . (12)

Using the nonexpansive property of prox 1
λh, we have

∥ri∥2 ≤ 1

λ2
∥∇fi(w)− f(w)∥2 ≤ 1

λ2
γ2
G. (13)
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Combining (12) and (13), it holds

1

N

N∑
i=1

∥∇Fi(w)−∇F (w)∥2

≤3λ2

(
(1 +

L

λ
)2

1

N

N∑
i=1

∥ri∥2 +
4B2

λ2

1

N

N∑
i=1

∥Ei∥2 +
1

N

N∑
i=1

∥Ei∥2∥ri∥2.

)

≤3

(
(λ+ L)2

1

λ2
γ2
G + 4B2 1

λ2
γ2
H + λ2 max

i
∥Ei∥2

1

λ2
γ2
G

)
≤3

(
4γ2

G +
4B2

λ2
γ2
H + 4γ2

G

)
=24γ2

G +
12B2

λ2
γ2
H ,

where the first inequality is from ∥I − 1
∇2 f(w)∥ ≤ 1+ L

λ and ∥w− prox 1
λh(w− 1

λ∇f(w))∥ ≤ 2B
λ ,

the second inequality is due to (12) and (13), and the last inequality is based on ∥Ei∥ ≤ 2L
λ and

λ > L.

A.3 PROOF OF LEMMA 3

From the definition of gi(w) in (9) with the sample set D1 for the gradient and the sample set D2 for
the Hessian, we have

gi(w)−∇Fi(w) = λe1(w − prox 1
λh(w − 1

λ
∇fi(w))) + λ(I − 1

λ
∇2fi(w))e2 + λe1e2,

where e1 = 1
λ (∇

2fi(w) − ∇2f̃i(w,D2)) and e2 = prox 1
λh(w − 1

λ∇fi(w)) − prox 1
λh(w −

1
λ∇f̃i(w,D1)). Let us estimate e1 and e2 first. Due to (A4), we have

E[e1] = 0, E[∥e1∥2] ≤
1

|D2|λ2
σ2
H , (14)

where |D2| is the number of samples. For e2, it follows from the nonexpansive property of prox 1
λh

that

∥E[e2]∥ ≤ E
[
1

λ
∥∇fi(w)−∇f̃i(w,D1)∥

]
≤ 1

λ
√
|D1|

√
1− |D1| − 1

|D| − 1
σG, (15)

where the second inequality is from (A4) and the variance of sampling without replacement. Similarly,
the second-order moment can be bounded by

E[∥e2∥2] ≤ E
[
1

λ2
∥∇fi(w)−∇f̃i(w,D1)∥2

]
≤ 1

λ2|D1|
σG. (16)

Combining (14), (15) and (16), we have

∥E [gi(w)−∇Fi(w)] ∥ ≤ λ∥(I − 1

λ
∇2fi(w))E[e2]∥ ≤ 2√

|D1|

√
1− |D1| − 1

|D| − 1
σG.

Furthermore, it holds

E
[
∥gi(w)−∇Fi(w)∥2

]
≤3λ2

(
E
[
∥e1∥2∥(w − prox 1

λh(w − 1

λ
∇fi(w)))∥2 + ∥I − 1

λ
∇2fi(w)∥2∥e2∥2 + ∥e1∥2∥e22∥

])
≤3λ2

(
1

|D2|λ2
σ2
H · 4B

2

λ2
+

(
1 +

L

λ

)2

· 1

|D1|λ2
σ2
G +

1

|D2|λ2
σ2
H · 1

|D1|λ2
σ2
G

)

=
12

|D1|
σ2
G +

12B2

|D2|λ2
σ2
H +

3

|D1||D2|λ2
σ2
Gσ

2
H ,

where the first equality is from the Cauchy-Schwarz inequality, the second inequality is from
∥w − prox 1

λh(w − 1
λ∇f(w))∥ ≤ 2B

λ , (14) and (16). We complete the proof.

13



Under review as a conference paper at ICLR 2023

A.4 PROOF OF LEMMA 4

Note that the local update of Algorithm 1 is

wi
k,t+1 = wk,t − ηgi(w

i
k,t), (17)

where gi(w
i
k,t) is the estimated gradient of Fi at wi

k,t. Define Ct :=
1
N

∑N
i=1 E

[∥∥∥wi
k,t − wk,t

∥∥∥] .
We have S0 = 0 since wi

k,0 = wk for any i. It follows from the local update scheme (17) that

Ct+1 =
1

N

N∑
i=1

E
[∥∥wi

k,t+1 − wk,t+1

∥∥]
=

1

N

n∑
i=1

E

∥∥∥∥∥∥wi
k,t − ηgi

(
wi

k,t

)
− 1

N

N∑
j=1

(
wj

k,t − ηgj

(
wj

k,t

))∥∥∥∥∥∥


≤ Ct + η
1

N

N∑
i=1

E

∥∥∥∥∥∥gi (wi
k,t

)
− 1

N

N∑
j=1

gj

(
wj

k,t

)∥∥∥∥∥∥


︸ ︷︷ ︸
=:b1

.

(18)

For b1, it holds

b1 ≤ η

N

N∑
i=1

E

∥∥∥∥∥∥∇Fi

(
wi

k,t

)
− 1

N

N∑
j=1

∇Fj

(
wj

k,t

)∥∥∥∥∥∥
+

η

N

N∑
i=1

E
[∥∥∇Fi

(
wi

k,t

)
− gi

(
wi

k,t

)∥∥]

+
η

N

N∑
i=1

E

 1

N

N∑
j=1

∥∥∥∇Fj

(
wj

k,t

)
− gj

(
wj

k,t

)∥∥∥


≤ η

N

N∑
i=1

E

∥∥∥∥∥∥∇Fi

(
wi

k,t

)
− 1

N

N∑
j=1

∇Fj

(
wj

k,t

)∥∥∥∥∥∥
+ 2ησF


(19)

where the first inequality is due to the triangle inequality and the last inequality is from Lemma 3.
Combining (18) and (19), and defining αi := ∇Fi

(
wi

k,t

)
−∇Fi (wk,t), we have

Ct+1 ≤Ct + 2ησF +
η

N

N∑
i=1

E

∥∥∥∥∥∥∇Fi

(
wi

k,t

)
− 1

N

N∑
j=1

∇Fj

(
wj

k,t

)∥∥∥∥∥∥


=Ct + 2ησF +
η

N

N∑
i=1

E

∥∥∥∥∥∥∇Fi (wk,t)−
1

N

N∑
j=1

∇Fj (wk,t)

∥∥∥∥∥∥


+
η

N

N∑
i=1

E

∥∥∥∥∥∥αi −
1

N

N∑
j=1

αj

∥∥∥∥∥∥
 .

(20)

It follows from Lemma 1 that ∥αi∥ ≤ LF

∥∥∥wi
k,t − wk,t

∥∥∥ . Consequently,

1

N

N∑
i=1

E [∥αi∥] ≤ LFCt.

Plugging the above inequality into (20) leads to

Ct+1 ≤ (1 + 2ηLF )Ct + 2ησF +
η

N

N∑
i=1

E

∥∥∥∥∥∥∇Fi (wk,t)−
1

N

N∑
j=1

∇Fj (wk,t)

∥∥∥∥∥∥


≤ (1 + 2ηLF )Ct + 2η (σF + γF )

(21)
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where the last inequality is due to Lemma 2. From the recursion (21), we have

Ct+1 ≤

 t∑
j=0

(1 + 2ηLF )
j

 2η (σF + γF )

≤ 2η(t+ 1) (1 + 2ηLF )
t
(σF + γF )

≤ 2η(t+ 1)(1 +
1

5R
)t(σF + γF ) ≤ 4η(t+ 1)(σF + γF ),

(22)

which the third inequality is from η ≤ 1
10LFR and the last inequality is due to (1 + 1

5R )t ≤ e
1
5 < 2.

We finish the proof of (10). For the proof of (11), let us define Dt :=
1
N

∑N
i=1 E

[∥∥∥wi
k,t − wk,t

∥∥∥2] .
Since w0

k,t = wk, ∀i = 1, . . . , N , it holds D0 = 0. Following (17), we have

Dt+1 =
1

N

N∑
i=1

E
[∥∥wi

k,t+1 − wk,t+1

∥∥2]

=
1

N

N∑
i=1

E


∥∥∥∥∥∥wi

k,t − ηgi
(
wi

k,t

)
− 1

N

N∑
j=1

(
wj

k,t − ηgj

(
wj

k,t

))∥∥∥∥∥∥
2


≤ 1 + ν

N

N∑
i=1

E


∥∥∥∥∥∥wi

k,t −
1

N

N∑
j=1

wj
k,t

∥∥∥∥∥∥
2


+ η2
1 + 1/ν

N

N∑
i=1

E


∥∥∥∥∥∥gi (wi

k,t

)
− 1

N

N∑
j=1

gj

(
wj

k,t

)∥∥∥∥∥∥
2


≤ (1 + ν)Dt + η2
1 + 1/ν

N

N∑
i=1

E


∥∥∥∥∥∥gi (wi

k,t

)
− 1

N

N∑
j=1

gj

(
wj

k,t

)∥∥∥∥∥∥
2


︸ ︷︷ ︸
=:b2

,

(23)

where the first equality is from ∥a+ b∥2 ≤ (1 + ϕ)∥a∥2 + (1 + 1/ϕ)∥b∥2 for any ν > 0. For b2, it
holds that

b2 ≤2η2
1 + 1/ν

N

N∑
i=1

E

∥∥∥∥∥∥∇Fi

(
wi

k,t

)
− 1

n

n∑
j=1

∇Fj

(
wj

k,t

)∥∥∥∥∥∥
2


+2E


∥∥∥∥∥∥(gi (wi

k,t

)
−∇Fi

(
wi

k,t

))
+

1

N

N∑
j=1

(
∇Fj

(
wj

k,t

)
− gj

(
wj

k,t

))∥∥∥∥∥∥
2



≤2η2
1 + 1/ν

N

N∑
i=1

E

∥∥∥∥∥∥∇Fi

(
wi

k,t

)
− 1

n

n∑
j=1

∇Fj

(
wj

k,t

)∥∥∥∥∥∥
2


+4E

∥∥gi (wi
k,t

)
−∇Fi

(
wi

k,t

)∥∥2 + 1

N

N∑
j=1

∥∥∥∇Fj

(
wj

k,t

)
− gj

(
wj

k,t

)∥∥∥2


≤4η2
1 + 1/ν

N

N∑
i=1

E

∥∥∥∥∥∥∇Fi (wk,t)−

1

N

N∑
j=1

∇Fj (wk,t)

∥∥∥∥∥∥
2

+ E


∥∥∥∥∥∥αi −

1

N

N∑
j=1

αj

∥∥∥∥∥∥
2

+ 4σ2

F


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≤4η2
1 + 1/ν

N

N∑
i=1

γ2
F + 2L2

F

E
[
∥wi

k,t − wk,t∥2
]
+ E

 1

N

N∑
j=1

∥wj
k,t − wk,t∥2

+ 4σ2
F


≤4η2(1 + 1/ν)

[
γ2
F + 4L2

FDt + 4σ2
F

]
, (24)

where the first inequality the second inequality are due to the Cauchy–Schwarz inequality, the third
inequality is from Lemma 3, the Cauchy–Schwarz inequality and αi = ∇Fi(w

i
k,t) − ∇Fi(wk,t),

the fourth inequality is from Lemma 1, and the last inequality is obtained using the definition of Dt.
Plugging (24) into (23) yields

Dt+1 ≤(1 + ν)Dt + 4η2(1 + 1/ν)
[
γ2
F + 4L2

FDt + 4σ2
F

]
≤

 t∑
j=0

(1 + ν + 16(1 + 1/ν)η2L2
F )

j

 · 4η2(1 + 1/ν)(γ2
F + 4σ2

F )

≤4η2(t+ 1)(1 + ν + 16(1 + 1/ν)η2L2
F )

t(1 + 1/ν)(γ2
F + 4σ2

F ).

(25)

Taking ν = 1
2R and η ≤ 1

10LFR give

(1 + ν + 16(1 + 1/ν)η2L2
F )

t =

(
1 +

1

2R
+ 16(1 + 2R)η2L2

F

)t

≤
(
1 +

1

2R
+ 16(1 + 2R)

1

100R2

)t

≤
(
1 +

1

R

)t

≤ 4,

where the first inequality is due to η <≤ 1
10LFR , the second inequality is from 1+2R ≤ 3R, and the

last inequality is based on the fact (1 + 1
R )R ≤ e. Plugging the above inequality into (25), we have

Dt+1 ≤ 4η2 · (t+ 1) · 4 · 3R(γ2
F + 4σ2

F ) ≤ 48(t+ 1)Rη2(γ2
F + 4σ2

F ).

We complete the proof.

A.5 PROOF OF THEOREM 1

Denote by F t
k the σ-field generated by

{
wi

k,t

}N

i=1
. Define the averaged iterate w̄k,t :=

1
S

∑
i∈Sk

wi
k,t.

Then,

w̄k+1,t+1 =
1

S

∑
i∈Sk

(
wi

k+1,t − ηgi(w
i
k+1,t)

)
= w̄k+1,t −

η

S

∑
i∈Sk

gi(w
i
k+1,t). (26)

From the Lipschitz continuous property of the gradient of Fi 1, we have

F (w̄k+1,t+1)

≤F (w̄k+1,t) +∇F (w̄k+1,t)
⊤
(w̄k+1,t+1 − w̄k+1,t) +

LF

2
∥w̄k+1,t+1 − w̄k+1,t∥2

=F (w̄k+1,t)− η∇F (w̄k+1,t)
⊤

(
1

S

∑
i∈Sk

gi
(
wi

k+1,t

))
+

LF

2
η2

∥∥∥∥∥ 1S ∑
i∈Sk

gi
(
wi

k+1,t

)∥∥∥∥∥
2

(27)

where the inequality is from the Lipschitz gradient property of F and the equality is due to (26). By
taking expectation on (27), we obtain

E [F (w̄k+1,t+1)] ≤E [F (w̄k+1,t)]− ηE

[
∇F (w̄k+1,t)

⊤

(
1

S

∑
i∈Sk

gi
(
wi

k+1,t

))]
︸ ︷︷ ︸

=:q1

+
LF

2
η2E

∥∥∥∥∥ 1S ∑
i∈Sk

gi(w
i
k+1,t)

∥∥∥∥∥
2


︸ ︷︷ ︸
=:q2

.

(28)
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The sketch of the proof is to estimate the difference between the stochastic gradient
1
S

∑
i∈Sk

gi

(
wi

k+1,t

)
and ∇F (w̄k+1,t) and derive a decrease of F with respect to ∥∇F (w̄k+1,t)∥2.

Once one-step decrease is obtained, the complexity result is obtained by summing over all iterates.
Firstly, we use the following split on gi(w

i
k+1,t), namely,

1

S

∑
i∈Sk

gi
(
wi

k+1,t

)
= X + Y + Z +Q+∇F (w̄k+1,t), (29)

where
X =

1

S

∑
i∈Sk

(
gi
(
wi

k+1,t

)
−∇Fi

(
wi

k+1,t

))
,

Y =
1

S

∑
i∈Sk

(
∇Fi

(
wi

k+1,t

)
−∇Fi (wk+1,t)

)
,

Z =
1

S

∑
i∈Sk

(∇Fi (wk+1,t)−∇Fi (w̄k+1,t)) ,

Q =
1

S

∑
i∈Sk

∇Fi (w̄k+1,t)−∇F (w̄k+1,t).

Next, we bound the moments of X,Y, Z and Q.

• It follows from the Cauchy-Schwarz inequality that

∥X∥2 ≤ 1

S

∑
i∈Sk

∥∥gi (wi
k+1,t

)
−∇Fi

(
wi

k+1,t

)∥∥2 .
By the tower rule, we have

E
[
∥X∥2

]
= E

[
E
[
∥X∥2|F t

k+1

]]
≤ σ2

F . (30)

• Note that
∥Y ∥2 ≤ 1

S

∑
i∈Sk

∥∥∇Fi

(
wi

k+1,t

)
−∇Fi (wk+1,t)

∥∥2
≤ L2

F

S

∑
i∈Sk

∥∥wi
k+1,t − wk+1,t

∥∥2
≤ 48R(R− 1)η2L2

F (γ
2
F + 4σ2

F ),

(31)

where the first inequality is from the Cauchy-Schwarz inequality, the second inequality is due
to the Lipschitz gradient of Fi given in Lemma 1, and the last inequality is based on (11) and
t ≤ R− 1.

• Using the variance of sampling without replacement, we have

E
[
∥w̄k+1,t − wk+1,t∥2|F t

k+1

]
≤E

[
1

S

∑
i∈Sk

∥wi
k+1,t − wk+1,t∥2

]

=
1

SN

N∑
i=1

∥wi
k+1,t − wk+1,t∥2 ·

(
1− S − 1

N − 1

)
.

(32)

By the gradient Lipschitz property of Fi given in Lemma 1, we obtain

E
[
∥Z∥2

]
≤E

[
E

[
L2
F

S

∑
i∈Sk

∥w̄k+1,t − wk+1,t∥2|F t
k+1

]]

≤ L2
F

SN

N∑
i=1

∥wi
k+1,t − wk+1,t∥2 ·

(
1− S − 1

N − 1

)
≤48(N − S)R(R− 1)η2L2

F (γ
2
F + 4σ2

F )

S(N − 1)
,

(33)

where the second inequality is due to (32) and the last inequality is from (11).
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• From Lemma 2 and similar derivations as (32), we have

E
[
∥Q∥2

]
≤ E

[
E

[
1

S

∑
i∈Sk

∥∇Fi(w̄k+1,t)−∇F (w̄k+1,t)∥2|F t
k+1

]]
≤ N − S

S(N − 1)
γ2
F . (34)

In addition, using the tower rule, it holds that

E[Q] = E
[
E
[
∇Fi(w̄k+1,t)−∇F (w̄k+1,t)|F t

k+1

]]
= 0. (35)

With the above estimates, we have

q1 ≤ηE
[
∇F (w̄k+1,t)

⊤ (X + Y + Z +Q+∇F (w̄k+1,t))
]

≥ηE
[
∇F (w̄k+1,t)

⊤(Q+∇F (w̄k+1,t))
]
− η

∣∣∣E [∇F (w̄k+1,t)
⊤
X
]∣∣∣

− η

4
E
[
∥∇F (w̄k+1,t)∥2

]
− ηE[∥Y + Z∥2],

=ηE
[
∥∇F (w̄k+1,t)∥2

]
− η

∣∣∣E [∇F (w̄k+1,t)
⊤
X
]∣∣∣− η

4
E
[
∥∇F (w̄k+1,t)∥2

]
− ηE[∥Y + Z∥2],

(36)
where the second inequality is due to the Cauchy-Schwarz inequality and the last equality is from
(35). For the second term in (36), we have∥∥∥E [∇F (w̄k+1,t)

⊤
X
]∥∥∥ =

∥∥∥E [E [∇F (w̄k+1,t)
⊤
X | F t

k+1

]]∥∥∥
=
∥∥∥E [∇F (w̄k+1,t)

⊤ E
[
X | F t

k+1

]]∥∥∥
≤ 1

4
E
[
∥∇F (w̄k+1,t)∥2

]
+ E

[∥∥E [X | F t
k+1

]∥∥2]
≤ 1

4
E
[
∥∇F (w̄k+1,t)∥2

]
+ 4rσ2

G,

(37)

where r := maxk,t,i

(
1− |Di

k,t|−1

|Di|−1

)
/|Di

k,t| in the last inequality follows from Lemma 3. For the
last term of (36), it holds that

E
[
∥Y + Z∥2

]
≤ 2

(
E
[
∥Y ∥2

]
+ E

[
∥Z∥2

])
≤ 96R(R− 1)η2L2

F (γ
2
F + 4σ2

F )

(
1 +

N − S

S(N − 1)

)
≤ 192R(R− 1)η2L2

F (γ
2
F + 4σ2

F ),

(38)

where the first inequality is from the Cauchy-Schwarz inequality, the second inequality due to (31)
and (33). Plugging (37) and (38) in (36) yields

q1 ≥ η

2
E
[
∥∇F (w̄k+1,t)∥2

]
− 192R(R− 1)η3L2

F (γ
2
F + 4σ2

F )− 4rησ2
G. (39)

The remaining term in (28) needs to be bounded is q2. It follows from the Cauchy-Schwarz inequality
that ∥∥∥∥∥ 1S ∑

i∈Sk

gi
(
wi

k+1,t

)∥∥∥∥∥
2

≤ 2∥X + Y + Z∥2 + 2 ∥Q+∇F (w̄k+1,t)∥2

≤ 4(∥X∥2 + ∥Y + Z∥2) + 4(∥Q∥2 + ∥∇F (w̄k+1,t)∥2).

(40)

By (30), (38), (34) and (40), we have

q2 ≤ 2LF η
2

(
σ2
F + 192R(R− 1)η2L2

F (γ
2
F + 4σ2

F ) +
N − S

S(N − 1)
γ2
F + ∥∇F (w̄k+1,t)∥2

)
≤ 2LF η

2∥∇F (w̄k+1,t)∥2 + 400L3
F η

4R(R− 1)(γ2
F + 4σ2

F ) + 2LF η
2(

N − S

S(N − 1)
γ2
F + σ2

F ).

(41)
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Plugging (36) and (41) into (28) gives

E [F (w̄k+1,t+1)]

≤E [F (w̄k+1,t)]− η (1/2− 2ηLF )E
[
∥∇F (w̄k+1,t)∥2

]
+ 200 (1 + 2ηLF ) η

3L2
FR(R− 1)

(
γ2
F + 4σ2

F

)
+ 2LF η

2

(
N − S

S(N − 1)
γ2
F + σ2

F

)
+ 4rησ2

G

≤E [F (w̄k+1,t)]−
η

4
E
[
∥∇F (w̄k+1,t)∥2

]
+ 400η3R2(γ2

F + 4σ2
F )

+ 2LF η
2

(
N − S

S(N − 1)
γ2
F + σ2

F

)
+ 4rησ2

G,

(42)
where the last inequality is due to η ≤ 1

10RLF
. Note that w̄k,R = wk. Summing over (42) for all

t = 0, . . . , R− 1 and k = 0, . . . ,K − 1 yields

E [F (wK)] ≤F (w0)−
ηRK

4

(
1

RK

K−1∑
k=0

R−1∑
t=0

E
[
∥∇F (w̄k+1,t)∥2

])
+ 400η3R3K(γ2

F + 4σ2
F )

+ 2RKLF η
2

(
N − S

S(N − 1)
γ2
F + σ2

F

)
+ 4RKrησ2

G.

Therefore,

1

RK

K−1∑
k=0

R−1∑
t=0

E
[
∥∇F (w̄k+1,t)∥2

]
≤ 4

ηRK

(
F (w0)− E [F (wK)] + ηRKσ2

T

)
≤4 (F (w0)− F ∗)

ηRK
+ 1600η2R2(γ2

F + 4σ2
F )

+ 8LF η

(
N − S

S(N − 1)
γ2
F + σ2

F

)
+ 16rσ2

G,

which F ∗ the minimal value of F . This completes the proof.
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