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Abstract

The standard approach to evaluating dialogue001
engagingness is by measuring Conversation002
Turns Per Session (CTPS), which implies that003
the dialogue length is the main predictor of004
the user engagement with a dialogue system.005
The main limitation of CTPS is that it can only006
be measured at the session level, i.e., once007
the dialogue is over. But a dialogue system008
has to continuously monitor user engagement009
throughout the dialogue session as well. Exist-010
ing approaches to measuring turn-level engag-011
ingness require human annotations for training.012
We pioneer an alternative approach, Weakly013
Supervised Engagingness Evaluator (WeSEE),014
which uses the remaining depth (RD) for each015
turn as a heuristic weak label for engagingness.016
WeSEE does not require human annotations017
and also relates closely to CTPS, thus serving018
as a good learning proxy for this metric. We019
show that WeSEE achieves the new state-of-020
the-art results on the Fine-grained Evaluation021
of Dialog (FED) dataset (0.38 Spearman) and022
the DailyDialog dataset (0.62 Spearman).023

1 Introduction024

Engagingness is an important aspect of an open-025

domain dialogue system. It reflects user satisfac-026

tion with the dialogue system (Yi et al., 2019). At027

the turn level, it also measures how willing the028

user is to continue the conversation. Engaging-029

ness is typically measured using the Conversation030

Turns Per Session (CTPS) since engaging conver-031

sations tend to have more turns than less engaging032

ones (Venkatesh et al., 2018; Khatri et al., 2018).033

CTPS values can be easily obtained off-line to com-034

pare engagingness levels of different systems. How-035

ever, performing an online turn-level engagingness036

evaluation is of even greater importance since it037

can be also used to guide the dialogue generation038

process directly or to choose between different can-039

didate responses (Yi et al., 2019). Fig. 1 provides040

an example of turn-level engagingness evaluation.041

Engaging responses:
C: Yes yes. I’ve been to Tokyo as well. It’s so nice!
R: What did you do here? WeSEE: 1.00
...
C: no not yet she is a little to young
R: i love to go running, its my favorite passion. i wish i
ran for a living WeSEE: 0.93
Not Engaging responses:
C: of course. a two - week paid vacation a year, a five -
day workweek.
R: good. anything else? WeSEE: 0.32
...
C: what am i supposed to do then?
R: a good rest is all you need, and drink more water. i’ll
write you a prescription. WeSEE: 0.18

Figure 1: An illustration of turn-level engagingness
evaluation. The predictions of our model (WeSEE) for
the responses are at the end of each response line, in the
range of [0, 1]. C: context; R: response. Examples are
from the DD, PC and FED datasets. For more examples,
see Fig. 6 in the Appendix.

Recent work has focused on training neural mod- 042

els to predict turn-level engagingness (Yi et al., 043

2019; Ghazarian et al., 2020; Gao et al., 2020; 044

Mehri and Eskénazi, 2020a), which is an important 045

step towards online evaluation of dialogue system 046

performance. However, existing approaches ex- 047

hibit important limitations. E.g., the most common 048

approach is to address engagingness prediction as a 049

binary classification task (Yi et al., 2019; Ghazarian 050

et al., 2020). The main reason is the need for hu- 051

man labels for training the models. While labelling 052

turns as engaging or non-engaging is conceptually 053

simple, the approach lacks scalability. The pro- 054

duced binary labels may also not sufficiently well 055

reflect differences between engagingness levels. As 056

a reasonable and scalable alternative, we propose a 057

simple approach of using weak supervision for the 058

engagingness evaluation. Our experiments show 059

that this approach has better correlation with hu- 060

man judgements of engagingness than previously 061

proposed approaches. Importantly, we only study 062

the engagingness evaluation for open-domain dia- 063

logue systems, not for task-oriented dialogue sys- 064

tems; task-oriented dialogue systems are usually 065
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optimised for quick task completion, and having an066

engaging system there can mean a negative thing.067

We first use the remaining depth (RD) as heuris-068

tic weak labelling for turn-level engagingness; RD069

is defined as the number of conversation turns fol-070

lowing the current one. Then we train a regres-071

sion model for turn-level engagingness prediction.072

There are multiple advantages to our approach.073

First, RD labels for the training data can be in-074

terpreted as the CTPS of the sub-dialogue start-075

ing from the current turn onward, and intuitively,076

highly engaging responses are likely to result in077

large RD values. Therefore, RD labels can serve as078

noisy indicators of engagingness, and can be easily079

obtained for existing dialogue data, which saves080

extra annotation efforts. Second, we show that this081

weak signal can be used to train a BERT- based (De-082

vlin et al., 2018) regressor to be an engagingness083

evaluator and achieve state-of-the-art correlation084

with human engagingness judgments on two dia-085

logue datasets. Weakly Supervised Engagingness086

Evaluator (WeSEE) can not only output real num-087

bers that reflect fine-grained engagingness levels,088

but it can also use single-turn text data to make089

predictions, thus making it broadly applicable.090

In our experiments, we calculate the Pearson091

and Spearman correlations of WeSEE predictions092

and human annotations. WeSEE achieves Pearson093

and Spearman coefficients of 0.36 and 0.38, respec-094

tively, on the Fine-grained Evaluation of Dialog095

(FED) dataset (Mehri and Eskénazi, 2020a), and096

0.58 and 0.62 on the DailyDialog-Human dataset097

(Ghazarian et al., 2020), which is the new state-of-098

the-art performance on both datasets.099

Main contributions. The main contributions of100

this paper are: (1) We propose to use RD as weak101

labels for turn-levsel engagingness, which avoids102

the need for explicit human annotations. (2) We103

formulate engagingness prediction as a regression104

task, therefore, the predicted scores can distinguish105

different magnitudes of engagingness. (3) We show106

that a BERT-based model can already have decent107

predictions with only single dialogue turns, while108

using more turns can correlate better with human109

annotation. (4) We share our source code, datasets110

used, implemented baselines and trained parame-111

ters at https://anonymous.4open.science/r/WeSEE.112

2 Related Work113

We start by providing a summary of the state-of-the-114

art in automatic dialogue evaluation. After that, we115

outline the main limitations related to measuring 116

dialogue engagingness that motivate our work. 117

Dialogue quality is a multi-faceted phenomenon 118

and cannot be evaluated along a single dimen- 119

sion (See et al., 2019; Phy et al., 2020; Yeh et al., 120

2021). However, most evaluation approaches pro- 121

posed to date evaluate either the overall dialogue 122

quality or the response quality on the turn-by- 123

turn level (Yi et al., 2019; Pang et al., 2020; Li 124

et al., 2021; Sinha et al., 2020; Mehri and Eskénazi, 125

2020b,a; Zhang et al., 2021; Phy et al., 2020; Gao 126

et al., 2020). Being versatile also means sacrificing 127

performance as well as interpretability with respect 128

to the individual aspects of the dialogue quality, 129

such as dialogue engagingness (Yeh et al., 2021). 130

Our experiments show that such general-purpose 131

quality evaluators do not achieve a high correlation 132

with manually-labeled engagingness scores. 133

Engagingness evaluation is studied less than 134

overall dialogue quality evaluation. The few ap- 135

proaches that exist have several drawbacks. First, 136

training supervised models that predict engaging- 137

ness requires manual labels, which are difficult to 138

obtain (Yi et al., 2019; Ghazarian et al., 2020). Sec- 139

ond, defining annotation guidelines for measuring 140

dialogue engagingness has proved to be a hard task. 141

For example, Yi et al. (2019) resorted to binary 142

labels (engaging/non-engaging) that are easier to 143

acquire but are not very descriptive. Ghazarian et al. 144

(2020) grouped the original samples annotated with 145

five engagingness levels into two because of the 146

highly imbalanced training data. Third, formulat- 147

ing the problem of measuring engagingness as a 148

classification task limits the models’ ability to dis- 149

tinguish between different levels of engagingness. 150

The main novelty of our work is that we estab- 151

lish a simple heuristic that allows us to train a re- 152

liable turn-level dialogue engagingness evaluator 153

that shows a high correlation with human judge- 154

ments. Instead of using manual labels, we auto- 155

matically generate remaining depth (RD) as weak 156

labels for engagingness. This approach can be ap- 157

plied to any multi-turn dialogue dataset, allowing 158

one to extract engagingness signals that are natu- 159

rally embedded in the dialogue data itself, thus no 160

extra annotation is needed. 161

We also argue in favour of formulating the prob- 162

lem of dialogue engagingness prediction as a re- 163

gression task, instead of a classification task as in 164

prior work, which brings several very important 165

benefits. First, our proposed model WeSEE trains 166
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on continuous labels normalised to [0, 1] rather167

than discrete class labels. Thereby, it does not168

suffer from the class imbalance problem. Second,169

WeSEE can also better exploit the ordinal relations170

between the engagingness levels and distinguish171

between them on a very fine-grained scale.172

To the best of our knowledge, the only other ap-173

proach to engagingness prediction that does not174

require human engagingness annotations is due to175

Mehri and Eskénazi (2020a). They use the log-176

likelihood of a curated pool of the follow-up utter-177

ances produced by DialoGPT (Zhang et al., 2020)178

as their engagingness scores. Log-likelihood is not179

bounded and changes with utterance length. In180

contrast, the normalised WeSEE scores fall in the181

range [0, 1] and allow one to compare the engag-182

ingness of candidate responses of different lengths.183

3 Our Approach: Engagingness184

Evaluator Trained on Weak Labels185

We use Di = [Xi,1, Xi,2, . . . , Xi,n] to represent186

the i-th dialogue session in the dataset that has up187

to n turns, with one turn denoting the message from188

one speaker at a time. Consecutive messages from189

the same speaker are merged into a single turn. We190

assume that there are at least two dialogue speakers,191

and each turn contains a response to the previous192

turn. Each turn j may consist of up to m tokens:193

Xi,j = [xi,j,1, xi,j,2, . . . , xi,j,m].194

The remaining depth (RD) of Xi,j normalised to195

[0, 1] is calculated as:196

RDi,j =
n− j

n− 1
, (1)197

which we subsequently use in place of the ground-198

truth engagingness label (that is, as a weak super-199

vision signal) when formulating the RD prediction200

problem as a regression task. Thereby, each pair201

(Xi,j ,RDi,j) is treated as a single data point for202

training the prediction model.203

Our WeSEE model is based on BERT as illus-204

trated in Fig. 2. The dialogue turns are embed-205

ded with BERT and then averaged for making the206

predictions. More concretely, we first use the pre-207

trained BERT model (Devlin et al., 2018) to get a208

vector representation of the turn Xi,j . To use the209

context available from the dialogue history, we also210

embed up to k ≥ 0 turns that occurred before the211

j-th turn in the same i-th dialogue:212

hi,j = Mean(BERT(Xi,j),BERT(Xi,j−1),

. . . ,BERT(Xi,j−k)),
(2)213

Linear

M
eanBERT

...
Pooling

N
on-Linear

Pooling

BERT

... ...

Pooling

BERT

Figure 2: WeSEE model architecture.

where Mean denotes mean pooling and hi,j ∈ 214

Rhid_sz is a hid_sz-dimensional contextualised 215

vector representation for turn Xi,j . Thus, hid_sz 216

is a hyper-parameter that determines the hidden 217

size of our BERT-based turn embeddings. The rep- 218

resentation for each turn BERT(Xi,j) is a vector 219

obtained by pooling the BERT positional outputs. 220

We evaluate four different pooling methods in our 221

experiments: class-token pooling uses the output 222

of the special [CLS] token; and mean, max and 223

min pooling take the element-wise average, max- 224

ima and minima of the BERT outputs produced for 225

each of the input tokens, respectively. 226

Finally, we use a linear layer to project hi,j to a 227

scalar as the predicted engagingness level and use 228

a simple cut-off to normalise it to [0, 1] range: 229

R̂Di,j = min(max(Linear(hi,j), 0), 1). (3) 230

WeSEE is then trained by minimising the Mean 231

Squared Error (MSE): 232

Li,j = (RDi,j −R̂Di,j)
2. (4) 233

Up to now WeSEE is just trained to predict RD 234

labels, which is not sufficient to predict turn-level 235

engagingness (see Section 5.3). To make sure that 236

our model predicts engagingness rather than re- 237

maining depth, we use a small set of dialogues 238

annotated with engagingness labels only at the val- 239

idation phase. We save only the model parameters 240

that peak on the Pearson correlation with engaging- 241

ness labels. Thereby, our model can use relatively 242

few turn-level engagingness labels (that are expen- 243

sive to obtain) only for validation and test, while 244

being trained on RD labels that can be automati- 245

cally generated from any dialogue dataset. 246

4 Experimental Setup 247

We design our experiments to answer the fol- 248

lowing research questions: (RQ1): Are the RD 249
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labels predictable? (RQ2): How do the predic-250

tions produced by WeSEE, when trained on the251

weak RD labels, correlate with human engaging-252

ness scores? (RQ3): How does each component,253

such as training on RD labels, regression formula-254

tion, different numbers of historical turns, pooling255

method, contribute to the performance of WeSEE?256

(RQ4): What can we learn by checking WeSEE’s257

predictions?258

Datasets. In order to infer the RD labels259

for training and validation, the datasets we use260

should have multiple turns in each dialogue session.261

We use the most popular open-domain dialogue262

datasets in English that meet this requirement: Dai-263

lyDialog (DD, Li et al., 2017), PersonaChat (PC,264

Zhang et al., 2018), Empathetic Dialogues (ED,265

Rashkin et al., 2019), Wizard of Wikipedia (WoW,266

Dinan et al., 2018), and BlendedSkillTalk (BST,267

Smith et al., 2020). We use only the dialogue text268

without any additional attributes, such as persona269

descriptions in PC. Since these datasets are rela-270

tively small (see Appendix A.2 for statistics of the271

datasets), and are different in style and average dia-272

logue length, we combine them for training WeSEE273

to better generalize across different dialogues.274

For ground-truth engagingness labels, we275

use FED (Mehri and Eskénazi, 2020a) and276

DailyDialog-Human (DD-H, Ghazarian et al.,277

2020), the only publicly available datasets that con-278

tain turn-level engagingness labels produced by279

human annotators. We use DD-H (the smaller of280

the two datasets) as our validation set and FED as281

our test set. Both datasets contain 5 labels per turn282

with high inter-annotator agreement scores. We use283

the average of the 5 scores for each data sample as284

the ground truth for turn-level engagingness.285

Baselines. For checking the predictability of286

RD labels, we compare WeSEE with the fol-287

lowing methods: (1) Random baseline that ran-288

domly predicts a score between 0 and 1; (2) Av-289

erage baseline that uses the average dialogue290

length in stead of n in Eq. 1 for making predic-291

tions; (3) WeSEE-U model with the linear layer292

untrained; and (4) WeSEE-S model that is trained293

using shuffled RD labels. For the task of explic-294

itly predicting dialogue-turn engagingness we con-295

sider the following prior work as our baselines:1296

FED-metric (Mehri and Eskénazi, 2020a) and Pre-297

1The approach proposed in (Yi et al., 2019) was excluded
from the evaluation due to the difficulties in reproducing their
results. Neither their implementation nor their trained check-
points are available at the time of writing.

DD PC ED WoW BST

Random 19.40 17.92 21.85 18.56 18.00
Average 5.02 0.14 2.86 0.80 0.79

WeSEE-U 35.71 32.04 40.50 38.15 38.61
WeSEE-S 10.94 9.47 13.42 10.38 9.98
WeSEE 7.22 5.81 6.10 6.96 9.89

Table 1: MSE results (multiplied by 100) for predicting
weak RD labels on the test sets for all datasets. Lower
is better. Model weights are selected according to mini-
mum MSE on the validation sets.

dictiveEngagement (PredEnga) (Ghazarian et al., 298

2020). There are some models that were not pro- 299

posed for explicit engagingness evaluation but were 300

reported to have a good correlation with human en- 301

gagingness judgements (Yeh et al., 2021), such as 302

DialogRPT (Gao et al., 2020), USL-H (Phy et al., 303

2020) and DynaEval (Zhang et al., 2021), which 304

we also adopt as baselines. 305

Metrics. To show the predictability of RD la- 306

bels, we report the MSE, Pearson and Spearman 307

correlation with the ground-truth RD labels for DD, 308

PC, ED, WoW and BST. To compare with the base- 309

line and evaluate the model performance on the 310

target task of turn-level engagingness prediction, 311

we report the Pearson and Spearman correlations 312

between the models’ predictions and human anno- 313

tations for FED and DD-H. 314

5 Results and Analysis 315

5.1 RQ1: Predictability of Remaining Depth 316

The MSE results and correlation with RD labels for 317

WeSEE are shown in Table 1 and Table 2, respec- 318

tively. Below are our observations. Unsurprisingly, 319

Random and WeSEE-U both perform badly on both 320

MSE and correlating with RD labels. Although 321

WeSEE-S trained on shuffled RD labels manages 322

to reduce MSE, it shows almost no improvement 323

on correlation coefficients. After training on nor- 324

mal RD labels, WeSEE achieved much lower MSE 325

and high correlation coefficients on most datasets. 326

These comparisons indicate that there are underly- 327

ing patterns between textual content and the RD 328

labels, which can be captured by WeSEE. The 329

Average baseline achieves much lower MSE and 330

higher correlation coefficients than WeSEE. This 331

is due to the fact that Average does not consider the 332

actual content of dialogue turns, but instead makes 333

prediction only using the progress of a given dia- 334

logue and the expected total number of turns. As 335
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DD PC ED WoW BST

P S P S P S P S P S

Random 0.00 0.00 0.00 0.00 -0.01 -0.01 0.01 0.01 0.02 0.02
Average 0.78 0.80 0.99 0.99 0.95 0.96 0.97 0.98 0.96 0.96
WeSEE-U −0.02 −0.02 −0.05 −0.06 0.07 0.06 −0.04 −0.06 0.01 0.00
WeSEE-S 0.13 0.13 0.09 0.10 0.00 0.01 0.08 0.12 0.01 0.01
WeSEE 0.59 0.56 0.62 0.56 0.74 0.71 0.59 0.55 0.21 0.18

Table 2: Correlation of model predictions with RD labels evaluated on the test sets. P: Pearson; S: Spearman.
Results that are not statistically significant (p-value < 0.05) are in italics. Higher is better. Model checkpoints the
same as for Table 1.

we will soon discuss in §5.2, accurately predicting336

RD labels is not helpful in a scenario that requires337

more content awareness, such as predicting engag-338

ingness. One reason is the noisy nature of RD339

labels. E.g., in the training data we can sometimes340

observe short and generic responses (such as “I see.341

OK.”) appear early in the dialogue. These messages342

are usually considered as unengaging responses by343

humans (See et al., 2019), thus not helpful with344

extended conversations. But in our weak labeling345

schema, they can be assigned with high RD val-346

ues, which acts as noise. When we train WeSEE347

on RD labels, it learns to omit some of the noise.348

Since WeSEE is trained to employ textual content349

to make predictions, and the generic responses are350

likely to be followed by fewer dialogue turns, we351

observed that WeSEE learns to assign lower values352

to them. There are presumably other types of noise;353

they prevent the correlation coefficients of WeSEE354

in Table 2 from being exact 1.355

Among the datasets reported in Table 1 and 2,356

BST is an outlier. On BST, the MSE of WeSEE is357

almost identical to that of WeSEE-S. And in terms358

of correlation coefficients, WeSEE achieves Pear-359

son correlation ≥ 0.59 and Spearman ≥ 0.55 on360

other datasets; on BST the coefficients are only361

0.21 and 0.18, respectively. The level of noise of362

RD labels on BST is too high; indeed, in our pre-363

liminary experiments, we observed that training364

on BST with RD labels is detrimental to human365

correlation. The BST dataset consists of human-366

machine dialogues (Smith et al., 2020); machine367

generated messages are prone to be generic (See368

et al., 2019), which can result in more noisy RD la-369

bels according to our earlier analysis. There might370

be other reasons; we nevertheless exclude the BST371

dataset from our dataset mixture. For our experi-372

ments below, we train WeSEE by mixing the DD,373

PC, ED and WoW datasets together, to achieve374

better generalisation.375

FED DD-H

P S P S

Average 0.03 0.03 – –
FED-metric 0.16 0.18 0.23 0.27
DialogRPT 0.23 0.22 0.30 0.30
PredEnga 0.18 0.25 0.51 0.55
USL-H 0.24 0.26 0.55 0.56
DynaEval 0.25 0.26 0.09 0.07

WeSEE 0.29 0.33 0.58 0.62
WeSEE-H3 0.36 0.38 0.52 0.53

Table 3: Correlation between model predictions and
human engagingness annotations. P: Pearson; S: Spear-
man. All correlation results that are not statistically
significant (with p-value < 0.05) are italicised. Higher
is better. Best results in each column are bold faced.
WeSEE uses DD-H as the validation set.

5.2 RQ2: Predictability of dialogue 376

engagingness 377

The correlation of WeSEE and baseline models 378

with human engagingness annotations is reported 379

in Table 3. Due to the noisy nature of RD labels, 380

fitting WeSEE too well to RD labels can harm its 381

ability for human correlation. We provide more 382

insights in §5.3, but in this subsection, we select 383

WeSEE model weights with the highest correlation 384

on DD-H dataset, effectively using DD-H as a vali- 385

dation set. All baseline results are reproduced by us 386

using their official source code and trained model 387

weights to ensure a fair comparison. 388

Utilising heuristics to accurately predict RD la- 389

bels, as done by the Average baseline, does not 390

yield a good correlation with human engagingness 391

scores; see Table 3. This indicates that the RD sig- 392

nal is not equal to turn-level engagingness, which 393

is why we only treat RD as a weak supervision sig- 394

nal. Besides, we cannot use the Average baseline 395

on datasets with a fixed number of history turns 396

such as DD-H. WeSEE trained to use only a sin- 397
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gle dialogue turn outperforms all baseline methods398

on the FED and DD-H datasets, w.r.t. Pearson and399

Spearman correlations. When using 3 history turns,400

WeSEE-H3 performs even better on FED with a401

slight decrease on DD-H. This is because DD-H402

has only two turns for each annotation, therefore,403

WeSEE-H3 trained with a longer history does not404

help to improve the performance on this dataset.405

The best-performing WeSEE outperforms the sec-406

ond best baseline models by 0.11 (0.12) of Pearson407

(Spearman) on the FED dataset, and 0.03 (0.06) of408

Pearson (Spearman) on the DD-H dataset. How-409

ever, we note that although our approach performs410

the best, its performance is still far from the con-411

ventional definition for a “high” correlation. This412

is also reported by other works for other evaluation413

metrics, which typically see a correlation around414

0.2-0.5 (Mehri and Eskénazi, 2020a; Ghazarian415

et al., 2020; Gupta et al., 2019; Lowe et al., 2017).416

Although the FED-metric relies entirely on the417

pretrained DialoGPT, which cleverly avoids train-418

ing, it performs poorly on both datasets. Our re-419

produced results for the FED-metric on the FED420

dataset are different from the original work (Mehri421

and Eskénazi, 2020a), but consistent with later422

work (Yeh et al., 2021). The reason for its poor423

performance is due mainly to the underlying Dialo-424

GPT model, which is trained on Reddit data, which425

is quite different from real conversations in style.426

This is supported by DialogRPT, another model427

relying on DialoGPT as well as being trained on428

Reddit data. Compared to PredEnga and USL-H,429

which are trained on real dialogue data, Dialog-430

RPT has a much worse performance on the DD-H431

dataset. Since DialogRPT is trained on the depth432

information of Reddit comments, which is simi-433

lar to our RD labels, it performs better than the434

FED-metric, especially on the FED dataset. Be-435

cause DialogRPT also relies on other features (e.g.,436

the width and up-/down-votes of user comments),437

none of which are common in real dialogue data,438

DialogRPT only achieves moderate performance439

on both datasets. In contrast, WeSEE is trained on440

dialogue data and uses RD as weak labels for en-441

gagingness. RD labels have an intuitive connection442

with engagingness, thus serving as a main con-443

tributing factor to WeSEE’s superior performance.444

In §5.3 we show that WeSEE trained on RD labels445

shows higher human correlation than when trained446

on some noisy human engagingness annotations.447

PredEnga and USL-H have a similar perfor-448

FED DD-H

P S P S

FED-metric 0.09 0.12 0.12 0.14
DialogRPT 0.23 0.32 0.58 0.59
PredEnga 0.13 0.26 0.46 0.59
DynaEval −0.07 −0.06 0.17 0.19
WeSEE 0.29 0.33 0.58 0.62

Table 4: Model performances when using only a single
dialogue turn. P: Pearson; S: Spearman. All correla-
tion results that are not statistically significant (with
p-value < 0.05) are italicised. Higher is better. Best
results in each column are bold faced. WeSEE uses
DD-H as the validation set.

mance on both datasets. Both are BERT-based 449

models, trained on dialogue data, and rely on bi- 450

nary classification except that USL-H also utilises 451

a BERT-MLM score. Training as a classification 452

task loses much fine-grained information such as 453

the subtle differences between RD labels, which re- 454

stricts their ability for engagingness prediction. Al- 455

though WeSEE is also based on BERT and shares 456

a similar model architecture as PredEnga, we train 457

WeSEE as a regression model, allowing it to cap- 458

ture subtle differences of RD labels. Our ablation 459

study (§5.3) shows that this regression formulation 460

is more suitable than classification with RD labels. 461

DynaEval outperforms other baseline models on 462

FED. DynaEval is trained on dialogue datasets (i.e., 463

ED, ConvAI2 (Dinan et al., 2019) and DD), and is 464

able to make use of the graph structure of dialogue 465

turns from the same dialogues. Due to this second 466

aspect, DynaEval is not applicable to the datasets 467

that do not containin dialogue sessions, which ex- 468

plains its poor performance on DD-H. The main 469

reason for DynaEval’s inferior performance on the 470

FED dataset compared to WeSEE is that it was not 471

trained on engagingness labels. Acquiring enough 472

high-quality engagingness (class) labels is itself a 473

difficult problem, while WeSEE circumvents this 474

problem with weak supervision. 475

All baseline approaches need multiple dialogue 476

turns as input. To understand how they perform 477

when only a single turn is given, we compare their 478

performance in Table 4. Most baseline approaches 479

experience significant performance drops on the 480

FED and DD-H datasets; USL-H does not work in 481

this setting due to its requirement for the dialogue 482

context. DialogRPT sees a performance increase, 483

especially on the DD-H dataset. We hypothesise 484

that this is because DialogRPT uses the transformer 485
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FED DD-H

P S P S

WeSEE 0.29 0.33 0.58 0.62

-Shuffle 0.09 0.08 −0.15 −0.14
-ValLoss 0.26 0.28 0.35 0.34
-FT-CA1 0.29 0.33 0.51 0.53
-FT-CA3 0.37 0.39 0.46 0.48
-SC-CA1 0.27 0.32 0.54 0.59
-SC-CA3 0.36 0.37 0.43 0.45

-Class2 0.07 0.05 0.07 0.06
-Class5 0.13 0.12 −0.01 −0.02
-Class10 0.15 0.16 0.13 0.10

-H2 0.35 0.38 0.52 0.53
-H3 0.36 0.38 0.52 0.53
-Flat-H2 0.33 0.35 0.51 0.53
-Flat-H3 0.32 0.33 0.51 0.53

-cls 0.23 0.22 0.41 0.41
-max 0.37 0.37 0.35 0.35
-min 0.25 0.29 0.25 0.26

Table 5: Ablation study results. P: Pearson; S: Spear-
man. Correlation results that are not statistically signifi-
cant (p-value < 0.05) are italicised. Higher is better.

output for the last token as the utterance represen-486

tation. In batch processing (padding tokens added487

to the left), this shifts the positional ids of shorter488

utterances in the batch to the right, which causes489

inaccurate predictions. When more dialogue turns490

are used, the shifting effect increases, hence predic-491

tions deteriorate. WeSEE does not suffer from this492

problem, as we use mean pooling of all tokens ex-493

cluding padding tokens as the turn representation.494

5.3 RQ3: Ablation study495

We ablate the core components of WeSEE to better496

understand their impact on the overall performance;497

see Table 5. These components are: (1) training498

on RD labels; (2) regression formulation instead499

of classification; (3) history size; and (4) pooling500

methods. For ease of reference, at the top of the501

table we repeat the performance of WeSEE trained502

with a single turn, mean pooling, and with model503

weights selected according to the best performance504

on DD-H (i.e., used as a validation set).505

Table 2 shows that WeSEE-S trained with shuf-506

fled RD labels performs poorly. In the -Shuffle row507

of Table 5, we confirm this using correlation with508

human annotations. Thus, although RD labels are509

used as noisy engagingness labels, there is useful510

information for training a engagingness evaluator. 511

Due to the noisy nature of RD labels, we cannot 512

rely totally on them for training WeSEE. As can be 513

seen from the -ValLoss row, if we select WeSEE’s 514

model weights according to the lowest validation 515

MSE loss on RD labels, it achieves sub-optimal 516

correlation with human engagingness labels. To 517

provide another angle of how noisy RD labels can 518

be, we calculated their correlation with human en- 519

gagingness annotations on the FED dataset; the re- 520

sults are −0.03 Pearson and −0.01 Spearman, both 521

not statistically significant. This does not mean that 522

RD labels are useless, as the FED dataset has only 523

375 annotated examples. The positive correlation 524

of the -ValLoss experiment confirms the value of 525

using RD labels as a weak engagingness supervi- 526

sion signal. To understand the importance of train- 527

ing on RD labels, we trained/fine-tuned WeSEE on 528

the engagingness labels of the ConvAI (Logacheva 529

et al., 2018) dataset (CA); see the -SC-CA* (train- 530

ing from scratch) and -FT-CA* (fine-tuning) rows. 531

The CA dataset contains 1 human engagingness an- 532

notation for each dialogue participant in a session 533

of human-bot dialogue, which we use as turn-level 534

engagingness labels (Ghazarian et al., 2020). Dur- 535

ing training/fine-tuning WeSEE on the CA dataset, 536

we also used DD-H as the validation set. As shown 537

in Table 5, WeSEE trained on CA with 1 (-CA1) 538

or 3 (-CA3) turns performs worse than their coun- 539

terparts trained only on RD labels. Thus, weak 540

RD labels are more useful than low-quality human 541

engagingness labels for training WeSEE. 542

Next, to see the importance of our regression for- 543

mulation, we modify WeSEE to be a classifier, and 544

map the RD labels to (1) binary labels {0, 1} using 545

a threshold 0.5, (2) 5 class labels using thresholds 546

of {0.2, 0.4, 0.6, 0.8}, and (3) 10 class labels using 547

thresholds of {0.1, 0.2, . . . , 0.9}. Then we train 548

the modified WeSEE classifiers with Cross Entropy 549

loss. The results in the -Class* rows show that, al- 550

though this classification formulation shows some 551

positive correlation especially with a finer-grained 552

label buckets, the correlation is much weaker than 553

the WeSEE regression model. RD labels are al- 554

ready weak, noisy labels; mapping them to discrete 555

class labels introduces another more noise, limiting 556

the performance of the trained classifiers. 557

By training and testing WeSEE with more than 558

one historical turn (-H* rows), we observe that the 559

single-turn WeSEE model (top row) performs the 560

best on DD-H, while -H3 with 3 dialogue turns 561
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performs the best on FED. Using more than 3 turns562

showed similar results as -H3. Since WeSEE does563

mean pooling for the representation of all participat-564

ing dialogue turns, it loses the speaker information565

of each turn. To see how this design influences the566

prediction, we also consider using flat history by567

concatenating history dialogue turns into one utter-568

ance, with separator tokens to indicate the switch569

of speaker. Their performance for using 2 and 3570

turns are shown in the -Flat-H* rows. Using flat571

history performs consistently worse; the difference572

between is bigger for using more dialogue turns as573

can be seen from the FED results on -Flat-H3 and574

-H3. Thus, speaker information acts as a distracting575

factor for predicting engagingness, and therefore,576

we adopt the order-invariant design of dialogue577

turns in Fig. 2, similar to PredEnga.578

The last three rows in Table 5 show that using579

cls, max or min pooling (with 3 dialogue turns)580

negatively influences performance on the DD-H581

dataset, which is also true on FED except that max582

pooling shows no noticeable difference.583

5.4 RQ4: Result analysis584

Appendix C provides more details and examples585

drawn from case studies we conducted to analyse586

our results. The main insights gained from these587

case studies are: (1) WeSEE can distinguish con-588

versation starters and endings by assigning higher589

scores to the former and lower scores to the lat-590

ter. This does not mean that WeSEE is only re-591

sponsive to conversation starters and endings. A592

closer analysis where we split WeSEE’s predictions593

into three buckets, representing the conversation594

starter, middle and ending, reveals that the predic-595

tions fall into these three buckets for 24.5%, 57.6%596

and 17.8% of the times, respectively. This is ex-597

pected; the middle of a dialogue is usually the most598

content-rich and dynamic section. (2) When an599

utterance contains a question, starts a new topic,600

or being more detailed, WeSEE usually assigns601

a higher score, which concurs with the identified602

factors facilitating engagingness (See et al., 2019;603

Roller et al., 2021). (3) WeSEE struggles to pre-604

dict correct labels for short and uninformative re-605

sponses, and questions that terminate the conversa-606

tion (e.g., “Anything else I can do?”).607

6 Conclusion608

We studied the problem of predicting turn-level dia-609

logue engagingness and proposed a novel approach610

that sets the new state-of-the-art results across sev- 611

eral dialogue datasets. Using remaining depth (RD) 612

labels for weak supervision is the main novelty of 613

the proposed approach. We formulate the engag- 614

ingness prediction problem as a regression task 615

using the automatically generated RD labels. This 616

formulation allows us to take advantage of the im- 617

plicit signals in multi-turn dialogue data because 618

RD can be calculated automatically. We can use 619

any multi-turn dialogue dataset for training our 620

model. When trained on a mixture of four popular 621

dialogue datasets, the proposed Weakly Supervised 622

Engagingness Evaluator (WeSEE) model with a 623

single dialogue turn already outperforms existing 624

approaches, establishing the new state-of-the-art 625

performance on the FED and DD-H datasets. When 626

using three history turns, WeSEE-H3 achieves the 627

highest performance on FED, but lower on the 628

DD-H dataset. We hypothesise that this is due 629

to DD-H’s having only two turns for each data 630

point, which is too short for WeSEE-H3. The 631

WeSEE model developed in this work can be ap- 632

plied to evaluate engagingness of dialogue systems, 633

or serve as a ranker for selecting more appropri- 634

ate candidate responses. Further study needs to be 635

done for checking how well WeSEE can cope with 636

such tasks. We also note that engagingness is not 637

the only gold measurement one should optimise 638

for open-domain dialogue systems. In the future, 639

more work needs to be done to combine WeSEE 640

with evaluation metrics focusing on other aspects, 641

such as coherence, specificity and consistency, etc. 642

7 Ethical Considerations 643

All the training/validation/test data used in this 644

work is publicly available. As far as we know, the 645

creators of these datasets have taken ethical issues 646

into consideration when creating the datasets. We 647

manually checked some predictions from WeSEE, 648

and did not observe any noticeable traces of con- 649

cern, such as scoring biased or rude utterances high. 650

The WeSEE models are trained on English, open- 651

domain dialogue data. Therefore, we are not yet 652

clear whether unexpected predictions may appear 653

when WeSEE is used on other tasks/languages. We 654

share our source code and trained model weights 655

to support its correct use. However, we note that 656

when incorrectly used, such as training the WeSEE 657

model to rank discriminative utterances high, it 658

may also pose harm to users of conversational ap- 659

plications into which WeSEE is integrated. 660
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APPENDICES867

We provide additional details on our experimental868

results, both to aid the reproducibility of the results869

in this paper (Appendix A) and to provide further870

insights into the results produced by WeSEE (Ap-871

pendix C).872

A Reproducibility873

A.1 Link to source code874

https://anonymous.4open.science/r/WeSEE. Our875

implementation is based on Hugging Face Trans-876

formers (Wolf et al., 2020), PyTorch Lightning877

(William and team, 2019), and Hydra (Yadan,878

2019). The data downloading and preprocessing879

are automatically taken care of in our training880

scripts, parameter settings included. Reproducing881

the best-performed model requires only one line of882

code. Please refer to the README in the above883

link.884

A.2 Dataset statistics885

Statistics for the datasets we use to train WeSEE886

are shown in Table 6. In our experiments, we train887

WeSEE on the mixture of DD, PC, ED and WoW.888

The reason for this is to add more diversity and gen-889

eralisability to the trained model. These datasets all890

have different styles, average dialogue lengths, and891

together they show more general scenarios of open-892

domain dialogues. We note that although these893

datasets are created in a lab environment, there894

are still noticeable patterns of using engaging/not895

engaging responses as desired in the dialogue ses-896

sions. E.g., dialogue participants tend to speak897

greetings, starting topics, asking questions in the898

beginning of a dialogue, and express farewells, use899

more generic responses in the end of a dialogue.900

CA dataset is only used for comparison in §5.3 and901

not in our final model.902

A.3 Parameter settings903

We chose the BERT base uncased model (De-904

vlin et al., 2018) as implemented in the Trans-905

formers library2 as our turn encoder. The pa-906

rameters for the linear projection layer of WeSEE907

are randomly initialised. The WeSEE model con-908

tains 109M trainable parameters (weights), in to-909

tal. We select hyper-parameters using two differ-910

ent criteria, as described in the end of §3. We911

2https://huggingface.co/transformers/model_doc/bert.
html

DD: Train Val Test

#Dialogues 11,118 1,000 1,000
#Turns total 87,170 8,069 7,740
#Turns avg 7.84 7.74 8.07
#Turns std 4.01 3.84 3.88
#Tokens 1,186,046 108,933 106,631

PC: Train Val Test

#Dialogues 8,938 999 967
#Turns total 131,424 15,586 15,008
#Turns avg 14.70 15.60 15.52
#Turns std 1.74 1.04 1.10
#Tokens 1,534,258 186,055 176,903

ED: Train Val Test

#Dialogues 17,780 2,758 2,540
#Turns total 76,609 12,025 10,941
#Turns avg 4.31 4.36 4.30
#Turns std 0.71 0.73 0.73
#Tokens 1,025,120 175,231 169,778

WoW: Train Val Test

#Dialogues 18430 981 965
#Turns total 166,787 8,909 8,715
#Turns avg 9.05 9.08 9.03
#Turns std 1.04 1.02 1.02
#Tokens 2,730,760 145,995 142,896

BST: Train Val Test

#Dialogues 4,819 1,009 980
#Turns total 54,881 11,467 11,154
#Turns avg 11.39 11.36 11.38
#Turns std 2.41 2.35 2.42
#Tokens 730,351 154,437 154,335

CA: Train Val Test

#Dialogues 2,099 – –
#Turns total 25,319 – –
#Turns avg 12.06 – –
#Turns std 9.44 – –
#Tokens 171749 – –

Table 6: Statistics for the datasets used to train WeSEE.
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also evaluated four alternative pooling methods,912

two activation functions mentioned in §3 and k ∈913

{1, 2, 3, 4, 5} for deciding upon the most suitable914

configuration. In our preliminary experiments,915

we trained the WeSEE model using an SGD op-916

timiser with a learning rate (LR) chosen from the917

set {5e−2, 5e−3, 5e−4, 5e−5, 5e−6}, and found918

out that 5e−2 worked best according to the MSE919

loss on the validation set, and 5e−5 works best920

when validated on DD-H. All WeSEE variants were921

trained for 50,000 steps. A fixed LR scheduler with922

5,000 warmup steps was used. During training, we923

use a batch size of 20 and clip the gradient L2 norm924

to 0.1. The training finishes within 6 hours on a925

single TITAN Xp GPU with 5 history turns used as926

input. For the single-turn model, in which only the927

current turn is used as input without any dialogue928

history, the training takes only 1.5 hours.929

B WeSEE Correlations for F&L k Turns930

The WeSEE correlations with first and last k turns931

of each dialogue, compared to considering all turns932

is illustrated in Figure 3. WeSEE’s predictions933

of the remaining depth tend to be more accurate934

closer to the beginning and the end of a dialogue935

session. By considering only the first and last k936

turns for each of the dialogues, we observe even937

higher correlations of the WeSEE predictions with938

the ground-truth RD labels. Figure 3 visualises this939

effect in our data. When removing the predictions940

for intermediate turns, the correlation consistently941

increases. The first and last dialogue turns are942

often more similar across dialogues than the central943

part. People usually greet each other and ask a few944

customary questions in the beginning of a dialogue,945

and say farewells and express gratitude at the end.946

WeSEE successfully captures these patterns, which947

are clearly very important to detect the user intent948

to continue or conclude the dialogue.949

C Results Analysis950

In this section, we list several case studies of the951

single-turn WeSEE model selected according to952

minimum validation loss.953

In Figure 4 are some representative good exam-954

ples. It shows that WeSEE gives highest scores955

to dialogue starters and lowest scores to dialogue956

endings. With the content shifts from greetings957

to questions and statements, and then to farewells,958

our WeSEE model can accurately detect the dia-959

logue progress: the lower the prediction, the nearer960
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Figure 3: WeSEE correlations with RD for all turns
and first & last k (F&L k) turns only. -P: Pearson, -S:
Spearman.

Single-turn Text -H1
hey!. nice to meet you. me and my folks are
currently in arkansas. you?

1.00

hello, where can i buy an inexpensive cashmere
sweater?

1.00

hello there, how are you today? 1.00
my dear, what’s for supper? 1.00
hi buddy, what you think about cinematography 1.00
where’d you get those? 0.82
i like to run, create art, and take naps! how about
you?

0.80

i love italian cuisine 0.56
jeez! its so unfortunate... very sad really. 0.50
it has 10 provinces 0.42
thanks for all your help / info today 0.38
well you sleep well goodnight 0.00
i wish you the best of luck, you will be fine! 0.00
thank you, bye - bye. 0.00
thank you. good luck to your son 0.00

Figure 4: Successful cases of WeSEE-H1. Only single
turns sampled from the datasets listed in Section 4 are
displayed here. The turns are ordered according to the
predicted scores.

towards the end. We observe such interesting pat- 961

terns from more examples: Our model is most accu- 962

rate with clear greetings and farewells, and usually 963

gives an inquisitive utterance a high score; it is of- 964

ten the case when an utterance starts a new topic, 965

our WeSEE predicts longer conversations will hap- 966

pen. There may be other interesting patterns that 967

are less obvious to discover or more complicated 968

to describe. We will release the annotated files for 969

all the test sets we use in this paper. 970

However, there are also some tricky cases that 971

our single-turn WeSEE model fails to cope with. 972

One biggest type of such errors usually happen on 973

generic utterances, such as the 2nd, 6th and 7th 974

examples shown in Figure 5. While we can ar- 975

gue that many generic responses fit naturally in the 976

end of a conversation, it takes longer context and 977

heavier reasoning to decide whether the conver- 978
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Dialogue turns RD H1 H3
is there anything else i can do for
you?

0.08 0.66 0.19

that’s ok. 0.00 0.35 0.17
it’ll be worth it in the end. just
think of the freedom you’ll have!

0.29 0.02 0.48

enjoy your visit and safe travels. 0.53 0.00 0.57
i like the sound of that 0.56 0.16 0.39
thank you. 0.62 0.11 0.40
yes, you did. 0.73 0.17 0.49

Figure 5: Cases in which WeSEE-H1 deviates from the
RD labels and WeSEE-H3 aligns better. Only single
turns sampled from the datasets listed in Section 4 are
displayed here.

Dialogue turns Human H1
everything is going extremely well. how
are you?

0.90 0.89

what is the meeting about? 0.80 0.76
try me. what is your problem? 1.00 0.61
not that much more, no. 0.40 0.27
i did not want to hear that now 0.80 0.33

Figure 6: WeSEE-H1 predictions versus human annota-
tions from the FED dataset.

Dialogue H1
what can i do for you today? 1.00
i have a question. 1.00
what do you need to know? 0.64
i need to take the driver’s course. how many hours
do i need?

0.85

it depends on what you’re trying to do with the
completion of the course.

0.21

i need to get my license. 1.00
you’re going to need to complete six hours. 0.42
how many hours a day can i do? 0.62
you can do two hours a day for three days. 0.43
that’s all i need to do to finish? 0.37
yes, that’s all you need to do. 0.17
thanks. i’ll get back to you. 0.00

Figure 7: A complete dialogue randomly sampled from
the DD dataset and labeled by WeSEE-H1.

sation actually dies. Indeed, our best-performing979

WeSEE-H3 using 3 turns of history can make more980

accurate predictions in such cases, however, the981

overall predictions from -H3 model is less compre-982

hensible than the -H1 model. We also note that,983

there are cases that are easy for us to decide in real-984

life. E.g., a “Thank you.” together with a leaving985

body-language clearly shows that the conversation986

is ending. In the pure textual setting, this is some-987

times impossible to accurately predict. There is988

another tendency that our WeSEE model responds989

too much to questions, such as the first example in990

Figure 5. While the utterance itself already shows991

a good sign of conversation ending, the single-turn992

WeSEE model thinks it is a normal question and993

predicts a medium score for it.994

Comparisons with human annotations from the995

FED dataset are shown in Figure 6. In many cases,996

our model’s prediction correlates well with human997

annotations (normalised to [0, 1]), and there is also 998

some cases that our model makes arguably better 999

predictions than human annotations, such as the 1000

last example when the participant is trying to end 1001

the conversation/topic, but human annotators still 1002

think it is engaging. 1003

We also show a randomly-chosen complete dia- 1004

logue from the DD dataset in Figure 7, from which 1005

we can see that our WeSEE model can not only 1006

detect when the conversation starts and ends, but 1007

also reflects where the conversation can end prema- 1008

turely, such as the 5th and 7th rows. 1009

13


