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Abstract
LLMs have demonstrated impressive zero-shot
performance on NLP tasks thanks to the knowl-
edge they acquired in their training. In multiple-
choice QA tasks, the LM probabilities are used
as an imperfect measure of the plausibility of
each answer choice. One of the major limita-
tions of the basic score is that it treats all words
as equally important. We propose CASE, a
Commonsense-Augmented Score with an Ex-
panded Answer Space. CASE addresses this
limitation by assigning importance weights
for individual words based on their seman-
tic relations to other words in the input. The
dynamic weighting approach outperforms ba-
sic LM scores, not only because it reduces
noise from unimportant words, but also be-
cause it informs the model of implicit com-
monsense knowledge that may be useful for
answering the question. We then also follow
prior work in expanding the answer space by
generating lexically-divergent answers that are
conceptually-similar to the choices. When com-
bined with answer space expansion, our method
outperforms strong baselines on 5 common-
sense benchmarks. We further show these two
approaches are complementary and may be es-
pecially beneficial when using smaller LMs.

1 Introduction

Large language models (LLMs) have demonstrated
strong few-shot and zero-shot performance across
various NLP tasks, with the larger models often
matching earlier fine-tuned approaches that relied
on task-specific labeled data (Radford et al., 2019;
Brown et al., 2020a; Touvron et al., 2023). We
focus on the zero-shot setup, which assumes that
the knowledge needed to perform a specific task is
already present in the LLM (Petroni et al., 2019;
Zhou et al., 2020; Saha et al., 2022). Zero-shot
learning has been employed for tasks such as trans-
lating between unseen language pairs (Zhang et al.,
2020), summarization (Brown et al., 2020a), com-
monsense reasoning (Shwartz et al., 2020; Klein

The woman hired a lawyer because
A. she decided to sue her employer.
B. she decided to run for office.
C. she wanted to sue her former employer.

The woman hired a lawyer because ___

A. she decided to sue her employer.

B. she decided to run for office.

C.  she wanted to sue her former employer.

LM score = 2.53          CASE score = 2.70

LM score = 2.35          CASE score = 2.76

LM score = 1.80          CASE score = 1.89

she          wanted          to             sue            her           former     employer        .

she           decided            to               sue                her           employer          .

she            decided            to                run               for             office               .

Figure 1: An example from COPA. A and B are the orig-
inal options, while option C was generated by GPT-2 as
part of the answer space expansion step. The top line in
each heatmap represent the LM (cross-entropy) score
and the bottom line represents our CASE score. Higher
scores and blue blocks correspond to lower plausibility.
CASE correctly predicts option A (and option C which
is an expansion of A) as more plausible than option B,
while the LM-score incorrectly predicts option B.

and Nabi, 2021; Liu et al., 2022; Fang et al., 2022),
and more.

In multiple-choice question answering (MCQA)
tasks, zero-shot methods typically rely on the lan-
guage model (LM) probabilities as a proxy for plau-
sibility, predicting the answer choice with the high-
est probability conditioned on the question. LM
score is a naïve proxy for plausibility, since it con-
founds factors such as length, unigram frequency,
and more (Holtzman et al., 2021; Niu et al., 2021).
Indeed, in Figure 1, a GPT-2 based LM score in-
correctly predicts that the woman hired a lawyer



because she decided to run for office, rather than
because she decided to sue her employer.

In this paper, we propose to address one of the
major limitations of the LM score. By summing
or averaging the token-level probabilities, the LM
score treats all tokens as equally important. A per-
son reading this question would likely pay attention
to option A because the word “sue” is highly rele-
vant in the context of a lawyer. This signal might be
weaker in a basic LM score where the word “sue” is
conditioned on each other token in the question and
previous tokens in the answer. Furthermore, the
LM might miss non-trivial connections between
related words.

To address this challenge, we propose CASE:
a Commonsense-Augmented Score with an
Expanded Answer Space. CASE is a post-hoc dy-
namic weight scoring algorithm that prioritizes im-
portant words in the sentence. The importance
of each individual word is determined based on
its relationship with other words in ConceptNet
(Speer et al., 2017). For example, ConceptNet pro-
vides the information that “sue requires having a
lawyer”. We use the word-level importance scores
to re-weigh the LM probability scores. Indeed, in
the second line of option A in Figure 1, the impor-
tance of the word “sue” increases the score of the
entire sentence, leading to correctly predicting A
as the correct answer.

We further adopt the strategy suggested by Niu
et al. (2021) to expand the answer space by using a
LM to generate additional answers and then map-
ping semantically-similar generated answers into
the original space. This mitigates the LM score’s
sensitivity to infrequent words. Figure 1 demon-
strates that a generated option C, “she wanted to
sue her former employer”, which is conceptually
similar to A, further yields a higher probability
score with our method.

We tested CASE on 5 popular commonsense
MCQA datasets. CASE outperformed the broad
range of strong baselines that we compared with,
confirming that it is an effective method for zero-
shot MCQA. We further study the impact of dif-
ferent model sizes, answer candidates of varying
qualities, and different weight assignment strate-
gies on the performance.1

1Our code is available at Github.

2 Background

2.1 Plausibility Scoring
Although the plausibility score of a sentence can
be easily calculated by accumulating the proba-
bility assigned by the LM for each token, this ap-
proach suffers from various statistical biases such
as sensitivity to the number of tokens, subword tok-
enization, and word frequency (Abdou et al., 2020;
Holtzman et al., 2021). To address these biases,
several improvements have been proposed. With
respect to the length bias, prior work normalized
the score by length (Mao et al., 2019; Brown et al.,
2020b), or focused on the conditional probabilities
of the question, which unlike the answer choices
has a fixed length (Trinh and Le, 2018; Tamborrino
et al., 2020). To factor out word frequency, Holtz-
man et al. (2021) proposed Domain Conditional
Pointwise Mutual Information (DCPMI), which
normalizes the conditional probability of the an-
swer given the question by the prior probability of
the answer. This is computed as the conditional
probability of the answer given a domain-specific
prefix such as “The sentiment of the movie is” for
sentiment analysis or “The answer is” for general
QA tasks. SEQA (Niu et al., 2021) mitigates the
sensitivity to word choice by generating answers
using GPT-2, and selecting the answer choice most
similar to the generated answers.

Existing methods solely focus on the relationship
between words in the choices and words in the
question, ignoring the importance of each word for
the decision. In this paper, we propose a new token-
level weighting method to consider the importance
of different words within the sentence based on
their relationship to other words.

2.2 Knowledge-Enhanced Models
Zero-shot LM-based scoring methods implicitly
reason about which answer is more likely based on
the token-level probabilities. However, many tasks
require multiple steps of reasoning to reach the cor-
rect answer (e.g., Mihaylov et al., 2018; Yang et al.,
2018; Khot et al., 2020). A common approach
is to retrieve relevant commonsense knowledge
from knowledge bases (KBs) such as ConceptNet
(Speer et al., 2017) and ATOMIC (Sap et al., 2019a;
Hwang et al., 2021), in order to enhance the neu-
ral model and explicate the reasoning steps (e.g.,
Bauer et al., 2018; Xia et al., 2019; Lin et al., 2019;
Guan et al., 2019; Chen et al., 2020; Huang et al.,
2021). More recent work used the COMET model

https://github.com/WK-Chen/Commonsense-Augmented-Score-with-an-Expanded-Answer-Space


Q: The woman hired a lawyer because ___

A. she decided to sue her employer.

B. she decided to run for office.

C1. she was wrongfully accused of a crime. 

C2. she felt she was being treated unfairly.

C3. she wanted to sue her former employer.
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Figure 2: Overview of CASE, illustrated with an example from the COPA dataset. Groups A and B correspond to
original choices A and B and any generated answers mapped to them (§3.3). Each word in each answer is scored
based on its ConceptNet relationships to other words in the instance (§3.2). The score for each answer is based on
the word probabilities (§3.1), weighted by the word-level scores. Finally, CASE predicts the answer choice with the
highest scoring answer in its group.

(Bosselut et al., 2019; Hwang et al., 2021), which
is a LM fine-tuned on the aforementioned KBs,
to enhance models with high-coverage contextu-
alized commonsense inferences (e.g., Majumder
et al., 2020; Bosselut et al., 2021; Kim et al., 2022;
Chakrabarty et al., 2022; Ravi et al., 2023).

An alternative recent approach which doesn’t
rely on external KBs prompts a LM to generate
additional knowledge which is then incorporated
back into the LM to make the prediction. Shwartz
et al. (2020) and later Liu et al. (2022) used a LM
to generate questions and answers about an MCQA
instance. The answers to the questions are then
incorporated into the LM-based scoring model as
additional knowledge. Wei et al. (2022) proposed
the popular chain-of-thought (COT) prompting ap-
proach in which the LM is taught through examples
to generate multiple steps of reasoning followed
by the answer to the question. In the zero-shot ver-
sion, the LM is instructed to “think step-by-step”.
Finally, following concerns about the faithfulness
of CoT inferences, Creswell et al. (2022) proposed
to iteratively select parts of the inputs and draw
inferences on them.

3 Method

We propose CASE, a Commonsense-Augmented
Scoring method with an Expanded Answer Space.

CASE can be used for zero-shot MCQA tasks. It is
based on LM score (Section 3.1). However, rather
than treating all words in the context and answers
as equally important, we propose a weighted score
where the conditional probability is weighed by the
importance of a word. The weights are determined
using a commonsense KB in order to provide infor-
mation that humans might implicitly be reasoning
about when answering such questions (Section 3.2).
Following Niu et al. (2021), we expand the set of
answer candidates by generating free-text answers,
to increase the scorer’s robustness to lexical vari-
ability (Section 3.3). An overview of the method is
shown in Figure 2.

3.1 Basic Scoring Method
The basic scoring method directly uses the LM
score, which is calculated by accumulating the con-
ditional probabilities assigned by the LM for each
token given the prefix. Given a question Q =
q1...qnQ and an answer choice Ai = ai,1...ai,nAi

,
we convert Q into a declarative statement s (see
Appendix A), and define the LM score of answer
choice Ai as follows:

PAi = P (Ai|s)

=
1

ns + nAi

·
nAi∏
j=1

P (ai,j |s, ai,1, · · · , ai,j−1)
(1)

where ns is the number of tokens in s.



Finally, we can determine the most plausible
choice Â among the answer choices based on their
corresponding scores:

Â = argmax
i

PAi (2)

3.2 Commonsense Augmented Scoring
The importance of individual words in the question
and their contribution to choosing the correct an-
swer varies greatly. Take for example the instance
in Figure 1, taken from the COPA dataset (Gordon
et al., 2012). Determining the cause of the event
“The woman hired a lawyer” involves reasoning
about the circumstances in which one might hire a
lawyer, such as if they are suing someone. In this
case, the keywords “lawyer” from the context and
“sue” from the answer choice, and the semantic re-
lation between them (i.e., suing someone requires
a lawyer), supports the correct prediction. To that
end, CASE first identifies important keywords from
the question and answer choices (Section 3.2.1).
Each keyword is assigned an importance score, and
the conditional probability PA is updated by con-
sidering the importance of each token in the answer
choice (Sec 3.2.2).

3.2.1 Keywords Extraction
Given a question Q and an answer choice A, we
use YAKE (Campos et al., 2018), an unsupervised
automatic keyword extraction method, to extract
a set of keywords KeyQ ⊂ Q and KeyA ⊂ A.
In particular, we are interested in finding the key-
words from each answer choice that are important
in the context of the question Q, which we denote
KeyA|Q ⊂ KeyA. To that end, we use ConceptNet
(Speer et al., 2017), a commonsense knowledge
base, to find paths between terms in KeyQ and
KeyA, and include in KeyA|Q keywords from the
answer choice that are connected in ConceptNet to
keywords from the question:

KeyA|Q =

a ∈ KeyA

∣∣∣∣∣∣∣
∃q ∈ KeyQ ∧
∃p = a ; q ∈ CN ∧
|p| ≤ k

 (3)

where p denotes a path in ConceptNet (CN) with
up to k edges.

3.2.2 Weight Assigning
We assign a weight to each token a ∈ KeyA|Q
based on the strength of its connection to keywords
in KeyQ. To that end, we look at all the ConceptNet
paths that connect a with keywords in KeyQ, which

we denote Pathsa;. We convert the path to a set
of sentences by expressing each edge as a natural
language sentence, based on relation templates (see
Appendix B). For example, the path sue

related to−−−−−→
law

in context of←−−−−−− lawyer is expressed as S1 = “sue
is related to law” and S2 = “lawyer is a word used
in the context of law”. We use the LM to score
a single path Pa;q as follows. First, the score
S(Ei) of edge Ei = (xi, Ri, yi) is calculated as
the conditional probability of generating the second
node yi following the textual template of relation
Ri, to which we assign the first node xi, such as
P(law|sue is related to). We use the chain rule for
conditional probability to compute the score of the
entire path:

S(Pa;q) =
1

|Pa;q|+ 1

|Pa;q|∑
1

logS(Ei) + logS(E′)


(4)

where E′ is an artificial summary edge from x1 to
yPa;q with the “is related to” relation, such as “sue
is related to lawyer”.

To get an aggregated score for a token a, we sum
the scores of all paths in Pathsa;:

SPathsa; =
∑

Pa;q∈Pathsa;

S(Pa;q) (5)

Finally, the weight for each token ai,j in Ai is com-
puted as follows.

Wai,j =

{
1 + λSPathsai,j;

, if ai,j ∈ KeyAi|Q

1, if ai,j /∈ KeyAi|Q
(6)

where λ is a hyperparameter (§4.3).
With the weights for each token, we can now

update the LM score defined in Equation 1 to a
weight-based plausibility score as follows:

PAi =

n∏
j=1

Wai,j · P (ai,j |s, ai,1, · · · , ai,j−1) (7)

3.3 Expanded Answer Space
The final addition to our model aims at reducing the
LM sensitivity to the phrasing of the correct answer.
For example, an infrequent word in the correct
answer choice can reduce the overall probability
of the choice and make the LM predict another
option as more plausible (Holtzman et al., 2021).
To mitigate this issue, we follow Niu et al. (2021)
and expand the set of answer candidates by using a
causal LM to generate open ended answers A∗ =



{A∗
1, ..., A

∗
nA∗}. The idea is to allow the model to

consider various phrasings of the same conceptual
answer. For example, in Figure 2, the generated
answer C1 is a paraphrase of answer choice A.

We treat the generated answer choices A∗ the
same as the original answer choices A and com-
pute the score for each answer A∗

i ∈ A∗ using
Equation 7. To map the answer choices back into
the original answer space A, we attempt to match
each A∗

i ∈ A∗ to Ai ∈ A based on two criteria:
sentence similarity and keyword connections.

Sentence Similarity. We use the Sentence-
Transformer package (Reimers and Gurevych,
2019) to represent the answers, and compute the
cosine similarity between the representations of
each generated answer in A∗ and original answer
in A. The similarity score between the sentence
pair should be above ssim.

Keyword Connections. We calculate the connec-
tion score between the keywords in each generated
answer in A∗ and each original answer in A using
the method introduced in Sec 3.2.2. We require the
connection score to be greater than 0.

A candidate can only be assigned to a group if
it meets both thresholds, and we discard generated
answers that are not mapped into answer choices in
A. Once we mapped generated answers to original
answers, the final prediction of the model modi-
fies Equation 2 to select the highest scores of all
answers within the same cluster:

Â = argmax
i

argmax
j

PAi,j (8)

where Ai,j is the jth answer in cluster Ai.

4 Experimental Setup

4.1 Datasets
We evaluated our method on five multiple-choice
commonsense question answering datasets de-
scribed below.

COPA. The goal in the Choice of Plausible
Alternatives dataset (COPA; Roemmele et al.,
2011) is, given a premise event, to choose the more
plausible cause or effect among two alternatives.

SCT. The Story Cloze Test dataset (SCT;
Mostafazadeh et al., 2016) is a collection of four-
sentence stories with two possible endings. The
goal is to predict which ending is more plausible
following the beginning of the story.

SocialIQA. The Social Interaction Question
Answering (SocialIQA; Sap et al., 2019b) dataset
tests models on their understanding of social situa-
tions and human behavior. Each question presents
a hypothetical scenario followed by a question and
3 answer choices.

ARC. The AI2 Reasoning Challenge (ARC;
Clark et al., 2018) consists of 7,787 science exam
questions drawn from a variety of sources. The
questions are divided into Easy (ARC-E) and Chal-
lenging (ARC-C) sets.

OBQA. The OpenBookQA (OBQA; Mihaylov
et al., 2018) dataset contains questions that require
multi-step reasoning, use of commonsense knowl-
edge, and rich text comprehension. The dataset has
roughly 6,000 questions.

Since the test set of SCT and SocialIQA are not
publicly-available, we report the accuracy on the
development set for all datasets.

4.2 Baselines
We compare our proposed method with the basic
LM-based scoring method described in Section 3.1,
as well as more advanced LM-based scoring meth-
ods described below.

Self-talk (Shwartz et al., 2020) consists of two
causal LMs. The knowledge generator LM gen-
erates clarification questions conditioned on the
context and pre-defined prefixes, and their corre-
sponding answers. The scoring LM computes the
probability of each answer choice conditioned on
the context and question as well as the additionally
generated knowledge.2

DC-PMI (Holtzman et al., 2021) aims to elim-
inate the effect of the number of synonyms and
the word frequency on the LM score by dividing
the conditional probability (Eq 1) by a domain-
conditional prior probability for the answer choice.

SEQA (Niu et al., 2021) uses a LM to generate
a set of answer candidates. These candidates then
“vote” for an original answer candidate based on
their semantic similarity to each candidate, and the
top-voted answer is selected as the final answer. For
a fair comparison with the other model, we changed
the voting model from SRoBERTaNLI to the origin
SRoBERTa that was not further fine-tuned on an
NLI dataset.

2We don’t compare with follow-up work by Liu et al.
(2022) since they targeted a different set of tasks.



Methods LM COPA SCT SocialIQA ARC-E ARC-C OBQA

Scoring Generating

LMsum GPT2 - 69.0 67.6 43.1 53.5 25.4 22.4
LMavg GPT2 - 68.4 71.5 45.8 47.4 28.7 30.8

Self-talk GPT2 GPT2 66.2 70.4 47.5 - - -
DCPMI GPT2 - 70.8 68.6 39.2 36.0 25.1 31.4
SEQA SRoBERTa GPT2 55.8 57.4 36.4 32.1 23.7 21.2
SEQAGPT3 SRoBERTa GPT3 66.2 64.4 40.3 54.4 34.8 22.2
CDG GPT2 COMET 72.2 71.5 45.4 - - -
ArT GPT2 GPT2 69.8 71.6 47.3 - - -

CAS GPT2 - 70.4 73.0 46.0 55.8 28.8 32.6
CASEGPT2 GPT2 GPT2 73.8 76.1 46.1 54.4 30.8 30.2
CASEGPT3 GPT2 GPT3 78.2 83.2 48.5 63.2 36.5 35.2

Table 1: Accuracy (%) of the scoring various methods on the dev sets. All scoring methods are based on GPT-
2xlarge. CASEGPT2 and CASEGPT3 denote CASE with candidate generation by GPT-2xlarge and GPT-3 respectively.
Takeaway: Weighting leads to substantial improvements. When combined with candidate generation, it outperforms
all baselines by a large margin.

CDG (Bosselut et al., 2021) uses knowledge
from COMET (Bosselut et al., 2019) to construct a
local commonsense knowledge graph for reasoning
and inference.

ArT (Wang and Zhao, 2022) consists of two
steps: notes taking and reverse thinking. In the
notes taking step, the LM generates templated in-
ferences pertaining to key phrases in the context,
which are later added as additional knowledge. The
reverse thinking step aggregates the scores of dif-
ferent orders of the answer and question (e.g. “x
because y” vs. “y therefore x”).

4.3 Setup and Hyper-parameters

We used GPT-2 via the HuggingFace Transformers
library (Wolf et al., 2020) for the scoring part, and
GPT-2 XL and GPT-3 davinci-003 for the answer
space expansion step. In the keyword extraction
step (§3.2.1), we included ConceptNet paths with
up to k = 3 edges. In the weight assigning step
(§3.2.2) we set the coefficient λ to 10.

In the answer space expansion step (§3.3), we
generated nA∗ = 100 answers from GPT-2 and
nA∗ = 50 answers from GPT-3 for each ques-
tion. Similarly to SEQA, we used nucleus sam-
pling (Holtzman et al., 2021) with p = 0.9 and set
a maximum length of 15 tokens for both LMs. We
set the sentence similarity threshold to ssim = 0.5
for GPT2 x-large and ssim = 0.6 for GPT-3.

Hyper-parameter values were selected based on
preliminary experiments on the training sets and
were not tuned on the dev sets.

5 Results

5.1 Main Results

The performance of the various scoring methods
on the 5 benchmarks are presented in Table 1. For
fair comparison with the baselines, the table shows
the performance when GPT2xlarge is used. We
report the accuracy on the dev set. CAS stands for
Commonsense-Augmented Scoring, i.e. it excludes
the candidate generation.

The performance of CAS shows that weighting
leads to substantial improvements upon the simpler
baselines. CAS also stands out in the competition
with DCPMI, which can also be regarded as a spe-
cial weight-scoring method.

When combined with candidate generation,
CASE outperforms nearly all baselines, except for
the SocialIQA dataset, on which ArT and Self-talk
perform better. Notably, both baselines rely on
human-designed prompts to generate additional in-
formation, which might give them an advantage.

The gap in performance from SEQA, which also
expands the answer space by generating candidate
answers, further demonstrates the effectiveness of
dynamic weighting.

5.2 Effect of the Scoring LM Size

Table 2 shows the performance of CAS, CASE and
the simple baselines when using different sizes of
GPT-2 models in the scoring part.

Bigger is better. Across the various methods, big-
ger LMs perform better than smaller LMs.



Dataset Methods GPT2S GPT2M GPT2L GPT2XL

COPA

LMsum 60.0 66.6 69.2 69.0
LMavg 62.6 65.4 67.0 68.4
CAS 62.0 67.2 69.4 70.4
CASEGPT2 69.6 72.0 72.2 73.8
CASEGPT3 75.4 76.4 77.4 78.2

SCT

LMsum 58.2 62.7 64.4 67.9
LMavg 60.4 66.4 68.8 71.5
CAS 61.9 67.5 70.9 73.0
CASEGPT2 74.0 75.2 75.7 76.1
CASEGPT3 76.7 78.6 79.0 83.2

SIQA

LMsum 39.7 41.4 42.0 43.1
LMavg 41.8 44.1 44.9 45.8
CAS 42.8 44.6 45.7 46.0
CASEGPT2 43.9 43.7 44.1 44.5
CASEGPT3 47.6 48.4 48.5 48.5

ARC-E

LMsum 44.2 48.8 50.4 53.5
LMavg 37.9 40.2 45.1 47.4
CAS 46.1 49.8 53.0 55.8
CASEGPT2 46.5 49.6 52.0 54.4
CASEGPT3 54.2 59.1 60.0 63.2

ARC-C

LMsum 19.7 23.1 22.7 25.4
LMavg 23.4 23.7 25.4 28.7
CAS 26.4 26.4 27.4 28.8
CASEGPT2 28.1 29.4 27.8 30.8
CASEGPT3 33.4 35.3 33.8 36.5

OBQA

LMsum 16.2 18.2 21.8 22.4
LMavg 23.0 26.8 30.0 30.8
CAS 25.6 28.6 31.4 32.6
CASEGPT2 26.0 26.6 27.4 30.2
CASEGPT3 32.2 35.4 37.4 35.2

Table 2: Accuracy when using GPT2 models with differ-
ent sizes for the scoring. Takeaways: CAS consistently
outperforms standard LM scoring methods, and is out-
performed by CASE. For CASE, the best performance
is achieved when using large GPT2 models for scoring
and more importantly, GPT3 for candidate generation.

Smaller LMs gain more from candidate genera-
tion. While all LMs benefit from weighting and
candidate generation, smaller LMs gain bigger im-
provements. For example, candidate generation
with GPT-3 adds 13.4 points on COPA to a GPT2S
CAS scorer, but only 8.2 points for GPT2XL. We
hypothesize that the model performance is more
sensitive to the LM quality when a single sentence
is considered, while expanding the answer space
makes even the lower-quality LMs more robust.

5.3 Effect of the No. of Generated Candidates

Figure 3 shows the effect of the number of gener-
ated candidates on the performance, focusing on
COPA. We summarize the findings below.

Generating more candidates leads to higher ac-
curacy. When generating few (< 20) candidates,
the model’s performance is unstable and relatively
low. This might happen due to the generated an-
swers being conceptually different from the orig-
inal candidate answers, in which case they might
not meet the mapping thresholds in Section 3.3 and

Figure 3: Accuracy curve of CASE on the COPA dev set,
with different numbers of candidates generated from
various LMs. The dotted line represents the baseline
method LMsum which uses GPT2xlarge. Takeaways:
Generating more candidates leads to higher accuracy,
but larger scoring LMs require fewer candidates.

be filtered out. This means that CASE effectively
degenerates to CAS. Thus, it’s important to gener-
ate a large number of candidates. This reassesses
the findings in Niu et al. (2021).

Larger models require fewer candidates.
Larger LMs generate higher quality text which is
more likely to be fluent, relevant to the context, log-
ically correct, and consistent with commonsense
knowledge. Therefore, we can expect fewer candi-
dates to be filtered out. In addition, the generated
candidates may be conceptually similar and better
phrased than the original choice.

5.4 Effect of the Weighting Strategy

Table 3 compares the COPA performance of differ-
ent weighting strategies. Two baselines, LMsum

and LMavg, already introduced in Section 3.1, treat
all tokens equally, summing or averaging the token-
level probabilities. Conversely, the static weighting
strategy (SW and SWC, with or without candidate
generation), assigns a static number (1.5) to each
selected key token. Finally, the dynamic weighting
strategies (CAS and CASE) not only distinguish key
tokens from unimportant ones but also assign differ-
ent scores to each key token based on its semantic
relevance to the question.

The results show that while the static weighting
strategy outperforms the baseline when no addi-
tional candidates are generated (SW vs. LM), these
strategies perform similarly when additional candi-
dates are generated (SWC vs. LM+c). In both cases,



GPT2s GPT2m GPT2l GPT2xl

LMsum 60.0 66.6 69.2 69.0
+ SW 61.2 66.6 70.0 69.6
+ CAS 62.0 67.2 69.4 70.4
+ C 69.2 71.8 70.4 72.4
+ SWC 69.2 71.2 72.4 72.2
+ CASE 69.6 72.0 72.2 73.8

Table 3: Accuracy on the COPA dev set when using dif-
ferent weight-assigning methods. The methods below
the dotted line expand the answer space by generating
additional answer candidates. Takeaway: keyword se-
lection improves the performance, especially when it is
informed by commonsense knowledge.

the static weighting strategy underperforms com-
pared to the dynamic strategy. This result confirms
that commonsense knowledge can help inform the
model about the keywords that are important for
the current question.

6 Qualitative Analysis

We focus on CASE and look at the individual to-
ken scores and corresponding ConceptNet paths
to better understand the model decision-making
process.

Figure 4 shows an example from SCT where
CASE predicted the correct answer. The word “up-
set” in the correct answer choice was assigned
a high weight by CASE thanks to ConceptNet
paths such as upset related to←−−−→ depression

causes←−−−
stress

related to←−−−→ work.
Conversely, in Figure 5, CASE predicted the in-

correct answer choice for another SCT example.
The model focused on the word “left” due to its
semantic relation to the word “drove”, failing to
understand that Priya drove to and not away from
the restaurant.

7 Conclusion

We presented CASE, a novel LM-based plausibil-
ity score for zero-shot MCQA tasks. CASE uses a
commonsense KB to assign importance weights
to words in the input. The weighting strategy
outperforms basic LM scoring methods. When
combined with generating additional answer candi-
dates, CASE outperforms the baselines on 5 popular
MCQA benchmarks. We further showed that the
two approaches are complementary and are espe-
cially beneficial when using smaller LMs. In the fu-
ture, we plan to explore a more selective approach

Jim is a new driver and has never been pulled over before.  
Yesterday he was pulled over for speeding.  
The officer explained to him why he was being given a ticket.  
Jim will have to work overtime to pay for the ticket. 

Jim is very upset.

related to

causedepression stress

related to

Figure 4: An SCT example, along with the correct an-
swer predicted by CASE, and an example ConceptNet
path that increased the weight of the important word
upset.

Priya decided to try a new restaurant. She drove 
to a new cafe that opened. Priya sat at a booth.  
She ordered a mimosa and a breakfast burrito. 

Priya decided not to eat and left.

manner of 

run

related to

Figure 5: A incorrectly-predicted SCT example, along
with the incorrect answer predicted by CASE, and an
example ConceptNet path that increased the weight of
the word left.

for knowledge retrieval from the KB, and adapt
CASE for additional NLP tasks.

Limitations

Computational complexity. CASE is more com-
putationally expensive than using a basic LM score,
as it involves finding relevant paths from an ex-
ternal knowledge base and then estimating their
likelihood with a LM, in order to gauge the impor-
tance of keywords.

Concept coverage. The weight assignment strat-
egy in CASE is based on ConceptNet. The knowl-
edge in KBs such as ConceptNet is not contextu-
alized, which means that some facts pertaining to
concepts in the instance might not be relevant to
the specific context. In addition, it has limited cov-
erage. COMET (Hwang et al., 2021) has been used
in prior work (Majumder et al., 2020; Chakrabarty
et al., 2020; Ravi et al., 2023) to overcome this
limitation. However, finding relevant paths using
COMET requires an iterative multi-hop reasoning
approach (Arabshahi et al., 2021) which is more
complex, and more computationally-intensive. We
aim to explore efficient ways to achieve this in
future work.

Answer format. Since our method assigns a
weight for each word in the input, it is only ap-



plicable for MCQA tasks in which the answer is
a sentence. The weighting would be trivial for
tasks with single word answers such as Common-
senseQA (Talmor et al., 2019) and BoolQ (Clark
et al., 2019).

Performance limit. Our model demonstrates a
significant performance improvement over other
zero-shot baselines across a majority of datasets.
However, it is worth noting that the state-of-the-
art performance on the datasets in this paper is
achieved with more supervision (i.e. supervised or
few-shot models).
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Data. All the datasets and knowledge bases used
in this work are publicly available. We used Con-
ceptNet as a source of commonsense knowledge.
Since ConceptNet was crowdsourced, some of the
knowledge may contain societal biases or preju-
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Models. The GPT-2 models are publicly acces-
sible via HuggingFace, while GPT-3 is a closed
model behind an API. All language models may
generate offensive statements if prompted with spe-
cific inputs, however, our model only generates text
internally while the end output is a choice between
human-written answer candidates.
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A Question Prompts

Table 4 shows the prompts used for each dataset.
For tasks with several specific question type such
as COPA and SocialIQa, we convert each question
type to a natural language proxy following previ-
ous work (e.g. Shwartz et al., 2020). For tasks
that present an open-ended question, we append
the prefix “The answer is”. Finally, for tasks that
are already designed to expect the next word or
sentence (such as SCT), we use the instance as is.

Dataset Question

COPA My body cast a shadow over the grass [because]
The physician misdiagnosed the patient [so]

SCT
Tyler went to a baseball game. He saw his
favorite team! His team played hard. His team
won! []

SocialIQa Tracy didn’t go home that evening and resisted
Riley’s attacks. [Before, Tracy needed to]

ARC

Which technology was developed most re-
cently? [the answer is]
A green plant absorbs light. A frog eats flies.
These are both examples of how organisms []

OBQA

A person can grow cabbage in January with the
help of what product? [the answer is]
Gas can fill any container it is given, and liquid
[]

Table 4: Question formats used for each dataset. The
red words in square brackets are additions to the context,
designed specifically for each dataset.

B Relation Templates

Table 5 displays the templates we used to convert
edges with different relation types in ConceptNet
to natural language sentences, following Davison
et al. (2019).

Relation Type Template

A
related to←−−−→ B A is related to B

A
form of−−−→ B A is a form of B

A
is a−−→ B A is a B

A
part of−−−→ B A is a part of B

A
has a−−→ B A has a B

A
used for−−−−→ B A is used for B

A
not used for−−−−−→ B A is not used for B

A
capable of−−−−−→ B A is capable of B

A
not capable of−−−−−−→ B A is not capable of B

A
at location−−−−−→ B A is a location for B

A
causes−−−→ B A causes B

A
has subevent←−−−−−− B B happens as a subevent of A

A
has first subevent−−−−−−−−→ B A begins with B

A
has last subevent−−−−−−−−→ B A ends with B

A
has prerequisite←−−−−−−− B B is a dependency of A

A
has property−−−−−−→ B A can be described as B

A
not has property−−−−−−−→ B A can not be described as B

A
motivated by goal−−−−−−−−→ B Someone does A because they want result B

A
obstructed by−−−−−−→ B A is a obstacle in the way of B

A
desires−−−→ B A desires B

A
not desires−−−−−→ B A do not desire B

A
created by−−−−−→ B A is created by B

A
synonym←−−−→ B A is similar to B

A
antonym←−−−→ B A is opposite to B

A
distinct from←−−−−→ B A is distinct from B

A
derived from−−−−−−→ B A is derived from B

A
symbol of−−−−−→ B A is a symbol of B

A
defined as−−−−−→ B A is defined as B

A
manner of−−−−−→ B A is a specific way to do B

A
located near←−−−−→ B A is near to B

A
has context−−−−−→ B A is a word used in the context of B

A
similar to←−−−→ B A is similar to B

A
etymologically related to←−−−−−−−−−−→ B A have a common origin with B

A
etymologicallyderivedfrom−−−−−−−−−−−−→ B A is derived from B

A
causes desire−−−−−−→ B A makes someone want B

A
made of−−−−→ B A is made of B

A
receives action←−−−−−−− B B can be done to A

Table 5: Natural language templates for each relation
type in ConceptNet.


