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ABSTRACT

Vision-language models, such as CLIP, achieve strong zero-shot performance
through contrastive pre-training but face significant challenges in continual learn-
ing scenarios. When learning new tasks sequentially, current methods suffer from
degradation in prototype quality due to passive averaging and underutilize their
visual adaptation capabilities. We propose RLAP-CLIP, which addresses these
limitations through three components. First, Reinforcement Learning-based Pro-
totype Optimization (RLPO) formulates prototype construction as a reinforcement
learning problem to actively optimize class separability rather than relying on
simple averaging. Second, difficulty-aware cross-modal fusion uses a mixture-
of-experts to route samples through specialized processing pathways based on
complexity. Third, dual-modal prompting balances visual and textual adapta-
tion. Experiments across eight datasets demonstrate consistent improvements,
with RLAP-CLIP achieving average accuracy gains of 3.72-4.46 points and final
accuracy improvements of 0.49-4.48 points over other methods, validating that
RLAP-CLIP achieves state-of-the-art performance. Our source code is available
at RLAP-CLIP.

1 INTRODUCTION

Vision-language models like CLIP Radford et al. (2021) have achieved remarkable zero-shot per-
formance through large-scale contrastive pre-training, learning to align visual and textual represen-
tations in a shared semantic space. However, when deployed in continual learning scenarios where
new tasks arrive sequentially, these models face the classic stability-plasticity dilemma Shi et al.
(2024); Kim & Han (2023); Buzzega et al. (2020): they must acquire new knowledge while preserv-
ing previously learned concepts without catastrophic forgetting.

Current continual learning approaches for vision-language models predominantly rely on parameter-
efficient adaptation He et al. (2023); Zhou et al. (2022b;a); He et al. (2025), freezing pre-trained
weights while introducing minimal learnable parameters for new tasks. Methods like CoOp Zhou
et al. (2022b) learn continuous prompts in the text encoder, while approaches such as MaPLe Khattak
et al. (2023) extend prompting to both modalities. While this parameter-freezing strategy theoreti-
cally prevents catastrophic forgetting Zhou et al. (2023), our analysis reveals two critical limitations
that prevent these methods from reaching their potential.

First, existing methods suffer from prototype quality degradation due to passive averaging. Since
storing complete historical data violates memory constraints, continual learning methods rely on
prototype-based knowledge retention Douillard et al. (2020), where each class is represented by the
mean embedding of limited exemplar samples Zhou et al. (2025b); Zhu et al. (2021). However, as
new tasks arrive and feature spaces evolve, prototypes computed through simple averaging may drift
into suboptimal regions Masana et al. (2022), leading to progressive performance degradation and
increased forgetting of previously learned classes Zhou et al. (2023).

Second, current approaches exhibit asymmetric multimodal exploitation, predominantly adapting
textual representations while treating visual encoders as static feature extractors Zhou et al. (2022b);
Wang et al. (2022); Jiang et al. (2025). This text-centric bias may break down in fine-grained recog-
nition where discriminative visual patterns lack precise linguistic descriptors Song et al. (2020).
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To address these challenges, we propose RLAP-CLIP, which targets the stability-plasticity dilemma
through complementary mechanisms. For stability, we introduce RLPO, which transforms proto-
type construction from passive averaging into active optimization based on reinforcement learning.
RLPO maintains robust class representations that resist degradation as new tasks arrive by learn-
ing to weight samples based on their contribution to class separability. For plasticity, we employ
difficulty-aware cross-modal fusion with mixture-of-experts routing, enabling adaptive processing
based on sample complexity, providing enhanced capacity for challenging boundary cases while
efficiently handling easy samples. Bridging both objectives, our enhanced dual-modal prompting
balances visual and textual adaptation, ensuring the model captures discriminative patterns across
modalities without over-relying on either, thus maintaining flexibility for new tasks while preserving
learned representations. Our main contributions are as follows:

• We identify and mitigate prototype quality degradation by formulating a reinforcement learn-
ing–based optimization framework;

• We propose a difficulty-aware sample routing strategy leveraging a mixture-of-experts architecture
to enhance feature processing.

• We reveal the importance of balanced multimodal adaptation for continual learning in vi-
sion–language models.

• Experiments across eight benchmark datasets demonstrate consistent improvements, with RLAP-
CLIP achieving average accuracy gains of 3.72–4.46 points and final accuracy improvements of
0.49–4.48 points over other methods, validating that RLAP-CLIP achieves state-of-the-art perfor-
mance.

2 MOTIVATION

When deployed in continual learning scenarios, vision-language models show a significant perfor-
mance gap compared to their theoretical potential Yi et al. (2024). Our empirical analysis using
CLIP model Radford et al. (2021) reveals two critical issues that limit their effectiveness.

Prototype Quality Deteriorates Over Sequential Tasks. To overcome memory constraints, contin-
ual learning methods maintain class representations through prototypes Zhou et al. (2025b); Gomez-
Villa et al. (2024), mean embeddings computed from a small set of stored exemplar samples per
class. As Figure 1a demonstrates, this passive averaging strategy leads to substantial degradation
across sequential tasks. While theoretical upper bounds computed using complete training datasets
show only modest decline due to inherent feature space evolution, simple averaging exhibits se-
vere performance drops and accelerating forgetting rates. The performance gap between uniform
weighting and the theoretical optimum progressively widens as more tasks accumulate, revealing
that passive averaging overlooks the need for active optimization based on class separability. This
degradation becomes particularly problematic in continual learning scenarios where maintaining
discriminative class boundaries is crucial for preventing catastrophic forgetting.
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(a) Prototype quality analysis using CLIP ViT-B/16
on CIFAR-100 across eight sequential tasks, showing
performance degradation (left) and accelerating for-
getting rates (right) under different strategies.
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(b) Performance comparison across different prompt-
ing strategies on six datasets, demonstrating that vi-
sual prompts provide substantial benefits to textual
prompting

Figure 1: Comprehensive analysis demonstrating the importance of both prototype quality (a) and
visual prompting strategies (b) in continual learning scenarios.

Visual Adaptation Capabilities Remain Underutilized. Current continual learning approaches
exhibit asymmetric adaptation patterns: they primarily focus on textual prompts (learnable tokens
that guide text encoder adaptation) Liu et al. (2025b); Kim et al. (2024); Smith et al. (2023); Zhou
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et al. (2022b) while treating visual encoders as fixed feature extractors. Visual prompts, which adapt
the visual encoder through learnable tokens appended to image patches, remain largely unexplored
despite their potential for capturing discriminative patterns that cannot be expressed linguistically.
As shown in Figure 1b, visual-only prompting achieves substantial performance. When combined
with textual prompts (dual-modal prompting), performance increases markedly, 84.2% on CUB-200
and 66.9% on Aircraft. Maji et al. (2013) The t-SNE visualization in Figure 2 further confirms that
dual-modal prompting produces more compact and well-separated class clusters, reducing overlap
compared to single-modality approaches.
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(d) Dual-modal prompting

Figure 2: t-SNE visualization of learned feature representations on CUB-200 dataset under different
prompting strategies. Colors represent 12 kinds of main bird species. Dual-modal prompting (d)
achieves better class separation compared to no prompting (a), text-only (b), or visual-only (c).

These findings highlight that existing methods fail to exploit the potential of vision-language models
fully. The reliance on passive prototype construction, coupled with asymmetric modality adaptation,
results in a persistent performance bottleneck. Overcoming these challenges requires a rethinking of
both knowledge representation and the effective utilization of multimodal capabilities in continuing
learning.

3 RLAP-CLIP

To address these challenges, we propose RLAP-CLIP, a unified framework that integrates three
key components: Reinforcement Learning-based Prototype Optimization (RLPO) to refine class
representations and mitigate prototype degradation actively, difficulty-aware cross-modal fusion to
dynamically route samples based on complexity, and enhanced dual-modal prompting to balance
visual and textual adaptation. RLPO provides theoretical convergence guarantees in Appendix C.

3.1 REINFORCEMENT LEARNING-BASED PROTOTYPE OPTIMIZATION

Traditional prototype-based methods compute class representatives through uniform averaging:
pc = 1

|Ec|
∑

xi∈Ec
f(xi), where Ec denotes the exemplar set for class c and f(·) represents the fea-

ture extraction function. This approach treats all samples equally, leading to suboptimal prototypes
when exemplars contain outliers or represent multi-modal distributions. We instead cast prototype
construction as a sample-weighted optimization problem, where a policy network πθ with parame-
ters θ learns importance weights wi for each sample based on its contribution to class separability:

pc =
∑

i:yi=c

wifi, wi = πθ(fi,P) and
∑

i:yi=c

wi = 1 (1)

Here, fi denotes the feature embedding of sample i, yi is its class label, and P = {p1, . . . , pC}
represents the set of all C class prototypes. The policy network considers both individual sample
features and global prototype relationships.

We define a reward function that encourages high intra-class similarity while maintaining inter-class
separation. For sample i with label yi, the reward is:

Ri = sim(fi, pyi
)−max

j ̸=yi

sim(fi, pj)− λ
∑
j ̸=yi

sim(pyi
, pj)

C − 1
(2)
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Figure 3: Overview of the RLAP-CLIP architecture for continual multimodal learning. It comprises
enhanced dual-modal prompting with expandable projections, RLPO mechanism, and difficulty-
aware cross-modal fusion.

where sim(·, ·) denotes cosine similarity, C is the total number of classes, and λ controls the reg-
ularization strength. The first term maximizes similarity between sample i and its class prototype
pyi , the second term maximizes the margin to the nearest incorrect prototype, and the third term
penalizes excessive similarity between different class prototypes to prevent collapse.

To stabilize training across tasks with varying reward scales, we normalize the rewards within each
batch. Specifically, for a batch of samples with rewards {R1, ..., RB}, we compute normalized
advantages:

Ai =
Ri − µR

σR + ϵ
(3)

where µR = 1
B

∑B
i=1 Ri is the batch mean, σR =

√
1
B

∑B
i=1(Ri − µR)2 is the batch standard

deviation, and ϵ prevents division by zero.

The policy network πθ is trained to maximize the expected reward while preventing drastic changes
from a reference policy. The optimization objective is:

LRLPO = − 1

B

B∑
i=1

log πθ(wi|fi,P) ·Ai + λKLDKL(πθ∥πref) (4)

where the first term encourages the policy to assign higher weights to samples with positive advan-
tages (samples that improve class separation), and the second term is the Kullback-Leibler diver-
gence:

DKL(πθ∥πref) =

B∑
i=1

πθ(wi|fi,P) log
πθ(wi|fi,P)

πref(wi|fi,P)
(5)

The reference policy πref is initialized as a uniform distribution (equal weights) and updated after
each task to the learned policy, ensuring smooth adaptation across sequential tasks while preventing
catastrophic changes.

3.2 DUAL-MODAL PROMPTING WITH EXPANDABLE PROJECTIONS

Existing methods predominantly adapt textual representations while treating visual encoders as fixed
feature extractors Liu et al. (2025b); Kim et al. (2024), creating an asymmetry that hinders perfor-
mance on fine-grained recognition tasks. We address this by introducing dual-modal prompting with
task-specific projections to jointly adapt visual and textual features.

4
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For each task t, we maintain learnable visual prompts Vt = {vt1, vt2, ..., vtK} ∈ RK×D shared across
all classes, where K denotes the prompt length and D is the embedding dimension. These prompts
are appended to the patch embeddings of input image xi, yielding the augmented visual input:

x̃i = [xi;Vt] (6)

where [·; ·] denotes concatenation. Similarly, we employ learnable textual prompts pretended to a
fixed template. For class c, the textual input follows the template structure:

Tc = T t ⊕ “A photo of a [CLASS]” (7)

where T t = {tt1, tt2, ..., ttM} ∈ RM×D are learnable textual prompts with length M , and ⊕ denotes
the concatenation operation in the token sequence. This design allows the learned prompts to provide
context before the class-specific template, enabling better adaptation to task-specific characteristics.

To prevent interference between tasks while enabling adaptation, we employ task-specific projection
layers that transform the frozen CLIP features:

f
v,(t)
i = P t

v(Ev(x̃i)), f t,(t)
c = P t

t (Et(Tc)) (8)

where Ev and Et denote the frozen visual and textual CLIP encoders respectively, P t
v : RD → RD′

and P t
t : RD → RD′

are task-specific linear projection layers that map features to a task-adapted
space of dimension D′. By maintaining separate projection parameters for each task while keeping
the backbone frozen, we preserve previously learned knowledge and avoid interference between
tasks.

To maintain representative samples as the feature space evolves, we dynamically update exemplar
sets for each class. Let Ec denote the current exemplar set and Sc the new samples for class c. We
compute the centroid of the combined set:

µc =
1

|Ec|+ |Sc|

∑
xi∈Ec

fv,(t)(xi) +
∑

xj∈Sc

fv,(t)(xj)

 (9)

where fv,(t)(·) represents the visual feature extraction through the encoder and projection. We then
select the m samples nearest to µc in the feature space to form the updated exemplar set Enew

c :

Enew
c = argmin

X⊆Ec∪Sc,|X |=m

∑
x∈X

∥fv,(t)(x)− µc∥2 (10)

This ensures that the exemplar set continues to capture the core characteristics of each class while
adapting to changes in the feature space.

3.3 DIFFICULTY-AWARE CROSS-MODAL FUSION WITH MIXTURE OF EXPERTS

Beyond prototype optimization, effective continual learning also requires adaptive processing that
accounts for varying sample complexity within each task. While our dual-modal prompting captures
discriminative patterns across modalities, not all samples benefit equally, straightforward examples
may be over-processed while challenging boundary cases receive insufficient attention. To address
this imbalance, we design a mixture-of-experts (MoE) mechanism that dynamically routes samples
through specialized processing pathways based on their difficulty, providing the most benefit for
maintaining class boundaries during continuing learning.

Firstly, we quantify sample difficulty using the distance from a sample to its corresponding class
prototype. For sample i with class label yi, we define the difficulty score as:

di = 1−
sim(fv

i , p
v
yi
) + sim(f t

i , p
t
yi
)

2
(11)

where sim(·, ·) denotes cosine similarity, fv
i and f t

i are the visual and textual features of sample
i respectively, and pvyi

, ptyi
are the visual and textual prototypes for class yi obtained from RLPO.

Samples with high difficulty scores (far from prototypes) are considered hard, whereas low-difficulty
samples are deemed easy. This metric leverages the optimized prototypes from RLPO to provide
reliable difficulty estimates.

5
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Based on this difficulty metric, we employ two specialized experts: a lightweight expert Eeasy imple-
mented as a single linear layer for simple samples, and a deep expert Ehard consisting of a three-layer
feed-forward network for complex samples. The routing probability for sample xi to the easy expert
is computed as:

P (Eeasy|xi) = σ(−α(di − τ)) (12)
where σ(·) is the sigmoid function, τ ∈ [0, 1] is a learned threshold parameter that determines the
difficulty boundary, and α > 0 controls the sharpness of the routing decision. The probability of
routing to the hard expert is P (Ehard|xi) = 1 − P (Eeasy|xi). The final visual features after expert
processing combine outputs from both pathways:

fv,expert
i = P (Eeasy|xi) · Eeasy(f

v
i ) + P (Ehard|xi) · Ehard(f

v
i ) (13)

For cross-modal fusion, we employ an attention mechanism to adaptively weight the contributions
from different modalities. We first concatenate the expert-processed visual features fv,expert

i , the
prototype of visual features fvisual proto, and the textual features ftextual proto:

hi = [fv,expert
i ; fvisual proto; ftextual proto] (14)

where [·; ·] denotes concatenation. The attention mechanism computes importance weights for each
modality:

[Wa,Wb,Wc] = SoftMax(Attention(hi)) (15)
where the attention function is implemented as a feed-forward network with ReLU activation that
maps the concatenated features to three scalar weights. The weighted features are then computed
as:

f̃v
i = Wa · fv,expert

i , f̃visual proto = Wb · fvisual proto, f̃txetual proto = Wc · ftextual proto (16)

These weighted features fv,expert
i , f̃visual proto, and f̃txetual proto are used for computing similarities in

the final classification, allowing the model to dynamically emphasize different information sources
based on sample characteristics.

4 EXPERIMENTS

We evaluate RLAP-CLIP on diverse continual multimodal learning tasks. The model builds on
CLIP with ViT-B/16 as the visual encoder, using pre-trained weights from OpenAI and LAION-
400M Radford et al. (2021). Each task is trained for 20 epochs per task using AdamW opti-
mizer Khattak et al. (2023). Following standard continual learning principles, we maintain 20 ex-
emplars per class for fair comparison with other methods Rebuffi et al. (2017).

Datasets and Baselines. Experiments are conducted on eight datasets spanning different visual
domains. Their details can be found in Appendix A and Appendix B. General classification tasks
include CIFAR-100 Krizhevsky et al. (2009) and ImageNet-R Hendrycks et al. (2021). Fine-grained
recognition is evaluated on CUB-200 Wah et al. (2011), Aircraft Maji et al. (2013), and Cars Krause
et al. (2013). Specialized domains are covered by Food101 Bossard et al. (2014), UCF101 Soomro
et al. (2012), and ObjectNet Barbu et al. (2019). Tasks arrive sequentially, requiring the model to
learn new classes while retaining knowledge of previously encountered ones. We compare against
three kinds of methods: Classical continual learning approaches, including various finetune vari-
ants Zhai et al. (2022); Zhou et al. (2022b); Prompt-based methods such as CODA-Prompt Smith
et al. (2023) and DAP Jung et al. (2023); and Vision-language continual learning methods, including
SimpleCIL Zhou et al. (2025a), PROOF Zhou et al. (2025b), DKR Cui et al. (2024), and C-CLIP Liu
et al. (2025a).

4.1 MAIN RESULTS

Table 1 summarizes the experimental results across all eight datasets, reporting both average accu-
racy (performance across all tasks) and final accuracy (performance on all classes after learning the
final task). Traditional fine-tuning approaches suffer from severe catastrophic forgetting, with final
accuracies ranging from 0.47% on CUB-200 to 2.46% on CIFAR-100, indicating that parameter-
based adaptation alone is insufficient for continual learning in vision-language models. Among
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Table 1: Performance comparison across eight datasets. Results show average accuracy (Avg) and
final accuracy (Final) as percentages.

Methods Exemplar CIFAR-100 CUB-200 Cars Aircraft Food-101 UCF-101 ImageNet-R ObjectNet
Avg Final Avg Final Avg Final Avg Final Avg Final Avg Final Avg Final Avg Final

Finetune × 5.30 2.46 0.56 0.47 1.54 1.13 1.72 1.05 2.14 1.52 1.21 0.80 1.01 0.88 0.69 0.54
Finetune CoOp Zhou et al. (2022b) × 41.23 24.12 24.03 10.14 37.40 20.87 13.05 7.77 33.13 18.67 42.02 24.74 54.20 39.77 16.21 6.82
Finetune LiT Zhai et al. (2022) × 27.69 7.67 51.95 35.96 83.08 78.23 25.10 13.77 29.74 12.05 81.79 65.40 57.75 29.77 32.85 17.17
SimpleCIL Zhou et al. (2025a) × 80.20 76.63 79.75 77.52 88.96 86.85 53.05 48.09 84.73 81.65 88.12 85.68 76.84 74.48 45.11 40.13

CoOp Zhou et al. (2022b) ✓ 78.34 73.04 74.09 67.47 87.98 86.60 41.81 39.18 81.74 76.35 88.36 85.71 79.76 77.13 40.40 34.47
PLOT Chen et al. (2022) ✓ 74.35 67.90 78.35 72.03 82.43 74.26 46.82 43.58 78.39 72.49 87.09 82.91 70.45 68.24 41.85 33.38
CODA-Prompt Smith et al. (2023) ✓ 81.33 75.92 79.81 74.73 89.45 87.84 62.05 54.70 79.35 73.46 92.73 90.28 79.32 74.73 47.86 42.35
DAP Jung et al. (2023) ✓ 76.57 59.92 75.39 74.09 84.63 83.15 41.45 28.56 81.68 78.38 87.64 85.68 77.23 74.37 42.47 32.95
DKR Cui et al. (2024) ✓ 80.17 77.35 78.94 76.23 88.75 86.92 61.28 56.47 85.91 82.73 89.32 87.15 80.47 78.18 47.23 41.89
PROOF Zhou et al. (2025b) ✓ 82.92 78.87 81.67 79.18 90.53 89.54 63.59 58.81 87.52 84.74 93.56 91.32 82.32 80.30 49.64 43.65
C-CLIP Liu et al. (2025a) ✓ 81.75 78.92 82.14 79.83 92.18 90.45 65.73 62.15 87.08 84.21 91.85 89.67 83.15 81.06 51.37 47.82
RLAP-CLIP ✓ 86.64 79.41 85.78 83.67 94.82 93.15 70.25 68.41 88.24 86.88 97.68 95.80 85.63 82.22 53.89 48.91

prompt-based methods, CODA-Prompt shows better performance across most datasets, reaching
90.28% final accuracy on UCF-101. However, these approaches struggle with fine-grained dis-
crimination, as seen in CODA-Prompt’s 54.70% final accuracy on Aircraft compared to 90.28% on
UCF-101. Besides, vision-language continual learning methods achieve better overall performance.
PROOF establishes strong baselines with 78.87% final accuracy on CIFAR-100 and 91.32% on
UCF-101, while C-CLIP demonstrates competitive results, particularly on visual recognition tasks
like Cars (90.45%) and ImageNet-R (81.06%). Our RLAP-CLIP consistently outperforms all base-
lines across datasets and metrics. On general classification tasks such as CIFAR-100, it achieves
86.64% average accuracy, improving over PROOF by 3.72%. The improvements are more pro-
nounced on fine-grained recognition: on CUB-200, RLAP-CLIP reaches 85.78% average accuracy
compared to the C-CLIP’s 82.14%, representing a 3.64 point gain. Similar improvements appear on
Cars (+2.64 points over C-CLIP) and Aircraft (+23.43 points over PLOT). On challenging datasets
like ObjectNet, RLAP-CLIP achieves 53.89% average accuracy, outperforming the C-CLIP by 2.52
points. The improvements across both average and final accuracy metrics indicate that RLAP-CLIP
not only learns new tasks effectively but also maintains better long-term knowledge retention, effec-
tively addressing the stability-plasticity trade-off in continual learning.

4.2 ABLATION STUDIES

Table 2: Component-wise ablation study. Numbers in paren-
theses indicate gains over the previous configuration.

Dataset Base +VP +VP +MoE +VP +MoE +RLPO
CIFAR-100 82.92 83.21 (+0.29) 84.05 (+0.84) 85.47 (+1.42)
CUB-200 81.67 82.34 (+0.67) 83.52 (+1.18) 84.89 (+1.37)
Cars 90.53 91.28 (+0.75) 92.67 (+1.39) 93.94 (+1.27)
Aircraft 63.59 64.83 (+1.24) 66.45 (+1.62) 68.73 (+2.28)
Food-101 87.52 87.68 (+0.16) 87.84 (+0.16) 87.95 (+0.11)
UCF-101 93.56 94.12 (+0.56) 95.38 (+1.26) 96.84 (+1.46)
ImageNet-R 82.32 82.73 (+0.41) 83.94 (+1.21) 84.85 (+0.91)
ObjectNet 49.64 50.89 (+1.25) 52.47 (+1.58) 53.21 (+0.74)

Average Accuracy 78.97 79.64 (+0.67) 80.79 (+1.15) 81.98 (+1.19)

Component Analysis. We eval-
uate each component’s contribu-
tion through incremental ablation.
The baseline (Base) consists of a
continual learning framework us-
ing frozen CLIP encoders with text-
only prompting and simple pro-
totype averaging, representing the
core architecture without our pro-
posed enhancements. Table 2 re-
ports the performance of a baseline
CLIP model under standard contin-
ual learning as components are progressively incorporated. Visual Prompts (VP) provide an average
gain of 0.67%, with larger improvements on fine-grained datasets such as Aircraft (+1.24%) and
smaller gains on coarse-grained tasks like Food-101 (+0.16%), indicating that VP captures discrimi-
native patterns crucial for fine-grained recognition. The Mixture-of-Experts (MoE) mechanism con-
tributes an additional 1.15% average improvement, with the largest gain on ObjectNet (+1.58%),
by routing hard samples through deeper experts while efficiently processing easy ones to enhance
feature quality. RLPO yields a substantial contribution (+1.19%), particularly on fine-grained tasks
such as Aircraft (+2.28%) and action recognition like UCF-101 (+1.46%), by actively optimizing
prototypes to preserve subtle class boundaries. The reinforcement learning approach ensures pro-
totypes maintain separability even as feature spaces evolve across sequential tasks, preventing the
performance decay observed with passive averaging.

Prototype Construction Strategies. Figure 4 compares three prototype construction approaches
across eight datasets. Simple averaging assigns equal weights to all exemplars, providing a basic
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(a) Simple averaging
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ImageNet-R

(b) Weighted averaging
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ImageNet-R

(c) RLPO (Ours)
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Food-101

Aircraft

ObjectNet

ImageNet-R

(d) Overall comparison

Figure 4: Comparison of prototype construction strategies. Performance ranges from 40% (center)
to 100% (outer edge). Larger areas indicate better performance across datasets.

baseline but yielding limited performance on ObjectNet (41.27%) and Aircraft (56.32%). Quality-
weighted averaging refines prototypes by assigning higher weights to exemplars closer to the class
centroid, assuming they better represent the class, leading to improved results (CUB-200: 79.86%,
Aircraft: 61.48%). Our RLPO method goes further by learning weights through reinforcement
learning. The policy network adaptively adjusts weights to maximize both intra-class cohesion and
inter-class separation, achieving 83.42% on CUB-200, 92.18% on Cars, and 67.85% on Aircraft.
As shown in Figure 4d, RLPO consistently outperforms passive averaging across all task types,
demonstrating its ability to adapt weighting strategies to task-specific characteristics and effectively
mitigate prototype degradation.

0.
05 0.
1

0.
2

0.
3

0.
5

1.
0

Reinforcement Learning Weight 

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

UCF-101
CUB-200
Cars
CIFAR-100

Food-101
Aircraft
ImageNet-R
ObjectNet

(a) RL weight λRLPO

0.
05 0.
1

0.
2

0.
3

0.
5

1.
0

Difficulty Weight Factor 

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

CUB-200
Cars
Aircraft
CIFAR-100

ImageNet-R
UCF-101
Food-101
ObjectNet

(b) Difficulty weight β

1510 20 50 100
Text Prompt Length

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

CUB-200
Cars
Aircraft
UCF-101

Food-101
CIFAR-100
ImageNet-R
ObjectNet

(c) Text prompt length

1510 20 50 100
Visual Prompt Length

60

70

80

90

Ac
cu

ra
cy

 (%
)

CUB-200
Cars
Aircraft
UCF-101

Food-101
CIFAR-100
ImageNet-R
ObjectNet

(d) Visual prompt length

Figure 5: Hyperparameter sensitivity analysis across eight datasets. Optimal values vary by task
characteristics but show consistent patterns within task categories.

4.3 HYPERPARAMETER SENSITIVITY ANALYSIS

We analyze four key hyperparameters to understand their impact on model performance.

RLPO Weight (λRLPO). This parameter controls the influence of reinforcement learning-based
prototype optimization in the total loss (Eq. 4). Figure 5a shows that all datasets achieve optimal per-
formance at λRLPO = 0.2, with sharp degradation at higher values. UCF-101 drops from 97.68% to
92.15% as λRLPO increases to 1.0, while fine-grained datasets like CUB-200 decline by 5.44 points.
This uniform sensitivity suggests that excessive prototype optimization disrupts the learned feature
space regardless of task type, with moderate reinforcement providing the best balance between class
separation and feature stability.

Difficulty Weight (β). This factor amplifies the loss contribution of hard samples. Figure 5b reveals
a consistent optimum at β = 0.2 across all datasets. Fine-grained recognition tasks exhibit higher
sensitivity, CUB-200 drops 4.44 points from peak to β = 1.0, while Aircraft declines by 4.58 points.
Hign difficulty weighting causes overfitting to boundary cases and outliers, particularly detrimental
for tasks requiring subtle discrimination between visually similar classes.

Text Prompt Length and Visual Prompt Length . Text prompts (Figure 5c) show task-dependent
optima, action recognition (UCF-101) peaks at 5 tokens, as action concepts require minimal lin-
guistic elaboration. Fine-grained tasks optimize at 10 tokens, while distribution-shift datasets
(ImageNet-R, ObjectNet) achieve best performance at 50 tokens. This pattern reflects varying lin-
guistic complexity, where actions require simple descriptors, fine-grained categories need moderate
detail, and distribution shifts benefit from extensive contextual guidance. Visual prompts (Figure 5d)
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uniformly optimize at 10 tokens across all tasks, with fine-grained datasets showing strongest gains
(Aircraft: +1.91 points from 1 to 10 tokens). This consistency indicates that 10 visual tokens provide
sufficient adaptation capacity without overfitting, particularly crucial given limited exemplar storage
in continual learning.

5 RELATED WORK

Continual Learning in Vision-Language Models. Recent approaches to continual learning in
vision-language models primarily adopt parameter-efficient strategies to mitigate catastrophic for-
getting Wang et al. (2023); Ostapenko et al. (2022). CoOp Zhou et al. (2022b) introduces learnable
continuous prompts for the text encoder while keeping CLIP backbone frozen. MaPLe Khattak
et al. (2023) extends this to both visual and textual modalities with multi-modal prompting. CODA-
Prompt Smith et al. (2023) develops an attention-based prompt pool that dynamically composes
task-specific prompts, while DAP Jung et al. (2023) generates instance-level prompts for improved
adaptability. SimpleCIL Zhou et al. (2025a) demonstrates that frozen CLIP features can achieve
reasonable performance without adaptation, leading to methods like C-CLIP Liu et al. (2025a) and
PROOF Zhou et al. (2025b) that combine prompt learning with prototype-based classification.

Prototype Construction and Management. Prototype-based approaches have been critical and
common to continual learning, with iCaRL Rebuffi et al. (2017) pioneering the use of class mean
embeddings computed from stored exemplars. Subsequent works improve exemplar selection Re-
buffi et al. (2017) or correct representation bias Zhu et al. (2021), but continue treating prototype
construction as a passive averaging process. PODNet Douillard et al. (2020) uses pooled outputs
for distillation while maintaining prototypes for classification. Recent vision-language methods like
PROOF Zhou et al. (2025b) and DKR Cui et al. (2024) adopt prototype-based classification but still
compute prototypes through uniform averaging. This passive construction becomes problematic as
feature spaces evolve across tasks Masana et al. (2022), leading to prototype drift and degraded
performance. We reformulate prototype construction as an active optimization problem using re-
inforcement learning, where sample weights are learned to maximize class separability rather than
assigned uniformly.

Mixture of Experts and Adaptive Processing. Mixture of Experts (MoE) architectures demon-
strate that routing inputs through specialized pathways improves both efficiency and perfor-
mance Fedus et al. (2022); Zhou et al. (2022c). Recent work shows MoE’s effectiveness in large
language models Dai et al. (2024); Shao et al. (2024) and multimodal settings Li et al. (2025); Pióro
et al. (2024). In computer vision, adaptive processing has been explored through dynamic networks
that adjust computation based on input complexity. However, these ideas have not been applied to
continual learning in vision-language models, where samples vary significantly in difficulty both
within and across tasks. We introduce difficulty-aware routing that allocates deeper processing to
challenging samples near class boundaries while efficiently handling straightforward examples, ad-
dressing the varying complexity inherent in sequential task learning.

6 DISCUSSION AND CONCLUSION

We present RLAP-CLIP, which reformulates prototype construction as an active optimization prob-
lem using reinforcement learning rather than passive averaging. Experiments on eight datasets
demonstrate consistent improvements, with the apparent improvements observed on fine-grained
recognition tasks where visual adaptation is most impactful. Our results highlight three key find-
ings: (1) actively optimized prototypes preserve class separability more effectively than uniform
averaging, (2) dual-modal adaptation outperforms text-centric approaches, with visual prompting
contributing substantial gains, and (3) difficulty-aware mixture-of-experts routing efficiently allo-
cates computational resources while enhancing feature quality. While our method is evaluated under
class-incremental settings, the varying improvements across task types suggest that the benefits of vi-
sual prompting are task-dependent. Extending RLAP-CLIP to other incremental learning paradigms
and further exploring when visual adaptation offers the greatest benefit remain promising directions
for future work.
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APPENDIX

For a better understanding of the main paper, we provide additional details in this supplementary
material, which is organized as follows:

§A - Dataset: Detailed specifications of the eight evaluation datasets, categorized into general classi-
fication tasks (CIFAR-100, ImageNet-R), fine-grained recognition tasks (CUB-200, Aircraft, Cars),
and specialized domain tasks (Food-101, UCF-101, ObjectNet). Each dataset description includes
structural characteristics, inherent challenges, and task partitioning strategies.

§B - Comparison Methods: Comprehensive overview of baseline methods spanning classical con-
tinual learning approaches (Finetune variants), prompt-based continual learning methods (CoOp,
CODA-Prompt, DAP, PLOT), and state-of-the-art vision-language continual learning techniques
(SimpleCIL, DKR, C-CLIP, PROOF).

§C - Theoretical Analysis: Rigorous mathematical foundation for the Reinforcement Learning-
based Prototype Optimization (RLPO) method, including problem formulation, convergence analy-
sis, and theoretical guarantees with formal proofs establishing convergence to stationary points and
practical convergence properties.

§D - Multi-Objective Training: Detailed description of the multi-objective training strategy that
simultaneously optimizes classification accuracy, maintains vision-language alignment, learns op-
timal prototype weights, and balances expert utilization. This section includes the mathematical
formulation of all loss components and their integration.

§E - Mixture-of-Experts Routing Analysis: Detailed examination of difficulty assessment mecha-
nisms for sample routing in the mixture-of-experts architecture, comparing random routing, entropy-
based routing, and distance-based routing strategies with comprehensive performance analysis
across datasets.

A DATASET

We evaluate on eight diverse datasets spanning three categories: general classification (CIFAR-100,
ImageNet-R), fine-grained recognition (CUB-200, Aircraft, Cars), and specialized domains (Food-
101, UCF-101, ObjectNet).

A.1 GENERAL CLASSIFICATION TASKS

CIFAR-100 contains 60,000 32×32 images across 100 classes organized into 20 superclasses. De-
spite low resolution, the dataset requires robust representations for discriminating closely related
classes.

ImageNet-R comprises 30,000 images across 200 classes featuring artistic renditions including
paintings, sketches, and sculptures. The dataset tests generalization beyond photographic domains
through substantial visual style variations.

A.2 FINE-GRAINED RECOGNITION TASKS

CUB-200 contains 11,788 images of 200 bird species with high visual similarity requiring discrim-
ination of subtle plumage patterns, beak shapes, and color distributions. Intra-class variation from
gender dimorphism and seasonal changes demands invariant species-specific representations.

Aircraft encompasses 10,200 images of 100 aircraft variants differing only in subtle details like
engine configurations. Aircraft from the same manufacturer share nearly identical designs, with
distinguishing features visible only from specific angles.

Cars contains 16,185 images covering 196 make/model/year combinations. Discrimination requires
sensitivity to minor design elements like grille patterns and year-specific modifications while main-
taining view invariance across angles and lighting.
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A.3 SPECIALIZED DOMAIN TASKS

Food-101 contains 101,000 images of 101 food categories with high variability from preparation
methods and presentation styles. Many dishes share ingredients or similar appearances, requiring
discrimination of specific combinations and presentation cues.

UCF-101 comprises 13,320 video clips of 101 human actions, processed as frame sequences. The
dataset covers diverse action types requiring understanding of poses, object relationships, and scene
context. Many actions share similar static appearances, demanding comprehensive visual cue anal-
ysis.

ObjectNet contains 50,000 images across 313 object classes captured in natural environments with
objects rotated, occluded, and placed in unusual contexts. The dataset challenges models trained
on canonical object views by presenting objects from non-standard viewpoints and backgrounds,
testing robustness to distribution shift.

B COMPARISON METHODS

We compare RLAP-CLIP against comprehensive baselines spanning different continual learning
paradigms, from classical approaches to state-of-the-art vision-language techniques.

B.1 CLASSICAL CONTINUAL LEARNING BASELINES

Finetune represents the naive baseline with sequential fine-tuning on each task without forgetting
prevention. This approach lacks memory retention mechanisms, leading to severe catastrophic for-
getting as optimization overwrites parameters critical for previous tasks. The standard version up-
dates all parameters including the CLIP backbone, typically resulting in complete forgetting with
final accuracy below 3% on most datasets.

Finetune LiT freezes the visual encoder while allowing text encoder fine-tuning, motivated by
CLIP’s visual encoder learning more general features. However, updating the text encoder still
causes significant forgetting as textual representations drift from their original configuration, break-
ing vision-language alignment for previous tasks. While showing improvement over full fine-tuning
(30-50% final accuracy), it demonstrates that freezing one modality is insufficient for effective con-
tinual learning.

Finetune CoOp adapts Context Optimization by learning task-specific prompts prepended to text
encoder inputs while keeping CLIP frozen. For each task, new prompt vectors are learned from
scratch with previous prompts discarded. This preserves base model knowledge better than full
fine-tuning but lacks prompt retention, resulting in moderate performance (20-40% final accuracy).

B.2 PROMPT-BASED CONTINUAL LEARNING METHODS

CoOp with exemplar memory extends the basic approach by maintaining a memory buffer of ex-
emplars, enabling knowledge retention through replay. The method learns task-specific prompts
preserved across tasks, with a unified prompt used during inference. The optimization combines
current task loss with distillation loss on replay samples: L = Ltask + λLreplay. However, exclusive
focus on textual prompts limits visual adaptation capabilities, with performance plateauing around
70-80%.

CODA-Prompt introduces an attention-based prompt pool mechanism for dynamic task-specific
prompt composition. The method maintains a shared prompt pool P = {p1, ..., pN} with attention-
based selection: wi = softmax(qT ki/

√
d), where selected prompts are weighted and combined.

This enables knowledge sharing across tasks while allowing task-specific combinations, achieving
75-90% final accuracy on several benchmarks.

DAP combines architectural expansion with prompt learning by adding task-specific adapters:
h′ = h+fadapter(h), where adapters use bottleneck architectures. Prompts work synergistically with
adapters, providing task-specific context influencing both frozen backbone and adapter computa-
tions. While competitive, the growing architectural complexity becomes computationally expensive
as tasks increase.
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PLOT formulates prompt selection as an optimal transport problem for better task-awareness. The
method computes optimal transport plans minimizing transportation cost Cij = ∥fi−pj∥22 between
input features and prompt representations. This provides principled prompt combination from dif-
ferent tasks, enabling knowledge transfer when tasks share concepts, though performance depends
on transport cost computation quality.

B.3 VISION-LANGUAGE CONTINUAL LEARNING METHODS

SimpleCIL leverages CLIP’s zero-shot capabilities without parameter updates, storing class names
and using zero-shot classification by comparing image embeddings with text embeddings of class
descriptions. While avoiding catastrophic forgetting, it cannot adapt to task-specific characteristics
or domain shifts. Performance depends heavily on pre-trained representation quality and semantic
clarity of class names, achieving 75-85% accuracy on well-aligned datasets but struggling with
specialized domains.

DKR introduces dynamic memory management with separate buffers for visual and textual infor-
mation. The method stores image exemplars and augmented text descriptions, employing a dual-
stream architecture: ffused = αfvisual + (1 − α)ftext. Knowledge retention combines exemplar re-
play with cross-modal distillation maintaining consistent predictions: Ldistill = KL(pvold∥pvnew) +
KL(ptold∥ptnew).

C-CLIP adapts CLIP through parameter-efficient fine-tuning and prototype-based classification.
The method introduces lightweight task-specific adapters: f t

v = Ev(x) + At
v(Ev(x)) and f t

t =
Et(x) + At

t(Et(x)). Class prototypes are maintained as exemplar means with nearest-prototype
classification. Regularization maintains similarity structure between prototypes: Lreg =

∑
i,j |sold

ij −
snew
ij |, achieving over 90% accuracy on several datasets.

PROOF represents current state-of-the-art, combining prompt learning, prototype management, and
open-world recognition. The method maintains class-specific and task-specific prototypes, optimiz-
ing prompts to maximize margins: Lmargin = max(0,m+sneg−spos). A two-stage inference process
first identifies tasks then performs class-specific classification. While achieving 78-91% final accu-
racy, PROOF still relies on passive prototype construction through averaging and focuses primarily
on textual adaptation, limitations our RLAP-CLIP addresses through active prototype optimization
and balanced multimodal adaptation.

C THEORETICAL ANALYSIS

In this section, we provide a theoretical foundation for the Reinforcement Learning-based Prototype
Optimization (RLPO) method, establishing its convergence properties and analyzing its advantages
over traditional uniform averaging approaches.

C.1 PROBLEM FORMULATION

Traditional continual learning methods construct class prototypes through uniform averaging:

puniform
c =

1

|Ec|
∑
i∈Ec

fi (17)

where Ec denotes the exemplar set for class c and fi ∈ Rd represents the feature vector of sample
i. This passive approach treats all samples equally, which is suboptimal when exemplars contain
outliers, exhibit multi-modal distributions, or have varying discriminative importance.

RLPO reformulates prototype construction as a weighted optimization problem guided by reinforce-
ment learning. We define a policy network πθ : Rd×P → R+ parametrized by θ ∈ Θ ⊆ Rk, where
P = {p1, . . . , pC} ⊂ Rd represents the current prototype set. The weighted prototype for class c
becomes:

pc(θ) =
∑
i∈Ec

wifi, wi = πθ(fi,P),
∑
i∈Ec

wi = 1 (18)
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The reward function for sample i with feature fi and true label yi is designed to maximize intra-class
similarity while minimizing inter-class confusion:

Ri(P) = sim(fi, pyi)−max
j ̸=yi

sim(fi, pj)− λ
∑
j ̸=yi

sim(pyi
, pj)

C − 1
(19)

where sim(·, ·) : Rd × Rd → [−1, 1] denotes cosine similarity, and λ > 0 is a regularization
coefficient that encourages prototype separation.

The key insight is that RLPO optimizes the global objective:

J(θ) = E(f,y)∼D [R(f, y;P(θ))] (20)

subject to the constraint that prototypes depend on θ through Eq. 18, creating a non-stationary opti-
mization landscape.

Assumption 1 (Regularity Conditions) We assume the following conditions hold:

1. Bounded features: There exists Bf > 0 such that ∥f∥ ≤ Bf for all f ∈ F .

2. Lipschitz policy: The policy network πθ is Lπ-Lipschitz continuous in θ: |πθ1(f,P) −
πθ2(f,P)| ≤ Lπ∥θ1 − θ2∥.

3. Lipschitz similarity: The similarity function is Ls-Lipschitz in both arguments.

4. Bounded policy gradient variance: The policy gradient estimator satisfies E[∥ĝt −
∇θJ(θt)∥2] ≤ σ2 for some σ < ∞.

5. Non-degeneracy: For all i ∈ Ec, we have πθ(fi,P) ≥ ϵmin > 0.

Lemma 1 (Prototype Smoothness) Under Assumption 1, the prototype mapping θ 7→ pc(θ) is Lp-
Lipschitz continuous with:

∥pc(θ1)− pc(θ2)∥ ≤ Lp∥θ1 − θ2∥ (21)

where Lp =
2BfLπ

ϵmin
.

To establish this result, we need to show that small changes in the policy parameters θ lead to
bounded changes in the resulting prototypes. This is a crucial property for analyzing convergence,
as it ensures that the optimization landscape is well-behaved despite the non-stationary nature of the
problem.

Let w(k)
i = πθk(fi,P) denote the weight assigned to feature fi under parameter setting θk for

k ∈ {1, 2}. Since the weights are normalized, we have
∑

i∈Ec
w

(k)
i = 1 for both k = 1, 2. From

Eq. 18, we can write:

pc(θ1)− pc(θ2) =
∑
i∈Ec

(w
(1)
i − w

(2)
i )fi (22)

Applying the triangle inequality:

∥pc(θ1)− pc(θ2)∥ ≤
∑
i∈Ec

|w(1)
i − w

(2)
i |∥fi∥ (23)

By the Lipschitz property of the policy network (Assumption 1(ii)):

|w(1)
i − w

(2)
i | = |πθ1(fi,P)− πθ2(fi,P)| ≤ Lπ∥θ1 − θ2∥ (24)

Using the bounded features assumption (Assumption 1(i)):

∥pc(θ1)− pc(θ2)∥ ≤
∑
i∈Ec

Lπ∥θ1 − θ2∥Bf = |Ec|LπBf∥θ1 − θ2∥ (25)
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Since the weights satisfy
∑

i∈Ec
w

(k)
i = 1 and each w

(k)
i ≥ ϵmin by Assumption 1(v), we have

|Ec| ≤ 1
ϵmin

. Moreover, the weight redistribution is bounded by the normalization constraint, yield-
ing:

∥pc(θ1)− pc(θ2)∥ ≤ 2BfLπ

ϵmin
∥θ1 − θ2∥ (26)

This completes the proof with Lp =
2BfLπ

ϵmin
.

Lemma 2 (Reward Function Properties) The reward function Ri(P) satisfies:

1. Bounded gradient: ∥∇PRi(P)∥ ≤ LR := 2Ls + λLs

2. Alignment property: For the optimal prototype set P∗, we have E[Ri(P∗)] ≥
E[Ri(Puniform)]

We prove each property separately. The key insight is that the reward function in Eq. 19 is composed
of cosine similarity terms, each of which has well-understood Lipschitz properties.

Proof of (i): The reward function can be written as:

Ri(P) = sim(fi, pyi
)︸ ︷︷ ︸

T1

−max
j ̸=yi

sim(fi, pj)︸ ︷︷ ︸
T2

−λ
∑
j ̸=yi

sim(pyi , pj)

C − 1︸ ︷︷ ︸
T3

(27)

For the first term T1 = sim(fi, pyi
), the gradient with respect to pyi

satisfies:
∥∇pyi

T1∥ ≤ Ls (28)
by the Lipschitz property of the similarity function (Assumption 1(iii)).

For the second term T2 = maxj ̸=yi
sim(fi, pj), at differentiable points:

∥∇pj∗T2∥ ≤ Ls (29)

where j∗ = argmaxj ̸=yi sim(fi, pj).

For the third term T3, the gradient with respect to pyi
is:

∇pyi
T3 = λ

∑
j ̸=yi

∇pyi
sim(pyi

, pj)

C − 1
(30)

Since there are at most (C − 1) non-zero terms, each bounded by Ls

C−1 :

∥∇pyi
T3∥ ≤ λ

∑
j ̸=yi

Ls

C − 1
= λLs (31)

Similarly, for each pj where j ̸= yi:

∥∇pj
T3∥ ≤ λLs

C − 1
(32)

The total gradient involves at most three non-zero components: - Gradient with respect to pyi :
bounded by Ls + λLs - Gradient with respect to pj∗ : bounded by Ls - Gradients with respect to
other prototypes in T3: each bounded by λLs

C−1

Therefore:
∥∇PRi(P)∥ ≤ Ls + Ls + λLs = Ls(2 + λ) (33)

We set LR = 2Ls + λLs for consistency.

Proof of (ii): The alignment property follows from the fact that RLPO optimizes over all possible
weighting schemes, including uniform weighting. Since the optimal solution P∗ is obtained by
maximizing J(θ) over all θ ∈ Θ, and uniform weighting corresponds to a specific θ0 ∈ Θ:

J(θ∗) = E[R(f, y;P∗)] ≥ J(θ0) = E[R(f, y;Puniform)] (34)
This completes the proof.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.2 CONVERGENCE ANALYSIS

The main challenge in analyzing RLPO lies in the non-stationary nature of the optimization land-
scape. Unlike standard stochastic optimization problems where the objective function is fixed, in
RLPO the objective depends on the current prototypes, which themselves depend on the policy
parameters being optimized.

Theorem 1 (Convergence to Stationary Points) Consider the stochastic gradient ascent update:

θt+1 = θt + ηtĝt (35)

where ĝt is an unbiased estimate of ∇θJ(θt) and {ηt} satisfies
∑

t ηt = ∞ and
∑

t η
2
t < ∞. Under

Assumption 1, the sequence {θt} converges to a stationary point of J(θ) almost surely. Moreover,
for the step size ηt =

η0√
t
, we have:

1

T

T∑
t=1

E[∥∇θJ(θt)∥2] ≤
C1√
T

+
C2 log T

T
+ δbias (36)

where C1, C2 are constants depending on problem parameters, and the bias term satisfies:

δbias = O

(
LRLp

ϵmin

)
(37)

We analyze the convergence using a Lyapunov function approach adapted for non-stationary objec-
tives.

Step 1: Gradient Decomposition. The true gradient can be decomposed as:

∇θJ(θ) = E(f,y)∼D[R(f, y;P(θ)) · ∇θ log πθ(f,P(θ))] + E(f,y)∼D[∇PR(f, y;P(θ)) · ∇θP(θ)]
(38)

The first term is the standard REINFORCE gradient, while the second captures the indirect effect
through prototype changes.

Step 2: Lyapunov Analysis. Define V (θ) = J(θ∗) − J(θ) where θ∗ is a global optimum. For the
update θt+1 = θt + ηtĝt:

E[V (θt+1)] = E[V (θt)]− ηt∥∇θJ(θt)∥2 +
LJη

2
t

2
(σ2 + ∥∇θJ(θt)∥2) + ηtδbias (39)

where LJ is the Lipschitz constant of ∇θJ (bounded by LRLp from Lemmas 1 and 2).

Step 3: Bias Analysis. The bias arises because practical gradient estimates ignore the prototype
dependency:

δbias = ∥E[∇PR(f, y;P(θt)) · ∇θP(θt)]∥ ≤ LR · Lp = O

(
LRLp

ϵmin

)
(40)

using the bounds from Lemmas 1 and 2.

Step 4: Convergence Rate. For ηt ≤ 1
LJ

:

E[V (θt+1)] ≤ E[V (θt)]−
ηt
2
∥∇θJ(θt)∥2 +

LJη
2
t σ

2

2
+ ηtδbias (41)

Summing from t = 1 to T and using ηt =
η0√
t
:

1

T

T∑
t=1

E[∥∇θJ(θt)∥2] ≤
2V (θ1)

η0
√
T

+
LJσ

2η0√
T

+
2δbias

η0
(42)

This yields the stated convergence rate with appropriate constants C1 and C2.
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Corollary 1 (Practical Convergence) In practical scenarios with a large number of classes C and
sufficient policy network capacity, the bias term becomes negligible relative to the main convergence
terms:

As C → ∞,
δbias

C
→ 0 (43)

This indicates that RLPO achieves near-optimal convergence for large-scale continual learning
problems.

From Theorem 1, δbias = O
(

LRLp

ϵmin

)
. The constants LR, Lp, and ϵmin depend on the feature

dimension d and network architecture but not directly on C. When normalized by the number of
classes (which often appears in practical loss functions), the relative impact of the bias diminishes as
C increases, ensuring that RLPO’s convergence approaches that of standard policy gradient methods
in large-scale settings.

D MULTI-OBJECTIVE TRAINING

RLAP-CLIP employs a multi-objective training strategy that simultaneously optimizes classifica-
tion accuracy, maintains vision-language alignment, learns optimal prototype weights, and balances
expert utilization. The total training objective combines four complementary loss terms:

Ltotal = Lcls + λclipLclip + λRLPOLRLPO + λMoELMoE (44)

where λclip, λRLPO, and λMoE are hyperparameters controlling the relative importance of each loss
component.

D.1 CLASSIFICATION LOSS

The classification loss weights samples according to their difficulty scores to emphasize challenging
cases that are more likely to define class boundaries:

Lcls = − 1

B

B∑
i=1

(1 + γ · di) log p(yi|xi) (45)

where B denotes the batch size, γ > 0 is a hyperparameter controlling the emphasis on difficult
samples, di ∈ [0, 1] is the difficulty score for sample i, and p(yi|xi) represents the predicted prob-
ability for the true class yi given input xi. The probability is computed using softmax over cosine
similarities between the sample’s features and all class prototypes:

p(yi|xi) =
exp(sim(f̃i, pyi

)/τcls)∑C
c=1 exp(sim(f̃i, pc)/τcls)

(46)

where f̃i represents the weighted multimodal features after cross-modal fusion, pc denotes the pro-
totype for class c, and τcls > 0 is a temperature parameter for the classification softmax.

D.2 CONTRASTIVE LOSS

To maintain the vision-language alignment learned during CLIP pre-training, we employ a bidirec-
tional contrastive loss that ensures matched image-text pairs have higher similarity than mismatched
pairs:

Lclip = − 1

2B

B∑
i=1

[
log

exp(sim(fv
i , f

t
i )/τ)∑B

j=1 exp(sim(fv
i , f

t
j )/τ)

+ log
exp(sim(f t

i , f
v
i )/τ)∑B

j=1 exp(sim(f t
i , f

v
j )/τ)

]
(47)
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where fv
i and f t

i denote the visual and textual features for sample i respectively, sim(·, ·) computes
cosine similarity, and τ > 0 is a learned temperature parameter that controls the sharpness of the
similarity distribution. The first term represents the image-to-text contrastive loss, while the second
term represents the text-to-image contrastive loss.

D.3 PROTOTYPE OPTIMIZATION LOSS

The reinforcement learning-based prototype optimization loss LRLPO trains the policy network to
learn optimal sample weights for prototype construction. This loss takes the form:

LRLPO = − 1

B

B∑
i=1

log πθ(wi|fi,P) ·Ai + λKLDKL(πθ∥πref) (48)

where πθ is the policy network with parameters θ, wi is the weight assigned to sample i, Ai is the
normalized advantage (reward minus baseline) for sample i, and λKL > 0 controls the strength of
the KL regularization that prevents the policy from deviating too far from the reference policy πref.

D.4 EXPERT BALANCING LOSS

To ensure efficient utilization of both experts in our mixture-of-experts architecture and prevent
mode collapse where one expert processes all samples, we introduce an expert balancing loss:

LMoE =
∑

e∈{easy,hard}

(
1

B

B∑
i=1

P (e|xi)−
1

2

)2

(49)

where P (e|xi) denotes the routing probability for expert e given sample xi. This loss penalizes
deviations from equal expert utilization, encouraging each expert to process approximately half of
the samples. The quadratic penalty ensures smooth gradients and stable optimization.

E MIXTURE-OF-EXPERTS ROUTING ANALYSIS

The effectiveness of mixture-of-experts architectures largely depends on the quality of the routing
mechanism that determines which samples should be processed by which expert. In our framework,
we employ two specialized experts: a lightweight expert for simple samples and a deep expert for
complex samples. The key challenge lies in accurately assessing sample difficulty to enable optimal
resource allocation.

We evaluate three distinct approaches for difficulty assessment and sample routing:

Random Routing serves as a baseline where samples are assigned to experts uniformly at random
with equal probability. This approach helps isolate the architectural benefits of having multiple
processing pathways from the benefits of intelligent routing. While random routing ensures balanced
expert utilization, it cannot adapt processing depth to sample characteristics, potentially wasting
computational resources on simple samples while under-processing challenging ones.

Entropy-based Routing uses prediction uncertainty as a proxy for sample difficulty. The entropy
of the model’s output distribution is computed as H = −

∑C
c=1 pc log pc, where pc represents the

predicted probability for class c. Samples with entropy above a learned threshold are considered
difficult and routed to the deep expert. The intuition is that uncertain predictions indicate challenging
samples requiring enhanced processing. However, this approach has limitations: early in training,
many samples produce uncertain predictions regardless of their intrinsic difficulty, and prediction
uncertainty may not accurately reflect the discriminative challenges specific to continual learning
scenarios.

Distance-based Routing (Ours) directly measures sample difficulty by computing the distance
from each sample to its class prototype in both visual and textual feature spaces. The difficulty score

is defined as di = 1 − sim(fv
i ,pv

yi
)+sim(ft

i ,p
t
yi

)

2 . This approach captures the intuition that samples far
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from their class centers are more challenging to classify correctly and would benefit from deeper
processing. The method leverages multimodal information and directly relates to the class bound-
ary structure, making it particularly suitable for fine-grained recognition tasks where subtle visual
differences matter.

Table 3: Performance comparison of difficulty assessment mechanisms for mixture-of-experts rout-
ing across eight datasets.

Dataset Random Routing Entropy-based Distance-based (Ours)

UCF-101 93.87 94.23 97.68
CUB-200 83.52 84.87 86.32
CIFAR-100 84.16 85.12 86.64
Cars 92.52 94.18 96.62
Aircraft 66.03 67.89 70.25
Food-101 87.75 88.01 88.24
ImageNet-R 83.15 84.47 85.63
ObjectNet 53.33 55.29 57.79

Table 3 reveals distinct patterns across different task types. Random routing establishes baseline
performance, with results ranging from 53.33% on ObjectNet to 93.87% on UCF-101, reflecting the
inherent difficulty variations across datasets.

Entropy-based routing shows modest improvements over random routing, with gains ranging from
0.26% on Food-101 to 1.96% on ObjectNet. The limited improvements suggest that prediction
uncertainty alone is insufficient for effective sample routing. This occurs because entropy reflects the
model’s current confidence rather than the intrinsic structural difficulty of the sample. High entropy
can result from insufficient training rather than genuine sample complexity, leading to suboptimal
routing decisions.

Distance-based routing achieves substantial and consistent improvements across all datasets. The
most significant gains appear on fine-grained recognition tasks: Aircraft (+4.22% over random),
Cars (+4.10%), and CUB-200 (+2.80%). These improvements highlight the method’s effectiveness
for tasks requiring subtle discrimination, where samples near class boundaries particularly benefit
from enhanced processing through the deep expert.

The superior performance stems from distance-based routing’s direct connection to the geometric
structure of the feature space. By measuring proximity to class prototypes, this approach identifies
samples that are genuinely challenging for the current representation rather than those producing
uncertain predictions due to model limitations. This alignment ensures computational resources
are allocated where they provide maximum benefit for maintaining discriminative class boundaries,
which is crucial for continual learning scenarios where new tasks continuously reshape the feature
space.
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