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Abstract

Motion transfer is to transfer pose in driving video
to the object of the source image so that the ob-
ject of the source image moves. Although great
progress has been made recently in unsupervised
motion transfer, many unsupervised methods still
struggle to accurately model large displacement
motions when large motion differences occur be-
tween source and driving images. To solve the
problem, we propose an unsupervised anytime
interpolation-based large displacement motion
transfer method, which can generate a series of
any time interpolated images between source and
driving images. By decomposing large displace-
ment motion into many small displacement mo-
tions, the difficulty of large displacement mo-
tion estimation is reduced. In the process, we
design a selector to select optimal interpolated
images from generated interpolated images for
downstream tasks. Since there are no real images
as labels in the interpolation process, we propose
a bidirectional training strategy. Some constraints
are added to the optimal interpolated image to
generate a reasonable interpolated image. To en-
courage the network to create high-quality images,
a pre-trained Vision Transformer model is used
to design constraint losses. Finally, experiments
show that compared with the large displacement
motion between source and driving images, the
small displacement motion between interpolated
and driving images makes it easier to realize mo-
tion transfer. Compared with existing state-of-the-
art methods, our method significantly improves
motion-related metrics.
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1. Introduction
In recent years, motion transfer task has become one of
the research hotspots in computer vision because it has
been widely used in film animation, game production, face
exchange and other fields(Siarohin et al., 2019a; Oquab
et al., 2021; Wang et al., 2021; Zakharov et al., 2020). In
the work, we aim to animate an object in a still image
by transferring the pose in the driving video to generate a
video with the same pose as the driving video. To make
the generated video more vivid, it is necessary not only to
accurately transfer motion patterns in driving video but also
to ensure that the identity information of the generated video
frame and source image are consistent.

At present, motion transfer tasks can be divided into su-
pervised and unsupervised methods. Supervised methods
perform motion transfer by using prior knowledge of target
object, such as landmarks(Chan et al., 2019; Ha et al., 2020;
Ren et al., 2020; Siarohin et al., 2018; Zakharov et al., 2019)
and 3D models(Doukas et al., 2021; Liu et al., 2019; Thies
et al., 2020; Blanz & Vetter, 1999). However, these methods
usually rely on pre-trained models to extract object-specific
representations, and often fail to obtain satisfactory results
for data objects that do not appear in training. Recently, re-
searchers have proposed some unsupervised motion transfer
methods that do not require prior knowledge. These meth-
ods use different transformation methods to model motion
to improve the accuracy of motion transfer. For example,
both FOMM(Siarohin et al., 2019b) and MRAA(Siarohin
et al., 2021) methods used a local linear affine transfor-
mation to model motion. However, in the real world, the
motion of objects is usually not locally linear, which makes
it difficult for affine transformation to represent complex
motions accurately. To this end, TPSMM(Zhao & Zhang,
2022) introduced a more flexible nonlinear transformation
(Thin-plate splines) to approximate motions. However, the
set of keypoints detected by TPSMM is messy, and accuracy
is not high, which limits the motion representation ability
of thin-plate spline transformation. To solve the problem,
CPABMM(Wang et al., 2024) utilized continuous piece-
wise affine transformation to model motion. However, these
motion models are limited in their ability to simulate finer
motions and often produce artifacts around local regions. To
this end, Tao et al.(Tao et al., 2023) proposed a motion re-
finement module to compensate for previous motion models,
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achieving finer motion modeling in local regions.

Although these methods focusing on accurate motion esti-
mation have achieved good performance, it is often difficult
to obtain accurate animation results when the motion dif-
ference between source and driving images is large. It is
well known that if the motion difference between two im-
ages is smaller, then the pose of the driving image is more
straightforward to transfer accurately. In the case of large
displacement motions, previous methods attempt to model
complex large displacement motions directly, which will
be a serious challenge. To solve the problem of large dis-
placement motion, CoP(Fu et al., 2023) proposed a method
based on chain-of-pose. However, in the real world, when
the source and driving images have different identity infor-
mation, it is difficult to obtain a segment of the pose chain
between the source and driving images. In some datasets,
there may also be a large displacement motion between
two adjacent frames in chain-of-pose. To solve the above
problems, a novel large displacement motion transfer model
based on unsupervised anytime interpolation is proposed.

Specifically, by inserting a series of intermediate images
between the source and the driving images, complex large
displacement motion is decomposed into many small dis-
placement motions to improve the performance of the mo-
tion transfer model in the case of large displacement motion.
As shown in Figure 1, we propose an unsupervised keypoint-
based interpolation method to realize interpolation between
source and driving images at any time. Firstly, the keypoints
of source and driving images are obtained, and the keypoint
information of interpolated images at different times is esti-
mated according to the keypoints of the two images. Then,
a dense motion network is used to predict motion flow from
the source image to interpolated images at different times.
An optimal interpolation selector is designed to obtain a bet-
ter transfer effect for the downstream motion transfer task.
The selector requires that the optimal interpolated image
should meet the following two requirements: 1) maintain
the integrity of identity information; 2) The motion between
interpolated and driving images should be small. Since
an optimal interpolated image is generated unsupervised, a
bidirectional training strategy is proposed to complete the
interpolation without paired data, and reasonable constraints
are designed. Compared with large displacement motion
estimation from source image to driving image, small dis-
placement motion estimation from interpolated image to
driving image will be more accurate. Finally, we design a
structural consistency loss using a pre-trained Vision Trans-
former (ViT) model(Caron et al., 2021; Tumanyan et al.,
2022) as an external semantic before extract structural infor-
mation from both generated target image and driving image.
The appearance consistency loss is designed by extracting
appearance information from pairwise optimal interpolated
images generated during the bidirectional training. These

constraint losses encourage the network to generate images
with good quality.

Our main contributions can be summarized as follows:

• To solve the problem of large displacement motion,
we propose a keypoint-based anytime interpolation
method, which can realize unsupervised interpolation
between source and driving images at any time and
decompose complex large displacement motion into
many small displacement motions.

• A motion transfer method is proposed based on the
optimal interpolated image. We design a selector for
optimal interpolation, which requires that the optimal
interpolated image not only preserves the identity in-
formation of the source image well but also has a small
motion to the drive image. Compared with large dis-
placement motion from the source image to the drive
image, small displacement motion from the optimal
interpolated image to the driving image is easier to
estimate so that the generated target image can learn a
more accurate pose.

• A bidirectional training strategy is proposed, which
uses a pre-trained ViT model to construct constraint
terms, such as structural consistency loss and appear-
ance consistency loss, to reduce the solution space of
interpolated images and improve the quality of gener-
ated images.

• The experiments and analysis are carried out on three
datasets. Compared with other state-of-the-art motion
transfer models, the proposed method can achieve the
best performance in motion-related metrics.

2. Related Work
2.1. Supervised Motion Transfer Methods

Supervised motion transfer methods are designed to handle
specific objects (e.g., faces, bodies, etc.) that exhibit strong
regularity in shape and structure. The video can be gener-
ated more stably by introducing the corresponding struc-
tural prior as an intermediate representation. For example,
HeadGAN(Doukas et al., 2021) used 3DMM(Blanz & Vet-
ter, 1999) as intermediate representation and SPADEs(Park
et al., 2019) to fuse identity features of source image, and
finally renders 3D image back to animation frame. GANi-
mation(Pumarola et al., 2018) used Facial Action Coding
System(Ekman & Rosenberg, 1997) to describe facial ex-
pressions. With the help of these structural priors, super-
vised motion transfer methods can generate videos more
accurately. However, these methods must rely on explicit
structural representations, annotated or extracted by pre-
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Figure 1. Overview of our model. The model consists of two modules. The first module is an arbitrary interpolation method based on
keypoints. At Eq. (1), we visually describe the motion of keypoints of interpolated images. The blue circles represent the corresponding
keypoints at time T = 0 (source image) and T = 1 (driving image), the red circles represent true keypoints at time t, and the orange
circles represent keypoints of the interpolated image at time t under linear motion assumption. After obtaining a series of anytime
keypoints, we input into the interpolation network to generate the corresponding interpolated images. The second module is the motion
transfer method based on the optimal interpolated image. To improve the motion transfer effect, we designed a selector to select an
optimal interpolated image from a series of interpolated images for motion transfer. These two modules use the same network architecture
with shared weights, where fw is the result of deformed features of the input image.

trained models, to perform motion transfer for specific ob-
jects. Due to the limitations of these structural priors, these
supervised methods do not generalize well to new objects.

2.2. Unsupervised Motion Transfer Methods

In recent years, many unsupervised motion transfer methods
have been proposed. Monkey-Net(Siarohin et al., 2019a) is
a general object image animation framework, which consists
of a keypoint detector, a motion prediction network, and
an image generation network. Based on the assumption of
local linear motion around each keypoint, FOMM(Siarohin
et al., 2019b) used local affine transformation to model mo-
tion. Zhao et al.(Zhao et al., 2021) transferred motion from
sparse landmarks to face images and combined global and
local motion estimation into a unified model that can pro-
duce not only global motion but also subtle local motion.
MRAA(Siarohin et al., 2021) used an inference algorithm
based on PCA(Kurita, 2014) to calculate affine parame-
ters, which improves stability and performs better for joint
movements. TPSMM(Zhao & Zhang, 2022) predicted sev-
eral sets of keypoints from source and driving images and
used each set of keypoint sets to compute a thin-plate spline
(TPS) transformation to increase the flexibility of the motion
model. CPABMM(Wang et al., 2024) used the inference
method of gradient descent to estimate transformation based
on continuous piecewise affine (CPA), and to overcome the
problem of chaotic keypoint prediction in TPSMM, a key-
point semantic loss based on SAM model is designed to

improve keypoint detector. Although these methods have
achieved good transfer performance, they are often unsatis-
factory in the case of large displacement motion. Therefore,
we propose a large displacement motion transfer method
based on unsupervised anytime interpolation to improve
motion estimation accuracy by decomposing large displace-
ment motion into multiple small displacement motions.

3. Methods
3.1. Motivation

Given a source image S and a driving video D = d1:n with
n frames, our goal is to have the object of the source image
imitate motion in the driving video to generate a realistic
video. However, when the pose difference between the
source image and some frames of driving video is large, it
is often difficult to accurately estimate the motion of two
images, resulting in a high-quality video that cannot be gen-
erated. To solve this problem, we propose a motion transfer
model based on unsupervised anytime interpolation. Our
model consists of two modules: keypoint-based anytime
interpolation and motion transfer based on the optimal inter-
polated image. First, we predict interpolated images for m
moments unsupervised for a given source image and driving
images. A selector is then set to select the most suitable
image from m interpolated images for the downstream mo-
tion transfer task. We use the optimal interpolated image to
replace the source image and realize motion transfer from
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the interpolated image to the driving image. We use the
same network architecture for these two modules: a key-
point detection network, a dense motion network, and an
image generation network. An optimal interpolated image
and final target image are generated end-to-end. Compared
with traditional motion transfer methods, the target image
generated by the proposed method has a more accurate pose.

3.2. Large displacement motion transfer with
unsupervised anytime interpolation

Keypoint-based anytime interpolation method. In
FOMM(Siarohin et al., 2019b), it is assumed that motion
consists of a series of linear transformations. Inspired by
it, a keypoint-based anytime interpolation method is pro-
posed. In Figure 1, we visually describe the motion of
keypoints of interpolated image, where when T = 0, it can
be represented as keypoints (KpS) of source image, and
when T = 1, it can be represented as keypoints (KpD)
of driving image. In the unsupervised case, prior motion
information of each keypoint at time t ∈ (0, 1) cannot be
obtained. Therefore, we assume that the motion of each
keypoint is linear, then anytime keypoints within t ∈ (0, 1)
can be expressed as follows:

KptI = (1− t)KpS + tKpD, t ∈ (0, 1) (1)

Taking the interpolated image at time t as an example, here
we apply the TPS transformation to estimate the motion
from S to It such that Γ(S) = It. Like TPSMM(Zhao &
Zhang, 2022), we get K + 1 transformations (K TPS trans-
formations and an affine transformation), where affine trans-
formation is used to model the motion of the background.
Then, we feed S, KpS , and KptI into dense motion network
to predict K + 1 contribution maps {Mk}Kk=0, which are
combined with K + 1 transformations to approximate the
motion Γ:

Γ̃(p) = M0Γbg(p) +

K∑
k=1

Mk(p)Γk(p) (2)

where Γbg(p) is prediction of background motion and Γk(p)
is prediction of target motion by K TPS transformations.
After obtaining motion flow Γ̃ from S to It, we use Γ̃ to
deform S and feature map fS of S, and then input them into
the image generation network to obtain interpolated image
It at time t:

It = G(Sw, fwS ) (3)

where G(·) Denote as image generation network, Sw is im-
age after deformation of S, and fwS is feature after deforma-
tion of fS . Similarly, we can obtain a series of interpolated
images {It}mt=1, where m is the number of interpolations.

Motion transfer based on optimal interpolated image.
Traditional motion transfer methods usually directly model

motion from S to D, but they often cannot obtain satis-
factory results in the case of large displacement motion.
Therefore, we propose a motion transfer method based on
optimally interpolated images. Because keypoints of the
interpolated image are obtained through keypoints of the
source image and keypoints of the driving image, it makes
the pose of the interpolated image be in the state between
the source and driving images. Then, compared with large
displacement motion estimation ΓS−>D from S toD, small
displacement motion estimation ΓIt−>D from It to D will
predict more accurately.

Then we use It image to replace S for motion transfer af-
ter obtaining interpolated image It. However, the quality
of It image will seriously affect the motion transfer’s per-
formance. Therefore, we design a selector for optimal in-
terpolated image, which selects an image from a series of
generated interpolated images that simultaneously satisfies
the following requirements: 1) the identity information of
the interpolated image should be intact; 2) The motion of
the interpolated image to driving image should be as small
as possible. The selector is set by the following:

topt = arg min
t

(
‖Λ(It)− Λ(S)‖∑m
i=1 ‖Λ(Ii)− Λ(S)‖

+
‖KptI −KpD‖∑m
i=1

∥∥KpiI −KpD∥∥ )

(4)

where topt represents the index of optimal interpolated im-
age, and Λ(·) represents appearance features of image ex-
tracted by pre-trained Vision Transformer (ViT) model, the
introduction of ViT is shown in subsection 3.4. We cal-
culate the appearance loss of all interpolated images and
source images, and if the appearance information of the
interpolated image is kept more complete, then the selection
weight is larger. Moreover, distance loss from keypoints of
all interpolated images to keypoints of the driving image is
calculated. if the motion from the interpolated image to the
driving image is a small displacement, then the selection
weight is larger. The appearance loss and keypoint distance
loss are normalized, and the optimal interpolated image is
selected from interpolated images with the minimum sum
of the loss, that is, the interpolated image with appearance
information intact and small displacement from the driving
image. After obtaining an optimal interpolated image, we
use motion transfer from the optimal interpolated image to
the driving image (Interpolation to Driving) to replace the
traditional motion transfer (Source to Driving). Compared
with the traditional methods, the pose of the transferred im-
ages obtained by the proposed method is more accurate. To
learn high-quality optimal interpolated images, we propose
a bidirectional training strategy.
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Figure 2. Bidirectional training strategy. It is worth noting that
the interpolation module and the motion transfer module in both
pipelines use the same optimal interpolation keypoints, as shown
in red boxes.

3.3. Bidirectional Training Strategy

As shown in Figure 1, the pipeline is designed to generate
an optimal interpolated image to decompose large displace-
ment motion into small displacement motion. We can pro-
vide supervision at the end of the pipeline by extracting two
frames from the video as input. However, only such su-
pervision cannot generate satisfactory optimal interpolated
images. Without monitoring the intermediate results, all sub-
nets are treated as a whole to complete the motion migration
task. In our framework, if there is no paired data to super-
vise, we should design some constraints to guarantee that
the optimal interpolated image is meaningful. Otherwise, as
long as the downstream motion transfer model can interpret
the interpolated image, then the generator of the interpola-
tion model can generate arbitrary interpolation results. If
an effective constraint is found, the solution space can be
reduced and a meaningful solution with the properties em-
phasized by the constraint can be obtained. To ensure the
effectiveness of optimal interpolated images, we designed a
bidirectional training strategy that does not require paired
data.

As shown in Figure 2, the bidirectional training strategy
consists of two pipelines: the upper pipeline is the motion
transfer from S to D, and the lower pipeline is the motion
transfer from D to S. In this process, the two pipelines
generate optimal interpolation images Itopt and Ĩtopt respec-
tively by giving the same optimal interpolation keypoints
Kp

topt
I . In theory, given the same interpolation keypoints,

source and driving images with the same identity can often
obtain the same interpolation image by interpolation model.
Therefore, we add constraints to the optimal interpolated
images < Itopt , Ĩtopt > such that they are consistent.

Our experiments demonstrated that the image generation
network is crucial. Within our framework, both the interpo-

lation and motion transfer models utilize the shared-weight
image generation network. If the image generation network
in the motion transfer model exhibits strong generative ca-
pabilities, it can significantly enhance the quality of the
optimal interpolated image generated.

3.4. Vision Transformers

In the motion transfer task, we aim to keep the source im-
age’s identity information and learn the driving image’s
pose. To make the generated image meet this requirement,
we use pre-trained Vision Transformers(ViT) model(Caron
et al., 2021; Tumanyan et al., 2022) to represent appearance
information and structure information of image in the ViT
feature space. With respect to appearance, we employ [CLS]
to indicate a global image representation aimed at captur-
ing both the informational content and stylistic attributes of
global appearance. Regarding structure, the utilization of
depth space features extracted by ViT, along with their self-
similarity as structural representation, not only facilitates a
robust representation of local texture but also ensures the
preservation of the spatial layout and shape of the object
and its surroundings.

In the bidirectional training strategy, we make use of the abil-
ity of ViT to extract appearance representation and structure
representation and add appearance consistency and struc-
ture consistency constraints to generate optimal interpolated
images (Itopt and Ĩtopt) to reduce their solution space. In
addition, structure consistency constraint is added to the
generated target image and driving image to promote the
network and generate a better quality target image.

3.5. Loss Functions

Reconstruction loss Lrec : To make the generated images
D̃ and S̃ more realistic, we use the pre-trained VGG-19
network(Johnson et al., 2016) to calculate the perceptual
loss of multi-resolution images:

Lrec =
∑
j

∑
i

∣∣∣Vi(Dj)− Vi(D̃j)
∣∣∣

+
∑
j

∑
i

∣∣∣Vi(Sj)− Vi(S̃j)
∣∣∣ (5)

where Vi is the ith layer of the pre-trained VGG-19 network,
and j indicates that the image has been downsampled j
times.

Feature consistency loss Lfea : The encoder in Figure 1 is
used to extract multi-scale features of optimal interpolated
images (Itopt and Ĩtopt ) in the bidirectional training process.
The Lfea loss encourages optimal interpolated images to be
consistent. The loss is expressed as:

Lfea =
∑
i

∣∣∣Ei(Itopt)− Ei(Ĩtopt)
∣∣∣ (6)
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Tai-Chi-HD Fashion UvA-Nemo TedTalks
L1 (AKD, MKR) AED L1 (AKD, MKR) AED L1 AKD AED L1 (AKD, MKR) AED

X2Face 0.080 (17.65, 0.109) 0.270 - - - 0.031 3.539 0.221 - - -
FOMM 0.057 (6.65, 0.036) 0.172 0.013 (1.131, 0.006) 0.059 0.021 1.408 0.067 0.033 (7.07, 0.014) 0.163
MRAA 0.048 (5.41, 0.025) 0.149 - - - 0.017 1.323 0.060 0.026 (3.75, 0.007) 0.114
DAM 0.044 (4.79, 0.021) 0.146 0.011 (1.041, 0.004) 0.054 - - - - - -
MTIA 0.045 (4.67, 0.021) 0.148 - - - - - - 0.026 (3.46, 0.007) 0.113

TPSMM 0.045 (4.57, 0.018) 0.151 0.011 (0.845, 0.005) 0.056 0.011 1.177 0.050 0.027 (3.39, 0.007) 0.124
CPABMM 0.041 (4.61, 0.021) 0.117 - - - - - - 0.022 (3.21, 0.008) 0.085

Ours 0.047 (4.21, 0.014) 0.157 0.011 (0.800, 0.004) 0.056 0.010 1.155 0.051 0.028 (3.15, 0.005) 0.136
Ours-V2 0.046 (3.67, 0.013) 0.149 0.011 (0.771, 0.004) 0.058 0.010 0.853 0.050 - - -

Table 1. Quantitative comparison of video reconstruction task on four different datasets.

OursTPSMMFOMM MRAA Ours-V2DAM MTIASource Driving

Figure 3. Some bad comparison methods cases on the Tai-Chi-HD dataset, while our method shows high quality on video reconstruction
task.

OursTPSMMFOMM Ours-V2DAM

Source

Driving

Figure 4. Qualitative comparison of image animation task on Tai-Chi-HD (above) and Fashion (below).
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OursSource Driving
Interpolation

T=0.3

Interpolation

T=0.5

Interpolation

T=0.7

Figure 5. Interpolation results generated at different moments un-
der the same identity.

where Ei represents layer ith of encoder.

Appearance consistency loss Lapp : The pre-trained ViT
model(Caron et al., 2021; Tumanyan et al., 2022) is used
to extract the appearance features of the optimal interpo-
lated images Itopt and Ĩtopt in bidirectional training process
respectively, denoted as Λ(Itopt) and Λ(Ĩtopt), where Λ(·)
represents appearance features of images extracted by the
ViT model. The appearance of the optimal interpolated im-
age generated by Lapp loss is encouraged to be consistent,
and loss is expressed as:

Lapp =
∥∥∥Λ(Itopt)− Λ(Ĩtopt)

∥∥∥
2

(7)

Structural consistency loss Lstruc : The self-similarity
matrix of Itopt , Ĩtopt , S, S̃, D, and D̃ is extracted using the
pre-trained ViT model(Caron et al., 2021; Tumanyan et al.,
2022), denoated as Φ(Itopt), Φ(Ĩtopt), Φ(S), Φ(S̃), Φ(D),
and Φ(D̃) respectively, where Φ(·) represents structural
information of image extracted by ViT model. The structural
consistency loss is calculated as:

Lstruc =
∥∥∥Φ(Itopt)− Φ(Ĩtopt)

∥∥∥
F

+
∥∥∥Φ(S)− Φ(S̃)

∥∥∥
F

+
∥∥∥Φ(D)− Φ(D̃)

∥∥∥
F

(8)

In general, the total training loss function is:

Lloss = λrLrec + λfLfea + λaLapp + λsLstruc (9)

where λr, λf , λa, and λs are hyperparameters.

4. Experiments
4.1. Benchmarks

Datasets: We trained on multiple types of datasets, in-
cluding faces and human bodies. The datasets are as fol-
lows: UvA-Nemo(Dibeklioglu et al., 2012; 2015), Fash-
ion(Zablotskaia et al., 2019), Tai-Chi-HD(Siarohin et al.,
2019b), and TedTalks(Siarohin et al., 2021)

OursSource Driving
Interpolation

T=0.3

Interpolation

T=0.5
Interpolation

T=0.7

Figure 6. Interpolation results generated at different moments un-
der the different identity.

Metrics: Same as previous work, in the video reconstruc-
tion task with the same identity, the first frame D1 of video
is used as a source image to reconstruct {Dt}nt=1. The
quantitative indicators (Siarohin et al., 2019b) used are L1,
Average Keypoint Distance (AKD), Missing Keypoint Rate
(MKR), and Average Euclidean Distance (AED).

Implementation Details: The method is implemented on
PyTorch(Paszke et al., 2019), all experiments are conducted
on an NVIDIA 4090 GPU with a resolution of 256× 256
for all datasets and 100 epochs of training. We use Adam
optimizer(Kingma & Ba, 2015) to update our model and set
the learning rate to 0.0001, which dropped by a factor of 10
at the end of the 70th epoch and the 90th epoch. We set the
training hyperparameters to: λr = 10, λf = 10, λa = 10,
and λs = 10. The interpolated images are generated at
{0.3, 0.5, 0.7} respectively, and then optimal interpolated
images that meet the conditions are selected.

4.2. Comparison

We compare the proposed method with the state-of-the-
art unsupervised motion transfer methods (X2Face(Wiles
et al., 2018), FOMM, MRAA, DAM(Tao et al., 2022b),
MTIA(Tao et al., 2022a), TPSMM, and CPABMM) for
video reconstruction and image animation tasks.

Video reconstruction: The quantitative results of Video
reconstruction are shown in Table 1. Our approach achieved
significant improvements in motion-related metrics on four
datasets. Compared with TPSMM, on the Tai-Chi-HD
dataset, AKD and MKR improved by 7.88% and 22.2%,
respectively, and on the Fashion dataset, AKD and MKR
increased by 5.3% and 20%, respectively. on the TedTalks
dataset, Compared with CPABMM, AKD and MKR in-
creased by 1.87% and 37.5%. It shows that our model can
obtain a pose closer to the real image.

As shown in Figure 3, we show qualitative results of video
reconstruction, which prove that the interpolation method
between source and driving images can obtain more accu-
rate estimation of large displacement motion. However,
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L1 (AKD, MKR) AED
TPSMM 0.045 (4.57,0.018) 0.151

+TPSMM, INT (Model1) 0.053 (5.56,0.026) 0.169
+Model1, BT (Model2) 0.048 (4.31,0.016) 0.158

+Model2, Lapp, Lstruc (Ours) 0.047 (4.21,0.014) 0.157

Table 2. Ablating the key components of the proposed method.
INT is denoted as adding an unsupervised anytime interpolation
method, and BT is denoted as adding a bidirectional training strat-
egy.

the interpolation method also causes a loss of appearance
information. As shown in Figures 5 and 6, we show the in-
terpolation at different moments and final generated results.
Compared with the source image, the generated interpolated
image already has the problem of blurring, which leads to
the appearance effect of the target image generated by the
downstream task is not satisfactory. In addition, for the
dataset with background (Tai-Chi-HD), the interpolation
method causes occlusion region to expand, as shown by the
background in the second row of Figure 6. This is also why
the L1 and AED metrics in Table 1 are slightly lower than
the existing methods.

Image Animation: Figure 4 shows the comparison results
of motion transfer between the proposed method and com-
parison methods under different identities. Experimental
results show that the proposed method has better motion
transfer performance for large displacement motion of the
human body (Tai-Chi-HD and Fashion). However, the abil-
ity to maintain the details of images, such as clothing and
face, is slightly worse. As shown in the second row of Fig-
ures 5 and 6, the clothing color of the interpolated image
generated has a color difference with the source image, re-
sulting in a large difference between the appearance of the
image generated by downstream motion transfer and the
appearance of the source image.

4.3. Ablations

In this section, we conduct comprehensive ablation experi-
ments on the Tai-Chi-HD dataset to systematically evaluate
the contribution of key components to the final performance
of the method. We successively added our proposed com-
ponents; the results are shown in Table 2. The second row
of Table 2 represents the results of the TPSMM method,
Model1 represents the addition of an unsupervised anytime
interpolation method to the TPSMM method, Model2 is
the addition of a bidirectional training strategy based on
Model1, and Full model is our proposed model.

For the experimental results of Model1, we find that
adding an unsupervised anytime interpolation method to
the TPSMM method not only does not improve the model’s

performance but also decreases the model’s performance.
This is because the interpolation method results in poor
generation of interpolated images without constraint infor-
mation, which affects the downstream motion transfer task.
For Model2, when we add the bidirectional training strategy,
the generation of interpolated images is appropriately con-
strained, improving motion transfer performance. For the
Full model (Ours), we add appearance consistency loss and
structure consistency loss so that the quality of the gener-
ated images is improved and optimal in the motion-related
metrics.

4.4. Method Extension

The proposed method is extended to multi-view tasks ac-
cording to the optimal interpolation method. Specifically,
source image and optimally interpolated images are used to
constitute multi-view data. The source image can provide
better appearance information, and the motion displacement
between the optimal interpolated image and the driving im-
age is smaller, which can learn the pose information more
accurately. Therefore, in the motion transfer network, we
fuse the deformation features of the source image and the
optimally interpolated image, and the experimental results
are shown in Ours-V2 of Table 1. Compared with the pro-
posed single-view motion transfer method (Ours), Ours-V2
achieves significant improvements on most datasets. Among
them, the motion-related metric AKD is increased by 12.8%,
3.6% and 26.1% on Tai-Chi-HD, Fashion and UvA-Nemo,
respectively. As shown in Figures 3 and 4, the appearance
of the generated images is significantly improved.

5. Conclusion
To solve large displacement motion, we propose a large
displacement motion transfer model based on unsupervised
anytime interpolation. Compared with the previous method
of directly predicting the motion from the source image to
the driving image, the proposed method interpolates the
source image and driving image at any time, decomposes
the original large displacement motion into multiple small
displacement motions, and improves the accuracy of mo-
tion estimation. To achieve unsupervised interpolation, we
propose a bidirectional training strategy, which adds con-
straints to the intermediate interpolated images to narrow
the generation range of interpolated images. The pre-trained
Vit model adds appearance and structure consistency to
the images so that the generated images have better qual-
ity. Experiments show that our method achieves optimal
performance on motion-related metrics compared to other
state-of-art methods.
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