
Exploration and Defense of Membership Inference Attacks in Natural
Language Processing

Anonymous ACL submission

Abstract

The risk posed by Membership Inference At-001
tack (MIA) to deep learning models for Com-002
puter Vision tasks is well known, but MIA has003
not been addressed or explored fully in the Nat-004
ural Language Processing (NLP) domain. In005
this work, we analyze the security risk posed006
by MIA to NLP models. We show that NLP007
models are actually at greater risk to MIA than008
models trained on Computer Vision datasets.009
This includes as much as an 8.04% increase in010
attack success rate on NLP models. Based on011
these findings, We proposed a novel defense012
algorithm Gap score Regularization Integrated013
Pruning (GRIP), which can prevent NLP mod-014
els privacy from MIA, and achieve competitive015
testing accuracy. Our GRIP’s experimental re-016
sults show that the MIA success rate decreases017
by 31.25% and 6.25% compared to the de-018
fenseless model and differential privacy (DP).019

1 Introduction020

As the global machine learning market grows, Ma-021

chine Learning as a Service (MLaaS) (Ribeiro022

et al., 2015) is gaining increasing popularity from023

cloud computing providers such as Amazon (Kur-024

niawan, 2018), Microsoft (Gollob, 2015), and025

Google (Ravulavaru, 2018). Using black-box in-026

terfaces, MLaaS allows users to upload data easily,027

leverage powerful large-scale DNNs, and deploy028

analytic services (Truex et al., 2019).029

Examples of MLaaS in NLP include companies030

(as well as individuals) putting their data in deep031

learning models for speech recognition, word sense032

disambiguation, sentiment analysis and other tasks.033

In parallel, deep learning has also been applied to034

achieve state-of-the-art or near state-of-the-art re-035

sults on Computer Vision (CV) tasks (Dai et al.,036

2021; Zoph et al., 2020; Ghiasi et al., 2021). CV037

models have been shown to suffer from a privacy038

leakage attack (see Figure 1) known as Member-039

ship Inference Attack (MIA). From these observa-040

tions several important questions arise.041
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Figure 1: (a) MIA in NLP. (b) Our proposed method
against MIA: Gap score Regularization Integrated
Pruning (GRIP).

1. Are NLP models vulnerable to MIA attacks 042

like CV models? 043

2. What makes NLP models more vulnerable 044

than CV models to MIA? 045

3. What can be done to defend against MIA in 046

the NLP domain? 047

We carry out a thorough literature search and 048

find that these lack an in-depth investigation. These 049

are pertinent questions to the future security and 050

development of deep learning for NLP. These are 051

precisely the questions we seek to answer in paper. 052

To answer the first question, we experiment with 053

neural network MIAs and metric based MIAs from 054

previous works on NLP classification tasks. We 055

find that the privacy risk of membership infer- 056

ence is severe for NLP models. As shown in Ta- 057

ble 1, compared to general CV models, neural net- 058

work(NN) MIAs exhibit higher attack capabilities 059

in NLP models. Difference arise in MIA between 060

the CV and NLP domains due to a variety of issues 061

such as overfitting, model complexity and data di- 062

versity, which we analyze and discuss in depth later 063

in the paper. Due to the severity of MIA in NLP, 064

the next natural question in our investigation is how 065

to defend against this threat. 066
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We propose a novel defense algorithm, Gap067

score Regularization Integrated Pruning (GRIP)068

that is optimized by finding a sub-network from069

the original over-parameterized NLP model (see070

Figure 1). GRIP can prevent privacy leakage from071

MIA and achieves similar accuracy to the original072

NLP model. As a free lunch, GRIP can also reduce073

the model storage and the computation overhead.074

In summary, we make the following contributions.075

1. Comprehensive MIA Analysis in the NLP076

Domain: We compare the MIAs on NLP vs.077

MIAs on CV, and investigate the unique cases078

of MIAs in NLP. We also formulate the gain079

of the MIAs quantitatively.080

2. Novel MIA Defense for NLP Models: We081

develop and experiment with a new MIA de-082

fense, that works across all NLP datasets that083

we studied in this paper. Our Gap score084

Regularization Integrated Pruning reduces the085

attack success rate of MIA by as much as086

31.25% compared to undefended models and087

differential privacy.088

2 Related Work089

2.1 Pre-trained Models in NLP090

Pre-trained models in NLP are trained on large091

amount of unsupervised text datasets to extract con-092

textual embeddings for different NLP tasks. The093

pre-trained models, such as BERT (Devlin et al.,094

2019), GPT-2 and RoBERTa, are able to learn uni-095

versal language representations and can be used for096

downstream NLP tasks. Pre-training can help users097

avoid training the model from scratch so that they098

can build NLP applications more efficiently.099

2.2 Membership Inference Attack100

The membership inference attack (MIA) attempts101

to determine whether a given data is from the train-102

ing dataset or not for a target model (Shokri et al.,103

2017; Song and Mittal, 2021; Song et al., 2019;104

Yeom et al., 2018; Salem et al., 2018). This attack105

can lead to serious privacy problems that leak the106

individual’s private information like the health data,107

financial state.108

Neural Network(NN) MIAs An attacker can build109

a binary classifier consisting of neural network110

models (Nasr et al., 2018, 2019) using the predic-111

tion vector of the target model and the one-hot112

encoded ground truth label as input to identify the113

membership of given data samples. NN MIAs can114

NLP CV
Model
Dataset

NN
MIA

Metric
MIA

Model
Dataset

NN
MIA

Metric
MIA

BERT
RTE 84.37% 69.00%

Alexnet
CIFAR10 71.70% 66.80%

BERT
MRPC 71.88% 59.10%

MobilenetV2
CIFAR100 62.75% 55.01%

BERT
CoLA 68.75% 63.70%

Resnet18
CIFAR100 69.85% 73.02%

BERT
SST2 73.44% 58.50%

Vgg16
CIFAR100 61.99% 68.24%

Mean 74.61% 62.58% Mean 66.57% 65.77%

Table 1: Membership inference attack accuracy for dif-
ferent models and datasets in NLP and CV domain.

leverage the complexity of the neural network to 115

learn more about the differences between the train- 116

ing and test data. 117

Metric MIAs Unlike NN attacks, metric-based at- 118

tacks directly use the prediction vectors to compute 119

customized metrics as a way to infer membership or 120

non-membership in comparison with preset thresh- 121

olds. Metric MIAs are simpler and less compu- 122

tationally intensive compared to NN MIAs. We 123

follow the state-of-the-art works(Song and Mittal, 124

2021; Shejwalkar et al., 2021) and explore on four 125

metric MIAs based on correctness, confidence, en- 126

tropy and modified entropy. Correctness-based at- 127

tack is a simple baseline for MIA. It infers a given 128

data sample as a member if the prediction is cor- 129

rect and can be calculated using the accuracy gap 130

between the training and test data. The detailed ex- 131

planations of these four metric MIAs can be found 132

in Appendix A. 133

2.3 Current Defense Mechanism 134

There are several mechanisms that have been de- 135

veloped to address MIA. Differential privacy (DP) 136

(Dwork, 2006, 2008) is a major privacy-preserving 137

mechanism against general inference attack. It is 138

based on adding noises into gradients or objec- 139

tive functions when training the model and has 140

been applied in different machine learning mod- 141

els (Abadi et al., 2016; Zhang et al., 2019; Rahman 142

et al., 2018). Another mechanism to address MIA 143

is adding regularization during the model training. 144

Existing regularization methods are mainly pro- 145

posed to reduce the overfitting problem, which is 146

one of the main causes of MIAs (Leino and Fredrik- 147

son, 2020; Shokri et al., 2017). However, in NLP 148

classification tasks, due to the complexity of the 149

models and the limited resources of the dataset, it is 150

common to load large pre-trained NLP models with 151

private training data and get the models with only a 152

few epochs of fine-tuning. The overfitting problem 153
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may not be as severe as in the CV domain. Further-154

more, the specially designed adversarial regulariza-155

tion(Nasr et al., 2018) is not effective enough even156

on models trained from scratch (Song and Mittal,157

2021; Nasr et al., 2019) as it doesn’t provide an158

explicit objective for the training process. As a159

result, these regularization methods are difficult160

to be incorporated as feasible defenses for NLP161

model training. In our paper, we choose DP train-162

ing to compare the effectiveness of defense against163

MIA in NLP classification tasks as it is favorable in164

transfer learning with provable privacy guarantees.165

2.4 Weight Pruning166

Weight pruning techniques have traditionally been167

used to increase model performance (i.e., speed up168

inference time) and reduce the model size (save169

space) while still maintaining high fidelity (high170

prediction accuracy) (Han et al., 2015; Augasta and171

Kathirvalavakumar, 2013). State-of-the-art DNNs172

contain multiple cascaded layers and millions of173

parameters (i.e., weights) for the entire model (He174

et al., 2016; Vaswani et al., 2017).175

In natural language processing, irregular magni-176

tude weight pruning (IMWP) has been evaluated177

on BERT, where 30%-40% weights with a mag-178

nitude close to zero are set to be zero (Gordon179

et al., 2020). Irregular reweighted proximal prun-180

ing (IRPP) (Guo et al., 2019) adopts iteratively181

reweighted l1 minimization with the proximal al-182

gorithm and achieves 59.3% more overall pruning183

ratio than irregular magnitude weight pruning with-184

out accuracy loss. (Dalvi et al., 2020) investigates185

the model general redundancy and task-specific re-186

dundancy on BERT and XLNet (Yang et al., 2019).187

3 Membership Inference Attack in the188

NLP Domain189

Even though MIA has been comprehensively stud-190

ied in computer vision, the same cannot be said191

of NLP. This raises a pertinent question, how vul-192

nerable are NLP models to Membership Inference193

Attacks? This is exactly the question that our paper194

seeks to explore and answer.195

We consider the MIA problems in the context196

of a black-box adversary. This means the attacker197

cannot access the classification model’s parameters198

but can only observe the output of the classification199

model. We assume that the adversary has access to200

part of the data records from the training and testing201

set and the predictions from the black-box DNN202

target model. Based on the difference between the203
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Figure 2: NN attack and model accuracy gap on differ-
ent datasets.

model’s prediction on the training dataset and the 204

non-training dataset, the adversary aims to deter- 205

mine whether a data record belongs to the model’s 206

training dataset or not. 207

3.1 MIAs on NLP vs. MIAs on CV 208

We summarize the best attack accuracy of NN 209

MIAs and metric MIAs for different classification 210

tasks in NLP and CV domains in Table 1. The NLP 211

models and all MIA experiments are conducted ac- 212

cording to the settings in Section 5.1, and the CV 213

models are trained based on the conventional set- 214

tings to achieve the standard performance. Our first 215

set of results show a unique difference between 216

models trained on CV tasks and models trained 217

on NLP tasks. Specifically in Table 1, we show 218

that privacy leakage in the NLP classification tasks 219

is much larger than in CV tasks. The NLP tasks’ 220

average NN attack is almost 8% higher than that 221

for CV tasks. In particular, the BERT-RTE task 222

suffers 84.37% of NN attacks, which is at least 223

12.67% more than all CV tasks. Besides, we can 224

observe that unlike in the CV domain, NN MIAs do 225

not perform consistently with metric MIAs in NLP 226

models. Even when the overfitting is not severe and 227

the metric MIAs are weak, they still show superior 228

attack ability with high accuracy in all cases. 229

3.2 Unique Causes of MIAs in the NLP 230

As we demonstrated above, the MIA problem is in- 231

deed more pronounced for NLP tasks. Specifically, 232

we investigated and analyzed the uniqueness of the 233

NLP classification models and three main reasons 234

behind this trend. 235
236

(1) Overfitting. Overfitted models perform much 237

better on training data than on non-training data 238

(i.e. validation or test data) and it is one of the 239

main factors causing privacy leakage that can lead 240
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to MIA. In NLP, overfitting can also occur. Evi-241

dence of this claim can be seen in Figure 2, where242

we show the accuracy gap between training and243

testing data for a BERT model trained on differ-244

ent NLP datasets. We can see that the NN attack245

is aggressive when the accuracy gap is very large,246

as exhibited by the RTE dataset, and this perfor-247

mance is consistent with previous studies in the248

CV field. However, MIAs show more robustness249

on the MRPC and SST-2 datasets when the over-250

fitting is not so significant. Analyzed along with251

Table 1, the metric MIAs decrease when the accu-252

racy gap is small, but the NN attack remains strong.253

This suggests that there are more causes for pri-254

vacy breaches in the NLP models. In the following255

subsections, we discuss two other factors that may256

cause the privacy risk of MIA in NLP classification257

tasks, which are the model complexity and data258

diversity that are different from those of CV tasks259

in NLP classification tasks.260
261

(2) Model Complexity. NLP classification models262

are often over-parameterized with high complexity.263

For example, the BERT model contains 12 layers,264

each with about 7 million parameters. This on the265

one hand gives them the ability to learn efficiently266

from hard NLP tasks, but on the other hand also267

leads to the possibility that they may have an unnec-268

essarily high volume to remember noise or details269

of the training dataset.270
271

(3) Data Diversity. There are many properties on272

the dataset that may boost the performance of MIA.273

First, the number of classes in NLP classification274

tasks is limited, e.g., most of the GLUE datasets are275

binary or ternary classification tasks, while there276

are 10 to 1000 classification tasks in the CV do-277

main. Second, the size of both training and non-278

training data in NLP tasks can be limited. For279

example, RTE has only 2490 training data, which280

is 20 times less than MNIST. Due to the limited281

amount of training data and categories, the learned282

distribution of the dataset may be less representa-283

tive and induced. Therefore, MIAs can achieve284

high accuracy even if the model is not overfitted.285

4 How to Prevent MIA in NLP?286

4.1 Defense Strategies Formulation287

Based on the analysis in Section 3, we designed288

our defense strategies by answering the following289

question. Since overfitting and model complexity290

are the two main reasons for MIA, can we find a291

sub-network from the original over-parameterized 292

NLP model that can prevent privacy leakage from 293

MIA and can achieve competitive accuracy with 294

the original NLP model? 295

In order to propose an effective defense method, 296

we have two ultimate goals. One is to prevent the 297

privacy leakage of the model and the other is to 298

guarantee the utility of the model. 299

The first goal of preventing privacy leakage is 300

to find the target model f that can minimize the 301

gain of the adversary. We first reformulate the 302

gain function to quantitatively present how much 303

privacy leakage information the adversary can get. 304

According to (Nasr et al., 2018; Goodfellow et al., 305

2014), we rewrite the gain function of the adversary 306

model in the form of probability distribution: 307

Gf (fA)

=

∫
x,y

[PD(x, y)pf (f(x)) log(fA(x, y, f(x)))+

PD′(x, y)p′f (f(x)) log(1− fA(x, y, f(x))]dxdy

= −log(4) + 2 · JS(pf (f(x))||p′f (f(x)))

(1) 308

Where fA is the adversary model. D is the training 309

set and D′ is the non-training set. pf and p′f are the 310

probability distribution of the classification model 311

f ’s output for training data and non-training data. 312

JS(pf (f(x))||p′f (f(x))) is the Jensen–Shannon 313

divergence between the two distributions and it is 314

always non-negative. The global minimum value 315

thatGf (fA) can possibly have is -log(4) if and only 316

if: 317
pf (f(x)) = p′f (f(x′)) (2) 318

This means that the prediction of classification 319

model f has the same probability distribution for 320

both the training set and non-training set. In this 321

case, the attack fails in the sense the attacker can 322

do no better than a random guess. 323

Then, the second goal is to ensure that the target 324

model f ’s prediction accuracy. Suppose that the 325

target NLP network f(x) as: 326

f(x) = Efn ◦E
f
n−1 ◦ ... ◦E

f
1(M(x))) (3) 327

and we define the original NLP network g(x) as: 328

g(x) = Egn ◦E
g
n−1 ◦ ... ◦E

g
1(M(x))) (4) 329

where Efi , Egj is the encoder block. Each build- 330

ing block contains a self-attention layer and a fully 331

connected feed-forward network. 332

The problem can be formulated as finding a sub- 333

network ĝ(x) that has competitive prediction accu- 334

racy with the original network g(x). 335
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We propose that the answer to the problem could336

be that we prune the model parameters as well as337

use the largest prediction gap of all predictions as338

the privacy objective and reduce the variance of its339

output while minimizing the classification loss.340

4.2 Pruned Network Prediction Analysis341

We first analysis and ensure the pruned model can342

still maintain the utility. A pruned network ĝ(x)343

can be presented as :344

ĝ(x) = Êgn ◦ Ê
g
n−1 ◦ ... ◦ Ê

g
1(E(x))) (5)345

where Pi is the pruning matrix in i-th layer.346

Corollary 1. For every network f defined in Eq.347

3 with depth l and ∀i ∈ {1, 2, . . . , n}. Consider348

g defined in Eq.4 as a randomly initialized neu-349

ral network, and width poly(d, n,m, 1/ε, log1/δ),350

where d is input size, n is number of layers in f ,351

m is the maximum number of neurons in a layer.352

For the weights in Egi , the weight initialization dis-353

tribution belongs to uniform distribution in range354

[-1,1]. Then with probability at least 1− δ there is355

a weight-pruned sub-network ĝ of g such that:356

sup
x∈χ,‖W‖≤1

‖f(x)− ĝ(x)‖ ≤ ε (6)357

Based on Corollary 1, we know that for every358

bounded distribution and every target network with359

bounded weights, there is a sub-network with an360

accuracy that is close to the original sufficiently361

over-parameterized neural networks.362

4.2.1 Analysis on Feed-forward Linear363

Network364

In this case, f(x) = W · x , and g(x) =365 (∑d
i=1Wi

)
x. Corollary 2. Let W∗

1, ...,W
∗
n be-366

longs to i.i.d. Uniform distribution over [-1,1],367

where n ≥ C · log 2
δ ,where δ ≤ min{1, ε}. Then,368

with probability at least 1-δ, we have369

370
∃S ⊂ {1, 2, ..., n},∀W ∈ [−0.5, 0.5],

s.t

∣∣∣∣∣W −
∑
i∈S

W∗
i

∣∣∣∣∣ ≤ ε (7)371

372

Lueker et al.(Lueker, 1998) proposed this theo-373

rem and had given a proof.374

4.2.2 The Analysis in Self-attention Layer:375

General case376

Consider a model f(x) with only one self-attention377

layer, when the token size is n, x = (x1, x2, ..., xn).378

let (h..)n×n = QKT√
(dk)

, then379

f(xi) = softmax((hi.)1×n)Vi

= (

∑
j e

hij∑
i

∑
j(e

hij )
)Vi

= (

∑
j e

hij∑
i

∑
j(e

hij )
)WVixi

= Whi.xi

(8) 380

Corollary 3 Let Wg
1, ...,W

g
d belongs to i.i.d. uni- 381

form distribution over [-1,1], where d ≥ Clog 2
δ , 382

where δ ≤ min{1, ε}. Then, with probability at 383

least 1-δ, we have 384

385∀ i ∈ {1, 2, ..., n},Wg
l ∈ [−1, 1],

∃ pl ∈ {0, 1},

s.t.

∣∣∣∣∣Whi − (
d∑
l=1

plW
g
l )

∣∣∣∣∣ < ε

(9) 386

387
4.3 Gap Score Analysis 388

To guard the privacy disclosure, our goal is to find 389

the target model f that minimizes the adversary’s 390

gain by adding a regularization term into the loss 391

function, we consider a problem as : 392

minimize L(f) + α · r(zmax − zmin) (10) 393

where r represents the regularization objective 394

function and α is the coefficient to tune the impact 395

between the training objective and privacy objec- 396

tive. To represent the gap score in the multi-class 397

classification case, we show 398

r(zmax − zmin) = zmax − zmin

s.t. zmax − zmin ∈ [0, 1]
(11) 399

so we have 400

α · r(zmax − zmin) ∈ [0, α] (12) 401

the update gradient can be calculated as: 402

OW =
∂L(W)

∂W
+ α · ∂r(z)

∂W

=
∂L(W)

∂W
+ α · ∂(zmax − zmin)

∂W

=
∂L(W)

∂W
+ α · (∂zmax

∂W
− ∂zmin

∂W
)

(13) 403

In this case, when we update the model by min- 404

imizing the loss function, the gap score is also 405

minimized. So the distribution of pf (f(x)) and 406

p′f (f(x′)) are more similar than each other, i.e., 407

JS(pf (f(x))||p′f (f(x))) decreases and is closer 408

to 0. Thus, the adversary has minimum gain for the 409

trained model and privacy leakage is prevented. 410
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Algorithm 1 The Process of GRIP
1: for epoch in Epochs do
2: Get a random mini-batch S.
3: for i in Iterations: do
4: for Encoder k : do
5: for self-attention layer: do
6: Pruned {WQ} to {P s

ik �WQ}
7: Pruned {WK} to {P s

ik �WK}
8: end for
9: for feed-forward network: do

10: Pruned {W} to {P fc
ik �W}

11: end for
12: end for
13: end for
14: Get {zmax} and {zmin}
15: Calculate r(zmax, zmin)
16: Update {W}, {WQ},{WK},{WV }
17: by minimizing L(f) + α · r(zmax − zmin)
18: end for
19: OUTPUT {W}, {WQ},{WK},{WV }

4.4 Proposed Method: GRIP411

We show our proposed method Gap score Regu-412

larization Integrated Pruning (GRIP) in Algorithm413

1. For a fixed NLP classification model f , we set414

the sparsity P = {P1, P2, ..., Pk} for k encoders,415

then we systematically prune the weights of each416

encoder in multiple iterations gradually, for both417

the self-attention layer and feed-forward network.418

When updating these weights, we minimize the419

loss function from Eq. 10 with the gap score regu-420

larization. The final model sparsity will be P .421

5 Proposed Defense Evaluation422

In this section, we apply our proposed to differ-423

ent NLP models with various datasets and tasks,424

mainly from two perspectives: the defense per-425

formance of our model and the computation cost426

benefit we obtain. All experiments are conducted427

on a server with Intel(R) Xeon(R) Gold 5218 (64428

virtual CPUs with 504 GB memory) and 8 NVIDIA429

Quadro RTX 6000 GPUs (24GB memory) by Py-430

Torch 1.5.1, Python 3.6, and CUDA 10.2.431

5.1 Experimental Setup432

Datasets. For the proposed sparse progressive433

distillation, we conduct experiments on the Gen-434

eral Language Understanding Evaluation (GLUE)435

benchmark (Wang et al., 2019), which is grouped436

into three categories of natural language under-437

standing tasks (single-sentence tasks, similarity438

matching tasks, and natural language inference439

tasks) according to the purpose of tasks and dif-440

ficulty level of datasets.441

Models. We use the fine-tuned BERTBASE as442

a teacher and also initialize the student with the 443

fine-tuned BERTBASE. Specifically, we first fine- 444

tune the pre-train BERTBASE on four GLUE tasks 445

with four epochs, including SST-2, CoLA, MRPC, 446

and RTE. We select the learning rate with best per- 447

formance from {2e−5, 3e−5, 4e−5, 5e−5}. Batch 448

size and maximum sequence length are set as 32 449

and 128, respectively. 450

Membership Inference Attacks Setup. To 451

evaluate the neural network (NN) MIAs, we follow 452

the model structure and setup in (Nasr et al., 2018) 453

to construct and train the attack classifier. The de- 454

tailed setting is described in Appendix D. For the 455

metric MIAs evaluation, we adopt four metric at- 456

tacks following the (Song and Mittal, 2021) and 457

show the best attack accuracy in the tables. 458

Defense Training Setup. In our evaluation, we 459

conduct the canonical implementation of training a 460

model with differential privacy (DP)(Abadi et al., 461

2016) and the associated analysis in Pytorch imple- 462

mentation from Opacus (Yousefpour et al., 2021) 463

library. We adopt the DP training into the origi- 464

nal fine-tuning process and set the clipping bound 465

to be 1.0. We find that the model is very hard to 466

converge, so we set a large privacy budget with a 467

total training epoch of 6 and report the best testing 468

accuracy results in Table 2. 469

In our GRIP defense, we give different sparsity 470

for every encoder, in every iteration, we gradually 471

prune weight for both self-attention layers and feed- 472

forward networks, then we will reach the sparsity 473

after all iterations. In detail, we use sparsity 40% 474

for CoLA and sparsity 60% pruning rate for the 475

other datasets on the last 6 encoders and α = 1 476

for all datasets on the pre-trained BERT model 477

with 4 to 12 fine-tuning epochs and record the best 478

classification accuracy results. 479

5.2 Results and Analysis 480

Table 2 summaries the classification accuracy and 481

best attack accuracy for NN and metric MIAs 482

on the undefended models, deferentially private 483

trained models and our GRIP fine-tuned models. 484

GRIP can significantly reduce the member- 485

ship inference risks. As shown in Table 2, our 486

defense leads to a significant reduction in privacy 487

risks in both NN and metric MIAs. For all eval- 488

uated datasets, we can control the MIA accuracy 489

with neural network to ∼ 50%, which is close to a 490

random guess, compared to the much higher attack 491

accuracy on the undefended models from 60.94% 492
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RTE MRPC CoLA SST-2
Defense None DP GRIP None DP GRIP None DP GRIP None DP GRIP
Testing

Accuracy
70.28% 53.79% 61.01% 84.39% 68.38% 81.62% 81.09% 71.80% 81.20% 92.89% 81.77% 91.17%

Accuracy
Gap

28.11% 2.75% 12.28% 13.62% 0.93% 5.27% 15.53% 1.00% 9.00% 6.48% 1.31% 2.83%

NN
MIA

84.38% 59.38% 53.13% 71.88% 53.13% 53.13% 60.94% 57.81% 50.00% 73.44% 60.94% 57.81%

Metric
MIA

69.00% 54.20% 57.80% 59.10% 52.00% 53.70% 63.70% 51.50% 56.90% 58.50% 55.30% 52.50%

Table 2: Comparison of classification accuracy and membership attack accuracy between regular training, differ-
ential private training and GRIP training model

(CoLA) to 84.38% (RTE). Our defense can also493

outperform the DP training on the NN MIAs. For494

metric MIAs, although the attack accuracy with our495

GRIP is not always close to random guesses, we496

can still observe a 5 ∼ 10% decrease in accuracy497

even when the original MIA risk is not that high as498

the metric MIAs are mitigated when the accuracy499

gap between training and test data is not large, and500

overfitting is not obvious.501

GRIP achieves privacy protection with a502

small cost on the utility loss. With all the benefits503

of the privacy defense from our proposed methods,504

the utility loss is limited in a small range at most505

times. Our GRIP training maintains the classifi-506

cation accuracy at the same level on CoLA and507

SST-2 dataset and causes a small 2.77% accuracy508

decrease on MRPC. Defense on the RTE dataset509

leads to 10% utility loss, but it is a very small510

dataset with limited training and testing data. The511

model is unstable with random separation on the512

training and testing data in each time of training513

and attack. Even in the worst cases, our approach514

can still largely outperform DP training as it leads515

to 10 ∼ 20% utility loss on all the datasets with516

very limited privacy protection on the NN MIAs.517

This is a case where the privacy budget is large and518

the model utility will be further reduced when the519

theoretical guarantees of DP training are obtained.520

GRIP have significantly model storage and521

computation reduction. Tabel 3 summaries the522

weights reduction ratio of GRIP fine-tuned model523

on different datasets. Except for the benefit of524

privacy defense, our GRIP has an additional ad-525

vantage on model storage and computations. Table526

3 show that our GRIP has over 1.18 × ratio over527

different datasets.528

In summary, we have the following analysis:529

1. Reducing the overfitting of the NLP clas-530

sification problem does not completely eliminate531

the membership privacy risk, which is consistent532

with the observation in Section 3.1. Taking the533

Data Model Weights (#)
Weights after
prunning (#)

Weights
reduction ratio

RTE BERT 110 M 77 M 1.30 ×
MRPC BERT 110 M 77 M 1.30 ×
CoLA BERT 110 M 88 M 1.18 ×
SST-2 BRET 110 M 77 M 1.30 ×

Table 3: GRIP pruning ratios for different tasks.

DP-trained model as an example, it successfully 534

reduces overfitting as the accuracy gap is only 535

0.93 ∼ 2.75% on all datasets, which helps the 536

models limit the metric MIAs to 55%. However, 537

the NN MIAs remain at 60%, indicating that there 538

is still privacy leakage on the poor utility models. 539

2. Our GRIP works during training for both con- 540

straint of output prediction and reduction of model 541

complexity of intermediate structures. As a result, 542

we not only reduce model overfitting but also yield 543

similar performance in terms of confidence and ro- 544

bustness for both training and test samples. For 545

‘free lunch’, we also reduce the model storage and 546

the computations. Thus, our defenses can effec- 547

tively resist MIAs and maintain good model utility. 548

5.3 Hyperparameter Analysis 549

Our proposed GRIP approach integrated with gap 550

score regularization and pruning can successfully 551

limit the maximum gain of the adversary model 552

with a great privacy-utility trade-off. In this sub- 553

section, we further investigate the contribution of 554

the proposed pruning and the proposed gap score 555

regularization, respectively. 556

We first show the classification accuracy and NN 557

MIA results on the four datasets using proposed 558

pruning and proposed gap score regularization in 559

Table 4. Compared to the baseline model results 560

in Table 2, we can observe that each component 561

of the proposed method can help reduce the at- 562

tack accuracy with some utility loss. The proposed 563

pruning methods achieve at most 31.25% (RTE) 564

and on average 19.14% attack accuracy decrease 565

for NN MIA with 0.23 ∼ 7.23% utility loss. The 566

gap score regularization achieves better defense 567
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Defense Proposed Pruning Gap Score Regularization

Accuracy
Testing

Accuracy
NN
MIA

Testing
Accuracy

NN
MIA

RTE 63.05% 62.50% 58.12% 59.37%
MRPC 81.86% 65.63% 77.21% 57.81%
CoLA 80.50% 59.37% 80.70% 51.56%
SST-2 92.66% 67.18% 93.46% 57.81%

Table 4: Classification accuracy and NN MI accuracy
on regular model with MIA-Pruning, and gap score reg-
ularization.
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Figure 3: The effects of different pruning ratio on
BERT for MRPC task.

against MIAs (16.02% decrease on average) while568

leading to a little bit more classification accuracy569

loss (0 ∼ 12.16%). In the following part of the570

subsection, we will demonstrate the effects of the571

individual proposed methods with more detailed572

ablation studies.573

5.3.1 Proposed Pruning Algorithm574

We investigate how our proposed pruning affects575

defense performance by pruning ratios. As shown576

in Figure 3, the attack accuracy of metric MIA de-577

creases along with the higher pruning ratio when578

the pruning ratio is over 70%. However, the at-579

tack accuracy of NN MIA presents a fluctuation580

pattern when varying the pruning ratio. It reaches581

the minimum value when the pruning ratio is 70%.582

5.3.2 Gap Score Regularization583

In order to show the effects of the gap score regu-584

larization on the classification accuracy and MIAs585

defense, we tune the hyperparameter α that con-586

trols the impact of the regularization in training on587

RTE dataset as shown in Figure 4. α trades off the588

utility and privacy. With the increase of alpha, the589

constraint on the gap score becomes tighter and590

the gap score of the final result becomes smaller.591

Hence, the accuracy gap and classification accuracy592

decrease while the model can better defend against593

NN and metric MIA. Specifically, alpha = 0.3 in594

Figure 4 shows the case when the constraint is not595
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Figure 4: Different α for gap score regularization on
RTE dataset.

large enough. The regularization starts to control 596

the output and shows defensiveness, and this effect 597

is first shown in a decrease in test accuracy, while 598

the training data accuracy remains close to 100% 599

and consequently the accuracy gap might increase. 600
601

Key takeaways: You may notice that our GRIP de- 602

fense achieves a much better privacy-utility trade- 603

off than using the proposed pruning or gap score 604

regularization alone. This is because GRIP is a 605

combinatorial approach that benefits from pruning 606

to derive a finer and sparser model structure that 607

can better learn the proposed regularization and 608

loss minimization during the fine-tuning process to 609

control the final prediction distributions. 610

6 Conclusion 611

In this work, we explore NN MIAs and metric 612

MIAs on NLP models. Our experiments show that 613

MIAs exhibit higher attack capabilities in NLP 614

models as compared to CV models. We further 615

analyze the uniqueness of MIA in NLP models and 616

develop a defense method GRIP that is based on 617

weight pruning and gap score regularization. Our 618

evaluations of the BERT model on RTE, MRPC, 619

CoLA, SST-2 datasets show that GRIP achieves 620

the privacy protection against MIAs with a substan- 621

tially smaller cost on the utility loss compared with 622

DP. The improvement comes from reduced over- 623

fitting and decreased model complexity leading to 624

similar performance in terms of model output for 625

both training and non-training samples. In addi- 626

tion, GRIP significantly reduces the model storage 627

and computation cost, e.g., it has approximately 628

1.30 × weight reduction ratio on RTE, MRPC, and 629

SST-2 datasets. Overall, our MIA analyses and pro- 630

posed defense, serve as an important step towards 631

developing efficient and privacy-preserving deep 632

learning models in NLP. 633
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A Metric MIAs 806

Correctness based MIA. This attack infers the 807

membership according to whether a given input 808

data x is classified correctly by the target model 809

f (Yeom et al., 2018). The intuition is that training 810

data are more likely to be correctly classified than 811

test data. The attackMcorr is defined as follows, 812

where I(·) indicates the indicator function. 813

Mcorr (f ;x, y) = I(argmax f(x) = y) (14) 814

Confidence based MIA. This attack determines 815

the membership of the input x by comparing the 816

most significant confidence score with the preset 817

threshold. It is intuitive that the prediction confi- 818

dence score f(x) for the training data should be 819

close to 1, while the prediction confidence for the 820

test data is usually lower. The attack is first de- 821

signed by (Salem et al., 2018) with a single thresh- 822

old for all classes. (Song and Mittal, 2021) further 823

improves it by applying class-wise thresholds to 824

minimize the effect of inter-class confidence dif- 825

ferences.The attack Mconf is defined as follows, 826

where τy represents the threshold for the class y. 827

Mconf(f ;x, y) = I(max f(x)y ≥ τy) (15) 828

Entropy based MIA. The entropy based MIA at- 829

tack is first presented by (Salem et al., 2018), then 830

followed by an enhanced version that uses the class- 831

wise threshold τy(Song and Mittal, 2021). It is 832

based on the fact that the prediction entropy of the 833

test set should be much larger than that of the train- 834

ing set. It identifies the input x as a member if the 835

prediction entropy is lower than the preset thresh- 836

old. The attackMentr(f ;x, y) can be expressed as: 837

838

Mentr(f ;x, y) = I(−
k∑
i=0

f(x)i log (f(x)i) ≤ τ̂y)

(16) 839

Here τ̂y denotes the threshold for class y, and k is 840

the number of output classes. 841
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Modified prediction entropy based MIA. (Song842

and Mittal, 2021) mentioned that prediction en-843

tropy attack has a major limitation that it does not844

contain any labeling information. As a result, only845

the confidence score is important in the calculation846

of the prediction entropy attack, without consider-847

ing the correctness of the prediction. Both a highly848

correct label with a score close to 1 and a totally849

wrong predict with an incorrect label score close to850

1 can lead to zero prediction entropy values. Mod-851

ified prediction entropy (Song and Mittal, 2021)852

fixes this issue by: 1) only correct predictions with853

high probability 1 can be calculated to 0, and 2)854

incorrect predictions with high confidence scores855

are calculated to infinity. (Song and Mittal, 2021).856

Then such modified entropy ME(f(x), y) is pre-857

sented as:858

ME(f(x), y) =− (1− f(x)y) log (f(x)y)

−
∑
i 6=y

f(x)i log (1− f(x)i)

(17)859

The adversary determines an input data as a mem-860

ber if Eqn. is smaller than the preset class-861

related threshold–τ̌y for class y. The attack862

MMentr(f ;x, y) is defined as:863

MMentr (f ;x, y) = I(ME(f(x), y) ≤ τ̌y) (18)864

B Analysis on Feed-Forward Networks865

B.1 Analysis on Feed-Forward Networks: A866

simple layer with activation867

In this case, f(x) = w · x, g(x) = uσ(wgx) . In868

[REF], they use σ as ReLU activation function, we869

have w = σ(w) − σ(−w). So that the a single870

ReLU neuron can be written as:871

x∗ 7→ σ (wx) = σ (σ(wx)− σ(−wx)) (19)872

On the other hand, this neuron can be present by873

a width m two layer network with a pruning matrix874

p∗ for the first layer as:875

x∗ 7→ uσ (p�wgx) (20)876

we define w+ = max{0,w}, w− =877

min{0,w}, w+ + w− = wg. Combine Eq. 19878

and 20 we have:879

x∗ 7→ uσ
(
σ
(
p�w+x

)
− σ

(
p�−w−x

))
(21)880

Base on Theorem 2, when n ≥ Clog 4
ε , there exist 881

a pattern of w, such that, with probability 1− ε/2, 882

∀wf ∈ [0, 1],∃ p ∈ 0, 1n,

s.t.
∣∣∣wf − uσ(p�w+)

∣∣∣ < ε/2
(22) 883

Similarly, we have w, such that, with probability 884

1− ε/2, 885

∀wf ∈ [0, 1],∃ p ∈ 0, 1n,

s.t.
∣∣∣wf − uσ(p�w−)

∣∣∣ < ε/2
(23) 886

so combine Eq.36 and 23, we have: 887

sup
∣∣∣wfx− uσ(p�wx)

∣∣∣
≤
∣∣∣σ(wf )x− σ(−wf )x− uσ(p�w+x)− uσ(p�w−x)

∣∣∣
≤ sup

∣∣∣σ(wf )x− uσ(p�w+x)
∣∣∣+

sup
∣∣∣σ(wf )x− uσ(p�w−x)

∣∣∣
≤ ε/2 + ε/2

≤ ε
(24)

888

B.2 Analysis on Feed-Forward Networks: a 889

Neuron 890

In this case, f(x) = wfx, g(x) = uσ(wx) and 891

ĝ(x) = uσ(p�wx) 892

sup
∣∣∣wfx− uσ(p�wx)

∣∣∣
≤ sup

∣∣∣∣∣
m∑
i=1

(
wfi xi − uiσ(pi �wixi)

)∣∣∣∣∣
≤ sup

m∑
i=1

∣∣∣wfi xi − uiσ(pi �wixi)
∣∣∣

≤
m∑
i=1

sup
∣∣∣wfi xi − uiσ(pi �wixi)

∣∣∣
≤ m · ε

m
≤ ε

(25) 893
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B.3 Analysis on Feed-Forward Networks: a894

Layer895

In this case,f(x) = Wfx, and g(x) = uσ(Wgx),896

and ĝ(x) = uσ(p�Wgx)897

sup
∣∣∣Wfx− uσ(p�Wgx)

∣∣∣
≤ sup

∣∣∣∣∣∣
k∑
j=1

m∑
i=1

(
wfj,ixi − uiσ(pj,i �wj,ixi)

)∣∣∣∣∣∣
≤ sup

k∑
j=1

m∑
i=1

∣∣∣wfj,ixi − uiσ(pj,i �wj,ixi)
∣∣∣

≤
k∑
j=1

m∑
i=1

sup
∣∣∣wfj,ixi − uiσ(pj,i �wj,ixi)

∣∣∣
≤ k ·m · ε

mk
≤ ε

(26)

898

B.4 The analysis in Entire Feed-Forward899

Networks900

For general case , f(x) is defined as Eq.3, g(x) is901

defined as Eq.4. so with the probability over 1− ε,902

we have:903

sup ‖f(x)− ĝ(x)‖
=
∥∥Wnxn −P2n �Wg

2nx
g
nσ(P2n−1 � xg2n−1)

∥∥
≤ ‖Wnxn −Wnx

g
n‖+∥∥Wnx

g
n −P2n �Wg

2nx
g
nσ(P2n−1 � xg2n−1)

∥∥
≤ ‖xn − xgn‖+∥∥Wnx

g
n −P2n �Wg

2nx
g
nσ(P2n−1 � xg2n−1)

∥∥
≤ ε/2 + ε/2

≤ ε
(27)

904

C MIA formulation905

For the target machine learning model, we con-906

sider the classification model in this work. Let907

f denotes the target classification model, x de-908

notes a data point, and f(x) denotes the output909

of f on data x. f(x) is a one-hot vector of proba-910

bilities of x belonging to k classes. We consider911

the MIA problems in a black-box condition, which912

means the adversary can not access the classifica-913

tion model’s parameters but can only observe the914

input and output of the classification model. We915

assume that the adversary has access to some data916

records from the training set and the predictions917

from the black-box DNN target model. Based on918

the difference between the model’s prediction on 919

the training dataset and the non-training dataset, 920

the adversary can determine whether a data record 921

belongs to the model’s training dataset or not. We 922

use fA to denote the adversarial inference model 923

fA : x× y × f(x) −→ [0, 1]. fA takes the feature 924

of the data x, the label of the data y, and the predic- 925

tion of the classification model f(x) as inputs. fA 926

outputs the probability of data (x, y) belonging to 927

the training set D or the non-training set D′. The 928

probability distributions of samples in D and D′ 929

are PD and PD′ , respectively. The gain function 930

of the inference model fA given the classification 931

model f can be written as: 932

Gf (fA) = E
(x,y)∼PD

[
log(fA(x, y, f(x)))

]
+ E

(x,y)∼pD′

[
log(1− fA(x, y, f(x)))

]
(28) 933

The first expectation computes the inference 934

model’s accuracy in predicting training data 935

(members), and the second expectation computes 936

the accuracy of the inference model on predicting 937

non-training data (non-members). The underline 938

probability PD and PD′ is normally not known. 939

The empirical gain can be calculated by simply 940

sampling data from the training set and validation 941

set. Intuitively, weight pruning can prevent 942

over-fitting. Thus it will have a smaller d. 943

944

According to (Nasr et al., 2018), we rewrite the 945

gain function of the inference model in the form of 946

probability distribution: 947

Gf (fA) =∫
x,y

[PD(x, y)pf (f(x)) log(fA(x, y, f(x)))+

PD′(x, y)p′f (f(x)) log(1− fA(x, y, f(x))]dxdy

(29) 948

where D is the training set and D′ is the non- 949

training set. pf and p′f are the probability distri- 950

bution of the classification model f ’s output for 951

training data and non-training data. 952

For a given classification model f and data sam- 953

pled from a known probability distribution, the 954

optimal determination solution for the inference 955

model fA is (Goodfellow et al., 2014; Nasr et al., 956

2018): 957

f∗A(x, y, f(x)) =
pf (f(x))

pf (f(x)) + p′f (f(x′))
(30) 958

Therefore, by substituting f∗A in the Equation 28, 959

12



the gain function of f∗A can be written as:960

Gf (f∗A)

= E
(x,y)∼PD

[
log(

pf (f(x))

pf (f(x)) + p′f (f(x))
)
]
+

E
(x,y)∼pD′

[
log(1−

pf (f(x))

pf (f(x)) + p′f (f(x))
)
]

= −log(4) + 2 · JS(pf (f(x))||p′f (f(x)))

(31)961

Where JS(pf (f(x))||p′f (f(x))) is the962

Jensen–Shannon divergence between the two963

distributions. Since JS(pf (f(x))||p′f (f(x))) is964

always non-negative and equals 0 if and only965

if pf (f(x)) = p′f (f(x′)), the global minimum966

value that Gf (f∗A) can possibly have is -log(4) if967

and only if pf (f(x)) = p′f (f(x′)) (Goodfellow968

et al., 2014). This means that the prediction of969

classification model f for both the training set970

and non-training set has the same probability971

distribution. In this case, the attack fails in the972

sense the attacker can do no better than a random973

guess. We use d to represent the Jensen–Shannon974

divergence JS(pf (f(x))||p′f (f(x))) between the975

probability distributions of f ’s outputs for the976

training set and non-training set. The larger d is,977

the higher the maximum gain of the reference978

model is. In other words, the more vulnerable the979

classification model is. Thus, any method that980

reduces d can reduce the attack success rate of the981

MIA.982

D Neural Network based Membership983

Inference attack models setup984

The attack classifier takes two pieces of informa-985

tion as input. One is the unsorted confidence score986

vector, and the other one is the label of the input987

data that is one hot encoded (all elements except988

the one that corresponds to the label index are 0).989

The classifier consists of three fully connected sub-990

networks. The one operates on the confidence score991

vectors has three layers with size 1024,512 and 64.992

One network with two layers with 512 and 64 neu-993

rons works on the label. The third network is the994

combined network that takes the outputs of the two995

networks as a concatenate input and has five layers996

with sizes 512,256,128,64 and 1. The final output997

will predict whether the input belongs to the train-998

set or not with a probability (larger than 0.5 will999

count as a member). We use the ReLu activation1000

function for the network except for the final out-1001

put layer with the sigmoid activation function. We1002

train the attack classifier with Adam optimizer and1003

mean squared error (MSE) criterion for a total of 1004

300 epochs. To better generate the model, we set 1005

the initial learning rate to 0.001 and decays by 0.1 1006

in the 30th epoch. 1007

E Gain function 1008

According to (Nasr et al., 2018), we rewrite the 1009

gain function of the inference model in the form of 1010

probability distribution: 1011

Gf (fA) =∫
x,y

[PD(x, y)pf (f(x)) log(fA(x, y, f(x)))+

PD′(x, y)p′f (f(x)) log(1− fA(x, y, f(x))]dxdy

(32) 1012

where D is the training set and D′ is the non- 1013

training set. pf and p′f are the probability distri- 1014

bution of the classification model f ’s output for 1015

training data and non-training data. 1016

For a given classification model f and data sam- 1017

pled from a known probability distribution, the 1018

optimal determination solution for the inference 1019

model fA is (Goodfellow et al., 2014; Nasr et al., 1020

2018): 1021

f∗A(x, y, f(x)) =
pf (f(x))

pf (f(x)) + p′f (f(x′))
(33) 1022

F The analysis in self-attention layer: a 1023

simple case 1024

the self-attention layer can be present as: 1025

Z = softmax(
QKT√

(dk)
)V (34) 1026

Where Q = WQx , K = WKx , V = W V x Here, 1027

we start from a simple example. Consider a model 1028

f(x) with only one self-attention layer, when the 1029

token size of input x is 1, softmax( QK
T√

(dk)
) = 1, 1030

we have 1031

f(x) = W V x (35) 1032

consider g(x) =
(∑d

i=1w
g
i

)
x. and a pruning 1033

vector p = (p1, p2, ..., pd). Base on Theorem 2, 1034

when d ≥ Clog4/ε, there exist a pattern of piw
g
i , 1035

such that, with probability 1− ε, 1036

∀wgi ∈ [−1, 1], ∃ pi ∈ {0, 1},

s.t.

∣∣∣∣∣W V − (
d∑
i=1

piw
g
i )

∣∣∣∣∣ < ε
(36) 1037
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