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Abstract

The risk posed by Membership Inference At-
tack (MIA) to deep learning models for Com-
puter Vision tasks is well known, but MIA has
not been addressed or explored fully in the Nat-
ural Language Processing (NLP) domain. In
this work, we analyze the security risk posed
by MIA to NLP models. We show that NLP
models are actually at greater risk to MIA than
models trained on Computer Vision datasets.
This includes as much as an 8.04% increase in
attack success rate on NLP models. Based on
these findings, We proposed a novel defense
algorithm Gap score Regularization Integrated
Pruning (GRIP), which can prevent NLP mod-
els privacy from MIA, and achieve competitive
testing accuracy. Our GRIP’s experimental re-
sults show that the MIA success rate decreases
by 31.25% and 6.25% compared to the de-
fenseless model and differential privacy (DP).

1 Introduction

As the global machine learning market grows, Ma-
chine Learning as a Service (MLaaS) (Ribeiro
et al., 2015) is gaining increasing popularity from
cloud computing providers such as Amazon (Kur-
niawan, 2018), Microsoft (Gollob, 2015), and
Google (Ravulavaru, 2018). Using black-box in-
terfaces, MLaaS allows users to upload data easily,
leverage powerful large-scale DNNs, and deploy
analytic services (Truex et al., 2019).

Examples of MLaaS in NLP include companies
(as well as individuals) putting their data in deep
learning models for speech recognition, word sense
disambiguation, sentiment analysis and other tasks.
In parallel, deep learning has also been applied to
achieve state-of-the-art or near state-of-the-art re-
sults on Computer Vision (CV) tasks (Dai et al.,
2021; Zoph et al., 2020; Ghiasi et al., 2021). CV
models have been shown to suffer from a privacy
leakage attack (see Figure 1) known as Member-
ship Inference Attack (MIA). From these observa-
tions several important questions arise.
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Figure 1: (a) MIA in NLP. (b) Our proposed method
against MIA: Gap score Regularization Integrated
Pruning (GRIP).

1. Are NLP models vulnerable to MIA attacks
like CV models?

2. What makes NLP models more vulnerable
than CV models to MIA?

3. What can be done to defend against MIA in
the NLP domain?

We carry out a thorough literature search and
find that these lack an in-depth investigation. These
are pertinent questions to the future security and
development of deep learning for NLP. These are
precisely the questions we seek to answer in paper.

To answer the first question, we experiment with
neural network MIAs and metric based MIAs from
previous works on NLP classification tasks. We
find that the privacy risk of membership infer-
ence is severe for NLP models. As shown in Ta-
ble 1, compared to general CV models, neural net-
work(NN) MIAs exhibit higher attack capabilities
in NLP models. Difference arise in MIA between
the CV and NLP domains due to a variety of issues
such as overfitting, model complexity and data di-
versity, which we analyze and discuss in depth later
in the paper. Due to the severity of MIA in NLP,
the next natural question in our investigation is how
to defend against this threat.



We propose a novel defense algorithm, Gap
score Regularization Integrated Pruning (GRIP)
that is optimized by finding a sub-network from
the original over-parameterized NLP model (see
Figure 1). GRIP can prevent privacy leakage from
MIA and achieves similar accuracy to the original
NLP model. As a free lunch, GRIP can also reduce
the model storage and the computation overhead.
In summary, we make the following contributions.

1. Comprehensive MIA Analysis in the NLP
Domain: We compare the MIAs on NLP vs.
MIAs on CV, and investigate the unique cases
of MIAs in NLP. We also formulate the gain
of the MIAs quantitatively.

2. Novel MIA Defense for NLP Models: We
develop and experiment with a new MIA de-
fense, that works across all NLP datasets that
we studied in this paper. Our Gap score
Regularization Integrated Pruning reduces the
attack success rate of MIA by as much as
31.25% compared to undefended models and
differential privacy.

2 Related Work
2.1 Pre-trained Models in NLP

Pre-trained models in NLP are trained on large
amount of unsupervised text datasets to extract con-
textual embeddings for different NLP tasks. The
pre-trained models, such as BERT (Devlin et al.,
2019), GPT-2 and RoBERTa4, are able to learn uni-
versal language representations and can be used for
downstream NLP tasks. Pre-training can help users
avoid training the model from scratch so that they
can build NLP applications more efficiently.

2.2 Membership Inference Attack

The membership inference attack (MIA) attempts
to determine whether a given data is from the train-
ing dataset or not for a target model (Shokri et al.,
2017; Song and Mittal, 2021; Song et al., 2019;
Yeom et al., 2018; Salem et al., 2018). This attack
can lead to serious privacy problems that leak the
individual’s private information like the health data,
financial state.

Neural Network(NN) MIAs An attacker can build
a binary classifier consisting of neural network
models (Nasr et al., 2018, 2019) using the predic-
tion vector of the target model and the one-hot
encoded ground truth label as input to identify the
membership of given data samples. NN MIAs can

NLP CV
Model NN Metric Model NN Metric
Dataset MIA MIA Dataset MIA MIA
BERT Alexnet
0
RTE 84.37% 69.00% CIFAR10 71.70% 66.80%
BERT MobilenetV2
(v 1% (v (v,
MRPC 71.88% 59.10% CIFAR100 62.75% 55.01%
BERT Resnet18
v, 0y (v 0
CoL 68.75% 63.70% CIFAR100 69.85% 73.02%
BERT Vggl6
0 0y ¥ O
SST2 73.44% 58.50% CIFAR100 61.99% 68.24%
Mean 74.61% 62.58% Mean 66.57% 65.77%

Table 1: Membership inference attack accuracy for dif-
ferent models and datasets in NLP and CV domain.

leverage the complexity of the neural network to
learn more about the differences between the train-
ing and test data.

Metric MIAs Unlike NN attacks, metric-based at-
tacks directly use the prediction vectors to compute
customized metrics as a way to infer membership or
non-membership in comparison with preset thresh-
olds. Metric MIAs are simpler and less compu-
tationally intensive compared to NN MIAs. We
follow the state-of-the-art works(Song and Mittal,
2021; Shejwalkar et al., 2021) and explore on four
metric MIAs based on correctness, confidence, en-
tropy and modified entropy. Correctness-based at-
tack is a simple baseline for MIA. It infers a given
data sample as a member if the prediction is cor-
rect and can be calculated using the accuracy gap
between the training and test data. The detailed ex-
planations of these four metric MIAs can be found
in Appendix A.

2.3 Current Defense Mechanism

There are several mechanisms that have been de-
veloped to address MIA. Differential privacy (DP)
(Dwork, 2006, 2008) is a major privacy-preserving
mechanism against general inference attack. It is
based on adding noises into gradients or objec-
tive functions when training the model and has
been applied in different machine learning mod-
els (Abadi et al., 2016; Zhang et al., 2019; Rahman
et al., 2018). Another mechanism to address MIA
is adding regularization during the model training.
Existing regularization methods are mainly pro-
posed to reduce the overfitting problem, which is
one of the main causes of MIAs (Leino and Fredrik-
son, 2020; Shokri et al., 2017). However, in NLP
classification tasks, due to the complexity of the
models and the limited resources of the dataset, it is
common to load large pre-trained NLP models with
private training data and get the models with only a
few epochs of fine-tuning. The overfitting problem



may not be as severe as in the CV domain. Further-
more, the specially designed adversarial regulariza-
tion(Nasr et al., 2018) is not effective enough even
on models trained from scratch (Song and Mittal,
2021; Nasr et al., 2019) as it doesn’t provide an
explicit objective for the training process. As a
result, these regularization methods are difficult
to be incorporated as feasible defenses for NLP
model training. In our paper, we choose DP train-
ing to compare the effectiveness of defense against
MIA in NLP classification tasks as it is favorable in
transfer learning with provable privacy guarantees.

2.4 Weight Pruning

Weight pruning techniques have traditionally been
used to increase model performance (i.e., speed up
inference time) and reduce the model size (save
space) while still maintaining high fidelity (high
prediction accuracy) (Han et al., 2015; Augasta and
Kathirvalavakumar, 2013). State-of-the-art DNNs
contain multiple cascaded layers and millions of
parameters (i.e., weights) for the entire model (He
et al., 2016; Vaswani et al., 2017).

In natural language processing, irregular magni-
tude weight pruning (IMWP) has been evaluated
on BERT, where 30%-40% weights with a mag-
nitude close to zero are set to be zero (Gordon
et al., 2020). Irregular reweighted proximal prun-
ing (IRPP) (Guo et al., 2019) adopts iteratively
reweighted /; minimization with the proximal al-
gorithm and achieves 59.3% more overall pruning
ratio than irregular magnitude weight pruning with-
out accuracy loss. (Dalvi et al., 2020) investigates
the model general redundancy and task-specific re-
dundancy on BERT and XLNet (Yang et al., 2019).

3 Membership Inference Attack in the
NLP Domain

Even though MIA has been comprehensively stud-
ied in computer vision, the same cannot be said
of NLP. This raises a pertinent question, how vul-
nerable are NLP models to Membership Inference
Attacks? This is exactly the question that our paper
seeks to explore and answer.

We consider the MIA problems in the context
of a black-box adversary. This means the attacker
cannot access the classification model’s parameters
but can only observe the output of the classification
model. We assume that the adversary has access to
part of the data records from the training and testing
set and the predictions from the black-box DNN
target model. Based on the difference between the
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Figure 2: NN attack and model accuracy gap on differ-
ent datasets.

model’s prediction on the training dataset and the
non-training dataset, the adversary aims to deter-
mine whether a data record belongs to the model’s
training dataset or not.

3.1 MIAs on NLP vs. MIAs on CV

We summarize the best attack accuracy of NN
MIAs and metric MIAs for different classification
tasks in NLP and CV domains in Table 1. The NLP
models and all MIA experiments are conducted ac-
cording to the settings in Section 5.1, and the CV
models are trained based on the conventional set-
tings to achieve the standard performance. Our first
set of results show a unique difference between
models trained on CV tasks and models trained
on NLP tasks. Specifically in Table 1, we show
that privacy leakage in the NLP classification tasks
is much larger than in CV tasks. The NLP tasks’
average NN attack is almost 8% higher than that
for CV tasks. In particular, the BERT-RTE task
suffers 84.37% of NN attacks, which is at least
12.67% more than all CV tasks. Besides, we can
observe that unlike in the CV domain, NN MIAs do
not perform consistently with metric MIAs in NLP
models. Even when the overfitting is not severe and
the metric MIAs are weak, they still show superior
attack ability with high accuracy in all cases.

3.2 Unique Causes of MIAs in the NLP

As we demonstrated above, the MIA problem is in-
deed more pronounced for NLP tasks. Specifically,
we investigated and analyzed the uniqueness of the
NLP classification models and three main reasons
behind this trend.

(1) Overfitting. Overfitted models perform much
better on training data than on non-training data
(i.e. validation or test data) and it is one of the
main factors causing privacy leakage that can lead



to MIA. In NLP, overfitting can also occur. Evi-
dence of this claim can be seen in Figure 2, where
we show the accuracy gap between training and
testing data for a BERT model trained on differ-
ent NLP datasets. We can see that the NN attack
is aggressive when the accuracy gap is very large,
as exhibited by the RTE dataset, and this perfor-
mance is consistent with previous studies in the
CV field. However, MIAs show more robustness
on the MRPC and SST-2 datasets when the over-
fitting is not so significant. Analyzed along with
Table 1, the metric MIAs decrease when the accu-
racy gap is small, but the NN attack remains strong.
This suggests that there are more causes for pri-
vacy breaches in the NLP models. In the following
subsections, we discuss two other factors that may
cause the privacy risk of MIA in NLP classification
tasks, which are the model complexity and data
diversity that are different from those of CV tasks
in NLP classification tasks.

(2) Model Complexity. NLP classification models
are often over-parameterized with high complexity.
For example, the BERT model contains 12 layers,
each with about 7 million parameters. This on the
one hand gives them the ability to learn efficiently
from hard NLP tasks, but on the other hand also
leads to the possibility that they may have an unnec-
essarily high volume to remember noise or details
of the training dataset.

(3) Data Diversity. There are many properties on
the dataset that may boost the performance of MIA.
First, the number of classes in NLP classification
tasks is limited, e.g., most of the GLUE datasets are
binary or ternary classification tasks, while there
are 10 to 1000 classification tasks in the CV do-
main. Second, the size of both training and non-
training data in NLP tasks can be limited. For
example, RTE has only 2490 training data, which
is 20 times less than MNIST. Due to the limited
amount of training data and categories, the learned
distribution of the dataset may be less representa-
tive and induced. Therefore, MIAs can achieve
high accuracy even if the model is not overfitted.

4 How to Prevent MIA in NLP?
4.1 Defense Strategies Formulation

Based on the analysis in Section 3, we designed
our defense strategies by answering the following
question. Since overfitting and model complexity
are the two main reasons for MIA, can we find a

sub-network from the original over-parameterized
NLP model that can prevent privacy leakage from
MIA and can achieve competitive accuracy with
the original NLP model?

In order to propose an effective defense method,
we have two ultimate goals. One is to prevent the
privacy leakage of the model and the other is to
guarantee the utility of the model.

The first goal of preventing privacy leakage is
to find the target model f that can minimize the
gain of the adversary. We first reformulate the
gain function to quantitatively present how much
privacy leakage information the adversary can get.
According to (Nasr et al., 2018; Goodfellow et al.,
2014), we rewrite the gain function of the adversary
model in the form of probability distribution:

G¢(fa)
- / Po (. y)ps(f(2)) log(falz,y. F(x))+

Pp(@,y)py(f(x))log(1 — fa(z,y, f(x))]dzdy
= —log(4) +2- JS(ps (f(2))llP}(f(x)))

ey

Where f4 is the adversary model. D is the training
setand D’ is the non-training set. py and p'; are the
probability distribution of the classification model
f’s output for training data and non-training data.
JS(py(f(2))||p}(f(z))) is the Jensen-Shannon
divergence between the two distributions and it is
always non-negative. The global minimum value
that G ¢(f4) can possibly have is -log(4) if and only

i pi(F(@)) = 04(f (&) @)

This means that the prediction of classification
model f has the same probability distribution for
both the training set and non-training set. In this
case, the attack fails in the sense the attacker can
do no better than a random guess.

Then, the second goal is to ensure that the target
model f’s prediction accuracy. Suppose that the
target NLP network f(z) as:

fz)=ELoE!/ o . ocE/(M() @)
and we define the original NLP network g(x) as:

g(z) =EJ o E’

n—1

o.. oEBI(M(z)) (@)

where E{ , E? is the encoder block. Each build-
ing block contains a self-attention layer and a fully
connected feed-forward network.

The problem can be formulated as finding a sub-
network §(z) that has competitive prediction accu-
racy with the original network g(z).



We propose that the answer to the problem could
be that we prune the model parameters as well as
use the largest prediction gap of all predictions as
the privacy objective and reduce the variance of its
output while minimizing the classification loss.

4.2 Pruned Network Prediction Analysis

We first analysis and ensure the pruned model can
still maintain the utility. A pruned network §(x)
can be presented as :

§(z) =EJoE!_ 0. oE{(E(x)) (5

n

where P; is the pruning matrix in ¢-th layer.

Corollary 1. For every network f defined in Eq.
3 with depth l and Vi € {1,2,...,n}. Consider
g defined in Eq.4 as a randomly initialized neu-
ral network, and width poly(d,n,m,1/¢e,logl/é),
where d is input size, n is number of layers in f,
m is the maximum number of neurons in a layer.
For the weights in BY, the weight initialization dis-
tribution belongs to uniform distribution in range
[-1,1]. Then with probability at least 1 — § there is
a weight-pruned sub-network g of g such that:

1f (@) —g(z)l| <€ (6)

sup
zeX,|W| <1

Based on Corollary 1, we know that for every
bounded distribution and every target network with
bounded weights, there is a sub-network with an
accuracy that is close to the original sufficiently
over-parameterized neural networks.

4.2.1 Analysis on Feed-forward Linear
Network

In this case, f(z) = W -z, and g(z) =

(Zle Wz> x. Corollary 2. Let W7, ..., W be-

longs to i.i.d. Uniform distribution over [-1,1],

wheren > C' - log% ,where 6 < min{l,e}. Then,

with probability at least 1-9, we have

35 € {1,2,..,n},YW € [~0.5,0.5],

W-> W

i€S

(7

s.t <e

Lueker et al.(Lueker, 1998) proposed this theo-
rem and had given a proof.

4.2.2 The Analysis in Self-attention Layer:
General case

Consider a model f(x) with only one self-attention
layer, when the token size is n, x = (21, 2, ..., Tp,).

let (h.) = QK then

LJnXn — \/@

f(x;) = softmax((hi.)1xn)Vi
h..
. e'tij
_ (Zaih_)v
> 2.i(e)
h..
. et
= ( ZJ h - )WVlwz
PIICLD
= Whi'l'i
Corollary 3 Let WY, ..., Wfl belongs to i.i.d. uni-
form distribution over [-1,1], where d > C’log%,
where § < min{1,e}. Then, with probability at
least 1-6, we have
Vie{l,2,..,n}, W e [-1,1],
E|pl S {0, 1},

®)

©)

s.t. < €

d
W — (Y pWY)
=1

4.3 Gap Score Analysis

To guard the privacy disclosure, our goal is to find
the target model f that minimizes the adversary’s
gain by adding a regularization term into the loss
function, we consider a problem as :

minimize L(f) + & - 7(Zmaz — Zmin)  (10)

where r represents the regularization objective
function and « is the coefficient to tune the impact
between the training objective and privacy objec-
tive. To represent the gap score in the multi-class
classification case, we show

T(Zmax - Zmin) = Zmax — Zmin
(11)
$.t. Zmaz — Zmin € [0,1]
so we have
- 17(Zmaz — Zmin) € [0, a] (12)
the update gradient can be calculated as:
_ OL(W) or(z)
YWE=SwW T ow
8L(W) a(zmax - Zmin)
_ . 13
W + o S (13)
. 8L(W) (8Zmar _ 8me)
T Tow Y Vaw T aw

In this case, when we update the model by min-
imizing the loss function, the gap score is also
minimized. So the distribution of p¢(f(x)) and
p’t(f(2')) are more similar than each other, i.e.,
JS(pr(f(x)|P(f(z))) decreases and is closer
to 0. Thus, the adversary has minimum gain for the
trained model and privacy leakage is prevented.



Algorithm 1 The Process of GRIP
1: for epoch in Epochs do

2: Get a random mini-batch S.

3: for i in Iterations: do

4. for Encoder & : do

5: for self-attention layer: do

6: Pruned {W®} to { P, © W<}
7: Pruned {W*} to {P;, © WX}
8: end for

9: for feed-forward network: do
10: Pruned {W} to { P} © W}
11: end for
12: end for
13: end for
14: Get {Zmaz } and {Zmin }
15: Calculate 7(Zmax, Zmin)

16:  Update {W}, {W9}{W¥} {W"}

17: by minimizing L(f) + & - 7(Zmaz — Zmin
18: end for

19: OUTPUT {W}, (W@} {WE} {w"}

4.4 Proposed Method: GRIP

We show our proposed method Gap score Regu-
larization Integrated Pruning (GRIP) in Algorithm
1. For a fixed NLP classification model f, we set
the sparsity P = { P, P, ..., P} for k encoders,
then we systematically prune the weights of each
encoder in multiple iterations gradually, for both
the self-attention layer and feed-forward network.
When updating these weights, we minimize the
loss function from Eq. 10 with the gap score regu-
larization. The final model sparsity will be P.

5 Proposed Defense Evaluation

In this section, we apply our proposed to differ-
ent NLP models with various datasets and tasks,
mainly from two perspectives: the defense per-
formance of our model and the computation cost
benefit we obtain. All experiments are conducted
on a server with Intel(R) Xeon(R) Gold 5218 (64
virtual CPUs with 504 GB memory) and 8 NVIDIA
Quadro RTX 6000 GPUs (24GB memory) by Py-
Torch 1.5.1, Python 3.6, and CUDA 10.2.

5.1 Experimental Setup

Datasets. For the proposed sparse progressive
distillation, we conduct experiments on the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019), which is grouped
into three categories of natural language under-
standing tasks (single-sentence tasks, similarity
matching tasks, and natural language inference
tasks) according to the purpose of tasks and dif-
ficulty level of datasets.

Models. We use the fine-tuned BERTg sk as

a teacher and also initialize the student with the
fine-tuned BERTgAsE. Specifically, we first fine-
tune the pre-train BERTpAsg on four GLUE tasks
with four epochs, including SST-2, CoLA, MRPC,
and RTE. We select the learning rate with best per-
formance from {2e75,3e™5,4e~5,5e~5}. Batch
size and maximum sequence length are set as 32
and 128, respectively.

Membership Inference Attacks Setup. To
evaluate the neural network (NN) MIAs, we follow
the model structure and setup in (Nasr et al., 2018)
to construct and train the attack classifier. The de-
tailed setting is described in Appendix D. For the
metric MIAs evaluation, we adopt four metric at-
tacks following the (Song and Mittal, 2021) and
show the best attack accuracy in the tables.

Defense Training Setup. In our evaluation, we
conduct the canonical implementation of training a
model with differential privacy (DP)(Abadi et al.,
2016) and the associated analysis in Pytorch imple-
mentation from Opacus (Yousefpour et al., 2021)
library. We adopt the DP training into the origi-
nal fine-tuning process and set the clipping bound
to be 1.0. We find that the model is very hard to
converge, so we set a large privacy budget with a
total training epoch of 6 and report the best testing
accuracy results in Table 2.

In our GRIP defense, we give different sparsity
for every encoder, in every iteration, we gradually
prune weight for both self-attention layers and feed-
forward networks, then we will reach the sparsity
after all iterations. In detail, we use sparsity 40%
for CoLA and sparsity 60% pruning rate for the
other datasets on the last 6 encoders and o = 1
for all datasets on the pre-trained BERT model
with 4 to 12 fine-tuning epochs and record the best
classification accuracy results.

5.2 Results and Analysis

Table 2 summaries the classification accuracy and
best attack accuracy for NN and metric MIAs
on the undefended models, deferentially private
trained models and our GRIP fine-tuned models.
GRIP can significantly reduce the member-
ship inference risks. As shown in Table 2, our
defense leads to a significant reduction in privacy
risks in both NN and metric MIAs. For all eval-
uated datasets, we can control the MIA accuracy
with neural network to ~ 50%, which is close to a
random guess, compared to the much higher attack
accuracy on the undefended models from 60.94%



RTE MRPC CoLA SST-2
Defense None DP GRIP None DP GRIP None DP GRIP None DP GRIP
Atiiir;fy 70.28% 53.79% 61.01% | 84.39% 68.38% 81.62% | 81.09% 71.80% 81.20% | 92.89% 81.77% 91.17%
Accuracy
Gap 28.11% 2.75% 12.28% | 13.62% 093% 5.27% | 15.53% 1.00%  9.00% 6.48% 131% 2.83%
I\IZIIj% 84.38% 59.38% 53.13% | 71.88% 53.13% 53.13% | 60.94% 57.81% 50.00% | 73.44% 60.94% 57.81%
1\1/\[;]{20 69.00% 54.20% 57.80% | 59.10% 52.00% 53.70% | 63.70% 51.50% 56.90% | 58.50% 55.30% 52.50%

Table 2: Comparison of classification accuracy and membership attack accuracy between regular training, differ-

ential private training and GRIP training model

(CoLA) to 84.38% (RTE). Our defense can also
outperform the DP training on the NN MIAs. For
metric MIAs, although the attack accuracy with our
GRIP is not always close to random guesses, we
can still observe a 5 ~ 10% decrease in accuracy
even when the original MIA risk is not that high as
the metric MIAs are mitigated when the accuracy
gap between training and test data is not large, and
overfitting is not obvious.

GRIP achieves privacy protection with a
small cost on the utility loss. With all the benefits
of the privacy defense from our proposed methods,
the utility loss is limited in a small range at most
times. Our GRIP training maintains the classifi-
cation accuracy at the same level on CoLA and
SST-2 dataset and causes a small 2.77% accuracy
decrease on MRPC. Defense on the RTE dataset
leads to 10% utility loss, but it is a very small
dataset with limited training and testing data. The
model is unstable with random separation on the
training and testing data in each time of training
and attack. Even in the worst cases, our approach
can still largely outperform DP training as it leads
to 10 ~ 20% utility loss on all the datasets with
very limited privacy protection on the NN MIAs.
This is a case where the privacy budget is large and
the model utility will be further reduced when the
theoretical guarantees of DP training are obtained.

GRIP have significantly model storage and
computation reduction. Tabel 3 summaries the
weights reduction ratio of GRIP fine-tuned model
on different datasets. Except for the benefit of
privacy defense, our GRIP has an additional ad-
vantage on model storage and computations. Table
3 show that our GRIP has over 1.18 x ratio over
different datasets.

In summary, we have the following analysis:

1. Reducing the overfitting of the NLP clas-
sification problem does not completely eliminate
the membership privacy risk, which is consistent
with the observation in Section 3.1. Taking the

Data  Model Weights () \eightsafter — Weights
prunning (#) reduction ratio
RTE | BERT 110M 7TM 1.30 x
MRPC | BERT 110M 77M 1.30 x
CoLA | BERT 110M 88 M 1.18 x
SST-2 | BRET 110M 77M 1.30 x

Table 3: GRIP pruning ratios for different tasks.

DP-trained model as an example, it successfully
reduces overfitting as the accuracy gap is only
0.93 ~ 2.75% on all datasets, which helps the
models limit the metric MIAs to 55%. However,
the NN MIAs remain at 60%, indicating that there
is still privacy leakage on the poor utility models.
2. Our GRIP works during training for both con-
straint of output prediction and reduction of model
complexity of intermediate structures. As a result,
we not only reduce model overfitting but also yield
similar performance in terms of confidence and ro-
bustness for both training and test samples. For
‘free lunch’, we also reduce the model storage and
the computations. Thus, our defenses can effec-
tively resist MIAs and maintain good model utility.

5.3 Hyperparameter Analysis

Our proposed GRIP approach integrated with gap
score regularization and pruning can successfully
limit the maximum gain of the adversary model
with a great privacy-utility trade-off. In this sub-
section, we further investigate the contribution of
the proposed pruning and the proposed gap score
regularization, respectively.

We first show the classification accuracy and NN
MIA results on the four datasets using proposed
pruning and proposed gap score regularization in
Table 4. Compared to the baseline model results
in Table 2, we can observe that each component
of the proposed method can help reduce the at-
tack accuracy with some utility loss. The proposed
pruning methods achieve at most 31.25% (RTE)
and on average 19.14% attack accuracy decrease
for NN MIA with 0.23 ~ 7.23% utility loss. The
gap score regularization achieves better defense



Defense | Proposed Pruning | Gap Score Regularization
Accuracy Testing NN Testing NN
Accuracy  MIA | Accuracy MIA
RTE 63.05% 62.50% | 58.12% 59.37%
MRPC 81.86% 65.63% | 77.21% 57.81%
CoLA 80.50%  59.37% | 80.70% 51.56%
SST-2 92.66%  67.18% | 93.46% 57.81%

Table 4: Classification accuracy and NN MI accuracy
on regular model with MIA-Pruning, and gap score reg-
ularization.

100% mmTest Accuracy 8()0/,
=O=NN MIA
> 80% A=Metric MIA  7()0/
Q
= 60% 60% =
= >
S 40% 50%
<20% 0%
0% 30%

0 50 60 70 80 90
PRUNING RATIO (%)

Figure 3: The effects of different pruning ratio on
BERT for MRPC task.

against MIAs (16.02% decrease on average) while
leading to a little bit more classification accuracy
loss (0 ~ 12.16%). In the following part of the
subsection, we will demonstrate the effects of the
individual proposed methods with more detailed
ablation studies.

5.3.1 Proposed Pruning Algorithm

We investigate how our proposed pruning affects
defense performance by pruning ratios. As shown
in Figure 3, the attack accuracy of metric MIA de-
creases along with the higher pruning ratio when
the pruning ratio is over 70%. However, the at-
tack accuracy of NN MIA presents a fluctuation
pattern when varying the pruning ratio. It reaches
the minimum value when the pruning ratio is 70%.

5.3.2 Gap Score Regularization

In order to show the effects of the gap score regu-
larization on the classification accuracy and MIAs
defense, we tune the hyperparameter « that con-
trols the impact of the regularization in training on
RTE dataset as shown in Figure 4. « trades off the
utility and privacy. With the increase of alpha, the
constraint on the gap score becomes tighter and
the gap score of the final result becomes smaller.
Hence, the accuracy gap and classification accuracy
decrease while the model can better defend against
NN and metric MIA. Specifically, alpha = 0.3 in
Figure 4 shows the case when the constraint is not

mmTest Accuracy =T Accuracy Gap «O=NN MIA =A-<Metric MIA

100% 90%
80% 80%
o
§60% 0% <
=) =
S40% 60%
<«
20% 50%
0% 40%
0 0.3 o 0.5 1

Figure 4: Different v for gap score regularization on
RTE dataset.

large enough. The regularization starts to control
the output and shows defensiveness, and this effect
is first shown in a decrease in test accuracy, while
the training data accuracy remains close to 100%
and consequently the accuracy gap might increase.

Key takeaways: You may notice that our GRIP de-
fense achieves a much better privacy-utility trade-
off than using the proposed pruning or gap score
regularization alone. This is because GRIP is a
combinatorial approach that benefits from pruning
to derive a finer and sparser model structure that
can better learn the proposed regularization and
loss minimization during the fine-tuning process to
control the final prediction distributions.

6 Conclusion

In this work, we explore NN MIAs and metric
MIAs on NLP models. Our experiments show that
MIAs exhibit higher attack capabilities in NLP
models as compared to CV models. We further
analyze the uniqueness of MIA in NLP models and
develop a defense method GRIP that is based on
weight pruning and gap score regularization. Our
evaluations of the BERT model on RTE, MRPC,
CoL A, SST-2 datasets show that GRIP achieves
the privacy protection against MIAs with a substan-
tially smaller cost on the utility loss compared with
DP. The improvement comes from reduced over-
fitting and decreased model complexity leading to
similar performance in terms of model output for
both training and non-training samples. In addi-
tion, GRIP significantly reduces the model storage
and computation cost, e.g., it has approximately
1.30 x weight reduction ratio on RTE, MRPC, and
SST-2 datasets. Overall, our MIA analyses and pro-
posed defense, serve as an important step towards
developing efficient and privacy-preserving deep
learning models in NLP.
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A Metric MIAs

Correctness based MIA. This attack infers the
membership according to whether a given input
data z is classified correctly by the target model
f (Yeom et al., 2018). The intuition is that training
data are more likely to be correctly classified than
test data. The attack Mo is defined as follows,
where I(+) indicates the indicator function.
Mo (fa Zz, y) = I(argmaxf(x) = y) (14)
Confidence based MIA. This attack determines
the membership of the input z by comparing the
most significant confidence score with the preset
threshold. It is intuitive that the prediction confi-
dence score f(x) for the training data should be
close to 1, while the prediction confidence for the
test data is usually lower. The attack is first de-
signed by (Salem et al., 2018) with a single thresh-
old for all classes. (Song and Mittal, 2021) further
improves it by applying class-wise thresholds to
minimize the effect of inter-class confidence dif-
ferences.The attack M onr is defined as follows,
where 7, represents the threshold for the class y.

Meont(f;2,y) = I(max f(z)y, > 7,)  (15)

Entropy based MIA. The entropy based MIA at-
tack is first presented by (Salem et al., 2018), then
followed by an enhanced version that uses the class-
wise threshold 7,(Song and Mittal, 2021). It is
based on the fact that the prediction entropy of the
test set should be much larger than that of the train-
ing set. It identifies the input = as a member if the
prediction entropy is lower than the preset thresh-
old. The attack Men(f; x, y) can be expressed as:

k

Mentr(f; x, y) = I(_ Z f(dj)z log (f(x)l) < 7A—y)

i=0
(16)
Here 7, denotes the threshold for class y, and & is
the number of output classes.


https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
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Modified prediction entropy based MIA. (Song
and Mittal, 2021) mentioned that prediction en-
tropy attack has a major limitation that it does not
contain any labeling information. As a result, only
the confidence score is important in the calculation
of the prediction entropy attack, without consider-
ing the correctness of the prediction. Both a highly
correct label with a score close to 1 and a totally
wrong predict with an incorrect label score close to
1 can lead to zero prediction entropy values. Mod-
ified prediction entropy (Song and Mittal, 2021)
fixes this issue by: 1) only correct predictions with
high probability 1 can be calculated to 0, and 2)
incorrect predictions with high confidence scores
are calculated to infinity. (Song and Mittal, 2021).
Then such modified entropy ME(f(z),y) is pre-
sented as:

ME(f(x),y) = — (1= f(z)y)log (f(z)y)
=) f(@)ilog (1 - f(x);)
7 17

The adversary determines an input data as a mem-

ber if Eqn. is smaller than the preset class-
related threshold—7, for class y. The attack
Mytente ([, y) is defined as:

Mutente (f52,y) = IME(f(2),y) < y) (18)

B Analysis on Feed-Forward Networks

B.1 Analysis on Feed-Forward Networks: A
simple layer with activation

In this case, f(z) = w -z, g(z) = uo(w9z) . In
[REF], they use o as ReLU activation function, we
have w = o(w) — o(—w). So that the a single
ReLU neuron can be written as:

¥ = o (wzx) =0 (o(wz) —o(—wzx)) (19)

On the other hand, this neuron can be present by
a width m two layer network with a pruning matrix
p* for the first layer as:

z* — uo (p ©wir) (20)

we define wT
min{0,w}, wh +w~
and 20 we have:

max{0,w}, w~
= w9. Combine Eq. 19

¥ = uo (U (p ® W+.Z‘) -0 (p ® —w_ac))
(21)
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Base on Theorem 2, when n > Clog%, there exist
a pattern of w, such that, with probability 1 — €/2,

vwl €[0,1],3p € 0,1,
(22)

s.t. |w —uo(pO@wh)| < e/2

Similarly, we have w, such that, with probability
1—¢/2,

vwl €[0,1),3p € 0,17,

(23)

st. lw —uoc(poOw)| <e€/2

so combine Eq.36 and 23, we have:

sup ‘wfa: —uw(p® WQ?)‘

<

< sup ’a(wf)x —uo(p® W+$)‘ +
sup ‘J(wf):n —u(p® w‘m)‘

<e€/2+€/2
<e

(24)

B.2 Analysis on Feed-Forward Networks: a
Neuron

In this case, f(r) = w/x, g(z) = uo(wx) and

9(z) = uo(p © wx)

sup ‘fo —u(p® wx)‘
m
TR

m
< SUPZ ‘wi T — o (p; © Wix;)
=1

< sup

pz ® szz)> ‘

(25)

m
< Z sup ‘wlfacZ —wo(p; © W;x;)
i—1
€
m *  —
m

ININ

€

’a(wf)x —o(—w)z —uo(pOow'z) —uo(p ©w )



B.3 Analysis on Feed-Forward Networks: a
Layer

In this case, f(z) = W/x, and g(z) =

and g(x) = uo(p © W9x)

uo(W9x),

sup ‘fo —uo(p® ng)‘

kK m
< sup Z Z (w i — ;o (pj; © Wj,iﬂfz‘))
j=1 =1
kK m
< SUPZ Z ’wjflitz —wo(pji © Wj,iz;)
j=1i=1
kK m
< Z Z sup ‘w i — W0 (P © Wjix;)
j=1 =1
€
<k-m-—
- mk
<e

(26)
B.4 The analysis in Entire Feed-Forward
Networks

For general case , f(x) is defined as Eq.3, g(z) is
defined as Eq.4. so with the probability over 1 — ¢,
we have:

sup || f(z) — g(z)]

= [|[Wnx, — Pap, © WY, X80 (Pop—1 ©x35, )|

< [[Wax, — Wixj || +
|Wnx§ — Pa, © WY x%0

< flxn — x4+

— P2 O WY x90 (P21 ©x3,_4)||

(PQTl—l © Xgn—l) H

(27)
C MIA formulation

For the target machine learning model, we con-
sider the classification model in this work. Let
f denotes the target classification model, x de-
notes a data point, and f(x) denotes the output
of f ondata z. f(x) is a one-hot vector of proba-
bilities of x belonging to k classes. We consider
the MIA problems in a black-box condition, which
means the adversary can not access the classifica-
tion model’s parameters but can only observe the
input and output of the classification model. We
assume that the adversary has access to some data
records from the training set and the predictions
from the black-box DNN target model. Based on
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the difference between the model’s prediction on
the training dataset and the non-training dataset,
the adversary can determine whether a data record
belongs to the model’s training dataset or not. We
use f4 to denote the adversarial inference model
fa:xzxyx f(x) — [0,1]. fa takes the feature
of the data z, the label of the data vy, and the predic-
tion of the classification model f(x) as inputs. f4
outputs the probability of data (z, y) belonging to
the training set D or the non-training set D’. The
probability distributions of samples in D and D’
are Pp and Ppr, respectively. The gain function
of the inference model f given the classification
model f can be written as:

Gs(fa) :(%y%ENPD[IOg(fA(xaié/’f(x)))]
+ (Iyy)ﬂile [log(1 = fa(z,y, f(x)))]

(28)
The first expectation computes the inference
model’s accuracy in predicting training data
(members), and the second expectation computes
the accuracy of the inference model on predicting
non-training data (non-members). The underline
probability Pp and Ppr is normally not known.
The empirical gain can be calculated by simply
sampling data from the training set and validation
set. Intuitively, weight pruning can prevent
over-fitting. Thus it will have a smaller d.

According to (Nasr et al., 2018), we rewrite the
gain function of the inference model in the form of
probability distribution:

Gy(fa) =
/ Pp (. 9)ps () log(fa( y. f(x))+

Pp(x,y)py(f(x))log(1 = fa(z,y, f(x))]dzdy
(29)

where D is the training set and D’ is the non-
training set. py and p’f are the probability distri-
bution of the classification model f’s output for
training data and non-training data.

For a given classification model f and data sam-
pled from a known probability distribution, the
optimal determination solution for the inference
model f4 is (Goodfellow et al., 2014; Nasr et al.,
2018):

ps(f(x))
pr(f(@)) + P (f(2")

Therefore, by substituting f7 in the Equation 28,

fa(@,y, f(z)) = (30)



the gain function of f7 can be written as:
Gy(f4)
= E [log(

(z,y)~Pp

ps(f(x))
pr(f(@)) + 0} (f(2))

ps(f(z)) )
pr(f(2) + 1} (f(z))

—log(4) + 2 JS(ps (f())llp}y(f(x)))

Where  JS(ps(f(2))llps(f(x))) is  the
Jensen—Shannon divergence between the two

distributions. Since JS(py(f(2))||p}(f(x))) is
always non-negative and equals O if and only
if pr(f(z)) = p}(f(2')), the global minimum
value that G'z(f}) can possibly have is -log(4) if
and only if py(f(z)) = p}(f(2')) (Goodfellow
et al., 2014). This means that the prediction of
classification model f for both the training set
and non-training set has the same probability
distribution. In this case, the attack fails in the
sense the attacker can do no better than a random
guess. We use d to represent the Jensen—Shannon
divergence JS(ps(f(z))[|p)s(f(z))) between the
probability distributions of f’s outputs for the
training set and non-training set. The larger d is,
the higher the maximum gain of the reference
model is. In other words, the more vulnerable the
classification model is. Thus, any method that
reduces d can reduce the attack success rate of the
MIA.

)+

(D
E

log(1 —
(w,y)NpD/[ 8l

D Neural Network based Membership
Inference attack models setup

The attack classifier takes two pieces of informa-
tion as input. One is the unsorted confidence score
vector, and the other one is the label of the input
data that is one hot encoded (all elements except
the one that corresponds to the label index are 0).
The classifier consists of three fully connected sub-
networks. The one operates on the confidence score
vectors has three layers with size 1024,512 and 64.
One network with two layers with 512 and 64 neu-
rons works on the label. The third network is the
combined network that takes the outputs of the two
networks as a concatenate input and has five layers
with sizes 512,256,128,64 and 1. The final output
will predict whether the input belongs to the train-
set or not with a probability (larger than 0.5 will
count as a member). We use the ReLu activation
function for the network except for the final out-
put layer with the sigmoid activation function. We
train the attack classifier with Adam optimizer and
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mean squared error (MSE) criterion for a total of
300 epochs. To better generate the model, we set
the initial learning rate to 0.001 and decays by 0.1
in the 30th epoch.

E Gain function

According to (Nasr et al., 2018), we rewrite the
gain function of the inference model in the form of
probability distribution:

Gy(fa) =
/ [Po (. 9)ps (£ (2)) log(Fa(e y. f(x))+
€,y

Pp/(z,y)py(f(x))log(1 — fa(z,y, f(x))]dwdy
(32)
where D is the training set and D’ is the non-
training set. py and p’f are the probability distri-
bution of the classification model f’s output for
training data and non-training data.

For a given classification model f and data sam-
pled from a known probability distribution, the
optimal determination solution for the inference
model f4 is (Goodfellow et al., 2014; Nasr et al.,
2018):

py(f(x))
py(f(2)) + P (f(2))

F The analysis in self-attention layer: a
simple case

falz,y, f(z))

(33)

the self-attention layer can be present as:

T

Vv (dk)

Where Q = W9, K = WKz, V = WV Here,
we start from a simple example. Consider a model
f(z) with only one self-attention layer, when the

Z = softmax( 4 (34)

token size of input x is 1, softmazx( QZT)) =1,
k
we have
flz)=wVz (35)
consider g(z) = (Zle wf) x. and a pruning

vector p = (p1,p2,-..,pq). Base on Theorem 2,
when d > Clog4/e, there exist a pattern of piw;‘-’ ,
such that, with probability 1 — €,

Vw? € [-1,1],3p; € {0,1},

d 36
s.t. WV—(Zpiwf) (30)
=1

<€




