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Abstract

The theory of identifiable representation learning aims to build general-purpose
methods that extract high-level latent (causal) factors from low-level sensory data.
Most existing works focus on identifiable representation learning with observational
data, relying on distributional assumptions on latent (causal) factors. However, in
practice, we often also have access to interventional data for representation learning.
How can we leverage interventional data to help identify high-level latents? To
this end, we explore the role of interventional data for identifiable representation
learning in this work. We study the identifiability of latent causal factors with and
without interventional data, under minimal distributional assumptions on the latents.
We prove that, if the true latent variables map to the observed high-dimensional
data via a polynomial function, then representation learning via minimizing the
standard reconstruction loss of autoencoders identifies the true latents up to affine
transformation. If we further have access to interventional data generated by hard
do interventions on some of the latents, then we can identify these intervened
latents up to permutation, shift and scaling.

1 Introduction

Modern deep learning models like GPT-3 (Brown et al., 2020) and CLIP (Radford et al., 2021) are
remarkable representation learners (Bengio et al., 2013). Despite the successes, these models continue
to be far from the human ability to adapt to new situations (distribution shifts) or carry out new tasks
(Geirhos et al., 2020; Bommasani et al., 2021). Humans encapsulate the causal knowledge of the
world in a way that is highly reusable and recomposable (Goyal and Bengio, 2020), which helps them
adapt to new tasks in an ever-distribution-shifting world. How to make modern deep learning models
extract a similar causal understanding of the world? This question is central to the emerging field of
causal representation learning (Schölkopf et al., 2021).

A core task in causal representation learning is provable representation identification, i.e. developing
conditions under which representation learning algorithms can provably identify latent objects (or
factors) and their causal relationships. Towards understanding this task, several notable works have
shown that provable representation identification for arbitrary data generation process (DGP) is
impossible if we only enforce the independence between the latent factors (Hyvärinen and Pajunen,
1999; Locatello et al., 2019). Yet, real data generation processes often have additional structures
we can leverage to achieve provable representation identification. Such structures include the
independence between the latent factors conditional on auxiliary information (Khemakhem et al.,
2020a), the sparsity of the causal connections among the latents (Lachapelle et al., 2022), and the
sparsity of the mechanisms that govern the variation of the latents (Locatello et al., 2020; Ahuja et al.,
2022a; Klindt et al., 2020).

Despite these efforts toward provable representation identification, most existing works focus on
representation learning with observational data, relying on distributional assumptions on latent (causal)
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factors to achieve identification. However, in practice, we often also have access to interventional
data for representation learning. For example, for representation learning in robotics, we often
have access to interventional data from robotic manipulation experimentss (Collins et al., 2019); for
genomics and neuroscience, we also often have access to interventional data from genetic perturbation
experiments (Dixit et al., 2016) and from electrical stimulation experiments (Nejatbakhsh et al., 2021)
respectively. In this work, we seek to understand how we can leverage such interventional data to
identify high-level (causal) factors from low-level data. The key findings are summarized below.

• Under the assumption that the true latent factors map to the high dimensional observations
via a finite degree multivariate polynomial, we first show that it is possible to achieve affine
identification with respect to the true latents with minimal assumptions on the support of the
true latents and no further distributional assumptions.

• If we also observe data where some latents undergo a hard do intervention (Pearl, 2009),
then we can guarantee affine identification up to the block of these hard intervened latents.
As a result, if only one latent variable undergoes a do intervention in some environments,
then those latents are identified up to permutation, shift, and scaling.

2 Representation Identification with Observational and Interventional Data

We begin with setting up the representation learning problem. We then present a suite of identifiability
results that explore the role of interventional data in achieving representation identification.

The data generating process. We consider a data generating process where the observations
x ∈ X ⊆ Rn are generated from some underlying latent variables z ∈ Z ⊆ Rd, with n ≥ d. This
data generating process follows

z ∼ PZ ,

x← g(z),
(1)

where PZ is the distribution from which the latent z is sampled, and x is the observed data point
rendered from the underlying latent z using an injective decoder g : Rd → Rn. We denote Z as the
support of PZ ; as a consequence, the support of the observations x is X = g(Z).

The identifiable representation learning task. To perform representation learning, we aim to find
an encoder—also known as the representation function—that can help us estimate the underlying
true latent variables z. Specifically, the goal is to find an encoder f : Rn → Rd and a decoder
h : Rd → Rn such that the encoder and decoder jointly satisfy the following reconstruction identity,4

h ◦ f(x) = x ∀x ∈ X . (2)

Given the learned encoder f , the resulting representation is ẑ ≜ f(x), which holds the value of the
latents that the encoder guesses. Note that Equation 2 is highly underspecified and cannot in general
identify the latents: it can have many solutions such that the resulting representation ẑ do not coincide
with the true latents z. For example, if we take any solution f , h of the reconstruction identity, then
b ◦ f , h ◦ b−1 is another valid solution where b is an invertible map. However, in practice, exact
identification of the latents is often neither necessary nor reasonable. For example, we may not care
about the labels given to each latent, i.e., about the coordinate permutations of z. Thus in this work,
we study conditions under which the true latents are identifiable up to certain transformations, e.g.
affine transformations, coordinate permutations, etc.

Overview of results. Below we present a suite of identifiability results that explore the role of
interventional data for representation identification. We first show that, when the true decoder g is a
polynomial function of z with a known degree and the learned decoder h is also a polynomial with the
same degree, then the latent z can be identified from observational data up to affine transformations
using the encoder learned from the reconstruction identity (Equation 2). We then extend this
result to settings where we do not know the exact degree of g but only its upper bound. We also

4The identity requires the reconstruction at all points the support of X . We can also extend our results for
settings (e.g., X is a continuous random vector) where the identity holds almost everywhere in X .
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provide approximate affine identification guarantees for the setting when the true decoder g can be
ϵ-approximated by a polynomial function. Next, we study the identifiability of the latent z when
additional interventional data is available. We prove that, if we observe data where some latents
undergo a hard do intervention (Pearl, 2009), then we can achieve affine identification up to the
block of the latents that underwent the hard do interventions. As a result, if only one latent variable
underwent a hard do intervention in some environments, then that latent variable is identifiable up to
shift and scaling.

2.1 Affine representation identification with observational data

We first establish an affine identification result for representation learning from observational data,
relying on the decoders being multivariate polynomial functions. We begin with the few assumptions
required.
Assumption 1. The interior of the support of Z (denoted as Z) is a non-empty subset of Rd.5

Assumption 2. The decoder g is a polynomial of degree p whose corresponding coefficient matrix
G (a.k.a. the weight matrix) has full column rank. Specifically, the decoder g is determined by the
coefficient matrix G as follows,

g(z) = G[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]⊤ ∀z ∈ Rd, (3)

where ⊗̄ represents the Kronecker product with all distinct entries; for example, if z = [z1, z2],
then z⊗̄z = [z21 , z1z2, z

2
2 ].

The assumption that the matrix G ∈ Rn×q has a full column rank of q implies that the decoder g is
guaranteed to be injective; see the appendix for a proof of this claim. This injectivity condition on g
is common in identifiable representation learning since otherwise the problem of identification will
become ill-defined: multiple latents can give rise to the same observation x.

We note that the full-column-rank condition for G in Assumption 2 imposes an implicit constraint on
the dimensionality n of the data; it requires that the dimensionality n is greater than the number of
terms in the polynomial of degree p, namely n = O(dp), where d is the dimensionality of z.
Assumption 3. The learned decoder h is a polynomial of degree p whose corresponding coefficient
matrix H has full column rank. Similar to the decoder g, the encoder h is determined by the coefficient
matrix H as follows,

h(z) = H[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]⊤ ∀z ∈ Rd, (4)

where ⊗̄ represents the Kronecker product with all distinct entries.

Under Assumptions 1 to 3, we show that the representation ẑ resulting from solving the reconstruction
identity must identify the true latents z up to affine transformations. Specifically, by leveraging the
relationship x = g(z) in Equation 1, we write the representation ẑ = f(x) as ẑ = f ◦ g(z) = a(z)

with a ≜ f ◦ g. We then show that the a function must be an affine transformation.
Theorem 1. If the data generation follows Equation 1 and Assumptions 1 to 3 hold, then any encoder
f and decoder h that solve the reconstruction identity (Equation 2) must achieve affine identification:
∀z ∈ Z , we must have ẑ = Az + c, where ẑ = f(x) is the output of the encoder and z is the true
latent. Moreover, A is an invertible d× d matrix and c ∈ Rd.

The proof is in the Appendix. To understand its intuition, we consider one-dimensional latent z,
three-dimensional observation x, and the true decoder g and the learned decoder h each being a
degree-two polynomial. We first solve the reconstruction identity on all x, which gives h(ẑ) = g(z),
and equivalently H[1, ẑ, ẑ2]⊤ = G[1, z, z2]⊤. It implies that ẑ is at most a degree-two polynomial
of z because both h and g are degree-two polynomials with full-column-rank coefficient matrices.
It also implies that ẑ2 is also a polynomial of at most degree two in z. We next argue that ẑ must
be a degree-one polynomial of z by contradiction. If ẑ is a degree-two polynomial of z, then ẑ2 is
degree four, which contradicts the fact that ẑ2 is at most degree two in z. Therefore, ẑ is a degree-one
polynomial in z.

5Here we work with (Rd, ∥∥2) as the metric space. A point is said to be in the interior if there exists an ϵ ball
containing that point that is strictly in the set. The set of all the interior points defines the interior of the set.
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Figure 1: Illustrating the data generation process using a simple SCM. Figure 1a shows the causal
DAG and the associated reconstruction loss used on observational data. Figure 1b and c show
the intervened causal DAG and associated reconstruction loss, along with a penalty due to the do
intervention constraints on the decoder, with z∗3 (resp. z∗2 ) as the value of the intervention in Figure 1b
(resp. in Figure 1c).

Extensions of Theorem 1 to polynomials with an unknown degree p. Theorem 1 requires that
the degree p is known. We extend it to settings where p is unknown but an upper bound on the value
p is known, which we denote as s. (It implicitly requires that the dimensionality n of the data must
be sufficiently large, i.e., n = O(ds), since the coefficient matrix of H must have full column rank.)
To achieve affine identification in this setting, we perform an iterative procedure. The learner first
tries to solve the reconstruction identity with a polynomial h(·) of degree equal to the upper bound s.
If s > p, then we can show that there exists no solution to the reconstruction identity (Equation 2);
see Appendix for the detailed justification. The learner then decreases the degree and searches over
all full-rank polynomials h(·) of degree s− 1. She repeats this procedure until the degree is p, which
is when a solution to the reconstruction identity exists.

Extensions of Theorem 1 beyond polynomial decoders. While Theorem 1 assumes polynomial
decoders, we know that, from Stone-Weiresstrass theorem (Rudin et al., 1976), a continuous map on
a closed and bounded set can always be approximated with a high dimensional polynomial. Inspired
by this result, we extend our results to a class of maps g(·) that are ϵ-approximable by a polynomial
of sufficiently high degree in the Appendix. We show that the map a(·) that connects ẑ to true z
must be an approximately linear map, namely the polynomial expansion of the map a(·) must have
sufficiently small weights (in terms of their norm) on the higher-order (degree greater than equal to
two) terms.

2.2 Representation identification with interventional data

In the previous section, we considered representation identification from some observational data
where the data is generated from Equation 1. The latent variable Z is drawn from an arbitrary
distribution PZ , which does not necessarily come from any structural causal model. We next
study how interventional data could enhance representation identification. We consider the general
case where at least one component of Z, say the ith component, is set to a fixed value, and the
remaining components are sampled from a distribution QZ−i

. Note QZ−i
does not have to be equal

to the distribution PZ−i|zi=z∗ over samples Z−i generated from Equation 1 when zi = z∗ . The
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Figure 2: Illustration of the assumptions on the support. In Figure 2a, we show that the support of
both Z1, Z2 has a non-empty interior. In Figure 2b, hard do intervention occurs on Z2, the support of
Z1 has a non-empty interior. In Figure 2c, we show that for the setting corresponding to Figure 2b,
the distribution Z1 can take arbitrary form as long as the assumption on the support is met.

data-generating process is written as follows

zi ← z∗,

z−i ∼ QZ−i ,

x← g(z),

(5)

where the variable zi is fixed to be equal to z∗; the remaining d− 1 variables in z (denoted as z−i)
are sampled from QZ−i ; and the function g is the true decoder that generates observed x from z. The
results we present below only require a restriction on the support of QZ−i and this flexibility allows
QZ−i to model standard do interventions (Pearl, 2009), i.e., QZ−i = PZ−i|do(zi=z∗) as we illustrate
below. Our DGP also allows the possibility that QZ−i

= PZ−i|zi=z∗ .

Notation-wise, we use D0 to denote the observational data generated from Equation 1, and use Di

to denote the data generated from Equation 5 when ith latent variable is fixed to z∗. We denote the
support of Z for DGP in Equation 5 as Zi. We denote the support of the latents other than zi, i.e., the
support of QZ−i

, as Z̃i. We also denote the corresponding support of x as X i, where X i = g(Zi).

Given the observational data (D0) and the data from equation (5) (Di), we perform representation
learning via the reconstruction identity as follows,

h ◦ f(x) = x, ∀x ∈ X ∪ X i. (6)

We further need to enforce the constraint on the encoder such that, for all the data points x ∈ X i, the
intervened component (say the kth component) must take some fixed value z† due to the intervention:

fk(x) = z† x ∈ X i, (7)

where fk(x) denotes the kth component of f(x) and is required to take some fixed value z† for all
x ∈ X i.

Illustrating interventions using a structural causal model for Z. For this example only, we
make an additional assumption that Z is drawn from a structural causal model, and consider the
setting where we have access to both observational and interventional data. In the interventional
data, we assume exactly one latent undergoes a hard do intervention as in Equation 5. In performing
representation learning with the reconstruction identity, we further enforce the constraint (Equation 7)
that exactly one component of the encoder also takes a fixed value. We illustrate this setting with
observational and interventional data using a simple example. Suppose Z = [Z1, Z2, Z3, Z4] is
drawn from a structural causal model with the underlying directed acyclic graph (DAG) displayed
in Figure 1a. Figure 1b (resp. Figure 1c) shows the DAG when Z3 (resp. Z2) undergoes a hard
intervention and is set to z∗3 (resp. z∗2 ). Under Figure 1a, we write down the reconstruction loss based
on reconstruction identity. Under Figure 1b (resp. Figure 1c), we write down the reconstruction loss
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based on the reconstruction identity (Equation 6), along with the penalty that enforces the constraint
as in Equation 7.

Below we make an assumption on the support of the latents and state the identifiability result given
both observational and interventional data.
Assumption 4. The interior of support of latents other than i, Z̃i, is a non-empty subset of Rd−1.

Theorem 2. Suppose the observational data is generated from Equation 1 and the interventional
data is generated from Equation 5. If Assumptions 1 to 4 are satisfied, then the intervened latent zi is
identified up to shift and scaling, and the other latents z−i are identified up to affine transformations:
the solution to Equations 6 and 7 must satisfy ẑk = azi+ b and ẑ−k = Ez−i+ f , where ẑ−k denotes
the estimate of the latents other than ẑk, and z−i denotes the vector of true latents other than zi.
Moreover, a ∈ R, b ∈ R, E ∈ Rd−1×d−1, and f ∈ Rd−1.

The proof of Theorem 2 is in the Appendix. We provide some intuition here. First, given
Assumptions 1 to 3, we can already achieve affine identification due to Theorem 1. As a consequence,
we have ẑk = a⊤−iz−i + azi + b, where z−i includes all entries of z other than zi, and a−i is a vector
of the corresponding coefficients. Next, because both ẑk and zi are set to a fixed value, we have
that a⊤−iz−i must also take a fixed value for all values of z−i ∈ Z̃i. Finally, we argue a−i = 0 by
contradiction. If a−i ̸= 0, then any changes to z−i in the direction of a−i will also reflect as a change
ẑk, which contradicts the fact that ẑk takes a fixed value. We thus conclude that a−i = 0.

We note that Theorem 2 does not rely on any distributional assumptions (e.g., parametric assumptions)
on Z; not does it rely on the nature of graphical model for Z (e.g., Z factorizes according to a certain
DAG or a Markov random field). The only assumption we require is on the support of Z in
observational data and interventional data; we require that the support of the variables must have
a non-empty interior if they do not undergo any hard do interventions. We illustrate this support
assumption in Figure 2.

More generally, Theorem 2 can be extended to setting with data from multiple environments. One
such setting is where each environment corresponds to a hard do intervention on a distinct latent
variable. Under the same assumptions of Theorem 2, we can identify each of the intervened latents
up to permutation (since we do not know the index of the intervened latents), shift, and scaling. This
setting requires that at most one of the latent variables undergoes a hard do intervention in each
environment. A further extension of this setting is where multiple latent variables can undergo hard
do interventions in an environment. In this setting, we can follow the exact proof recipe of Theorem 2
and achieve affine identification with respect to the block of hard intervened latents and block of
remaining latents separately.

3 Conclusion

We studied the role of interventional data (level-two data) in causal representation learning. We show
that, under minimal distributional conditions, latent factors are identifiable up to affine transformations
from observational data under a polynomial decoder assumption. With additional interventional data,
the latent variables that undergo do interventions can further be identified up to permutation, shift, and
scaling. Extending these identifiability results beyond polynomials to more general decoder functions
g is an interesting venue for future work. One may also consider introducing appropriate notions of
approximate identification to further extend Theorems 1 and 2. Finally, we focus on interventional
data from hard do interventions in this work and crucially used the nature of hard interventions in
Theorem 2. Extending the results to soft interventions for flexible families of DAGs can be another
fruitful direction.
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A Proofs and Technical Details

A.1 Proof of Theorem 1

We restate the theorems from the main body of the paper for convenience.

Lemma 1. If the matrix G that defines the polynomial g is full rank, then g is injective.

Proof Suppose this is not the case and g(z1) = g(z2) for some z1 ̸= z2. Thus

G



1
z1

z1⊗̄z1
...

z1⊗̄ · · · ⊗̄ z1︸ ︷︷ ︸
p times

 = G



1
z2

z2⊗̄z2
...

z2⊗̄ · · · ⊗̄ z2︸ ︷︷ ︸
p times



=⇒ G



0
(z1 − z2)

z1⊗̄z1 − z2⊗̄z2
...

z1⊗̄ · · · ⊗̄ z1︸ ︷︷ ︸
p times

− z2⊗̄ · · · ⊗̄ z2︸ ︷︷ ︸
p times

 = 0

(8)

Since z1 ̸= z2 we find a non-zero vector in the null space of G which contradicts the fact that G has
full column rank. Therefore, it cannot be the case that g(z1) = g(z2) for some z1 ̸= z2. Thus g has
to be injective.

Theorem 3 (Restatement of Theorem 1). If the data generation follows Equation 1 and Assumptions 1
to 3 hold, then any encoder f and decoder h that solve the reconstruction identity (Equation 2) must
achieve affine identification: ∀z ∈ Z , we must have ẑ = Az + c, where ẑ = f(x) is the output of the
encoder and z is the true latent. Moreover, A is an invertible d× d matrix and c ∈ Rd.

Proof. We start by restating the reconstruction identity. For all x ∈ X

h ◦ f(x) = x

h(ẑ) = g(z)

H



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times

 = G



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


(9)

Following the assumptions, h is restricted to be polynomial but f bears no restriction. If H = G
and f = g−1, we get the ideal solution ẑ = z, thus a solution to the above identity exists. Since H
has full column rank, we can select q rows of H such that H̃ ∈ Rq×q and rank(H̃) = q. Denote the
corresponding matrix G that selects the same rows as G̃. We restate the identity in Equation 9 in
terms of H̃ and G̃ as follows.
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H̃



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times

 = G̃



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times




1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times

 = H̃−1G̃



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times



ẑ = Ã



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


ẑ = Ã1z + Ã2 z⊗̄z + · · · Ãp z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times

+c

(10)

Suppose at least one of Ã2, · · · , Ãp is non-zero. Among the matrices Ã2, · · · , Ãp which are non-zero,
pick the matrix Ãk with largest index k. Suppose row i of Ãk has some non-zero element. Now
consider the element in the row in the LHS of (10) corresponding to ẑpi . Observe that ẑpi is a
polynomial of z of degree kp, where k ≥ 2. In the RHS, we have a polynomial of degree at most
p. The equality between LHS and RHS is true for all z ∈ Z (and correspondingly all x ∈ X ). The
difference of LHS and RHS is an analytic function. Note that Z has a non-empty interior, which
implies Z has a positive Lebesgue measure in Rd. Therefore, from Mityagin (2015) it follows that
the LHS is equal to RHS on entire Rd.

If two polynomials are equal everywhere, then their respective coefficients have to be the same. Based
on supposition, LHS has non zero coefficient for terms with degree kp while RHS has zero coefficient
for terms higher than degree p. This leads to a contradiction. As a result, none of Ã2, · · · , Ãp can be
non-zero. Thus ẑ = Ã1z + c.

Note that Ã1 is also invertible. Suppose Ã1 was not invertible, then we take a latent z and perturb it
in the direction in the null space of Ã1. Note that under this perturbation ẑ does not change but z
changes. Since z changes x has to change. However, ẑ is same so the reconstructed x̂ has to be the
same. This leads to a violation of the reconstruction identity, which is a contradiction. Therefore, Ã1

is invertible.

A.2 Extensions to polynomial g(·) with unknown degree

We provide further explanation for the case when we do not know the degree. The learner starts with
solving the reconstruction identity by setting the degree of h(·) to be s; here we assume H has full
rank (this implicitly requires that n is greater than the number of terms in the polynomial of degree s).
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H



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
s times

 = G



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

 (11)

We can restrict H to rows such that it is a square invertible matrix H̃ . Denote the corresponding
restriction of G as G̃. The equality is stated as follows.



1
ẑ

ẑ⊗̄ẑ
...

ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
s times

 = H̃−1G̃



1
z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

 (12)

If s > p, then ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
s times

is a polynomial of degree at least p + 1. Since the RHS contains a

polynomial of degree at most p the two sides cannot be equal over a set of values of z with positive
Lebesgue measure in Rd. Thus the reconstruction identity will only be satisfied when s = p. Thus
we can start with the upper bound and reduce the degree of the polynomial on LHS till the identity is
satisfied.

A.3 Extensions from polynomials to ϵ-approximate polynomials

We now discuss how to relax the polynomial assumption we discussed above. Suppose g is a
continuous function that can be ϵ-approximated by a polynomial of degree p on entire Rd. If we
continue to use h as a polynomial, then satisfying the exact reconstruction is not possible. Instead,
we enforce approximate reconstruction as follows. For all x ∈ X , we want

∥h ◦ f(x)− x∥ ≤ ϵ, (13)

where ϵ is the tolerance on reconstruction error. We assume that h(·) is expressive enough that
the above identity is satisfied up to ϵ tolerance. Recall ẑ = f(x). We further simplify it as
ẑ = f ◦ g(z) = a(z). We also assume that a can be η-approximated on entire Rd with a polynomial
of sufficiently high degree say q. We write this as follows. For all z ∈ Rd,

∥∥∥∥∥ẑ −Θ


z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times


∥∥∥∥∥ ≤ η,

∥∥∥∥∥ẑ −Θ1z −Θ2 z⊗̄z − · · ·Θp z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

∥∥∥∥∥ ≤ η.

(14)

We want to show that the norm of Θk for all k ≥ 2 is sufficiently small. We state some assumptions
needed in theorem below.

Assumption 5. Encoder f does not take values near zero, i.e., fi(x) ≥ γη for all x ∈ X and for
all i ∈ {1, · · · , d}, where γ > 1. The absolute value of each element in H̃−1G̃ is bounded by a
fixed constant. Consider the absolute value of the singular values of H̃; we assume that the smallest
absolute value is strictly positive and bounded below by ζ.

9



Theorem 4. Suppose f : Rn → Rd and g : Rd → Rn are functions such that g and a = f ◦ g
can be approximated by polynomials on entire Rd with ϵ

2 and η tolerance respectively. If Z =

[−zmax, zmax]
d, where zmax is sufficiently large, and Assumptions 1, 3 and 5 hold, then the polynomial

approximation of a (recall ẑ = a(z)) corresponding to solutions of approximate reconstruction
identity in Equation 13 is approximately linear, i.e., the norms of the weights on higher order terms is
sufficiently small.

Proof sketch. We start by restating the approximate reconstruction identity. We use the fact that g
can be approximated with a polynomial of say degree p to simplify the identity below.

∥h ◦ f(x)− x∥ ≤ ϵ

∥∥∥∥∥H


ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

−G


z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


∥∥∥∥∥−

∥∥∥∥∥G


z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times

− g(z)

∥∥∥∥∥ ≤ ϵ
(15)

Since H is full rank, we select rows of H such that H̃ is square and invertible. The corresponding
selection for G is denoted as G̃. We write the identity in terms of these matrices as follows.

∥∥∥∥∥H̃


ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

− G̃


z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


∥∥∥∥∥ ≤ 3ϵ

2

∥∥∥∥∥


ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

− H̃−1G̃


z

z⊗̄z
...

z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times


∥∥∥∥∥ ≤ 3ϵ

2|σmin(H̃)|

(16)

where |σmin(H̃)| is the singular value with smallest absolute value corresponding to the matrix H̃ .
Now we write that the polynomial that approximates ẑi = ai(z) as follows.

|ẑi − θT1 z − θT2 z⊗̄z − · · · θTq z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

| ≤ η (17)

ẑi ≥ θT1 z + θT2 z⊗̄z + · · · θTq z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−η

ẑi ≤ θT1 z + θT2 z⊗̄z + · · · θTq z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

+η
(18)

From Assumption 5 we know that ẑi ≥ γη, where γ > 2. It follows from the above equation that

θT1 z + θT2 z⊗̄z + · · ·+ θTq z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−(γ − 1)η ≥ 0 (19)

For ẑi ≥ γη, we track how ẑpi grows below.

ẑi ≥ θT1 z + θT2 z⊗̄z + · · · θTq z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−η ≥ 0

ẑpi ≥ (θT1 z + θT2 z⊗̄z + · · · θTq z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−η)p

ẑpi ≥ (θT1 z + θT2 z⊗̄z + · · · θTq z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

)p(1− 1

γ − 1
)p

(20)
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We consider z = [zmax, · · · , zmax]. Consider of the terms θijzkmax inside the polynomial in the RHS
above. We assume all components of θ are positive. Suppose θij ≥ 1

zk−κ−1
max

, where κ ∈ (0, 1), then

the RHS in Equation 20 grows at least z(1+κ)p
max

(
γ−2
γ−1

)p
. From Equation 16, ẑpi is very close to degree

p polynomial in z. Under the assumption that the terms in H̃−1G̃ are bounded by a constant the
polynomial of degree p grows at at most zpmax. The difference in growth rates the Equation 16 is an
increasing function of zmax for ranges where zmax is sufficiently large. Therefore, the reconstruction
identity in Equation 16 cannot be satisfied for points in the neighborhood of z = [zmax, · · · , zmax].
Therefore, θij < 1

zk−κ−1
max

. We can consider other vertices of the hypercube Z and conclude that

|θij | < 1

zk−κ−1
max

.

A.4 Proof of Theorem 2

Theorem 5 (Restatement of Theorem 2). Suppose the observational data is generated from Equation 1
and the interventional data is generated from Equation 5. If Assumptions 1 to 4 are satisfied, then
the intervened latent zi is identified up to shift and scaling, and the other latents z−i are identified
up to affine transformations: the solution to Equations 6 and 7 must satisfy ẑk = azi + b and
ẑ−k = Ez−i + f , where ẑ−k denotes the estimate of the latents other than ẑk, and z−i denotes the
vector of true latents other than zi. Moreover, a ∈ R, b ∈ R, E ∈ Rd−1×d−1, and f ∈ Rd−1.

Proof. First note that since Assumptions 1-3 hold, we can continue to use the result from Theorem
1. From Theorem 1, it follows that the estimated latents ẑ are an affine function of the true z.
ẑi = a⊤z + b, ∀z ∈ Z ∪ Zi, where a ∈ Rd, b ∈ R.

We write z ∈ Zi as [z∗, z−i]. We consider a z ∈ Zi such that z−i is in the interior of Z̃i. We can
write ẑi = aiz

∗ + a⊤−iz−i + b, where a−i is the vector of the values of coefficients in a other than the
coefficient of ith dimension, ai is ith component of a, z−i is the vector of values in z other than zi.
From the constraint in Equation 7 it follows that for all z ∈ Zi, ẑi = z†. We use these expressions to
carry out the following simplification.

a⊤−iz−i = z† − aiz
∗ − b (21)

Consider another data point z
′ ∈ Zi from the same interventional distribution such that z

′

−i =

z−i + θej is in the interior of Z̃i, where ej is vector with one in jth coordinate and zero everywhere
else. From Assumption 4, we know that there exists a small enough θ such that z

′

−i is in Z̃i . Since
the point is from the same interventional distribution z

′

i = z∗. For z
′

−i we have

a⊤−iz
′
−i = z† − az∗ − b

(22)

We take a difference of the two equations (21) and (22) to get

a⊤−i(z−i − z
′

−i) = θa⊤−iej = 0. (23)

From the above, we get that the jth component of a−i is zero. We can repeat the above argument for
all j and get that a−i = 0.

B Related Work

This work is related to multiple threads of work in identifiable representation learning. We discuss
them in groups based on the type of information they leverage for representation identification.

Time-series datasets. Several works have leveraged the structure of latent variables in time-series
data to achieve identification. The canonical data generating process in these works follows xt ←
g(zt) and the latents zt evolve under a structured time-series. Early works in this area consider
non-stationary evolution of latents (i.e. assuming no dependence between time frames) (Hyvarinen
and Morioka, 2016) and then came the models that considered stationary Markovian evolution
(Hyvarinen and Morioka, 2017). In recent years, these models have been generalized significantly in
works like Lachapelle et al. (2022); Ahuja et al. (2021); Lippe et al. (2022).
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Contrastive observation-based datasets. In another family of works including Zimmermann
et al. (2021); Von Kügelgen et al. (2021); Brehmer et al. (2022); Locatello et al. (2020); Ahuja et al.
(2022a), one assumes access to contrastive observation pairs (x, x̃). For instance, an image and its
rotated version can serve as contrastive observation pairs (x, x̃) (Zimmermann et al., 2021). In works
such as Brehmer et al. (2022), the pair (x, x̃) corresponds to a data point pre and post-intervention on
the latents. The data generation process is similar to time-series datasets in several aspects but there
are a few key differences, including (a) the points (x, x̃) are not necessarily ordered by time, and (b)
there may not exist any causal connections between the latents associated with x and x̃, unlike those
in time-series datasets (e.g., Lachapelle et al. (2022); Lippe et al. (2022)).

Auxiliary information datasets. In the third line of work (Khemakhem et al., 2020a,b; Ahuja
et al., 2022b), one assumes access to the high-dimensional observation x (e.g., an image) and some
auxiliary information u. If u is the label of the image, we obtain standard supervised learning datasets.
If u = x̃ is the positive pair (e.g., rotation of the image), we obtain contrastive observation-based
datasets. If u is the time stamp and previous time information xt−1, then we obtain the time-series
datasets. This line of work (Khemakhem et al., 2020a) often relies on strong assumptions on the
interaction between latents and auxiliary information (e.g., latents are independent conditioned on
auxiliary information) to guarantee provable identification.

On the role of interventional data in causal representation learning. Finally, we contrast our
work with the existing works discussed above in terms of the type of information we leverage for
representation identification: we leverage interventional knowledge (level-two knowledge in Pearl’s
ladder of causation (Bareinboim et al., 2022)) while most existing works leverage either observational
data (level-one knowledge) (e.g. Khemakhem et al., 2020a) or counterfactual information (level-three
knowledge) (e.g. Brehmer et al., 2022). Specifically in this work, we focus on studying “to what extent
can we identify the latent causal variables if the data comprises different interventional distributions?”
This question about causal representation learning shares the same spirit with causal discovery using
interventional data, where we seek to understand how different interventional distributions help
identify the underlying causal graph (Yang et al., 2018); both tasks rely on interventional data but
they target different causal inference goals.

In contrast to our work, most existing works have leveraged other types of information for
representation identification. For example, Brehmer et al. (2022) assume that the representation
learner has access to a pair of pre- and post-intervention observations, and the data generation
process therein requires their noise to be set to the same realization across the pair of points at
all the nodes except the intervened nodes. Therefore, they leverage counterfactual information
(level-three knowledge) for representation identification. As another set of examples, Lippe et al.
(2022); Lachapelle et al. (2022) leverage pre- and post-intervention observations in adjacent time
frames to study the causal relationships between the latents. Other works (e.g. Khemakhem et al.
(2020a,b); Ahuja et al. (2022b)) directly work with observational data, i.e., level-one knowledge,
and do not require or take advantage of interventional data. Meanwhile, these works often achieve
identification guarantees by making strong assumptions on the structure of the underlying causal
connections between the latents, relying on observations of auxiliary information such as the label, or
capitalizing on parametric assumptions on the distribution of the latent.
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