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ABSTRACT

Group robustness has become a major concern in machine learning (ML) as con-
ventional training paradigms were found to produce high error on minority groups.
Without explicit group annotations, proposed solutions rely on heuristics that aim
to identify and then amplify the minority samples during training. In our work, we
first uncover a critical shortcoming of these methods: an inability to distinguish
legitimate minority samples from poison samples in the training set. By ampli-
fying poison samples as well, group robustness methods inadvertently boost the
success rate of an adversary—e.g., from 0% without amplification to over 97%
with it. Notably, we supplement our empirical evidence with an impossibility result
proving this inability of a standard heuristic under some assumptions. Moreover,
scrutinizing recent poisoning defenses both in centralized and federated learning,
we observe that they rely on similar heuristics to identify which samples should be
eliminated as poisons. In consequence, minority samples are eliminated along with
poisons, which damages group robustness—e.g., from 55% without the removal
of the minority samples to 41% with it. Finally, as they pursue opposing goals
using similar heuristics, our attempt to alleviate the trade-off by combining group
robustness methods and poisoning defenses falls short. By exposing this tension,
we also hope to highlight how benchmark-driven ML scholarship can obscure the
trade-offs among different metrics with potentially detrimental consequences.

1 INTRODUCTION

As ML finds adaptations in many fields with diverse priorities, new metrics of success, aside from
prediction performance (e.g., accuracy), have come into play. For example, in security-critical
applications, robustness to adversarial examples (Chen et al., 2021) or poisoning attacks (Steinhardt
et al., 2017); or, in demographically-sensitive applications, fairness (Hashimoto et al., 2018) or group
robustness (Liu et al., 2021) are popular metrics the ML community aims to improve. The sheer
number of such metrics has led to a paradigm where researchers demonstrate progress on benchmarks
often designed with a single metric in mind.

Recent work has exposed previously unknown trade-offs between some of these metrics, e.g., between
privacy and fairness (Bagdasaryan et al., 2019) or between robustness and privacy (Song et al.,
2019). As applications in practice require balancing various, often mission-critical, metrics, such
unknown trade-offs might have catastrophic consequences. This makes the research into studying
the intersection of multiple metrics to identify tensions and interactions particularly crucial. With
this motivation, in a systematical quantitative study, our work uncovers an inherent tension between
approaches designed for two critical metrics: group robustness methods and poisoning defenses.

˚Equal contribution.
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Group robustness has become a concern as standard training via empirical risk minimization (ERM)
has been shown to perform well on an average sample but poorly on samples belonging to under-
represented, minority groups (Tatman, 2017). Effective solutions, such as minority upsampling (Byrd
& Lipton, 2019), are not always feasible as the explicit group annotations they rely on are often not
available due to privacy (e.g., demographic annotations) or financial concerns (e.g., large-scale data
sets). To this end, research has proposed heuristics for identifying the minority training samples as
a proxy for annotations (Liu et al., 2021). A common observation behind these heuristics is that
minority samples are often difficult to learn and the model cannot achieve low training error on
them. The candidates identified as minority samples are then amplified during training, e.g., through
upsampling, which is shown to improve group robustness significantly.

First, we expose a vulnerability (Figure 1): when the training set contains poison samples, group
robustness heuristics cannot distinguish legitimate minority samples from them. Poison samples are
injected by an attacker to teach the model an undesirable behavior, e.g., a backdoor (Saha et al., 2020).
As a result, two recent group robustness methods (Sohoni et al., 2020; Liu et al., 2021) end up assisting
the attacker by encouraging low error on poison samples along with minority samples—attacker
achieves 15 ´ 97% higher success rate due to amplification. Aiming to understand this vulnerability,
we observe that poison samples can be as difficult to learn as minority samples, especially in a realistic
attack that can inject only a few samples. This suggests that any group robustness method that relies
on difficulty-based heuristics might carry a similar vulnerability. To supplement our empirical results,
we prove that under specific assumptions, loss-based difficulty heuristics cannot distinguish between
legitimate minority samples and poisons.

Second, on the other side of the coin, we show that poisoning defenses hurt group robustness when the
training set contains legitimate minority samples. In particular, we focus on recent sanitization-based
defenses in centralized (Yang et al., 2022) and federated learning (Panda et al., 2022) settings. As it
is challenging to detect poisons reliably (Shan et al., 2022), these methods pursue a simpler goal by
relying on heuristics to identify outliers. Such heuristics are empirically shown to eliminate poisons
without hurting the overall accuracy. However, due to providing distinct learning signals during train-
ing, we observe that minority samples are often inadvertently identified (and eliminated) as outliers.
This poses a trade-off for the defender: the more poisons are eliminated (lower attack success), the
more minority samples will be eliminated as well (lower group robustness). In consequence, the
accuracy on the minority group drops by up to 15% after applying an effective defense.

Finally, we make an (unsuccessful) attempt to mitigate these tensions by applying poisoning defenses
and group robustness methods in tandem. When aiming for low attack success, the defense removes
enough minority samples to render group robustness methods ineffective. When aiming for high
group robustness, the defense ignores enough poison samples that are still amplified by group
robustness, which leads to high attack success. Ultimately, this implies an unintended alignment
between defensive and group robustness heuristics. We hope to encourage future work to develop
heuristics that conciliate these two critical success metrics.

In summary, we make the following contributions: (i) We show experimentally that group
robustness methods fail to distinguish minority groups from poisons, which leads to the risk of
amplifying the attacks, and complement our findings with a theoretical result (Section 4); (ii) We
find that poisoning defenses also fail to distinguish poisons from under-represented groups and they
introduce a risk of lower group robustness in both centralized and federated learning (Section 5 and
Appendix A.4); (iii) We demonstrate that a straightforward combination of group robustness methods
and poisoning defenses cannot fully mitigate these tensions (Appendix A.5) .

2 RELATED WORK

Group Robustness Methods. Group robustness focuses on training models that obtain good
performance on each pre-defined group in the data set. Approaches to group robustness fall into two
broad categories. The approaches proposed by Sagawa et al. (2019); Byrd & Lipton (2019); Cao
et al. (2019) rely on explicit group annotations during training. For example, group distributionally
robust optimization (group DRO) (Sagawa et al., 2019) directly minimizes the worst-group error on
the training set. The second set of approaches focuses on a more realistic scenario where annotations
are not available during training (Liu et al., 2021; Nam et al., 2020; Sohoni et al., 2020; Namkoong
& Duchi, 2017). Our work focuses on a promising type of approach within this set that essentially
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Figure 1: Illustration of group robustness methods without (left) and with poisons (right) in the
training set. For the former, the methods operate regularly as they identify and amplify the minority
groups, but for the latter, they also amplify poisons and, therefore, the attacker’s influence over
the decision boundary. The left and the right panels of each figure correspond respectively to the
identification phase of the group robustness methods and the resulting model trained after this phase.
Note that the lighter-colored circles and triangles represent amplified points.

aims to obtain pseudo group labels by deploying various heuristics (Liu et al., 2021). We include
a discussion on the heuristics used by several other group robustness methods (Zhang et al., 2022;
LaBonte et al., 2022; Kim et al., 2022; LaBonte et al., 2024) in Appendix A.2.

Poisoning Attacks. In a poisoning attack, the adversary injects a set of malicious samples into the
victim’s training set. The poisons are designed to induce certain vulnerabilities in the victim model.
In dirty-label attacks, the adversary fully controls how the injected sample is crafted and labeled (Gu
et al., 2017). In clean-label attacks, however, they can only make minor changes to existing training
samples without changing their ground truth label (Suciu et al., 2018). In terms of the attacker’s goal,
indiscriminate attacks hurt the model’s overall accuracy (Koh et al., 2022), targeted attacks cause
misclassifications on specific samples (Shafahi et al., 2018), and backdoor attacks teach the model
to misclassify any sample that contains a trigger pattern (Gu et al., 2017). In our work, we use a
range of poisoning attacks to demonstrate a limitation of group robustness methods in distinguishing
legitimate samples from poisons.

Poisoning Defenses. Based on their core assumptions, poisoning defenses can be split into three. (i)
First category corresponds to the assumption that poisons are difficult to be learned and this includes
data sanitization defenses that detect anomalies and outliers in the training set (Steinhardt et al., 2017;
Chen et al., 2019; Yang et al., 2022). Note that these are popular strategies against poisoning attacks,
because of their low computational overhead and minimal impact on accuracy. In this work, we focus
on defenses from this category and show that they lead to the problem we identify as they end up
eliminating difficult-to-learn minority samples as poisons. (ii) Defenses from the second category
assume that poisons are easy to be learned, making them suitable against strong adversaries (Li et al.,
2021). (iii) Third category corresponds to the assumption that poisons follow a different distribution
from clean samples. State-of-the-art defenses (Pan et al., 2023; Qi et al., 2023) use a small base set of
clean samples to separate the clean training points from the poisons. We discuss the limitations and
challenges of using defenses from the second and third categories in Section 6.

3 PROBLEM FORMULATION

3.1 DEFINITIONS

In this part, we draw inspiration from Sagawa et al. (2019) to define the notion of groups.

Groups. Given the set of class labels Y and spurious attribute (feature) labels A, we consider a data
generation process such that X is generated using a class Y and a spurious attribute A. We denote a
data point by a triplet px, y, aq and its group (label) by the tuple py, aq P Y ˆA. The data distribution
of group py, aq over X ˆ Y ˆ A is given by pDpy,aq, y, aq. Note that this definition only refers to
legitimate and clean-label groups. Later, in Section 4.3, we will also consider a (restricted) definition
for poisons as dirty-label samples generated from a legitimate group.
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Minority and Majority Groups. Since prior work is missing a formal definition for minority and
majority groups, we propose one here. Given a dataset D containing samples from the groups,
we consider that a group g “ py, aq P Y ˆ A is a minority group if and only if the number of
samples from g is significantly lower than the average amount of samples from each group, i.e.
|g| ! 1

|Y|¨|A|

ř

hPYˆA |h|, where |k| denotes the number of samples of group k P Y ˆA from D and
|Y| and |A| denote the cardinals of the sets Y and A, respectively. Also, we consider that a group is a
majority group if and only if it is not a minority group.

3.2 SETUP

Datasets. We consider two benchmark data sets: Waterbirds (Sagawa et al., 2019) and CelebA (Liu
et al., 2015). Waterbirds contains 4, 795 training images of “land-bird” and “water-bird” classes, on
either land or water backgrounds. CelebA contains of 162, 770 training images of faces, either male
or female, and the task proposed by Sagawa et al. (2019) is to classify them as “blond” or “not blond”.
In our experiments in Section 5, we randomly sample 10% of CelebA. We include experiments with
different subset sizes for CelebA in Appendix A.3 and all the other experiments from the paper are
performed on the full dataset. We refer to the lowest-represented group (water-birds on land and
blond males) as LRG-1; and the highest-represented groups (land-birds on land and water-birds on
water or blond females, non-blond females and non-blond males) as HRG. Additionally, Waterbirds
contains a second under-represented group (land-birds on water), which we refer to as LRG-2.

Models. Following prior work (Liu et al., 2021), we consider standard ResNet architectures (He
et al., 2016), starting from ImageNet-pretrained weights. In our main manuscript, we show results on
ResNet-18, then we include additional results on ResNet-50 as well as for the scenario when models
are trained from scratch in Appendix A.3.

Group Robustness Methods. We consider two popular techniques from recent work: Just Train
Twice (JTT) (Liu et al., 2021) and GEORGE (Sohoni et al., 2020). Both methods have two main
phases: (i) identification uses heuristics to identify pseudo group annotations for training samples;
and (ii) amplification uses these annotations to amplify under-represented groups. In (i), JTT trains
a heavily regularized model via ERM and identifies the training samples this model misclassifies
as belonging to an under-represented group. In (ii), it simply upsamples these samples to train a
second model that achieves higher group robustness. On the other hand, in (i), GEORGE trains a
standard model via ERM, clusters its latent representations on the training samples, and treats the
cluster labels as pseudo group annotations. In (ii), it applies group DRO (Sagawa et al., 2019) on
these groups, which ends up amplifying the samples in smaller clusters as under-represented groups.

Poisoning Attacks. We consider (i) a dirty-label backdoor (DLBD) attack that inserts samples
containing a trigger with a wrong label; (ii) a sub-population attack (SA) that targets a specific group
indiscriminately (Jagielski et al., 2021); and (iii) Gradient Matching (GM) (Geiping et al., 2020), a
state-of-the-art clean-label targeted poisoning attack.

Similar to prior work, we consider that 1% of the training set is poisoned for DLBD and GM, and 2%
for SA. We also consider other poison percentages in Appendix A.3. For GM, we select the base
samples (i.e., the clean training samples the attack modifies into poisons) from LRG-1. For DLBD
and SA, we select them from HRG and label them into the same class as LRG-1. For GM, we select
5 target samples from the class that does not contain LRG-1 and launch the attack to force the model
to classify them as the class that contains LRG-1. We also consider a setting with 100 target samples
and show the results in Appendix A.3. Note that we consider that the attacker is aware of which
groups are the easiest to learn so they can craft their poisons accordingly.

Poisoning Defenses. In our centralized training experiments, we consider EPIc (Yang et al., 2022),
a state-of-the-art technique that iteratively (i) identifies the training samples isolated in gradient
space as outliers, and (ii) eliminates them as potential poisons during training. Additionally, we also
consider STRIP (Gao et al., 2019), a run-time backdoor detection defense, and include the results
in Appendix A.4. In our federated learning experiments, we consider several robust aggregation
mechanisms and poisoning defenses, including coordinate median update (Yin et al., 2018), Trimmed
Mean (Yin et al., 2018), and SparseFed (Panda et al., 2022). These techniques aim to sanitize the
updates sent by clients and prevent the model from learning outliers.

In Appendix A.1, we provide additional details about our setup and hyper-parameters.
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3.3 RELEVANT METRICS

We perform each experiment 3 times and report the average and the standard deviation of its results.

Accuracy Metrics. We report two metrics (as percentages) for the prediction performance of a model.
First, we report the standard test accuracy (denoted as ACC) measured over the entire test set. ACC
is dominated by HRG as it does not consider the group labels. To report the group robustness of a
model, we measure the Worst-Group Accuracy (denoted as WGA). For WGA, we use the ground
truth annotations to measure the accuracy on each group (i.e., the percentage of the correctly classified
samples from each group). We then report the lowest accuracy among all groups as WGA.

Identification Success Metrics. Group robustness methods ideally identify and amplify only the
samples in legitimate minority groups, whereas the other groups (including poisons) remain untouched.
To report how close we are to the ideal, we measure the Identification-Factor (denoted as IDNF) of
each ground truth group individually. IDNF measures what percentage of samples in the group end
up being amplified. A small gap between IDNF on poisons and IDNF on LRG indicates a failure
scenario.

Attack Success Metrics. In all attacks, we report Attack Success Rate (denoted as ASR) as a
percentage. The actual measurement of ASR depends on the attack. For DLBD, we measure the
percentage of test samples that are correctly classified in the absence of the trigger, but misclassified
in its presence; for GM, the percentage of the misclassified target samples, and for SA, the relative
accuracy drop on the target group of the attack over a non-poisoned model. Note that in case a
defense not only prevents the accuracy drop by removing the poisons but also slightly increases the
accuracy on the targeted group, then the ASR for the SA would be negative.

Defense Success Metrics. An ideal defense only eliminates poisons and reduces the ASR, leaving
ACC and WGA intact. For EPIc, we measure the Elimination-Factor (denoted as ELMF) as the
percentage of training samples removed from each individual ground truth group. A large gap
between ELMF on LRG and ELMF on HRG indicates disparate impact. For the federated learning
defenses (that operate on client updates, not on training samples), we report the drop in WGA and
ACC over an undefended model.

4 LIMITATIONS OF GROUP ROBUSTNESS METHODS

In this section, we show that heuristics deployed by group robustness methods identify the poisons as
under-represented and amplify them. We illustrate this vulnerability in Figure 1. We also study the
implications of this limitation regarding the ASR of poisoning attacks.

4.1 GROUP ROBUSTNESS HEURISTICS IDENTIFY POISONS

We start by examining which samples are identified by group robustness methods. For JTT, these are
the samples misclassified in the first phase, and, for GEORGE, the samples in the smallest cluster.
In Table 1, we present the IDNFs on each group (LRG-1, LRG-2, and HRG) for each method. We
do not consider LRG-2 for GEORGE because it creates clusters for each class individually and our
poisons are only in the same class as LRG-1. In all experiments, the smallest cluster ends up in the
same class as LRG-1, which indicates that GEORGE is working as intended.

Across the board, we see that poisons and LRG-1 samples have the highest IDNF—between 93.4%
and 100%) Most notably, in many cases, the IDNF on poisons is up to 5% higher than the IDNF
on LRG-1. This suggests that group robustness methods are more likely to amplify poisons than
legitimate under-represented samples. For Waterbirds, there is an expected gap between the IDNFs
on LRG-1 and LRG-2 as LRG-2 contains over 3ˆ more samples than LRG-1, which makes it less
difficult to learn. Finally, in all settings, the IDNF on HRG is much lower than the rest—at most
12.5% in the case of GEORGE on Waterbirds.

We also experiment with letting GEORGE automatically adjust the number of clusters for each class
by maximizing the silhouette score, as done by Sohoni et al. (2020). This still ends up creating a
small cluster that mostly contains the poisons and LRG-1, meaning that it has failed to distinguish
between under-represented groups and poisons.
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Table 1: The Identification-Factors (IDNFs) of group robustness methods on different groups of
samples in the training set. We highlight the alarming cases where the poison samples are more
amplified than the lowest-represented group.

METHOD DATASET ATTACK POISONS LRG-1 LRG-2 HRG

JTT WATERBIRDS DLBD 98.5 ˘ 1.2% 94.6 ˘ 1.4% 36.9 ˘ 1.8% 5.0 ˘ 0.3%
JTT WATERBIRDS SA 98.2 ˘ 0.6% 94.6 ˘ 1.7% 38.7 ˘ 3.1% 4.8 ˘ 0.3%
JTT WATERBIRDS GM 100.0 ˘ 0.0% 96.2 ˘ 6.4% 35.3 ˘ 1.9% 5.4 ˘ 0.3%
JTT CELEBA DLBD 99.9 ˘ 0.0% 96.7 ˘ 0.2% N{A 9.8 ˘ 0.5%

GEORGE WATERBIRDS DLBD 98.5 ˘ 1.2% 93.4 ˘ 1.0% ´ 12.5 ˘ 1.2%

Takeaways. The heuristics used by group robustness methods achieve a high recall in identifying
LRG. However, they often identify most of the poisons as a minority group, too—between 98.2% and
100%—which even exceeds the recall on the legitimate LRG. Overall, this supports our claim that
current group robustness methods are limited in distinguishing between minority groups and poisons.

4.2 GROUP ROBUSTNESS METHODS AMPLIFY POISONS

After finding that group robustness methods identify poisons as an under-represented group, in this
section, we study how this impacts poisoning attacks and their success. To this end, we consider three
evaluation settings. In the standard case, we apply the group robustness method as-is. In the ideal
and worst cases, we intervene in the method to prevent it from amplifying any poison or to force
it to amplify all poisons, respectively. These interventions aim to isolate the impact of amplifying
poisons on the attack success rate (ASR). We implement these interventions by manually removing
all poisons from (ideal) or placing all poisons into (worst) the set of samples identified by group
robustness methods.

We present the results in Table 2, across different attacks, methods, and datasets. We first note that
the ASR gap between the worst case and the standard case is often minimal. This highlights that the
boost the attacker gains due to the shortcomings of group robustness heuristics is as significant as it
can get. The large gap between (6.7% ´ 97.4%) the standard and ideal cases shows an opportunity
for better heuristics. We believe the larger amplification in the case of CelebA stems from the fact
that this is a more complex data set with more variability and samples, which makes it easier for
poisoning. Note that most of the models maintain a relatively high WGA (at least 74.1%), which
shows that group robustness methods are working as intended, but still worse than the case without
any poisoning (86.7% as in Liu et al. (2021)). The only exception to this is the case of SA, where the
WGA drops to 60.9%. However, this is expected as the goal of this attack is to hurt the accuracy on a
specific group. Finally, the models tend to maintain a fairly high standard ACC, except against SA as
it is an indiscriminate attack, which provides a sanity check to our results.

Additionally, in Appendix A.3, we study the impact of the hyper-parameters (early stopping for the
identification model and upsampling factor) and consider more settings (different amount of poisoned
samples, more targets for GM attack and using a larger model, as well as training the models from
scratch). We observe that the results are consistent with our previous findings.

Takeaways. Due to identifying poisons as an under-represented group, group robustness methods
end up directly or indirectly amplifying them. We show that this leads to a boost in the success rate
of poisoning attacks and, generally, this boost is almost as high as in the worst-case scenario.

4.3 IMPOSSIBILITY RESULT

In this section, we show that under some assumptions, loss-based identification methods are inherently
ineffective in separating legitimate minority groups from poisons.

We consider a binary classification problem with one binary spurious attribute (Y “ A “ t0, 1u).
We denote the identification model (i.e., the model used in the identification phase of the group
robustness methods) by I : X Ñ r0, 1s|Y| and its output probability corresponding to the ith

class by Ipxqi (i.e., the softmax output on class i). For a group py, aq P Y ˆ A, we denote
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Table 2: Evaluating the impact of amplification in group robustness methods on worst group accuracy
(WGA), attack success rate (ASR), and test accuracy (ACC). We highlight when there is a small gap
in ASR between the worst and standard cases as this indicates that a method has given an advantage
to the adversary.

METHOD DATASET ATTACK CASE WGA ASR ACC

WORST 76.9 ˘ 3.5% 20.9 ˘ 7.9% 86.4 ˘ 1.2%
JTT WATERBIRDS DLBD STANDARD 78.0 ˘ 4.1% 20.4 ˘ 5.9% 86.7 ˘ 1.2%

IDEAL 81.4 ˘ 0.9% 0.5 ˘ 0.3% 91.0 ˘ 0.4%
WORST 60.9 ˘ 4.5% 24.0 ˘ 3.3% 70.9 ˘ 2.3%

JTT WATERBIRDS SA STANDARD 61.6 ˘ 6.8% 31.4 ˘ 6.0% 66.0 ˘ 3.8%
IDEAL 82.3 ˘ 1.5% 0.8 ˘ 1.3% 90.8 ˘ 0.3%

WORST 76.1 ˘ 3.2% 20.0 ˘ 0.0% 89.9 ˘ 1.0%
JTT WATERBIRDS GM STANDARD 76.1 ˘ 3.2% 20.0 ˘ 0.0% 89.9 ˘ 1.0%

IDEAL 75.9 ˘ 0.8% 13.3 ˘ 11.5% 91.3 ˘ 0.1%
WORST 79.7 ˘ 0.9% 97.7 ˘ 0.1% 82.9 ˘ 0.8%

JTT CELEBA DLBD STANDARD 79.3 ˘ 0.2% 97.7 ˘ 0.1% 82.6 ˘ 0.2%
IDEAL 79.2 ˘ 1.1% 0.3 ˘ 0.0% 83.6 ˘ 1.4%

WORST 74.1 ˘ 1.7% 16.5 ˘ 2.9% 76.4 ˘ 3.4%
GEORGE WATERBIRDS DLBD STANDARD 77.3 ˘ 2.5% 15.8 ˘ 3.9% 79.4 ˘ 1.6%

IDEAL 79.3 ˘ 2.1% 0.4 ˘ 0.0% 93.1 ˘ 1.4%

py,a :“ Epx,y,aq„pDpy,aq,y,aqrIpxqys (i.e., the expected class y probability output of the identification
model on a sample from the group py, aq). In the rest of the paper we will refer to this as expected
class probability. We consider all the groups (minority and majority) to be clean-label and poisons
to be dirty-label. To generate poison samples starting from legitimate samples from group py, aq,
the attacker needs to flip their label (this corresponds to the FeatureMatch and Label Flipping
setting of the Subpopulation Attack from Jagielski et al. (2021)), so the distribution for the poisons
py, aq˚ is pDpy,aq, 1 ´ y, aq and we define p˚

y,a :“ Epx,1´y,aq„pDpy,aq,1´y,aqrIpxq1´ys. We denote
the maximum expected class probability on a group as pym,am

:“ maxy,aPt0,1upy,a. Note that as the
number of dirty-label samples is generally much lower than the number of clean samples (a realistic
attacker cannot insert a lot of poisons), we can assume that pym,am

ą maxy,aPt0,1up
˚
y,a.

Lemma 4.1. For the setting described above, if we assume that there are no ties in maximum expected
class probability among groups, then the identification model has less expected class probability on
the poisons pym, amq˚ in comparison to any legitimate group.

Proof. We include the proof in Appendix A.6.

Theorem 4.2. We consider the same setting as in Lemma 4.1. We denote the poisons pym, amq˚ by
gp and let py, aq :“ gc be any group of samples (e.g., a legitimate minority group). Also, we denote
Ipxq1´ym for px, 1´ym, amq „ pDgp , 1´ym, amq by Gp and Ipxqy for px, y, aq „ pDgc , y, aq by
Gc and the cross-entropy loss on G P tGc, Gpu by LpGq. We assume Gp and Gc are independent and
V arpGpq “ V arpGcq :“ σ2 (i.e., the variances of the class probability for the identification model
are equal for the legitimate group and for the poisons) and denote EpGpq :“ µp and EpGcq :“ µc.

Then, for any ϵ P p0, 1q, if σ ď

b

1?
1´ϵ

´ 1 ¨
µc´µp

2 , we have PpLpGcq ă LpGpqq ą 1 ´ ϵ.

Proof. We include the proof in Appendix A.6.

Takeaways. An identification model amplifies hard-to-learn samples as they are hypothesized
to approximate legitimate minority groups. Our result in Theorem 4.2 undermines this common
hypothesis by proving that, under some conditions, the poisons are harder to learn than minority group
samples and, therefore, loss-based thresholding will fail to separate them with a high probability. The
strong correlations among popular sample difficulty metrics (Wu et al., 2020), such as the loss value
or learning epoch, give our result a broader applicability despite our theorem’s focus on a prototypical
loss-based thresholding scheme.
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Figure 2: The elimination disparity between the under-represented (LRG) and over-represented
(HRG) groups against EPIc. The x-axes show the iterations of EPIc, and y-axes show the Elimination-
Factor (ELMF) for each group. From left to right, the first three plots are for DLBD, SA, GM attacks
on Waterbirds and the last one is for DLBD on CelebA.

Table 3: The impact of EPIc on group robustness, measured by the Worst-Group Accuracy (WGA).

DATASET ATTACK CASE WGA ASR ACC

IDEAL 59.0 ˘ 2.5% 0.1 ˘ 0.1% 95.5 ˘ 0.1%
WATERBIRDS DLBD STANDARD 55.8 ˘ 6.0% 0.1 ˘ 0.0% 95.0 ˘ 0.1%

WORST 50.7 ˘ 6.9% 0.1 ˘ 0.0% 94.3 ˘ 0.8%
IDEAL 59.1 ˘ 3.0% ´0.3 ˘ 1.8% 94.6 ˘ 0.4%

WATERBIRDS SA STANDARD 55.3 ˘ 3.2% 0.2 ˘ 1.7% 94.2 ˘ 0.4%
WORST 48.1 ˘ 7.3% ´0.1 ˘ 2.3% 93.9 ˘ 0.3%
IDEAL 50.2 ˘ 2.0% 13.3 ˘ 11.5% 95.8 ˘ 0.3%

WATERBIRDS GM STANDARD 43.5 ˘ 7.8% 13.3 ˘ 11.5% 94.6 ˘ 0.5%
WORST 44.3 ˘ 8.3% 13.3 ˘ 11.5% 94.6 ˘ 0.4%
IDEAL 54.8 ˘ 3.2% 0.3 ˘ 0.2% 93.9 ˘ 0.0%

CELEBA* DLBD STANDARD 40.5 ˘ 4.5% 0.1 ˘ 0.0% 94.0 ˘ 0.1%
WORST 34.8 ˘ 1.1% 0.0 ˘ 0.0% 93.7 ˘ 0.3%

5 POISONING DEFENSES HAVE DISPARATE IMPACT

After establishing how group robustness methods amplify poisons, in this section, we investigate
whether poisoning defenses have any undesirable impact on under-represented samples and group
robustness.

5.1 POISONING DEFENSES ELIMINATE MINORITY SAMPLES

We start our investigation by studying the impact of EPIc on under-represented samples. In Figure 2,
we show the Elimination-Factor (ELMF) of EPIc in four different settings. We observe that generally
the poisons and LRG-1 samples are eliminated at a similar rate (the two curves are close to each
other, across the board). On the other hand, the ELMF on HRG samples is always significantly less.
Interestingly, ELMF on LRG-2 samples from Waterbirds is less than the poisons and LRG-1 samples
and more than HRG samples. A large (reaching almost 100%) ELMF on poisons shows that EPIc is
indeed an effective poisoning defense. However, by eliminating most poisons, EPIc also eliminates
most LRG-1 samples as well. This suggests that legitimate under-represented samples are strong
outliers from the perspective of EPIc, which demonstrates a disparate impact.

5.2 POISONING DEFENSES REDUCE GROUP ROBUSTNESS

Here, we study the effect of EPIc on group robustness by considering three scenarios. In ideal and
worst-case scenarios, we make interventions on EPIc to never eliminate any under-represented sample
or to eliminate under-represented samples as early as possible, respectively. In standard EPIc, we
make no intervention and apply the defense as-is. Through interventions, we hope to isolate the
impact of EPIc on minority samples. For each scenario, we report WGA to measure group robustness.
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We present the results in Table 3. First, we observe that in different datasets and attacks, EPIc reduces
the WGA by 3.2% ´ 14.3%. The most damage happens on CelebA data set as, we believe, it is more
complex than Waterbirds. Overall, the ASR is low, indicating that EPIc works properly, with one
exception for the GM attack, where the ASR is 13.3% for all three scenarios. In all cases, ACC is
high, relatively close to ACC reported in prior work (Liu et al., 2021). We see a significant gap in
WGA after applying EPIc and applying group robustness methods (in Table 2), almost up to 40%.
This is expected as EPIc does not make any attempts to preserve group robustness. In Appendix A.5,
we make an effort towards applying poisoning defenses while preserving group robustness.

Additionally, we study the impact that robust aggregation mechanisms and poisoning defenses have
on the under-represented groups in Federated Learning, as well as more settings including different
amounts of poisoned samples. We show the results in Appendix A.4 and observe that they are
consistent with our previous findings.

Takeaways. Poisoning defenses either aim to identify and remove the outliers or make it more
difficult for the model to learn poisons (e.g., in Federated Learning). They, however, also end up
making minority groups more difficult to learn as well, which hurts the group robustness of the
trained model. This shows that, despite the common practice, ACC can be over-optimistic in gauging
the impact of a poisoning defense in the presence of under-represented groups.

6 DISCUSSION AND FUTURE WORK

In this work, we have focused only on defenses from the first category in Section 2 (that consider
poisons as difficult to learn). We have exposed their vulnerability and the potentially harmful
consequences of these defenses. We believe that defenses from the second category (that consider
poisons as easy to learn), would not lead to these problems. However, it is important to note that,
poisons will not be easy to learn in realistic attacks where adversaries can only inject a limited number
of poisons, violating the assumption. As a result, defenses from this category would be ineffective
against such attacks and, therefore, group robustness methods would still inadvertently offer a needed
boost to the weaker adversary. Finally, for the third category of defenses (poisons are different from
clean samples), the state-of-the-art defenses (Pan et al., 2023; Qi et al., 2023) use a small base set
(10-1000 samples) to model the distribution of clean samples and identify the training points most
distinct from this distribution as poisons. These base sets are often assumed to follow the same
distribution as the clean training set, which makes them unlikely to contain sufficiently many minority
samples. We hypothesize that this will cause such defenses to still eliminate clean minority samples
as poisons and hurt the WGA. However, it might be possible to avoid this problem by providing such
defenses with carefully curated base sets that are balanced (in terms of groups) and free from poisons.
In this case, instead of mistakenly penalizing difficult clean samples as poisons, they can isolate the
real poisons from a more inclusive clean distribution captured by the base set. However, research
suggests that making a base set poison-free (Zeng et al., 2022) or collecting enough labeled minority
samples that capture their distribution properly (Lokhande et al., 2022) might be difficult in practice.
We believe addressing these challenges is a promising avenue for future work to reconcile between
group robustness and poisoning resilience.

7 CONCLUSIONS

In this work, we demonstrate a significant tension involving two critical metrics studied in the ML
community: group robustness and poisoning resilience. The objective of group robustness methods is
to amplify minority groups in the training set and create more equitable models. Our findings reveal
that the samples injected by poisoning attacks consistently mislead these methods into amplifying
them, resulting in an undesirable boost to the adversary. On the other hand, poisoning defenses
aim to prevent attacks by removing problematic samples from the training set. However, these
defenses remove legitimate under-represented samples as well, hence compromising the model’s
equity. Finally, we wish to emphasize the pressing need for the ML community to focus on the
development of new methods that tackle the inherent challenges posed by data poisoning attacks and
group robustness methods.
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for active learning in image classification. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 9368–9377, 2018.

Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning? In
International Conference on Machine Learning, pp. 872–881. PMLR, 2019.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. Advances in neural information processing
systems, 32, 2019.

Nicholas Carlini, Ulfar Erlingsson, and Nicolas Papernot. Distribution density, tails, and outliers in
machine learning: Metrics and applications. arXiv preprint arXiv:1910.13427, 2019.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. In Workshop on Artificial Intelligence Safety. CEUR-WS, 2019.

Yizheng Chen, Shiqi Wang, Yue Qin, Xiaojing Liao, Suman Jana, and David Wagner. Learning
security classifiers with verified global robustness properties. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pp. 477–494, 2021.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th Annual
Computer Security Applications Conference, pp. 113–125, 2019.

Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and
Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. arXiv
preprint arXiv:2009.02276, 2020.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without
demographics in repeated loss minimization. In International Conference on Machine Learning,
pp. 1929–1938. PMLR, 2018.

10



Published as a conference paper at ICLR 2024

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina Oprea. Subpopulation data
poisoning attacks. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pp. 3104–3122, 2021.

Nayeong Kim, Sehyun Hwang, Sungsoo Ahn, Jaesik Park, and Suha Kwak. Learning debiased
classifier with biased committee. Advances in Neural Information Processing Systems, 35:18403–
18415, 2022.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data
sanitization defenses. Machine Learning, pp. 1–47, 2022.

Tyler LaBonte, Vidya Muthukumar, and Abhishek Kumar. Dropout disagreement: A recipe for group
robustness with fewer annotations. In NeurIPS 2022 Workshop on Distribution Shifts: Connecting
Methods and Applications, 2022.

Tyler LaBonte, Vidya Muthukumar, and Abhishek Kumar. Towards last-layer retraining for group
robustness with fewer annotations. Advances in Neural Information Processing Systems, 36, 2024.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
Training clean models on poisoned data. Advances in Neural Information Processing Systems, 34:
14900–14912, 2021.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pp. 6781–6792. PMLR,
2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Vishnu Suresh Lokhande, Kihyuk Sohn, Jinsung Yoon, Madeleine Udell, Chen-Yu Lee, and Tomas
Pfister. Towards group robustness in the presence of partial group labels. arXiv preprint
arXiv:2201.03668, 2022.
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Table 4: Proportions of each group in Waterbirds dataset. Labels 0 and 1 correspond to the classes
landbirds and waterbirds, respectively. Attributes 0 and 1 correspond to the spurious features land
and water, respectively.

GROUP GR. 0 GR. 1 GR. 2 GR. 3 POISONS

LABEL / ATTRIBUTE 0/0 0/1 1/0 1/1 1/0

PROPORTION 72.0% 3.8% 1.2% 22.0% 1.0%

A SUPPLEMENTARY MATERIAL

A.1 ADDITIONAL DETAILS ON THE EXPERIMENTAL SETUP

For the models trained with JTT on Waterbirds, unless differently specified, we use SGD with
momentum with a factor of 0.9 as the optimizer, a batch size of 128, learning rate of 1e ´ 5 and
weight decay of 1.0. We stop the identification model after 60 epochs, use an upsampling factor
of 100, train the final model up to 100 epochs and choose the model that has the best WGA on the
validation dataset, then report the results on the test dataset. In case of CelebA, we use the same
hyper-parameters as for Waterbirds, with a few exceptions: weight decay of 0.1, early stopping for
the identification model after 1 epoch and we use an upsampling factor of 50. Also, we train the final
model up to 5 epochs and consider the same procedure to choose the best model as above. We build
our experiments on top of the official code from 1.

For the models trained with GEORGE, we use a similar optimizer, batch size, learning rate, weight
decay as in the Waterbirds case from above. For clustering we let the model find the optimal number
of clusters (up to 10) for each class based on Silhouette criterion as in Sohoni et al. (2020). We train
the final model up to 300 epochs and use the official code from 2

For DLBD, the trigger is a 25x25 white square placed 1 pixel away from the bottom-right corner of
the poisoned samples.

For SA, we consider FeatureMatch and Label Flipping to create poisoned samples as in prior
work (Jagielski et al., 2021).

For GM, we use the multi-target version of the attack, an epsilon of 16 and 8 restarts. To build the
poisoned samples, we rely on the official code from 3.

For EPIc, in case of Waterbirds, we consider SGD with momentum with a factor of 0.9 as the
optimizer, a batch size of 128, learning rate of 1e ´ 2 and weight decay of 1e ´ 4. We train the
models up to 40 epochs and consider the same selection criterion for the model based on WGA on
the validation set as above. In the case of CelebA, we change the learning rate to 1e ´ 3 and we train
the models up to 10 epochs. We build our experiments on top of the official code from 4.

For the federated learning experiments, we built the implementation on top of the code from here 5.
We consider a total of 100 users and 10% of them are chosen at each round. We use SGD with
momentum with a factor of 0.9 as the optimizer, a local batch size of 128 and learning rate of 1e ´ 2.
Also, we train each local model for 10 epochs at each round. In case of the non-IID setting, we
consider that only 10% of the users have samples from the under-represented groups.

For the federated learning defenses, in the case of Trimmed Mean, we remove the lowest and highest
two values for each coordinate in the update and in the case of SparseFed we use a value of 400, 000
for the number of parameters that we keep at each step which is equivalent to keeping less than 5%
of the parameters. We consider a momentum factor of ρ “ 0.9 as in prior work (Panda et al., 2022)
or not using momentum (ρ “ 0) in our experiments.

1https://github.com/anniesch/jtt
2https://github.com/HazyResearch/hidden-stratification
3https://github.com/JonasGeiping/poisoning-gradient-matching
4https://github.com/YuYang0901/EPIC
5https://github.com/AshwinRJ/Federated-Learning-PyTorch
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Table 5: Proportions of each group in 10% of CelebA and Full CelebA. Labels 0 and 1 correspond to
the classes non-blond and blond, respectively. Attributes 0 and 1 correspond to the spurious features
female and male, respectively.

GROUP GR. 0 GR. 1 GR. 2 GR. 3 POISONS

LABEL / ATTRIBUTE 0/0 0/1 1/0 1/1 1/1

PROPORTION FOR 10% CELEBA 44.7% 39.6% 13.8% 0.9% 1.0%
PROPORTION FOR FULL CELEBA 44.0% 40.1% 14.1% 0.9% 1.0%

In Tables 4 and 5, we show the proportions of each group in Waterbirds and CelebA datasets,
respectively.

A.2 DISCUSSION ON HEURISTICS USED BY GROUP ROBUSTNESS METHODS

Although we experimented with methods that specifically use a loss-based heuristic, we believe that
many other group robustness methods rely on similar heuristics, perhaps less directly. In this section,
we discuss four methods from recent literature that implemented seemingly different heuristics that
will align with loss-based heuristics.

Zhang et al. (2022) applies contrastive learning to push together the representations of training
samples that are labeled into the same class but predicted differently. Since, the low-budget poisoning
attacks we consider often generate hard-to-learn, misclassified samples, we believe this method will
also suffer from the tension we identify, e.g., misclassified poison samples of class will be represented
similarly to correctly classified samples of class, which will amplify their effectiveness as the model
becomes less likely to misclassify them.

LaBonte et al. (2022) uses the disagreements between different forward passes of the model with
dropout to find which training samples to amplify. Different dropout forward passes are known to
disagree on samples where the model has high uncertainty (Gal & Ghahramani, 2016), which are
often hard-to-learn, higher-loss samples. As a result, we believe this method will also suffer from the
same tension we identified, e.g., the hard-to-learn poison samples we generated will create dropout
disagreements and will be amplified.

Kim et al. (2022) relies on disagreements among the members of an ensemble of models to identify the
“biased” samples (i.e., the samples that contain spurious correlations). If a sample has low ensemble
agreement, it will be amplified by this method. Ensemble disagreement is a known uncertainty
metric (Beluch et al., 2018) in the literature. As a result, we believe that this method will also suffer
from the same tension we identified, e.g., the hard-to-learn poison samples will be misclassified by
more members of the ensemble, and will be amplified.

LaBonte et al. (2024) constructs a reweighting set based on either (1) ERM model’s misclassifications,
or (2) the misclassifications of an early-stopping model, or (3) dropout disagreement (similar to the
Dropout Disagreement paper) or (4) the disagreements between the ERM and early-stopping models.
All these heuristics to identify minority group samples will end up identifying the hard-to-learn
poisoning samples as well. The authors identified (4) as the most promising heuristic. It is known
that hard-to-classify samples are learned at later iterations of model training (Baldock et al., 2021).
As a result, we believe that method will also suffer from the same tension we identified, e.g., the
hard-to-learn poison samples will be classified differently by the early-stopping and regular models,
and will be amplified.

These common threads show that, despite not using the loss heuristic directly, many methods in this
line of work rely on related ideas that will amplify uncertain, misclassified, high-loss, or hard-to-learn
samples. Moreover, it is known that many example difficulty metrics are highly correlated with one
another (Baldock et al., 2021; Carlini et al., 2019). Ultimately, we believe that these related heuristics
cannot avoid the tension we identified because low-budget poisoning attacks generate hard-to-learn
samples.
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A.3 MORE RESULTS ON LIMITATIONS OF THE GROUP ROBUSTNESS METHODS

Impact of the Hyper-parameters. Here, we study how the hyper-parameters of JTT impact our
findings from Section 2. We consider two hyper-parameters: early stopping for the model in the
first phase used to identify LRG; and the upsampling factor for the samples identified samples.
Our previous experiments use the original hyper-parameters, i.e., early stopping is set to 60 epochs,
and upsampling factor is set to 100ˆ. However, due to the introduction of poisoning, these hyper-
parameters might not be optimal anymore. To this end, we search for new hyper-parameters in a grid
(early stopping P t40, 80, 100, 200u and upsampling factors P t20, 50, 150u against DLBD attack on
Waterbirds.

We present the results in Tables 6 and 7. We observe that the results are consistent with our previous
findings: ASRs are very close between the standard and the worst cases (i.e., high amplification),
while both WGA and ACC are still relatively high with the exceptions when early stopping is set
to 40 and when the upsampling factor is set to 150. In these cases, the WGAs are only 65.3% and
64.6%, respectively. For the former, we believe that it could be due to how earlier stopping makes
identification less selective (lower precision) and ends up upsampling HRG as well. Also, the ASR is
higher by more than 15% compared to the other early stopping values. For the latter, we believe that
it is because the amplified samples appear too often during training compared to the non-amplified
ones. Also, surprisingly, using smaller upsampling factors of 50ˆ or 20ˆ instead of 100ˆ makes the
attack even more powerful by 8.4% and 46.2% respectively, in terms of ASR.

Additional Settings. For completeness, in this section, we analyze several other scenarios on
Waterbirds data set, including using different poisons percentages, different numbers of targets for
the GM attack, different model architectures and different base samples. In Table 8, we consider JTT
and GEORGE with the DLBD attack using several poison percentages in the range 0.4% ´ 2%. The
results are consistent with our previous findings. Additionally, we observe that an attacker who could
introduce 2% poisoned samples, generally obtains a higher ASR (of 52.5% ´ 59.8%). In Table 9, we
compare the results in two settings for the GM attack: (i) when the attack has 5 targeted samples (same
as our previous experiments) and (ii) when the attack has 100 targeted samples. The results show that,
in the case of 100 targets, the amplification is as high as it could be. The only distinction from the
case with 5 targets is an overall lower ASR, but this is expected as the attack becomes more difficult
as it targets more samples. We also consider a larger architecture, ResNet-50, instead of ResNet-18,
for the DLBD attack and several scenarios, including training the models from scratch. Our results in
Table 10 are generally consistent, however, the ASR is significantly higher against ResNet-50. We
believe the additional learning capacity of ResNet-50 over ResNet-18 facilitates the attack. Also, we
observe that training the models from scratch and tuning them for high group robustness (WGA)
damages the overall accuracy (ACC) significantly. This challenge explains the prior practice of using
pre-trained models as they can alleviate this trade-off to some extent. In Table 11, we consider base
samples from different groups of CelebA for DLBD. We observe that the easier a group is to learn
(i.e., less average loss), the higher the ASR will be if the attacker crafts a DLBD attack with base
samples from that group. In Table 12, we consider the scenario when the attacker is not aware of
the presence of groups, so they just attack one of the two classes of CelebA, with the DLBD. We
observe high amplification (i.e., the small gap between the worst and standard cases) no matter which
class is targeted by the attacker. As a result, even a less informed attacker, who is unaware of the
groups, would benefit from the amplification. In Table 13 we consider the Subpopulation Attack
(SA) on CelebA when applying JTT and without applying any group robustness method (ERM) as a
baseline. We observe that the amplification is generally high (large ASR gap between JTT and the
baseline) while JTT still works as intended as it improves the WGA over the baseline. Additionally,
in Table 14, we consider AFR (Qiu et al., 2023) on MultiNLI dataset (Williams et al., 2018) and
observe similar results. We also consider several datasets from Spawrious benchmark (Lynch et al.,
2023). We show the percentage of samples amplified by JTT from each group in Table 15. Again, the
results are consistent with our previous findings. To conclude, our extensive experiments show that
the limitation of group robustness methods is consistent across different settings, suggesting that this
might be an inherent vulnerability.

A.4 MORE RESULTS ON THE LIMITATIONS OF THE POISONING DEFENSES

Federated Learning Scenarios. To demonstrate that the limitation of EPIc we identified (in
Section 5) is consistent in other defenses, we also run experiments on federated learning, where
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Table 6: Evaluating the impact of amplification in JTT on worst group accuracy (WGA), attack
success rate (ASR) and test accuracy (ACC) when considering several early stopping epochs for the
identification model.

EARLY STOPPING CASE WGA ASR ACC

WORST 65.4 ˘ 9.4% 46.3 ˘ 30.6% 83.3 ˘ 4.4%
40 STANDARD 65.3 ˘ 9.3% 45.7 ˘ 31.5% 83.2 ˘ 4.3%

IDEAL 76.8 ˘ 3.2% 0.4 ˘ 0.1% 91.5 ˘ 0.5%
WORST 76.9 ˘ 3.5% 20.9 ˘ 7.9% 86.4 ˘ 1.2%

60 STANDARD 78.0 ˘ 4.1% 20.4 ˘ 5.9% 86.7 ˘ 1.2%
IDEAL 81.4 ˘ 0.9% 0.5 ˘ 0.3% 91.0 ˘ 0.4%

WORST 80.3 ˘ 2.5% 18.7 ˘ 5.9% 87.3 ˘ 0.8%
80 STANDARD 80.9 ˘ 2.8% 17.7 ˘ 5.5% 87.6 ˘ 1.0%

IDEAL 82.2 ˘ 2.4% 0.5 ˘ 0.1% 91.3 ˘ 0.5%
WORST 81.8 ˘ 2.0% 19.7 ˘ 8.9% 87.6 ˘ 1.2%

100 STANDARD 82.0 ˘ 2.1% 23.4 ˘ 8.7% 87.2 ˘ 0.9%
IDEAL 83.3 ˘ 0.9% 0.9 ˘ 0.1% 91.0 ˘ 0.4%

WORST 83.5 ˘ 2.4% 27.8 ˘ 9.5% 87.9 ˘ 1.7%
200 STANDARD 83.1 ˘ 2.1% 29.5 ˘ 8.5% 87.5 ˘ 1.3%

IDEAL 84.5 ˘ 1.5% 0.7 ˘ 0.1% 90.0 ˘ 1.7%

Table 7: Evaluating the impact of amplification in JTT on worst group accuracy (WGA), attack
success rate (ASR) and test accuracy (ACC) when considering several upsampling factors.

UPSAMPLING FACTOR CASE WGA ASR ACC

WORST 71.9 ˘ 4.0% 69.5 ˘ 9.1% 91.4 ˘ 0.6%
20 STANDARD 72.3 ˘ 4.5% 66.6 ˘ 10.0% 91.5 ˘ 0.6%

IDEAL 74.9 ˘ 2.3% 1.3 ˘ 0.3% 93.0 ˘ 0.3%
WORST 79.7 ˘ 1.8% 33.1 ˘ 3.5% 91.4 ˘ 0.5%

50 STANDARD 79.6 ˘ 1.9% 28.8 ˘ 6.6% 91.9 ˘ 0.6%
IDEAL 79.5 ˘ 1.0% 0.9 ˘ 0.4% 92.6 ˘ 0.4%

WORST 76.9 ˘ 3.5% 20.9 ˘ 7.9% 86.4 ˘ 1.2%
100 STANDARD 78.0 ˘ 4.1% 20.4 ˘ 5.9% 86.7 ˘ 1.2%

IDEAL 81.4 ˘ 0.9% 0.5 ˘ 0.3% 91.0 ˘ 0.4%
WORST 65.7 ˘ 10.9% 29.2 ˘ 29.5% 74.1 ˘ 3.7%

150 STANDARD 64.6 ˘ 9.9% 29.4 ˘ 34.4% 73.2 ˘ 3.8%
IDEAL 73.0 ˘ 13.2% 0.7 ˘ 0.1% 84.3 ˘ 7.1%

16



Published as a conference paper at ICLR 2024

Table 8: Evaluating the impact of amplification in group robustness methods on worst group accu-
racy (WGA), attack success rate (ASR) and test accuracy (ACC) when considering several poison
percentages for the DLBD attack.

POISONS METHOD CASE WGA ASR ACC

WORST 78.7 ˘ 2.0% 4.8 ˘ 0.7% 89.3 ˘ 1.2%
0.4% JTT STANDARD 78.6 ˘ 2.0% 3.5 ˘ 1.7% 89.1 ˘ 1.0%

IDEAL 81.1 ˘ 1.9% 0.3 ˘ 0.1% 91.4 ˘ 0.3%
WORST 80.6 ˘ 2.7% 8.7 ˘ 1.4% 89.4 ˘ 1.2%

0.6% JTT STANDARD 79.3 ˘ 1.7% 9.6 ˘ 1.8% 89.0 ˘ 0.8%
IDEAL 81.2 ˘ 2.0% 0.5 ˘ 0.1% 91.6 ˘ 0.5%

WORST 78.5 ˘ 3.4% 15.8 ˘ 4.4% 87.8 ˘ 1.2%
0.8% JTT STANDARD 78.0 ˘ 3.0% 16.8 ˘ 5.4% 87.7 ˘ 1.2%

IDEAL 81.2 ˘ 1.5% 0.5 ˘ 0.1% 91.0 ˘ 0.6%
WORST 76.9 ˘ 3.5% 20.9 ˘ 7.9% 86.4 ˘ 1.2%

1% JTT STANDARD 78.0 ˘ 4.1% 20.4 ˘ 5.9% 86.7 ˘ 1.2%
IDEAL 81.4 ˘ 0.9% 0.5 ˘ 0.3% 91.0 ˘ 0.4%

WORST 64.7 ˘ 7.4% 56.6 ˘ 41.9% 69.8 ˘ 5.6%
2% JTT STANDARD 62.0 ˘ 9.8% 59.8 ˘ 45.9% 66.0 ˘ 9.6%

IDEAL 82.5 ˘ 1.6% 0.6 ˘ 0.3% 91.1 ˘ 0.2%
WORST 74.1 ˘ 1.7% 16.5 ˘ 2.9% 76.4 ˘ 3.4%

1% GEORGE STANDARD 77.3 ˘ 2.5% 15.8 ˘ 3.9% 79.4 ˘ 1.6%
IDEAL 79.3 ˘ 2.1% 0.4 ˘ 0.0% 93.1 ˘ 1.4%

WORST 74.3 ˘ 5.4% 56.1 ˘ 13.6% 78.0 ˘ 9.0%
2% GEORGE STANDARD 74.5 ˘ 5.2% 52.5 ˘ 7.1% 77.6 ˘ 8.5%

IDEAL 80.2 ˘ 0.4% 0.7 ˘ 0.1% 92.4 ˘ 0.9%

Table 9: Evaluating the impact of amplification in JTT on worst group accuracy (WGA), attack
success rate (ASR) and test accuracy (ACC) when considering different targets for the GM attack.

TARGETS CASE WGA ASR ACC

5 WORST 76.1 ˘ 3.2% 20.0 ˘ 0.0% 89.9 ˘ 1.0%
5 STANDARD 76.1 ˘ 3.2% 20.0 ˘ 0.0% 89.9 ˘ 1.0%
5 IDEAL 75.9 ˘ 0.8% 13.3 ˘ 11.5% 91.3 ˘ 0.1%

100 WORST 75.4 ˘ 2.3% 8.6 ˘ 0.5% 88.6 ˘ 0.9%
100 STANDARD 75.8 ˘ 2.2% 8.6 ˘ 0.5% 88.8 ˘ 1.0%
100 IDEAL 75.6 ˘ 0.5% 5.6 ˘ 0.5% 91.1 ˘ 0.6%

Table 10: Evaluating the impact of amplification in JTT on worst group accuracy (WGA), attack
success rate (ASR) and test accuracy (ACC) when considering a different architecture (ResNet-50).
Note that ES denotes early stopping for the identification model.

SETTING ES CASE WGA ASR ACC

WORST 72.4 ˘ 2.1% 70.6 ˘ 13.8% 76.2 ˘ 1.3%
PRE-TRAINED 60 STANDARD 72.4 ˘ 2.1% 70.6 ˘ 13.8% 76.2 ˘ 1.3%

IDEAL 85.1 ˘ 1.4% 0.9 ˘ 0.3% 90.2 ˘ 1.0%
WORST 83.4 ˘ 2.1% 58.0 ˘ 23.7% 86.5 ˘ 2.5%

PRE-TRAINED 200 STANDARD 83.5 ˘ 1.9% 56.5 ˘ 21.2% 86.7 ˘ 2.1%
IDEAL 84.7 ˘ 1.5% 0.5 ˘ 0.5% 90.8 ˘ 2.6%

WORST 39.5 ˘ 7.8% 53.7 ˘ 9.7% 59.0 ˘ 9.8%
FROM SCRATCH 200 STANDARD 41.0 ˘ 8.5% 34.5 ˘ 26.4% 64.0 ˘ 8.3%

IDEAL 37.8 ˘ 6.9% 5.8 ˘ 4.6% 61.0 ˘ 12.9%
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Table 11: Evaluating the impact of the poison base samples’ choice for JTT and CelebA.

BASE SAMPLES’ GROUP GR. 0 (HRG) GR. 1 (HRG) GR. 2 (HRG) GR. 3 (LRG-1)

LABEL / ATTRIBUTE 0/0 0/1 1/0 1/1

ASR 97.4 ˘ 0.1 97.7 ˘ 0.1 91.2 ˘ 2.3 0.1 ˘ 0.1
LOSS AVG. (NO POISONS) 0.16 0.07 0.79 1.90

Table 12: Evaluating the scenario when the attacker does not have any knowledge about the groups.
We consider JTT and CelebA.

BASE SAMPLES IN CLASS 0 BASE SAMPLES IN CLASS 1

ASR (WORST) 98.3 ˘ 0.1 97.6 ˘ 0.3
ASR (STANDARD) 90.7 ˘ 1.7 97.3 ˘ 0.5

ASR (IDEAL) 0.1 ˘ 0.0 0.5 ˘ 0.1

Table 13: Evaluating the effect of JTT on CelebA with a different baseline (ERM) when varying the
poison percentage. We consider the Subpopulation Attack (SA).

POISON % 0.05% 0.1% 0.2% 0.3% 0.5% 1% 2%

JTT (ASR) 0.1% 1.7% 2.4% 3.5% 6.3% 14.1% 46.8%
ERM (ASR) 0.1% 0.1% 0.2% 0.0% 0.1% 0.1% 0.3%
JTT (WGA) 81.7% 82.2% 83.3% 83.3% 83.3% 77.9% 48.2%

ERM (WGA) 43.3% 43.3% 47.2% 42.8% 41.1% 45.0% 45.6%

Table 14: Evaluating the effect of AFR on CelebA with ERM as a baseline. We consider the
Subpopulation Attack (SA).

POISON % 0.5% 1%

AFR (ASR) 2.1% 14.4%
ERM (ASR) 1.0% 5.3%
AFR (WGA) 75.3% 78.4%
ERM (WGA) 68.0% 70.0%

Table 15: The percentage of samples amplified by JTT from each group in Spawrious benchmark.

DATASET GR.0 GR.1 GR.2 GR.3 GR.4 GR.5 GR.6 GR.7 POISONS

M2M-EASY 4.9% 4.1% 2.5% 3.1% 4.8% 6.6% 2.1% 3.5% 99.6%
M2M-MEDIUM 4.0% 4,4% 2.6% 4.1% 10.0% 9.9% 2.7% 2.5% 97.4%

M2M-HARD 4.1% 2.7% 4.0% 4.3% 3.4% 4.3% 4.6% 3.9% 100%
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Table 16: The impact of poisoning defenses in federated learning on group robustness.

METHOD IID? WGA DROP ACC DROP

MEDIAN YES 23.7 ˘ 7.3% ´0.2 ˘ 0.3%
TRIMMED MEAN YES 45.7 ˘ 8.8% 10.6 ˘ 3.5%

SPARSEFED (ρ “ 0) YES 45.4 ˘ 27.7% 11.0 ˘ 17.7%
SPARSEFED (ρ “ 0.9) YES 42.7 ˘ 24.3% 19.0 ˘ 14.6%
SPARSEFED (ρ “ 0.9) NO 55.1 ˘ 21.6% 12.3 ˘ 16.3%

Table 17: The impact of EPIc on group robustness, when considering the DLBD attack and several
poison percentages.

POISONS CASE WGA ASR ACC

IDEAL 61.2 ˘ 2.1% 0.1 ˘ 0.0% 95.4 ˘ 0.5%
0.5% STANDARD 57.6 ˘ 4.9% 0.1 ˘ 0.0% 95.0 ˘ 0.6%

WORST 52.0 ˘ 8.1% 0.1 ˘ 0.0% 94.4 ˘ 0.5%
IDEAL 59.0 ˘ 2.5% 0.1 ˘ 0.1% 95.5 ˘ 0.1%

1% STANDARD 55.8 ˘ 6.0% 0.1 ˘ 0.0% 95.0 ˘ 0.1%
WORST 50.7 ˘ 6.9% 0.1 ˘ 0.0% 94.3 ˘ 0.8%
IDEAL 57.3 ˘ 2.5% 0.3 ˘ 0.3% 94.5 ˘ 0.6%

2% STANDARD 57.0 ˘ 0.4% 0.5 ˘ 0.4% 94.5 ˘ 0.4%
WORST 48.6 ˘ 7.6% 0.2 ˘ 0.0% 93.8 ˘ 0.1%

robust aggregation mechanisms are widely studied. In this scenario, the defense does not sanitize
the training set but sanitizes the updates sent by each client to prevent poisoning. We consider
FedAvg (McMahan et al., 2017) as an un-defended baseline and study the drop in WGA and ACC
relative to it. We included more details about the experimental setup in Appendix A.1. In Table 16,
we observe that the defenses we consider cause significantly more drop in WGA than in ACC, over
the baseline. This exposes that all these methods, while attempting to fight against poisoning, end up
having a disparate impact on the model’s accuracy on under-represented groups.

More Settings. In Table 17, we study the impact of EPIc when there are 0.5% or 2% poisons for
the DLBD attack, instead of 1%. We observe that EPIc drops the WGA by 0.3% ´ 3.6%, while
maintaining a low ASR and high ACC. Also, aligning with our previous results, we observe that the
overall WGA is low compared to the values obtained when considering a group robustness method. In
Table 18, we run additional experiments for EPIc on CelebA with 20%, 50% and 100% of the dataset
considered. The persistent gap between the Ideal and Standard cases demonstrates the negative
impact of EPIc on group robustness. Overall, these results are consistent with our main claims.

Run-time defenses. Additionally, we run experiments using STRIP (Gao et al., 2019), a run-time
backdoor detection mechanism. The main assumption of this method is that a backdoored model’s
outputs have lower entropy on perturbed triggered samples compared to perturbed clean samples. In
Figure 3, we show the percentage of samples from each group which are detected by the defense
when varying the entropy threshold (we use the first model from Table 2 in the standard case, run
the experiment 3 times and provide the mean of the results). Basically, the result from Figure 3
shows that there is no entropy threshold for which STRIP can detect the triggered samples without
inadvertently detecting the clean samples, too. We believe that the strong regularization needed for
the models to achieve group robustness (Liu et al., 2021; Sagawa et al., 2019) contributes to the
limitation of such defenses as the model does not have very confident outputs, leading to generally
high entropy values for all types of samples.

A.5 COMBINING GROUP ROBUSTNESS METHODS AND POISONING DEFENSES

In this section, we study the feasibility of achieving both high group robustness and poisoning
resilience by combining the current state-of-the-art methods.
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Table 18: The impact (in terms of WGA) of EPIc on group robustness, when considering the DLBD
attack and several subset sizes of CelebA.

20% OF CELEBA 50% OF CELEBA FULL CELEBA
IDEAL 52.3 ˘ 1.6 50.3 ˘ 1.9 45.9 ˘ 5.8

STANDARD 43.1 ˘ 5.5 46.4 ˘ 2.8 43.6 ˘ 3.0
WORST 32.3 ˘ 2.7 32.0 ˘ 0.8 37.7 ˘ 3.8

Figure 3: The percentage of samples from each group detected by STRIP when varying the threshold.

We first apply EPIc to identify potential poisons in the training set. Then, when we apply JTT, we
intervene so that it does not amplify the potential poisons found in its first phase (i.e., we remove
them from JTT’s upsampling set). We have considered the following two baselines in our pipeline:
an ideal EPIc that identifies only the poisons and not using EPIc that we would want to improve upon.
Because EPIc removes samples iteratively, we considered three stopping epochs for the removal
process, so that we have control over how many samples EPIc identifies as poisons. As shown in
Figure 2, stopping EPIc sooner leads to a lower percentage of samples from LRG that are removed,
but also a lower amount of poisons. Whereas, stopping EPIc later increases both of these rates.

For the rest of this section, we consider Waterbirds dataset and DLBD attack. More details on the
experimental setup, including the hyper-parameters used are in Appendix A.1.

First of all, as shown in Table 19, not using EPIc at all results in a WGA relatively close to the WGA
that could be obtained if none of the poisons were amplified (Ideal EPIc). However, the ASR is still
high if we do not use EPIc to identify potential poisons. We evaluate three possible stopping epochs
for EPIc and measure the effects on WGA and ASR as a function of EPIC’s stopping epoch. With a
higher stopping epoch (i.e., more samples are identified as poisons), the ASR decreases, however,
the WGA also decreases. For example, to mitigate the attack and obtain below 1% ASR, we need
to sacrifice over 35% WGA—significant damage to group robustness. Also, in ideal EPIc (only
poisons are eliminated), we could obtain both high WGA (over 80%) and low ASR (lower than 1%).
Moreover, note that for all the models, the ACC stays relatively high (over 80%), though, lower than
the settings without any poisoning (e.g., 93.3% in Liu et al. (2021)). This further shows how ACC
can be misleading to judge the side effects of a poisoning defense.

In conclusion, we have attempted to combine EPIc and JTT, in hopes of achieving both high poisoning
resilience and group robustness, but this task is not trivial. Both legitimate under-represented
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Table 19: Applying EPIc and JTT together to combine poison resilience with group robustness.

EPIC WGA ASR ACC

NO 78.0 ˘ 4.1% 20.4 ˘ 5.9% 86.7 ˘ 1.2%
STOP = 3 76.5 ˘ 3.8% 14.8 ˘ 4.0% 91.9 ˘ 0.3%
STOP = 5 73.4 ˘ 7.4% 6.7 ˘ 1.7% 82.8 ˘ 7.3%
STOP = 7 42.3 ˘ 6.6% 0.9 ˘ 0.6% 93.4 ˘ 0.2%

IDEAL 81.4 ˘ 0.9% 0.5 ˘ 0.3% 91.0 ˘ 0.4%

samples and poison samples in realistic attacks can be difficult-to-learn and without making specific
assumptions, (e.g., poisons contain detectable artifacts), it might be difficult to distinguish them.
Using EPIc (which makes no such assumptions) to identify potential poisons and use that information
as an intervention into JTT is not enough to mitigate the trade-off between WGA and ASR.

A.6 PROOFS

Lemma 4.1 (Restated) For the setting described above, if we assume that there are no ties in
maximum expected class probability among groups, then the identification model has less expected
class probability on the poisons pym, amq˚ in comparison to any legitimate group.

Proof. For any y, a P t0, 1u, we know pym,am
ą p˚

y,a, so

1 ´ pym,am ă 1 ´ p˚
y,a. (1)

Also, for any y, a P t0, 1u, from the definition of p˚, we have:

py,a ` p˚
y,a “ 1 (2)

(Epx,y,aq„pDpy,aq,y,aqrIpxqys ` Epx,1´y,aq„pDpy,aq,1´y,aqrIpxq1´ys “ Epx,y,aq„pDpy,aq,y,aqrIpxqy `

Ipxq1´ys “ Ex„pDpy,aq,y,aqrIpxq0 ` Ipxq1s “ Ex„pDpy,aq,y,aqr1s “ 1).

Hence, by substituting 2 in 1, we obtain:

p˚
ym,am

ă py,a. (3)

Therefore, the identification model has the least expected class probability on the poison samples
pym, amq˚.

Theorem 4.2 (Restated) We consider the same setting as in Lemma 4.1. We denote the poisons
pym, amq˚ by gp and let py, aq :“ gc be any group of samples (e.g., a legitimate minority group). Also,
we denote Ipxq1´ym for px, 1 ´ ym, amq „ pDgp , 1 ´ ym, amq by Gp and Ipxqy for px, y, aq „

pDgc , y, aq by Gc and the cross-entropy loss on G P tGc, Gpu by LpGq. We assume Gp and Gc

are independent and V arpGpq “ V arpGcq :“ σ2 (i.e., the variances of the class probability
for the identification model are equal for the legitimate group and for the poisons) and denote
EpGpq :“ µp and EpGcq :“ µc. Then, for any ϵ P p0, 1q, if σ ď

b

1?
1´ϵ

´ 1 ¨
µc´µp

2 , we have

PpLpGcq ă LpGpqq ą 1 ´ ϵ.

Proof. Let ϵ P p0, 1q. We observe that P
`

LpGcq ă LpGpq
˘

“ P
`

´ logpGcq ă ´logpGpq
˘

“

PpGp ă Gcq ą PpGp ă
µc`µp

2 ă Gcq “ PpGp ă
µc`µp

2 q ^ Gc ą
µc`µp

2 qq “ PpGp ă
µc`µp

2 q ¨ PpGc ą
µc`µp

2 q “ PpGp ´ µp ă
µc´µp

2 q ¨ PpGc ´ µc ą ´
µc´µp

2 q “
`

1 ´ PpGp ´ µp ě
µc´µp

2 q
˘

¨
`

1 ´ PpGc ´ µc ď ´
µc´µp

2 q
˘

.

We know from Lemma 4.1 that µp ă µc, (i.e., µc´µp

2 ą 0), so we can apply Cantelli’s inequality to

obtain:
`

1 ´ PpGp ´ µp ě
µc´µp

2 q
˘

¨
`

1 ´ PpGc ´ µc ď ´
µc´µp

2 q
˘

ě

´

1 ´ σ2

σ2`p
µc´µp

2 q2

¯

¨

´

1 ´

σ2

σ2`p
µc´µp

2 q2

¯

“
p
µc´µp

2 q
2

σ2`p
µc´µp

2 q2
¨

p
µc´µp

2 q
2

σ2`p
µc´µp

2 q2
, so P

`

LpGcq ă LpGpq
˘

ą
p
µc´µp

2 q
2

σ2`p
µc´µp

2 q2
¨

p
µc´µp

2 q
2

σ2`p
µc´µp

2 q2
.
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Since we know σ ď

b

1?
1´ϵ

´ 1 ¨
µc´µp

2 , we can conclude that P
`

LpGcq ă LpGpq
˘

ą

p
µc´µp

2 q
2

`

1?
1´ϵ

´1
˘

¨p
µc´µp

2 q2`p
µc´µp

2 q2
¨

p
µc´µp

2 q
2

`

1?
1´ϵ

´1
˘

¨p
µc´µp

2 q2`p
µc´µp

2 q2
“

ˆ

1
1?
1´ϵ

´1`1

˙2

“ 1 ´ ϵ.
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