Weakly Supervised Turn-level Engagingness Evaluator for Dialogues

Anonymous ACL submission

Abstract

The standard approach to evaluating dialogue
engagingness is by measuring Conversation
Turns Per Session (CTPS), which implies that
the dialogue length is the main predictor of
the user engagement with a dialogue system.
The main limitation of CTPS is that it can only
be measured at the session level, i.e., once
the dialogue is over. But a dialogue system
has to continuously monitor user engagement
throughout the dialogue session as well. Exist-
ing approaches to measuring turn-level engag-
ingness require human annotations for training.
We pioneer an alternative approach, Weakly
Supervised Engagingness Evaluator (WeSEE),
which uses the remaining depth (RD) for each
turn as a heuristic weak label for engagingness.
WeSEE does not require human annotations
and also relates closely to CTPS, thus serving
as a good learning proxy for this metric. We
show that WeSEE achieves the new state-of-
the-art results on the Fine-grained Evaluation
of Dialog (FED) dataset (0.38 Spearman) and
the DailyDialog dataset (0.62 Spearman).

1 Introduction

Engagingness is an important aspect of an open-
domain dialogue system. It reflects user satisfac-
tion with the dialogue system (Yi et al., 2019). At
the turn level, it also measures how willing the
user is to continue the conversation. Engaging-
ness is typically measured using the Conversation
Turns Per Session (CTPS) since engaging conver-
sations tend to have more turns than less engaging
ones (Venkatesh et al., 2018; Khatri et al., 2018).
CTPS values can be easily obtained off-line to com-
pare engagingness levels of different systems. How-
ever, performing an online turn-level engagingness
evaluation is of even greater importance since it
can be also used to guide the dialogue generation
process directly or to choose between different can-
didate responses (Yi et al., 2019). Fig. 1 provides
an example of turn-level engagingness evaluation.

Engaging responses:
C: Yes yes. I've been to Tokyo as well. It’s so nice!
R: What did you do here? WeSEE: 1.00

C: no not yet she is a little to young

R:ilove to go running, its my favorite passion. i wish i
ran for a living WeSEE: 0.93

Not Engaging responses:

C: of course. a two - week paid vacation a year, a five -
day workweek.

R: good. anything else?

WeSEE: 0.32

C: what am i supposed to do then?

R: a good rest is all you need, and drink more water. i’ll
write you a prescription. WeSEE: 0.18

Figure 1: An illustration of turn-level engagingness
evaluation. The predictions of our model (WeSEE) for
the responses are at the end of each response line, in the
range of [0, 1]. C: context; R: response. Examples are
from the DD, PC and FED datasets. For more examples,
see Fig. 6 in the Appendix.

Recent work has focused on training neural mod-
els to predict turn-level engagingness (Yi et al.,
2019; Ghazarian et al., 2020; Gao et al., 2020;
Mehri and Eskénazi, 2020a), which is an important
step towards online evaluation of dialogue system
performance. However, existing approaches ex-
hibit important limitations. E.g., the most common
approach is to address engagingness prediction as a
binary classification task (Yi et al., 2019; Ghazarian
et al., 2020). The main reason is the need for hu-
man labels for training the models. While labelling
turns as engaging or non-engaging is conceptually
simple, the approach lacks scalability. The pro-
duced binary labels may also not sufficiently well
reflect differences between engagingness levels. As
a reasonable and scalable alternative, we propose a
simple approach of using weak supervision for the
engagingness evaluation. Our experiments show
that this approach has better correlation with hu-
man judgements of engagingness than previously
proposed approaches. Importantly, we only study
the engagingness evaluation for open-domain dia-
logue systems, not for task-oriented dialogue sys-
tems; task-oriented dialogue systems are usually



optimised for quick task completion, and having an
engaging system there can mean a negative thing.

We first use the remaining depth (RD) as heuris-
tic weak labelling for turn-level engagingness; RD
is defined as the number of conversation turns fol-
lowing the current one. Then we train a regres-
sion model for turn-level engagingness prediction.
There are multiple advantages to our approach.
First, RD labels for the training data can be in-
terpreted as the CTPS of the sub-dialogue start-
ing from the current turn onward, and intuitively,
highly engaging responses are likely to result in
large RD values. Therefore, RD labels can serve as
noisy indicators of engagingness, and can be easily
obtained for existing dialogue data, which saves
extra annotation efforts. Second, we show that this
weak signal can be used to train a BERT- based (De-
vlin et al., 2018) regressor to be an engagingness
evaluator and achieve state-of-the-art correlation
with human engagingness judgments on two dia-
logue datasets. Weakly Supervised Engagingness
Evaluator (WeSEE) can not only output real num-
bers that reflect fine-grained engagingness levels,
but it can also use single-turn text data to make
predictions, thus making it broadly applicable.

In our experiments, we calculate the Pearson
and Spearman correlations of WeSEE predictions
and human annotations. WeSEE achieves Pearson
and Spearman coefficients of 0.36 and 0.38, respec-
tively, on the Fine-grained Evaluation of Dialog
(FED) dataset (Mehri and Eskénazi, 2020a), and
0.58 and 0.62 on the DailyDialog-Human dataset
(Ghazarian et al., 2020), which is the new state-of-
the-art performance on both datasets.

Main contributions. The main contributions of
this paper are: (1) We propose to use RD as weak
labels for turn-levsel engagingness, which avoids
the need for explicit human annotations. (2) We
formulate engagingness prediction as a regression
task, therefore, the predicted scores can distinguish
different magnitudes of engagingness. (3) We show
that a BERT-based model can already have decent
predictions with only single dialogue turns, while
using more turns can correlate better with human
annotation. (4) We share our source code, datasets
used, implemented baselines and trained parame-
ters at https://anonymous.4open.science/r/WeSEE.

2 Related Work

We start by providing a summary of the state-of-the-
art in automatic dialogue evaluation. After that, we

outline the main limitations related to measuring
dialogue engagingness that motivate our work.

Dialogue quality is a multi-faceted phenomenon
and cannot be evaluated along a single dimen-
sion (See et al., 2019; Phy et al., 2020; Yeh et al.,
2021). However, most evaluation approaches pro-
posed to date evaluate either the overall dialogue
quality or the response quality on the turn-by-
turn level (Yi et al., 2019; Pang et al., 2020; Li
et al., 2021; Sinha et al., 2020; Mehri and Eskénazi,
2020b,a; Zhang et al., 2021; Phy et al., 2020; Gao
et al., 2020). Being versatile also means sacrificing
performance as well as interpretability with respect
to the individual aspects of the dialogue quality,
such as dialogue engagingness (Yeh et al., 2021).
Our experiments show that such general-purpose
quality evaluators do not achieve a high correlation
with manually-labeled engagingness scores.

Engagingness evaluation is studied less than
overall dialogue quality evaluation. The few ap-
proaches that exist have several drawbacks. First,
training supervised models that predict engaging-
ness requires manual labels, which are difficult to
obtain (Yi et al., 2019; Ghazarian et al., 2020). Sec-
ond, defining annotation guidelines for measuring
dialogue engagingness has proved to be a hard task.
For example, Yi et al. (2019) resorted to binary
labels (engaging/non-engaging) that are easier to
acquire but are not very descriptive. Ghazarian et al.
(2020) grouped the original samples annotated with
five engagingness levels into two because of the
highly imbalanced training data. Third, formulat-
ing the problem of measuring engagingness as a
classification task limits the models’ ability to dis-
tinguish between different levels of engagingness.

The main novelty of our work is that we estab-
lish a simple heuristic that allows us to train a re-
liable turn-level dialogue engagingness evaluator
that shows a high correlation with human judge-
ments. Instead of using manual labels, we auto-
matically generate remaining depth (RD) as weak
labels for engagingness. This approach can be ap-
plied to any multi-turn dialogue dataset, allowing
one to extract engagingness signals that are natu-
rally embedded in the dialogue data itself, thus no
extra annotation is needed.

We also argue in favour of formulating the prob-
lem of dialogue engagingness prediction as a re-
gression task, instead of a classification task as in
prior work, which brings several very important
benefits. First, our proposed model WeSEE trains
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on continuous labels normalised to [0, 1] rather
than discrete class labels. Thereby, it does not
suffer from the class imbalance problem. Second,
WeSEE can also better exploit the ordinal relations
between the engagingness levels and distinguish
between them on a very fine-grained scale.

To the best of our knowledge, the only other ap-
proach to engagingness prediction that does not
require human engagingness annotations is due to
Mehri and Eskénazi (2020a). They use the log-
likelihood of a curated pool of the follow-up utter-
ances produced by DialoGPT (Zhang et al., 2020)
as their engagingness scores. Log-likelihood is not
bounded and changes with utterance length. In
contrast, the normalised WeSEE scores fall in the
range [0, 1] and allow one to compare the engag-
ingness of candidate responses of different lengths.

3 Our Approach: Engagingness
Evaluator Trained on Weak Labels

We use D; = [X;1,X;2,...,X;ny] to represent
the ¢-th dialogue session in the dataset that has up
to n turns, with one turn denoting the message from
one speaker at a time. Consecutive messages from
the same speaker are merged into a single turn. We
assume that there are at least two dialogue speakers,
and each turn contains a response to the previous
turn. Each turn j may consist of up to m tokens:
Xij = [Tij1, Tij2,- - Tijml-

The remaining depth (RD) of X; ; normalised to
[0, 1] is calculated as:
n—J

RD;; = 22, (1)
which we subsequently use in place of the ground-
truth engagingness label (that is, as a weak super-
vision signal) when formulating the RD prediction
problem as a regression task. Thereby, each pair
(Xij,RD; ;) is treated as a single data point for
training the prediction model.

Our WeSEE model is based on BERT as illus-
trated in Fig. 2. The dialogue turns are embed-
ded with BERT and then averaged for making the
predictions. More concretely, we first use the pre-
trained BERT model (Devlin et al., 2018) to get a
vector representation of the turn X; ;. To use the
context available from the dialogue history, we also
embed up to £ > 0 turns that occurred before the
j-th turn in the same ¢-th dialogue:

h@j = Mean( BERT(XZ‘,J‘), BERT(XiVj_l),
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Figure 2: WeSEE model architecture.

where Mean denotes mean pooling and h;; €
RM4-s7 i a hid_sz-dimensional contextualised
vector representation for turn X; ;. Thus, hid_sz
is a hyper-parameter that determines the hidden
size of our BERT-based turn embeddings. The rep-
resentation for each turn BERT(Xj ;) is a vector
obtained by pooling the BERT positional outputs.
We evaluate four different pooling methods in our
experiments: class-token pooling uses the output
of the special [CLS] token; and mean, max and
min pooling take the element-wise average, max-
ima and minima of the BERT outputs produced for
each of the input tokens, respectively.

Finally, we use a linear layer to project h; ; to a
scalar as the predicted engagingness level and use
a simple cut-off to normalise it to [0, 1] range:

RD; ; = min(max(Linear(h; ;),0),1).  (3)

WeSEE is then trained by minimising the Mean
Squared Error (MSE):

Li; = (RD;; —RD; ;). 4)

Up to now WeSEE is just trained to predict RD
labels, which is not sufficient to predict turn-level
engagingness (see Section 5.3). To make sure that
our model predicts engagingness rather than re-
maining depth, we use a small set of dialogues
annotated with engagingness labels only at the val-
idation phase. We save only the model parameters
that peak on the Pearson correlation with engaging-
ness labels. Thereby, our model can use relatively
few turn-level engagingness labels (that are expen-
sive to obtain) only for validation and test, while
being trained on RD labels that can be automati-
cally generated from any dialogue dataset.

4 Experimental Setup

We design our experiments to answer the fol-
lowing research questions: (RQ1): Are the RD



labels predictable? (RQ2): How do the predic-
tions produced by WeSEE, when trained on the
weak RD labels, correlate with human engaging-
ness scores? (RQ3): How does each component,
such as training on RD labels, regression formula-
tion, different numbers of historical turns, pooling
method, contribute to the performance of WeSEE?
(RQ4): What can we learn by checking WeSEE’s
predictions?

Datasets. In order to infer the RD labels
for training and validation, the datasets we use
should have multiple turns in each dialogue session.
We use the most popular open-domain dialogue
datasets in English that meet this requirement: Dai-
lyDialog (DD, Li et al., 2017), PersonaChat (PC,
Zhang et al., 2018), Empathetic Dialogues (ED,
Rashkin et al., 2019), Wizard of Wikipedia (WoW,
Dinan et al., 2018), and BlendedSkillTalk (BST,
Smith et al., 2020). We use only the dialogue text
without any additional attributes, such as persona
descriptions in PC. Since these datasets are rela-
tively small (see Appendix A.2 for statistics of the
datasets), and are different in style and average dia-
logue length, we combine them for training WeSEE
to better generalize across different dialogues.

For ground-truth engagingness labels, we
use FED (Mehri and Eskénazi, 2020a) and
DailyDialog-Human (DD-H, Ghazarian et al.,
2020), the only publicly available datasets that con-
tain turn-level engagingness labels produced by
human annotators. We use DD-H (the smaller of
the two datasets) as our validation set and FED as
our test set. Both datasets contain 5 labels per turn
with high inter-annotator agreement scores. We use
the average of the 5 scores for each data sample as
the ground truth for turn-level engagingness.

Baselines. For checking the predictability of
RD labels, we compare WeSEE with the fol-
lowing methods: (1) Random baseline that ran-
domly predicts a score between 0 and 1; (2) Av-
erage baseline that uses the average dialogue
length in stead of n in Eq. 1 for making predic-
tions; (3) WeSEE-U model with the linear layer
untrained; and (4) WeSEE-S model that is trained
using shuffled RD labels. For the task of explic-
itly predicting dialogue-turn engagingness we con-
sider the following prior work as our baselines:!
FED-metric (Mehri and Eskénazi, 2020a) and Pre-

!The approach proposed in (Yi et al., 2019) was excluded
from the evaluation due to the difficulties in reproducing their
results. Neither their implementation nor their trained check-
points are available at the time of writing.

DD PC ED WoW BST
Random  19.40 17.92 21.85 18.56 18.00
Average 502 0.14 286 080 0.79
WeSEE-U 35.71 32.04 40.50 38.15 38.61
WeSEE-S 1094 9.47 1342 1038 9.98
WeSEE 722 581 6.10 696 9.89

Table 1: MSE results (multiplied by 100) for predicting
weak RD labels on the test sets for all datasets. Lower
is better. Model weights are selected according to mini-
mum MSE on the validation sets.

dictiveEngagement (PredEnga) (Ghazarian et al.,
2020). There are some models that were not pro-
posed for explicit engagingness evaluation but were
reported to have a good correlation with human en-
gagingness judgements (Yeh et al., 2021), such as
DialogRPT (Gao et al., 2020), USL-H (Phy et al.,
2020) and DynaEval (Zhang et al., 2021), which
we also adopt as baselines.

Metrics. To show the predictability of RD la-
bels, we report the MSE, Pearson and Spearman
correlation with the ground-truth RD labels for DD,
PC, ED, WoW and BST. To compare with the base-
line and evaluate the model performance on the
target task of turn-level engagingness prediction,
we report the Pearson and Spearman correlations
between the models’ predictions and human anno-
tations for FED and DD-H.

5 Results and Analysis

5.1 RQI1: Predictability of Remaining Depth

The MSE results and correlation with RD labels for
WeSEE are shown in Table 1 and Table 2, respec-
tively. Below are our observations. Unsurprisingly,
Random and WeSEE-U both perform badly on both
MSE and correlating with RD labels. Although
WeSEE-S trained on shuffled RD labels manages
to reduce MSE, it shows almost no improvement
on correlation coefficients. After training on nor-
mal RD labels, WeSEE achieved much lower MSE
and high correlation coefficients on most datasets.
These comparisons indicate that there are underly-
ing patterns between textual content and the RD
labels, which can be captured by WeSEE. The
Average baseline achieves much lower MSE and
higher correlation coefficients than WeSEE. This
is due to the fact that Average does not consider the
actual content of dialogue turns, but instead makes
prediction only using the progress of a given dia-
logue and the expected total number of turns. As



DD PC ED WoWw BST
P S p S P S P S P S
Random  0.00 0.00 0.00 0.00 -0.01 -0.0! 0.01 0.01 0.02 0.02
Average 0.78 0.80 0.99 0.99 095 0.96 0.97 098 0.96 0.96
WeSEE-U -0.02 -0.02 -0.05 -0.06 0.07 006 -0.04 -—-0.06 00! 0.00
WeSEE-S 0.13 0.13 0.09 0.10 0.00 0.01 0.08 0.12 0.01 0.01
WeSEE 0.59 0.56 0.62 0.56 0.74 0.71 0.59 0.55 021 0.18

Table 2: Correlation of model predictions with RD labels evaluated on the test sets. P: Pearson; S: Spearman.
Results that are not statistically significant (p-value < 0.05) are in italics. Higher is better. Model checkpoints the

same as for Table 1.

we will soon discuss in §5.2, accurately predicting
RD labels is not helpful in a scenario that requires
more content awareness, such as predicting engag-
ingness. One reason is the noisy nature of RD
labels. E.g., in the training data we can sometimes
observe short and generic responses (such as “I see.
OK.”) appear early in the dialogue. These messages
are usually considered as unengaging responses by
humans (See et al., 2019), thus not helpful with
extended conversations. But in our weak labeling
schema, they can be assigned with high RD val-
ues, which acts as noise. When we train WeSEE
on RD labels, it learns to omit some of the noise.
Since WeSEE is trained to employ textual content
to make predictions, and the generic responses are
likely to be followed by fewer dialogue turns, we
observed that WeSEE learns to assign lower values
to them. There are presumably other types of noise;
they prevent the correlation coefficients of WeSEE
in Table 2 from being exact 1.

Among the datasets reported in Table 1 and 2,
BST is an outlier. On BST, the MSE of WeSEE is
almost identical to that of WeSEE-S. And in terms
of correlation coefficients, WeSEE achieves Pear-
son correlation > 0.59 and Spearman > 0.55 on
other datasets; on BST the coefficients are only
0.21 and 0.18, respectively. The level of noise of
RD labels on BST is too high; indeed, in our pre-
liminary experiments, we observed that training
on BST with RD labels is detrimental to human
correlation. The BST dataset consists of human-
machine dialogues (Smith et al., 2020); machine
generated messages are prone to be generic (See
et al., 2019), which can result in more noisy RD la-
bels according to our earlier analysis. There might
be other reasons; we nevertheless exclude the BST
dataset from our dataset mixture. For our experi-
ments below, we train WeSEE by mixing the DD,
PC, ED and WoW datasets together, to achieve
better generalisation.

FED DD-H

P S P S
Average 0.03 0.03 - -
FED-metric 0.16 0.18 0.23 0.27
DialogRPT 0.23 0.22 0.30 0.30
PredEnga 0.18 0.25 0.51 0.55
USL-H 0.24 0.26 0.55 0.56
DynaEval 0.25 0.26 0.09 0.07
WeSEE 0.29 0.33 0.58 0.62
WeSEE-H3 0.36 0.38 0.52 0.53

Table 3: Correlation between model predictions and
human engagingness annotations. P: Pearson; S: Spear-
man. All correlation results that are not statistically
significant (with p-value < 0.05) are italicised. Higher
is better. Best results in each column are bold faced.
WeSEE uses DD-H as the validation set.

5.2 RQ2: Predictability of dialogue
engagingness

The correlation of WeSEE and baseline models
with human engagingness annotations is reported
in Table 3. Due to the noisy nature of RD labels,
fitting WeSEE too well to RD labels can harm its
ability for human correlation. We provide more
insights in §5.3, but in this subsection, we select
WeSEE model weights with the highest correlation
on DD-H dataset, effectively using DD-H as a vali-
dation set. All baseline results are reproduced by us
using their official source code and trained model
weights to ensure a fair comparison.

Utilising heuristics to accurately predict RD la-
bels, as done by the Average baseline, does not
yield a good correlation with human engagingness
scores; see Table 3. This indicates that the RD sig-
nal is not equal to turn-level engagingness, which
is why we only treat RD as a weak supervision sig-
nal. Besides, we cannot use the Average baseline
on datasets with a fixed number of history turns
such as DD-H. WeSEE trained to use only a sin-



gle dialogue turn outperforms all baseline methods
on the FED and DD-H datasets, w.r.t. Pearson and
Spearman correlations. When using 3 history turns,
WeSEE-H3 performs even better on FED with a
slight decrease on DD-H. This is because DD-H
has only two turns for each annotation, therefore,
WeSEE-H3 trained with a longer history does not
help to improve the performance on this dataset.
The best-performing WeSEE outperforms the sec-
ond best baseline models by 0.11 (0.12) of Pearson
(Spearman) on the FED dataset, and 0.03 (0.06) of
Pearson (Spearman) on the DD-H dataset. How-
ever, we note that although our approach performs
the best, its performance is still far from the con-
ventional definition for a “high” correlation. This
is also reported by other works for other evaluation
metrics, which typically see a correlation around
0.2-0.5 (Mehri and Eskénazi, 2020a; Ghazarian
et al., 2020; Gupta et al., 2019; Lowe et al., 2017).
Although the FED-metric relies entirely on the
pretrained DialoGPT, which cleverly avoids train-
ing, it performs poorly on both datasets. Our re-
produced results for the FED-metric on the FED
dataset are different from the original work (Mehri
and Eskénazi, 2020a), but consistent with later
work (Yeh et al., 2021). The reason for its poor
performance is due mainly to the underlying Dialo-
GPT model, which is trained on Reddit data, which
is quite different from real conversations in style.
This is supported by DialogRPT, another model
relying on DialoGPT as well as being trained on
Reddit data. Compared to PredEnga and USL-H,
which are trained on real dialogue data, Dialog-
RPT has a much worse performance on the DD-H
dataset. Since DialogRPT is trained on the depth
information of Reddit comments, which is simi-
lar to our RD labels, it performs better than the
FED-metric, especially on the FED dataset. Be-
cause DialogRPT also relies on other features (e.g.,
the width and up-/down-votes of user comments),
none of which are common in real dialogue data,
DialogRPT only achieves moderate performance
on both datasets. In contrast, WeSEE is trained on
dialogue data and uses RD as weak labels for en-
gagingness. RD labels have an intuitive connection
with engagingness, thus serving as a main con-
tributing factor to WeSEE’s superior performance.
In §5.3 we show that WeSEE trained on RD labels
shows higher human correlation than when trained
on some noisy human engagingness annotations.
PredEnga and USL-H have a similar perfor-

FED DD-H
P S P S
FED-metric 0.09 0.12 0.12 0.14
DialogRPT 0.23 0.32 0.58 0.59
PredEnga 0.13 0.26 0.46 0.59
DynaEval —0.07 —0.06 0.17 0.19
WeSEE 0.29 0.33 0.58 0.62

Table 4: Model performances when using only a single
dialogue turn. P: Pearson; S: Spearman. All correla-
tion results that are not statistically significant (with
p-value < 0.05) are italicised. Higher is better. Best
results in each column are bold faced. WeSEE uses
DD-H as the validation set.

mance on both datasets. Both are BERT-based
models, trained on dialogue data, and rely on bi-
nary classification except that USL-H also utilises
a BERT-MLM score. Training as a classification
task loses much fine-grained information such as
the subtle differences between RD labels, which re-
stricts their ability for engagingness prediction. Al-
though WeSEE is also based on BERT and shares
a similar model architecture as PredEnga, we train
WeSEE as a regression model, allowing it to cap-
ture subtle differences of RD labels. Our ablation
study (§5.3) shows that this regression formulation
is more suitable than classification with RD labels.

DynaEval outperforms other baseline models on
FED. DynaEval is trained on dialogue datasets (i.e.,
ED, ConvAI2 (Dinan et al., 2019) and DD), and is
able to make use of the graph structure of dialogue
turns from the same dialogues. Due to this second
aspect, DynaEval is not applicable to the datasets
that do not containin dialogue sessions, which ex-
plains its poor performance on DD-H. The main
reason for DynaEval’s inferior performance on the
FED dataset compared to WeSEE is that it was not
trained on engagingness labels. Acquiring enough
high-quality engagingness (class) labels is itself a
difficult problem, while WeSEE circumvents this
problem with weak supervision.

All baseline approaches need multiple dialogue
turns as input. To understand how they perform
when only a single turn is given, we compare their
performance in Table 4. Most baseline approaches
experience significant performance drops on the
FED and DD-H datasets; USL-H does not work in
this setting due to its requirement for the dialogue
context. DialogRPT sees a performance increase,
especially on the DD-H dataset. We hypothesise
that this is because DialogRPT uses the transformer



FED DD-H
P S P S
WeSEE 029 0.33 0.58 0.62
-Shuffle 0.09 0.08 -0.15 -0.14
-ValLoss 0.26 0.28 0.35 0.34
-FI-CA1 029 0.33 0.51 0.53
-FT-CA3 0.37 0.39 0.46 0.48
-SC-CA1 0.27 0.32 0.54 0.59
-SC-CA3 0.36 0.37 0.43 0.45
-Class2 0.07 0.05 0.07 0.06
-Class5 0.13 0.12 —-0.01 —-0.02
-Class10 0.15 0.16 0.13 0.10
-H2 035 0.38 0.52 0.53
-H3 036 0.38 0.52 0.53
-Flat-H2 0.33 0.35 0.51 0.53
-Flat-H3 0.32 0.33 0.51 0.53
-cls 023 0.22 0.41 0.41
-max 037 0.37 0.35 0.35
-min 0.25 0.29 0.25 0.26

Table 5: Ablation study results. P: Pearson; S: Spear-
man. Correlation results that are not statistically signifi-
cant (p-value < 0.05) are italicised. Higher is better.

output for the last token as the utterance represen-
tation. In batch processing (padding tokens added
to the left), this shifts the positional ids of shorter
utterances in the batch to the right, which causes
inaccurate predictions. When more dialogue turns
are used, the shifting effect increases, hence predic-
tions deteriorate. WeSEE does not suffer from this
problem, as we use mean pooling of all tokens ex-
cluding padding tokens as the turn representation.

5.3 RQ3: Ablation study

We ablate the core components of WeSEE to better
understand their impact on the overall performance;
see Table 5. These components are: (1) training
on RD labels; (2) regression formulation instead
of classification; (3) history size; and (4) pooling
methods. For ease of reference, at the top of the
table we repeat the performance of WeSEE trained
with a single turn, mean pooling, and with model
weights selected according to the best performance
on DD-H (i.e., used as a validation set).

Table 2 shows that WeSEE-S trained with shuf-
fled RD labels performs poorly. In the -Shuffle row
of Table 5, we confirm this using correlation with
human annotations. Thus, although RD labels are
used as noisy engagingness labels, there is useful

information for training a engagingness evaluator.
Due to the noisy nature of RD labels, we cannot
rely totally on them for training WeSEE. As can be
seen from the -ValLoss row, if we select WeSEE’s
model weights according to the lowest validation
MSE loss on RD labels, it achieves sub-optimal
correlation with human engagingness labels. To
provide another angle of how noisy RD labels can
be, we calculated their correlation with human en-
gagingness annotations on the FED dataset; the re-
sults are —0.03 Pearson and —0.01 Spearman, both
not statistically significant. This does not mean that
RD labels are useless, as the FED dataset has only
375 annotated examples. The positive correlation
of the -ValLoss experiment confirms the value of
using RD labels as a weak engagingness supervi-
sion signal. To understand the importance of train-
ing on RD labels, we trained/fine-tuned WeSEE on
the engagingness labels of the ConvAl (Logacheva
et al., 2018) dataset (CA); see the -SC-CA* (train-
ing from scratch) and -FT-CA* (fine-tuning) rows.
The CA dataset contains 1 human engagingness an-
notation for each dialogue participant in a session
of human-bot dialogue, which we use as turn-level
engagingness labels (Ghazarian et al., 2020). Dur-
ing training/fine-tuning WeSEE on the CA dataset,
we also used DD-H as the validation set. As shown
in Table 5, WeSEE trained on CA with 1 (-CA1)
or 3 (-CA3) turns performs worse than their coun-
terparts trained only on RD labels. Thus, weak
RD labels are more useful than low-quality human
engagingness labels for training WeSEE.

Next, to see the importance of our regression for-
mulation, we modify WeSEE to be a classifier, and
map the RD labels to (1) binary labels {0, 1} using
a threshold 0.5, (2) 5 class labels using thresholds
of {0.2,0.4,0.6,0.8}, and (3) 10 class labels using
thresholds of {0.1,0.2,...,0.9}. Then we train
the modified WeSEE classifiers with Cross Entropy
loss. The results in the -Class* rows show that, al-
though this classification formulation shows some
positive correlation especially with a finer-grained
label buckets, the correlation is much weaker than
the WeSEE regression model. RD labels are al-
ready weak, noisy labels; mapping them to discrete
class labels introduces another more noise, limiting
the performance of the trained classifiers.

By training and testing WeSEE with more than
one historical turn (-H* rows), we observe that the
single-turn WeSEE model (top row) performs the
best on DD-H, while -H3 with 3 dialogue turns



performs the best on FED. Using more than 3 turns
showed similar results as -H3. Since WeSEE does
mean pooling for the representation of all participat-
ing dialogue turns, it loses the speaker information
of each turn. To see how this design influences the
prediction, we also consider using flat history by
concatenating history dialogue turns into one utter-
ance, with separator tokens to indicate the switch
of speaker. Their performance for using 2 and 3
turns are shown in the -Flat-H* rows. Using flat
history performs consistently worse; the difference
between is bigger for using more dialogue turns as
can be seen from the FED results on -Flat-H3 and
-H3. Thus, speaker information acts as a distracting
factor for predicting engagingness, and therefore,
we adopt the order-invariant design of dialogue
turns in Fig. 2, similar to PredEnga.

The last three rows in Table 5 show that using
cls, max or min pooling (with 3 dialogue turns)
negatively influences performance on the DD-H
dataset, which is also true on FED except that max
pooling shows no noticeable difference.

5.4 RQ4: Result analysis

Appendix C provides more details and examples
drawn from case studies we conducted to analyse
our results. The main insights gained from these
case studies are: (1) WeSEE can distinguish con-
versation starters and endings by assigning higher
scores to the former and lower scores to the lat-
ter. This does not mean that WeSEE is only re-
sponsive to conversation starters and endings. A
closer analysis where we split WeSEE’s predictions
into three buckets, representing the conversation
starter, middle and ending, reveals that the predic-
tions fall into these three buckets for 24.5%, 57.6%
and 17.8% of the times, respectively. This is ex-
pected; the middle of a dialogue is usually the most
content-rich and dynamic section. (2) When an
utterance contains a question, starts a new topic,
or being more detailed, WeSEE usually assigns
a higher score, which concurs with the identified
factors facilitating engagingness (See et al., 2019;
Roller et al., 2021). (3) WeSEE struggles to pre-
dict correct labels for short and uninformative re-
sponses, and questions that terminate the conversa-
tion (e.g., “Anything else I can do?”).

6 Conclusion

We studied the problem of predicting turn-level dia-
logue engagingness and proposed a novel approach

that sets the new state-of-the-art results across sev-
eral dialogue datasets. Using remaining depth (RD)
labels for weak supervision is the main novelty of
the proposed approach. We formulate the engag-
ingness prediction problem as a regression task
using the automatically generated RD labels. This
formulation allows us to take advantage of the im-
plicit signals in multi-turn dialogue data because
RD can be calculated automatically. We can use
any multi-turn dialogue dataset for training our
model. When trained on a mixture of four popular
dialogue datasets, the proposed Weakly Supervised
Engagingness Evaluator (WeSEE) model with a
single dialogue turn already outperforms existing
approaches, establishing the new state-of-the-art
performance on the FED and DD-H datasets. When
using three history turns, WeSEE-H3 achieves the
highest performance on FED, but lower on the
DD-H dataset. We hypothesise that this is due
to DD-H’s having only two turns for each data
point, which is too short for WeSEE-H3. The
WeSEE model developed in this work can be ap-
plied to evaluate engagingness of dialogue systems,
or serve as a ranker for selecting more appropri-
ate candidate responses. Further study needs to be
done for checking how well WeSEE can cope with
such tasks. We also note that engagingness is not
the only gold measurement one should optimise
for open-domain dialogue systems. In the future,
more work needs to be done to combine WeSEE
with evaluation metrics focusing on other aspects,
such as coherence, specificity and consistency, etc.

7 Ethical Considerations

All the training/validation/test data used in this
work is publicly available. As far as we know, the
creators of these datasets have taken ethical issues
into consideration when creating the datasets. We
manually checked some predictions from WeSEE,
and did not observe any noticeable traces of con-
cern, such as scoring biased or rude utterances high.
The WeSEE models are trained on English, open-
domain dialogue data. Therefore, we are not yet
clear whether unexpected predictions may appear
when WeSEE is used on other tasks/languages. We
share our source code and trained model weights
to support its correct use. However, we note that
when incorrectly used, such as training the WeSEE
model to rank discriminative utterances high, it
may also pose harm to users of conversational ap-
plications into which WeSEE is integrated.
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APPENDICES

We provide additional details on our experimental
results, both to aid the reproducibility of the results
in this paper (Appendix A) and to provide further
insights into the results produced by WeSEE (Ap-
pendix C).

A Reproducibility

A.1 Link to source code

https://anonymous.4open.science/r/WeSEE. Our
implementation is based on Hugging Face Trans-
formers (Wolf et al., 2020), PyTorch Lightning
(William and team, 2019), and Hydra (Yadan,
2019). The data downloading and preprocessing
are automatically taken care of in our training
scripts, parameter settings included. Reproducing
the best-performed model requires only one line of
code. Please refer to the README in the above
link.

A.2 Dataset statistics

Statistics for the datasets we use to train WeSEE
are shown in Table 6. In our experiments, we train
WeSEE on the mixture of DD, PC, ED and WoW.
The reason for this is to add more diversity and gen-
eralisability to the trained model. These datasets all
have different styles, average dialogue lengths, and
together they show more general scenarios of open-
domain dialogues. We note that although these
datasets are created in a lab environment, there
are still noticeable patterns of using engaging/not
engaging responses as desired in the dialogue ses-
sions. E.g., dialogue participants tend to speak
greetings, starting topics, asking questions in the
beginning of a dialogue, and express farewells, use
more generic responses in the end of a dialogue.
CA dataset is only used for comparison in §5.3 and
not in our final model.

A.3 Parameter settings

We chose the BERT base uncased model (De-
vlin et al., 2018) as implemented in the Trans-
formers library? as our turn encoder. The pa-
rameters for the linear projection layer of WeSEE
are randomly initialised. The WeSEE model con-
tains 109M trainable parameters (weights), in to-
tal. We select hyper-parameters using two differ-
ent criteria, as described in the end of §3. We

*https://huggingface.co/transformers/model_doc/bert.
html
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DD: Train Val Test
#Dialogues 11,118 1,000 1,000
#Turns total 87,170 8,069 7,740
#Turns avg 7.84 7.74 8.07
#Turns std 4.01 3.84 3.88
#Tokens 1,186,046 108,933 106,631
PC: Train Val Test
#Dialogues 8,938 999 967
#Turns total 131,424 15,586 15,008
#Turns avg 14.70 15.60 15.52
#Turns std 1.74 1.04 1.10
#Tokens 1,534,258 186,055 176,903
ED: Train Val Test
#Dialogues 17,780 2,758 2,540
#Turns total 76,609 12,025 10,941
#Turns avg 4.31 4.36 4.30
#Turns std 0.71 0.73 0.73
#Tokens 1,025,120 175,231 169,778
WoW: Train Val Test
#Dialogues 18430 981 965
#Turns total 166,787 8,909 8,715
#Turns avg 9.05 9.08 9.03
#Turns std 1.04 1.02 1.02
#Tokens 2,730,760 145,995 142,896
BST: Train Val Test
#Dialogues 4,819 1,009 980
#Turns total 54,881 11,467 11,154
#Turns avg 11.39 11.36 11.38
#Turns std 241 2.35 2.42
#Tokens 730,351 154,437 154,335
CA: Train Val Test
#Dialogues 2,099 - -
#Turns total 25,319 - -
#Turns avg 12.06 - -
#Turns std 9.44 - -
#Tokens 171749 - -

Table 6: Statistics for the datasets used to train WeSEE.


https://anonymous.4open.science/r/WeSEE
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html

also evaluated four alternative pooling methods,
two activation functions mentioned in §3 and k €
{1,2,3,4,5} for deciding upon the most suitable
configuration. In our preliminary experiments,
we trained the WeSEE model using an SGD op-
timiser with a learning rate (LR) chosen from the
set {be—2,5e—3, 5e—4,5e—5, 5e—6}, and found
out that 5e—2 worked best according to the MSE
loss on the validation set, and 5e—5 works best
when validated on DD-H. All WeSEE variants were
trained for 50,000 steps. A fixed LR scheduler with
5,000 warmup steps was used. During training, we
use a batch size of 20 and clip the gradient L2 norm
to 0.1. The training finishes within 6 hours on a
single TITAN Xp GPU with 5 history turns used as
input. For the single-turn model, in which only the
current turn is used as input without any dialogue
history, the training takes only 1.5 hours.

B WeSEE Correlations for F&L £ Turns

The WeSEE correlations with first and last & turns
of each dialogue, compared to considering all turns
is illustrated in Figure 3. WeSEE’s predictions
of the remaining depth tend to be more accurate
closer to the beginning and the end of a dialogue
session. By considering only the first and last &
turns for each of the dialogues, we observe even
higher correlations of the WeSEE predictions with
the ground-truth RD labels. Figure 3 visualises this
effect in our data. When removing the predictions
for intermediate turns, the correlation consistently
increases. The first and last dialogue turns are
often more similar across dialogues than the central
part. People usually greet each other and ask a few
customary questions in the beginning of a dialogue,
and say farewells and express gratitude at the end.
WeSEE successfully captures these patterns, which
are clearly very important to detect the user intent
to continue or conclude the dialogue.

C Results Analysis

In this section, we list several case studies of the
single-turn WeSEE model selected according to
minimum validation loss.

In Figure 4 are some representative good exam-
ples. It shows that WeSEE gives highest scores
to dialogue starters and lowest scores to dialogue
endings. With the content shifts from greetings
to questions and statements, and then to farewells,
our WeSEE model can accurately detect the dia-
logue progress: the lower the prediction, the nearer
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Figure 3: WeSEE correlations with RD for all turns
and first & last k (F&L k) turns only. -P: Pearson, -S:
Spearman.

Single-turn Text -H1
hey!. nice to meet you. me and my folks are 1.00
currently in arkansas. you?

hello, where can i buy an inexpensive cashmere 1.00
sweater?

hello there, how are you today? 1.00
my dear, what’s for supper? 1.00
hi buddy, what you think about cinematography 1.00
where’d you get those? 0.82
i like to run, create art, and take naps! how about  0.80
you?

ilove italian cuisine 0.56
jeez! its so unfortunate... very sad really. 0.50
it has 10 provinces 0.42
thanks for all your help / info today 0.38
well you sleep well goodnight 0.00
i wish you the best of luck, you will be fine! 0.00
thank you, bye - bye. 0.00
thank you. good luck to your son 0.00

Figure 4: Successful cases of WeSEE-H1. Only single
turns sampled from the datasets listed in Section 4 are
displayed here. The turns are ordered according to the
predicted scores.

towards the end. We observe such interesting pat-
terns from more examples: Our model is most accu-
rate with clear greetings and farewells, and usually
gives an inquisitive utterance a high score; it is of-
ten the case when an utterance starts a new topic,
our WeSEE predicts longer conversations will hap-
pen. There may be other interesting patterns that
are less obvious to discover or more complicated
to describe. We will release the annotated files for
all the test sets we use in this paper.

However, there are also some tricky cases that
our single-turn WeSEE model fails to cope with.
One biggest type of such errors usually happen on
generic utterances, such as the 2nd, 6th and 7th
examples shown in Figure 5. While we can ar-
gue that many generic responses fit naturally in the
end of a conversation, it takes longer context and
heavier reasoning to decide whether the conver-



Dialogue turns RD H1 H3
is there anything else i can do for  0.08 0.66  0.19
you?

that’s ok. 0.00 035 0.17
it’'ll be worth it in the end. just 0.29 0.02 0.48
think of the freedom you’ll have!

enjoy your visit and safe travels. 0.53 0.00 0.57
i like the sound of that 0.56 0.16 0.39
thank you. 0.62 0.11 040
yes, you did. 0.73 0.17 049

Figure 5: Cases in which WeSEE-H1 deviates from the
RD labels and WeSEE-H3 aligns better. Only single
turns sampled from the datasets listed in Section 4 are
displayed here.

Dialogue turns Human H1
everything is going extremely well. how 0.90 0.89
are you?

what is the meeting about? 0.80 0.76
try me. what is your problem? 1.00 0.61
not that much more, no. 040 0.27
i did not want to hear that now 0.80 0.33

Figure 6: WeSEE-H1 predictions versus human annota-
tions from the FED dataset.

Dialogue H1
what can 1 do for you today? 1.00
i have a question. 1.00
what do you need to know? 0.64
i need to take the driver’s course. how many hours  0.85
do i need?

it depends on what you’re trying to do with the 0.21
completion of the course.

i need to get my license. 1.00
you’re going to need to complete six hours. 0.42
how many hours a day can i do? 0.62
you can do two hours a day for three days. 0.43
that’s all i need to do to finish? 0.37
yes, that’s all you need to do. 0.17
thanks. 1’1l get back to you. 0.00

Figure 7: A complete dialogue randomly sampled from
the DD dataset and labeled by WeSEE-H1.

sation actually dies. Indeed, our best-performing
WeSEE-H3 using 3 turns of history can make more
accurate predictions in such cases, however, the
overall predictions from -H3 model is less compre-
hensible than the -H1 model. We also note that,
there are cases that are easy for us to decide in real-
life. E.g., a “Thank you.” together with a leaving
body-language clearly shows that the conversation
is ending. In the pure textual setting, this is some-
times impossible to accurately predict. There is
another tendency that our WeSEE model responds
too much to questions, such as the first example in
Figure 5. While the utterance itself already shows
a good sign of conversation ending, the single-turn
WeSEE model thinks it is a normal question and
predicts a medium score for it.

Comparisons with human annotations from the
FED dataset are shown in Figure 6. In many cases,
our model’s prediction correlates well with human
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annotations (normalised to [0, 1]), and there is also
some cases that our model makes arguably better
predictions than human annotations, such as the
last example when the participant is trying to end
the conversation/topic, but human annotators still
think it is engaging.

We also show a randomly-chosen complete dia-
logue from the DD dataset in Figure 7, from which
we can see that our WeSEE model can not only
detect when the conversation starts and ends, but
also reflects where the conversation can end prema-
turely, such as the S5th and 7th rows.



